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Symplectic maps for approximating polynomial Hamiltonian systems
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We study how to approximate polynomial Hamiltonian systems by composition of symplectic maps. Re-
cently, a number of methods preserving the symplectic character have appeared. However, they are not com-
pletely satisfactory because, in general, they are computationally expensive, very difficult to obtain or their
accuracy is relatively low. The efficiency of a numerical method depends on both its computational cost and its
accuracy. Polynomial Hamiltonians are separable in exactly solvable parts, and this can be done in many
different ways. Here we study how to find a separation for the Hamiltonian in a small number of cheaply
computed terms. Since the proposed methods depend on some free parameters, we also indicate how to choose
these parameters in order to improve the accuracy without increasing the computational cost.
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[. INTRODUCTION be high enough to preserve symplecticity up to a round-off
error. In general, the dynamics of the system is mainly de-
Polynomial Hamiltonian systems appear frequently in actermined by the low order polynomialsp=1,... M—1
celerator physic§1-7] and it is important to build good and the valuesn=M,M+1,... Mt are introduced solely
integrators for numerical simulations. For the experiments irto preserve symplecticity up to round-off. Since the compu-
accelerator physics the particles are stored for a long timdational cost grows extraordinarily with, it means that most
During this time the particles give a huge number of turnsof the work is done just to preserve symplecticity. For this
around the storage ring, and it is very important to study theeason, it seems logical to look directly for methods that
stability of the trajectories in order to avoid disappearance oéxactly preserve symplecticity. It is well known that any
too many of these particles in the walls of the ring. transformation defined implicitly by anixed variableca-
Provided that the synchrotron radiation is neglected, thenonical generator gives a symplectic map. Thus, in order to
system can be considered as a Hamiltonian. Each part of thiroduce a symplectic map accurate up to ordlerit is re-
accelerator has associated a Hamiltonian and, by composiuired that the map produced from the generating function
tion, it is possible to consider only one Hamiltonian for ap-agrees with it to that order. Unfortunately, the equations to
proximating a complete turn to the ring. 2f=(q,p) are the solve are implicit and they have to be solved up to round-off
coordinates and momenta of a particle agchre the initial ~ to preserve symplecticity. If the generating function is cheap
conditions, we have, after one turm(1)=My,z, where to computefor example, a polynomial functiorand a good
My, is the map associated to the Hamiltonian. Consideringstarting point for the iteration algorithm is known, efficient
that the system is periodic, foN turns we havez(N)  methods can be obtaing@—12.
=M HZo- However, in general, explicit methods are faster and
In general, it is not possible to find analytical expressionsgasier to implement, and in this paper we only consider ex-
for Z(N), so numerical methods are required_ Methods prep”Cit m'ethods. Most of these algorithms are Compositions of
serving the qualitative properties of the exact solution arénaps like
essential in order to have a good picture of the stability re-

gions. Therefore, we only consideymplectic integrators do i=1k;

that is, numerical methods that, when applied to a classical

Hamiltonian system, preserve its symplectic character. The Z=M(z" 1 )
I

approach we propose belongs to this family of methods and
it is usually referred to asymplectification of mapi the

accelerator physics community. enddo
One of the most important methods is the truncated Taylor
map where M; are symplectic maps such thafi=z(1)+ry,,
with ry, representing a polynomial of degré& and higher.
M There is a number of such methofs7,13 that are rela-

ZN=M.22=R+> > R. ;2°-..2°, (1) tively simple but, the maps; usually involve the compu-
' i tation of roots and exponentialk; can be relatively large,
and the accuracy of the algorithms is frequently not very
wherez(" is an approximation ta(1), R is a vector, and?  good. So, we are still paying a high price for preserving
is theith component o&° (beingz°=z,). Here,Mt has to  symplecticity.
A much cheaper but sophisticated approach was intro-
duced by Irwin[14]. It can be considered as a particular case
*Email address: sblanes@mat.uji.es of Eq. (2), and looks like
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do i=1k, the number ofB; parameters just by introducing into the
algorithm some simple and che@put not necessarily poly-

Z=R(B)Z 1 nomia) maps. Then, instead of looking for optimal values
for the B; in a jkz—dimensional space, we will do it in a

q=q (3) lower-dimensional space, reducing significantly the numeri-

cal search for their optimal values. In addition, we indicate
how to introduce more term@&nd more parametergto the

I — ! I
P=p'+Gi(d,b) algorithm, in case a further optimization is desired. The
enddo whole procedure of optimization takes into account the co-
efficients of the Hamiltonian. The algorithm we propose
wherez = (q',p'), R, are symplectic linear transformations, looks like
B=(B1, - - - ,ﬁjkz), b=(by, ... ,b|k2) are parameters to be do =1k}
fixed, G; are polynomial functions depending only on the
coordinates, and are such thee=(q*2,p*2)=2z(1)+ry,. Z=M;(Z7Y)
This algorithm can be very chedpsually with similar cost
to the Taylor series map up to orddrthen, much cheaper to enddo
compute than Eq.l) for M<M+]. Irwin proposed to fix the
values of3 and to obtairb from a linear system of equation. o
He also proposed an optimization criterion in case we had do i=ks+1ks 4
more b; variables than equations. Nevertheless, when this o ,
technique was implemented on some problems, its accuracy q=q+Gi(p'"LB)
was rather poor, and it was abandoned. A deeper analysis, o ,
following Irwin’s idea, for reducing the number of mags, p'=p'+Gi2d',b)
was carried out if15] using group properties for the linear
maps but, as we mention later in more detail, the cost is not enddo

much reduced and still is not useful enough to make this

technique competitive. However, Abell and Dra@6.4] re-  \\hare A1 are some chea ; ;

. T i p symplectic mapslynomials or
alized that the optimization of E3) should be done on the  ,qtient of polynomials the G, , are linear functions but, if
set of B coefficients. An impressive analysis was CondUCtEddesired, nonlinear terms can be included easily, andGhe

and they found, for example, that in the two-dimensionalare analogous to th®, in Eq. (3). Theb; coefficients are the
phase spacedimost all sets are bad, good sets are rare, a”dsolution of linear systems, depending on feand the co-

very goﬁ.d r?(tert]S tare exceptloﬂ'aHowever, thef{ c_ompIeX||ty jrefficients of the particular problem considered. Finally, we
wa}fs SO f'g at, even recer:. Y, ?om(;,\. e';;per S dlr;hsﬁmtﬁ eCllhdicate how to make numerical searches to find the optimal
cation of maps using generating functigdd] said that ‘the set of B for each particular problem. In order to illustrate the

approximation theary of that tgchnique s difficult to Manage,,anefits of this proposed technique, we explicitly show how
and the prospects of a practical advantage are still uncer- implement it on simple examples.

tain.” After the submission of the present paper, REf7]
appeared showing that, in spite of its complexity, it is still
possible to find efficient methods for practical problems. IIl. MATHEMATICAL BACKGROUND

In [16,4], for given values oM and of the dimension of Let us denote by=(q,p)=(qy, - - - GnsP1s - - - Pr) @

the phase space, sensitive vectors and Gram matrices WeJgctor in a 2-dimensional phase sbéce af(@), g(z) two

defined, and a set ¢ coefficients that maximized the mini-  gna\ytical functions. We denote the Poisson brackdtafd
mum of their eigenvalues was sought. As the authors notice by

the results are very sensitive & and the optimal value is
independent of the studied problem6] [Chap. 16. The
o . ) ) J 79
sensitivity of the results wittB seems logical because in a {f,g}zz &—Jij 7
perturbation technique, such as this, the linear part gives the B Zj

main contribution to the error, so small changes in the . . .
Jierel and 0 are the X n identity and zero matrices, respec-

coefficients can affect seriously the accuracy of the metho | lowi £(2): the Li
This indicates that, for most particular cases, the optimal!Vely- Following [1] we denote by f(2): the Lie operator

method obtained will be a good one, but still not the optimal@Ssociated td(z). It acts on a functioy(2) as

for each problem. Here, we propose a simple procedure to ) ] _

obtain the optimal solution for each particular problem. f(2):02={1(2).9(2)}. (6)
In this paper we use kicks instead of the general linea

transformatiorR; (without loosing much generalitysimpli-

o 1

1 o)' ©

with J=(

We define the Lie transformation associated ty

fying considerably the algorithitB). For this particular case, > fk
we explicitly obtain the minimum value &, in terms of the efi= z o @)
dimension of the phase space avdd Moreover, we reduce k=0 k!’
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where f:%g=g and f:*g={f,:f:*"1g}. In order to make sinceH(z)=H(z,). Finally, the action of a Lie transforma-
the paper self-contained, in the following we collect sometion e?°z can be considered as the time-1 flow of the
properties of Lie operators and Lie transformations that arédamiltonianH(z) = —1(2).

used later. We highly recommend R€f%,2] for more details

and proofs. lll. SPLITTING THE MAP IN SOLVABLE PARTS
Given an analytical functiog(z), an important property
of Lie transformations is SupposeH(z) is the Hamiltonian containing all elements
of the ring. In accelerator physics one is interested in the
ef@g(z)=g(e'?z), (8)  motion around the design orbit, §a| (for an unspecified

o norm) will be small. For this reason, it makes sense to write
where bye(?'z we must understand that the Lie transfor- =3 H,, whereH; are homogeneous polynomials of de-

mation acts on each componentafThe relation greei, and to consider only terms up to a given order, Bay
[:f:,:g:]=:fi:g:—:qg::f:=:{f,0}: 9 M
H~i§1 H; . (17)

indicates that the Lie algebra of functions, with the Poisson
bracket as the product, is intimately related to the Lie algebra .
of Lie operators associated to functions, with the commutator SNc€Hi andH, are exactly solvable, we can formally
as the product. Using the Baker-Campbell-Hausd@€&H)  Wte

formula and Eq(9), we have that exp(— H:)=exp(:f ) exp: f )N (18)
e:f:e:g::e:h:, (10) with
where
Nzex;{:z f, ) (19
i>2

h=f+g+3{f.g}+H{f.{f.g}+{g.{g.f}H+ - !

11
) and wheréf; are homogeneous polynomials of degredsu-
and the inverse of'®@ is e '@, Another useful property ally it is only known the Taylor series expansionef "'z,
is up to orderM, 7 (z,), which, in general, does not pre-

- . - - serve symplecticity. However, followind.8] it is possible to
e'@ig(z):e”@'=1e@ig(2):=:9(e"P2): (12 write

and then e @iz =T(z0) +1y(Z0), (20

ef(@e@e™ 1@ =ex:g(e'@2):]. (13 wherer,, is a polynomial with terms of degre and/or
_ ) higher and thay; are homogeneous polynomials of degree
For the particular case§q) andg(p), the Taylor series |y the following, any letter with a subindex, i.eg, wil
expansion of th'elr associated Lie transformati¢ristermi-  genote a generic and unspecified polynomial with terms of
nates when acting org(p), degreek or higher. We will indicate explicitly if the polyno-
mial is homogeneous. Occurrences of the syngyoin dif-
e:f(q):{ q} :[ q } . e:g(p):[ q] _ { q—Vpg(p)} ferent places do not necessarily refer to the same polynomial.
p p+Vyf(a))’ p p ' Finally, from Eq.(20) and using the BCH formula, Eq€L8)
and (19) are easily obtained.

) o ) ) . In this paper we are interested in approximating
Given a Hamiltonian functiont(z):R*"— R, the Hamil-

ton equations are given by efat - Fluiz, (21)

z={z,H(2)}=—:H(2):z, but, this transformation usually cannot be solved analytically.
Given the homogeneous polynomial in a two-dimensional
where the dot indicates derivative respect fbhe solutionis  phase space

z,=e tH) 7 (15) m .
t 0 fsz aiqulpl, (22)
which can be considered as a change of coordinates Zpom =0

to z; so, the Poisson bracket(zo):2o={H(20) 2o} [it has jt ig possible to write it as a sum of exactly solvable parts

to be read as the Poisson bracketHizy) with each com- [5,7,19,20,1% For example, each monomialq"p™ is ex-
ponent ofz,] is well defined. If the Hamiltonian is time ac,tI),/ solvable '
A™Mq
{ 0] 29

independent, thehl(z) is a constant of the motion because
(d/dt)H(z2)=—{H(2),H(2)}=0, and then q q
L ganagpgd 0
p p()/An

z=e M)z, = z =M@z (16) Po
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tonian aH®(gs,ps) may be considered with «
=1I;.HV(q; ,p;) being a constant.
(2) Given the 2-dimensional Hamiltonian

with A=[1+(n—m)aq) *pd Y™ if m#n. For m

:n’
4 =eaiQB"pB"r[q°]={ qu},
p Po) |Po/E

with E=exp(—amd *pj"%). Observe that the evaluation of 0 _ _
each map involves the computation of an exponential or éhen eactH"(q;,p;), i=1,... [ is a constant of the mo-
root [unlessn/(n—m) and m/(n—m) were both integefls  tion. In order to compute the flow forgg,ps) only the

. . e . i i (s) i

Here (,p) are written in terms of a summable infinite series HamiltonianH™(qs, p;) has to b_e cqnsm_;lered. .
on (do,Po)- Notice also that Eq(23) has singularities. In many problems the Ham'!“,iﬂ'%f.‘ is separable in .tWO

Another inconvenience is that, when considering the polyParts. i.e.H=A(p) +B(q) then,e  has to be approxi-
nomial f3+---+fy, the number of monomials increases ”.‘a,f.ed up t.OB‘"%‘ given order ia(usually the time stgpwhere
considerably. However, the number of solvable terms can b '” ' gnd e are e>_<act|y solvable. IQ Ref$21-24 the
reduced by grouping monomials that still have exact solu°lOWINg approximations are propose
tion. The procedure is relatively simple, one has to find those
Hamiltonians whose Hamilton equations

(29)

H=§1 HO(q;,pi) (29)

k

e:EA+EB:=H e:eaiA:e:ebiB:+o(EM+l), (30)
=1

dH . JH

= P g (25

q wherek is fixed but sufficiently large, and the coefficients
{a; ,b;}¥_; have to solve a system of nonlinear equations.
For some of these problems, other members of the Lie
algebra generated b& and B are also solvable. This is the
case wher\=p?, where{B(q),{B(q),A(p)}}=C(q). Then,
if the e<"® maps are replaced by the more general
exp(:eb;B+ €3c;C:) maps (with ¢; constants to be deter-
mined, the resulting methods are, in general, more efficient
[21,29,28. We observe that an efficient way to build an in-
tegrator is to consider all maps that can be cheaply evaluated

and to try to reproduce the original problem up to a given

are exactly solvable. For example, in E84), if we take the
HamiltonianH = —aqg™p™, the system to solve is

g=-mad’p™* = g=-ma(qg 'pg a.

m—-1_m—1

= p=ma(qy 'p; Hp, (26

p=mad" 'p"

where we have considered the known fact thég=

—aqg'pg' is a constant of the motion spp= gyp,, and inte-
grating Eq.(26) from t=0 to 1, the solutior{24) is obtained.
Similarly, we can prove Eq(23) (see[19]). On the other
hand, if we consideH = —(aq™+bg™ p), m>2, we have

order by composition of these maps, and this is the procedure
we propose in the following sections.

IV. USING CHEAP SOLVABLE MAPS

[6]

Let us consider the HamiltoniaH=3% (p*+6p?g?
+g%. The fourth-order Taylor map, associated to the time-1

o _ m—271/(2—m)
= q=Qqo[1+(m—2)bgy °] ’ flow of H, is given by

q=—bg™?

p=amd" *+b(m—1)g™ ?p
= p=(Ho—ag™/(bg™ ).

q= 0o+ 2po(P5+30),
(27
P=Po—20o(05+3pp),
There are several works looking for different groups of mo-
nomials with exact solution, for splitting a polynomial in as which can be computed with eight multiplications and four

few number of solvable terms as possifie7,13. However,  additions. If we use the fourth-order factorizatian ™
we must say that there is no unique way to separate a Hamilz ,—:(112)p* g~ :(12)a% o ~:3p%0% {ha algorithm we obtain is

tonian in solvable parts, and in the following section we

present a different way to split the Hamiltonian that usually — gt 203
gives more efficient methods. For higher-dimensional sys- 41=0o™ <Po.
tems, it is interesting to remember the following properties. 5

(1) Given the 2-dimensional Hamiltonian P1=Po— 207,

Lo a=exp(6q;py),
H=I1 H"ai.p), (28)
: g=ady,
then eactH(q;,p;), i=1,... r is a constant of the mo-
tion. In order to compute the flow forq¢,ps) the Hamil- p=p./a,
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which agrees with the Taylor map up to the fourth order. It Definition A Cremona map is a symplectic map whose
requires ten multiplications, two additions and one exponenTaylor series expansion terminates.

tial, being clearly more expensive. However, a different sym- Observe that

plectification is given by

K
g1=0do+ Po, 21:1_[1 e:Q(I):e:P(I):ZOIF(Zo) (32
i

3 is a polynomial function og,, and this approximation can be
P1=Po—dz1, considered as a Cremona map16,14.
In the following we show in a simple way that this kind of
factorization is always possible, and we present how to ob-
42=01~2Po, tain some of them. Obviously, the optimal integrattiie
best choice fok and the polynomial®) andP") depends
3 on each particular problem. This is what happens in symplec-
P=P1—0qz, tic integrators for Eq(30) where the best choice &fand the
coefficients{a;, b;} depend on the structure #&f andB (if
{B,{B,{B,A}}}=0, or if |B||<|/A|, etc) as well as the de-

a=9z2+p, sired accuracy.
which needs only five multiplications and five additions. The A. Twa-dimensional system
algorithm has been obtained using the approximagoi'" For simplicity, we start with the two-dimensional system,

~ e~ (2% = (At g% g~ (UM g —(V2P* This can be z=(q,p)eR?, and we consider the homogeneous polyno-
seen as a symplectification of the truncated Taylor map bynial of degreem, Eq. (22). We have the following theorem.
adding new polynomial terms to the series. This is a clear Theorem 1 Given gieRR, i=0,... m, such thatp
example showing that different symplectification techniques# 8j, i #]j then we can write
can produce algorithms with significantly different cost. In
addition, we observe that it is possible to build a symplecti- m "
fication with similar cost to the Taylor map, or even cheaper. i

Encouraged by the significant cost reduction that the izzo aq" 'plzgo bj(q+B;p)™. (33
method showed in examples like the above one, we studied
how, given a general Hamiltonian, to build a factorization Proof. We prove the theorem by giving the solution for
that preserves symplecticity and agrees with the Taylor seriethe coefficientd; . We have
map up to a given order, having similar computational cost.
We have seen from Eq14) that the computation o (-

ande9(P)" is trivial. Therefore, we are interested in looking " il P meini
for integrators, which can be written as (a+B;ip) :Z'o CnBia™ 'p, (34)
expl:fat - +fy 1)=H e QM(a): e:P(')(p):+O(RM+1), whereC, :=m!/i!(m—i)!. Then, from Eq.(33) we have
i=1
(31
m
whereO(Ry +) contains operators associated to polynomi- a= E Cim,B}bj , 1=0,...m, (35
als with terms of degreeM+1 or higher andQ')(q), 1=0
P()(p) are polynomial functions depending only on the co-
ordinates and momenta, respectively. which can be written in matrix form
C("') V(m)(B)
c® o ... o0 1 ... 1 b a,
0 c} : Bo --- Bml| b1 a
. .. . : : (7Y . (- (36)
0 ... ... Crl\By ... Bnl {bn a,
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Observe that/(™(B) is a Vandermonde matrix having in- Considering that the three exponentials on the left hand side
verse provided thgs; # B; for i #], as is the case. Then, the of Eq. (41) are exactly solvable in a finite Taylor series ex-

solution is given by pansion, then it is the whole map. |
Using the result of Theorem 2 and Corollary 1 we have
bg ao/Cﬂ1 that the polynomial we are interestdd;+ - - - +fy, is sepa-
= (Vimy -1 : 37) rable inM +1 solvable parts.
' Finally, we have the following theorem.
b an/Cq | Theorem 3Under conditions of Corollary 1 and given the
polynomial

This theorem can be considered equivalent to the Theo-
rem 5 given in[30], but here we give the explicit relation (mgm-ip
between the coefficients; and 3;, a;. In [31] a similar fat ... +Tu= 23 Zo a g (42)
separation was done where thg coefficients correspond to
the Gaussian points and then thecan be written in terms of it is possible to write
the Gaussian weights and Legendre polynomials ofghe

that minimize a given norm. However, for the purpose of this ty ; (m)(
work, we prefer not to fix the values of ti& coefficients at L ~H ex 2 di™(q+B;p)™ (43)
this point. o
We can think of{ g™ 'p'}", and{(q+ Bip)"}{", as two M 1 M
different bases for homogeneous polynomials of degnee =H r{ f p2: ) p(E dj(m)qm:>
and the linear relatio37) corresponds to a change of coor- =0 m=]
dinates. For a general polynomial we have the following.
Corollary 1. Given a general polynomial of degré in xex;{ Bi5 2 )
two dimensions ang;e R, i=0, ... M, such that;# g;
for i#j then we can write
= )]
v o exp( /302 ) exp(:QV():)
(m) ym— | b(m) +B.p)M
2 2 ad le (Z i (atAp) ) xexd :PD(p):], (44)

M M .
_ o YPR—— where Q=31 .dMq™, PW=(8—B;,1)3p? with
,-20 ( 2 b @+ pp) ) (38) Bu+1=0,d™=0 for m<3 andj>m, and whered{™ are
functions dependlng oa{™ andp; .

m=]

with bg°)=0. Proof. Using the BCH formula, equating terms and pro-
Theorem 2The Lie transformation associated to the poly- ceeding order by ordefstarting withm=3) we get recur-

nomial sively (see[4,15] for more details on this kind of procedure

y the coefficientd(™ in terms of thea{™’s and ;’s. [ ]

2 b(q+ B p)™ 39 Example 4.1Let us consider the following functions:

= b q+pgjp 4 6

_ (4)yd—ini _ (6)6—ini

has a finite Taylor series expansion, being a Cremona map. fa iZO arae. e iZO ard P 49

Proof. From Eq.(14) we have
These functions appear, for example, when considering the

_gl 2 Hamiltonian associated to the penduluid =€ p%/2— cosq)
B p - = L
e "27 g=a+ap, (40) after taking the factorization
and from Eq.(13) we have M= efatfo 4 O(Ry) (46
1.,.2. . . 1.,.2. ~
exp(— Bz:p=)exp:bg™ ) exp(Bz:p%) M being a linear transformatiof82]. In the approximation
to e'f4™fe* we compare the cost of the methods following the
_ B(1/2):p m.q— . m.
exr:b(e )™ 1=exd:b(q+Bp)™ ] separation in groups of monomials and the new separation

previously proposed. According &3] it is possible to sepa-

Similarly rate f;+ .- - +fg in 12 terms. Iff;=f;=0 only eight of
M them are different from 0, and we can write
1. 2. . (m) ym. 1. 2.
ex —,BJE.p. ex mE: b;™ g™ |ex ﬂji'p' 8 '
. ] e:f4+f6::H e:g('):_l_o(Rs)' (47)
=1
=exp(:2_ bfm)(q+ﬂjp)m:). (42)
m=j where
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gW=c,q*+c,q%, g¥@=ceq’p?% gV=c,0%p3, with i®=i;+ ... +ig, which containsCf, s monomials.
Grouping terms we can rewrite EG19) in the form
9@ =caa’p?  g®=cra’p®,  gP=cuap®+cip®,

g®=cyqp®+csp?,  g©@=cqeq+coq’p. fn= 2 Gmmmg (50)
m~/=m
The coefficientsc; can be evaluated in terms of th&"

using the BCH formula and equating terffs3]. Observe  wijth m®®)=m,+m,+m; and

that the evaluation o§™, g®, g®, andg® involve the

computation of a root and fag® andg(”) an exponential, mg m, m

beingg® and g!®® the cheapest to compute. On the other _ (mlmzms) my—ig g My=ia
hand, from Theorem 3 we have Gmymymg ilE:o i22:0 i=o 23 9" P19

expl:fu+fg) (48) X paye 3ps, (51)

—exr{ 302 )._ exp(: d(4)q4+d(6)q ) Withaili2i3 =8my iy i Mgy My—igig: Each polynomial
B Im,mym, contains R, m,m,= (my+1)(my+1)(mz+1) mo-

nomials, and these monomials are the same that appear when

+O(Rg) expanding the product

1
X exr{ {Bi=Biv1)3 p*:

with B8;=0 andd{’=d{’=0. Observe that the number of
Lie transformations is very similar to E¢47) but now each
one involves only few multiplications and additions. We

(911 B1P1) ™ (02 + B2p2) M2(03+ B3ps) ™

i i i m i
have computed Eq447) and (48) repeatedly on different _.20 .20 .2 Ca C ; C ; :3 5 :33 qll '
initial conditions and values (", and we found that Eq. o o
(48) is approximately four times faster. In addition, the algo- X pilan?'2p2qre'apl2, (52)
rithm has still seven free parametegs,, . . . ,Bs, t0 improve

the accuracy of the method. There is a problem in the generalization of Theorem 1 to
V. GENERALIZATION TO MORE VARIABLES more variables. The matrices with elemeuﬁéﬂ ,833, for
different values of8,8,,B3, are not necessarily Vander-
Let us consider the system with six variables, monde matrices, and their inverse is not guaranteed. Keeping
=(01,92,93,P1,P2,P3), Where a homogeneous polynomial this in mind, we proceed as follows.

of degreem can be written as Let us denoteS(m)=ma><{lemzm3:m1+mz+mS=m}. We
S define the ceiling function C&—7 such that given a real
fo= 2 4 i A PPARP P, (490  number it rounds up to the next integer. Then, it is easy to
i@y T 6 prove that

((m 3 m m
5+1] i g-cd3).
- m+1+1)2(m—2+1 . m+1:Ce(m+1) 53
3 3 3 3 )’
m+2 m-1 2 m+2 m+2
\( 3 +1 3 +1 if 3 =Ce( 3 )
and in a four-dimensional spacen{=0)
m 2 m m
o §+1 if 5= e(;) ”
+1 -1 m+1 m+1
5 +1 5 +1] if 5 =C% >
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Theorem 4 Given

Bi=(Bj1.Bj 2.8 R3]

=1,...S™4+r, with r=0 chosen such that the matrices

v(Mmms) with components

(mimomg) i i i
Vu,sl o _’Bjiylﬁiivzﬁjiy (55
=0,...m,, k=123, mi+tmy+mz=m, s=1,...,

Rm,m,m, are nonsingular for at least one sub&je}?j‘imﬂ of
{12,...8™+r}, then each polynomial g, m,m,
in Eq. (50) can be written as

R,
m;mymg

Im,mm, = 521 binlmzms)(Q1+,Bjs,1p1)ml
X (02t By 2P2) (A3 + Bj_aP3)™  (56)

for different subset$] i}i"imzm3.

j

Proof. Similarly to the proof of Theorem 1, there exist at am,
least one subse{tji}iR:"‘i"‘2mS of {1,2,... S'™+r} such that
the matrix with elements given in E@55) is nonsingular.

Then, after expanding E@56) we see that

(mqmpmg) (mymoms)
bjl Alm 2M3
— (V(m1m2m3)) -1¢ (57)
p(MimM2ma) A(Rm1m2m3)
Rm1m2m3 m;mpmg
with
A(m1m2m3)

(Mg+1)(My+1)ig+(Mg+1)ip+ig+1

) i1 ~lp ~i3
/(CtC 2Cms).

=a e ) .
my—iq,iqg,my—is,is,ma—ig,is m; ~m

Here,b(M™m3) ¢ RN with N=S™+r but, only the previous

Rm,m,m, COMponents of the vector are different from 0.
Corollary 2. It is possible to write

SUDRE'

fon= 2 > bimlmzmS)(%‘F,Bs,lpl)ml

s=1 |\ m®=m

X (02t Bs2P2)"2(03+ BsaP3) ™ |, (58

where one possible solution for the vectd§1mms) ¢ RN
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has a finite Taylor expansion, being a Cremona map.

Theorem 6 Under conditions of Theorem 4 and given a
general polynomialf;+---+fy in the six-dimensional
phase space, it is possible to write

Smyr
efat ... +fy ::e:P(O): H e:Q(j):e:P(j): (60)

j=1

with
M
Q(j):mE:3 m(;:m d§m1m2m3)qlm1qg]2q?3, (62)
N
P(J)ZE 241 (Byi=Bj+1)pf, §=0,... S™+r,

with Q®=Bg;=Bsm+1;=0 and where the coefficients
g(mimzms) depend on the coefficients

~ig g my i i myia g andp; ;.

Using the notatiorg=(q;,q2,d3), P=(P1,P2,p3) and
QM 5QM 5Q(i))

dqy ' ddz " dqs )’

VqQ(i)=(

[ aP® gp® Hp®
V P(l):( 1 1 )7
P dpy  Ip2  Ip3

the algorithm for computing Eq60) is given by
d2=0o— VP (po)
do j=1,8M+r
p;=pj_1+V,QY(q;)
9+1=0— VPV (p))
enddo

whereqy and p, correspond to the initial conditions. Here,
i, p; correspond to the value of the vectors at the interme-
diate stages. Considering that the Lie transformation acts on
initial conditions, the computation has to be done from left to
right.

gObserve that each evaluation is very cheap, where many
of the coefficients ofl'™™™ can be taken identically 0. In
general, if the polynomiaf;+ - - - +f,, contains all mono-

can be obtained taking only thi#,, . m, components of each mials EM_,CM. .), it is possible to consider the same num-

vector different from 0 according to Theorem 4.

Theorem 5The Lie transformation associated to the poly-

nomial

> bgmlmzms)(%"”33,1P1)m1(Q2+ﬁs,zpz)mz

m®)=m

X (Gt BszP3)™s (59

different from 0.

ber of coefficientsj}mlmst)

A. Generalization of the linear transformations

In this paper we have considered as linear maps the Lie

transformations associated ,BJ-%pj2 but, more general
transformations depending only on the momenta can be con-
sidered
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f3—a(3)q1+a(3)q1p1+a(3)q1pl+a(3)pl+a(3)qlq2

P=> BipiPi+ > YiPiPiPkt - - 62
;Bljplp] uEk Yijk PiP;j Pk (62) @) @)

Q1Q2p2+a q1p2+a p1Q2+azsp1Q2p2

where they;; , ... can easily be used for reducing the num- (3)p1p2,

ber ofd(mlm2m3) coefficients, or just to have more free pa-

rameters for optimizing the algorithm. Another possibility is f,=af Q1+ 3(4)Q1P1+ 3(4)Q1p1+a(4)Q1p1+ a(4)p1
to consider the most general linear transformation,
2i;iSijzz;, with S a symmetric matrix. In the two-
dimensional phase space we heke-a3p?+bpg+c3g?, (4)qlq2+a(4)qlq2p2+a(4)qlp2+a(4)qlplq2
and

(4)Q2+ a(4)quz+ 3(4)Q2p2+ 3(4)QZP2+ a(4)p2

SQ1P1Q2p2+ aa 20115+ a(4)pl%+ a(4)p1QZp2

4
:Ae—(Ble):pZ:q, a )plpz

— Ky — _ E
e q=(Ag+Bp)=A Q+AP
Observe thatf; and f, only contain 29 from amongst the

if A+0, where A=cosh@)+(b/7)sinh(z),B=(a/7)sinh(z) cG+c7n 54 monomials. If we define u™=(as
and 7= JbZ—ac. Then, with the exception of the trivial case T AP1)" (21 Bpz)' we observe that all mong)mm(lg) ap-
A=0, to use the linear transformations depending onlypon pearmg4|nf3 fa %{e the monomials contained urg”, uf>,
is equivalent to the most general linear transformation. How$" , us?, anduf?. SinceS)=9 and this number corre-
ever, this is not the case for higher dimensions sinceyall sponds to the number of monomialsuk’ then we can take
and p; are mixed by the linear transformations. It increases
considerably the number of parameters of the method at the
price of a higher computational cost but, allows to write the
algorithm with less that S™M+r transformations
[16,4,14,1% However, the number of coefficiem#mlmzm@
different from O is essentially the same. Since we will be '
interested in using these parameters for optimizing the algo-  QW=d{¥q3+dq,a5+d{¥a?+dSVas+dS)a%q3,
rithm, we think that to work with such a number of free
parameters can increase the error of the metlmatead of
reducing i} unless an extremely delicate analysis is carriedP() = 3(Bja— ,8]+11)p1+ 3(Bj2— ﬂj+12)p2, j=0,...,9,
out. For this reason, we decided just to use the previous
cheap and simple maps, depending only on the momenta. and Q(®)= 8 1= B¢ ;= B10.1= B102=0

For our scheme, the coefficiengs ; have to satisfy very We can choose nine paig 1,8, j=1, ... ,9such that
few constraints and the coefﬁmemi#mlmzmﬁ are relatively ~ all matrices originating from the previous products are non-
easy to obtain. In addition, in most cases it is possible to takgingular. We havel®),d®) e R® but, onlyd§? has to have all
r=0. This is the case, for example, in the four dimensionacomponents different from 0. However, if desired, we can
space (;=0). All matrices that have to be nonsingular, take all components of the vectors different from 0 and an
according to Theorem 4, are submatrices of a matrix withoptimization procedure can be used. This reduces, in general,
elementsﬂ] 1ﬂ12, i,=0,...m,i,=0,...m,, O<i,+i, the absoll_Jte value of the coeff|C|end§'f(, prodL_Jcmg a
<m which is of dlmens'onRuXu W|th u==mo(i+1) method with smaller error$14,15. In the following we

=[(m+1)(m+2)]/2. According to Eq.(54) we have that show how to simplify even more the procedkl)Jre for both
u<2sM and we can chooseSP™ values ofB; 1, B; 2 Such choosing theg; ; and obtaining the coefﬂmentﬁ(

that all previous matrices are invertible. However, in the six- Finally, we must mention that the approximationAd,
dimensional space we have thatS™ [(i+1)(i+2)]/2 qsmg Eq.(64) |s_ several t|mgs faster than using afactqnza—
=[6+11m+6m?+m3]/6, which is hlgher than &™ for tion in monomials[5] or different groups of monomials

m>4. However, as mentioned, this fact does not make th£13’7]'
algorithm much more costly.

Example 5.11In order to illustrate how to obtain one pos- VI. CHOOSING AN ALTERNATIVE BASIS
sible method in a high-dimensional system, we consider the
example in four dimensions presented[itb] for a static
storage ring represented by the symplectic map

9
efaigifai= eIP(O)(P)iH e:Q(j)(Q):e:P(j)(p): +O(Rs) (64)
=1

with

In the preceding sections we observed that the computa-
tional cost of a given splitting method is clearly dependent
on how the Hamiltonian has been split. In the two-
dimensional phase space we have considered two bases for

My= Mefs'ef (63 writing an homogeneous polynomial of degmag
~ m
where M is a 4x4 symplectic matrix and5, f, can be fo (L2)p(1,2) 66
written in the following form: " i:ZO S Tmi (6
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with P =g "p' and P2)=(q+Bip)™, i=0, ... m. The

drawback of usingD(”{)i is that the Lie transformations asso-

PHYSICAL REVIEW E 65 056703

We can choose five pai; 1,82, j=1, ... ,5such that
all matrices originating from the previous products are non-

ciated to some elements of the basis are relatively costly. Theingular, and we have to invert matrices of dimension

problem of usingP?) could be that, for largen, many3; are

or smaller. We have noa® d® e R®, having most of them

necessary. This may be uncomfortable to work with, speseveral components identically O.
cially when a higher-dimensional space is considered, and

when looking for a good set of values for theBe

On the other hand, the Lie transformation associated

to some elements of?}) are very cheap to compute.
Suppose thatP{), i=0,...f are the cheap terms,
then we can consider the new basi$7jn3%}ﬂo
={PL), P PA L PR where all terms are
cheap to compute and a smaller numbeBpare necessary.
Example 6.1 In fs we have {P§0,
={09%0%p,q*p%.a%p%,9%p* qp°,p® but, the Lie transfor-
mations associated °, q*p?, gq?p* andp® only involve

VIl. OPTIMIZING THE ALGORITHMS

In previous sections we only considered the computa-
tional cost of the algorithms. It is possible to use the free
parameterg; in order to slightly reduce the number of maps
in the factorization at the extraordinary price of needing to
solve very complicated nonlinear systems of equations. On
the other hand, to consider algorithms with free parameters
for optimization purposes usually produces more efficient
methods[28]. Then, we can use thes® in order to get
(without increasing the costmore accurate results. From

multiplications and additions. Then, an interesting basisTheorem 3 we have, in the two-dimensional phase space,

could be

(PN =1a%a*p?,a%p*,p%, (a+ B1p)°.(q

+B,p)C, (q+ Bap)°}. If f, also appears in the Hamiltonian,

the natural choice for the basis would b},
={a*,p*,(q+B1p)*,(a+ B2p)*,(a+ Bsp)*}, which allows
to group them with the elements aarg’i) without needing
additional Lie transformations. Finallg 4" 6* can be writ-

ten as the product of seven simple Lie transformations. O

serve that this is not a Cremona map since the teyfpg

and g?p* are now present. These terms have a singularity
and one has to decide if it is or it is not worth to use them for

a given problem.
Example 6.2 The polynomial f3+f, in the four-

dimensional phase space has 55 independent monomials, a@ad «; , i

M
expl:fat - - +fy ) =| e PolP%]] Q" @:gPVp):
=0

X eFu1'+ O(Ry 1 2), (68)

pwhere Ry .1 is a homogeneous polynomial of degre

+1, containing the leading error terms

M+1

Rvi1= ;O a;gM 1 Tp!

(69

=0,...M+1, depend on the coefficienf, i

28 among them can be grouped in four cheaply and exactly 0, . . . M we have chosen, and the coefficients of the prob-

solvable polynomials,

3 4
gl=i§1 biq?“q‘ﬁgo by 'ab,
3

gs= ;1 Pi(bisi2i0s ' +bigi2ids ),

4

3
gzzizl b8+ipi7ipi2+;o bio:iP7 P,

3
94= 21 Q1(Do1s2iPy '+ Do 2ip3 ).

The polynomialsu{™ = (q;+ Bp1)" ' (q,+ Bp,)' contain
(n—i+1)(i+1) different monomials. Then, among aﬂ”),
we have to consider more carefuliyy®, u$?, andu$’,

since they have 8, 9 and 8 different monomials, respectivel

But, observe that eadfy contains an element afft?, u¢?,

and u(34) so, only five more terms are necessary to reproduc

all monomials, and this can be achieved with

4 5 ) )

11 e:gi:)ezp“’)(p):l‘[ e @:g PP L O(Ry).
i=1

=1
(67)

e:f3+f4::(

lem. If we define the error of a method t§,=(Z;a?)?,
then we can look for the coefficienfs that minimizeE;.
SinceE, also depends on the coefficier#S” , the optimal
choice for theg; will depend on each particular problem. A
simpler procedure to choose the best set of coefficignts

to consider thakF(z)=f3+ - - - +f,, is a constant of the mo-
tion. Then, we can take a number of different initial condi-
tions in the region of interest. For each initial conditizy)

we evaluate the relative errof{ F(zy)—F(zo)1/F(z0)l,
wherez, is the one map approximation, and finally we take
its average value, salf,(B). Next, we have to repeat the
same process for different values & (8, . .. ,Bu) and

to look for the value that minimize&,(B8). In general,
E.(B) and E,(B) have their minimum very close to each
other, and it is enough to compute ority since it is easier

to do it. Observe thaE,, E,:RM*1—R are positive definite
functions, and their minimums can be obtained numerically
in a relatively easy way. If the problem is simple enough, we
can take random values for tifg, to computeE, and/orE,,

Yand to make a finer search around the best results. Alterna-

tively, we can choose a randomized approach as initial guess,
@nd to apply a combination of Powell’'s hybrid meth®\G
routine COSNBF and the optimization routine E04JYF. In
case the routine does not converge to a local minimum, a
new random value can be used for a new sef28h Several
local minimums can be found, and one has to choose the
optimal one.
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—1 T T T —3 T T T
-15F &
-2r -35 \ /
-25 FIG. 1. Error of the method
E, (70 for (B1,82,83)
£ _al Al & =(—1.030,0.217-1.022)3. E;
e | S 4 7 measures the Euclidean norm of
i) I & the coefficients at the leading er-
B a5t g ror term andE, measures the av-
: erage relative error in the Hamil-
I tonian. The horizontal lines
-4r I —-45F . correspond to the errors obtained
I with Eq. (72).
|
—45 r |
|
|
-5 |
- -Sr i
_5'5 1 1 1 1 1 1
0.9 0.95 1 1.05 1.1 099  0.995 1 1.005 1.01
p B
Example 7.1Let us considef, from Eq. (45) with [32] efai= o™ gig®:gig: (71)
@, ... a")=10"2x(2.411-3.812,3.716,
—2.089,0.5168 with gM=c,q*+c,q°p, g@=c5q%p?, and g®=c,qp°

+cgp*. In Fig. 1 we show in horizontal lines the values of
and the basis{g* p* (q+ B.p)* (a+B.p)* (q+Bsp)*}.  Ei1andE; obtained. We found that the computational cost of
We consider the approximation Eq. (71) is approximately three times more expensive and
still it gives an error more than one order of magnitude
3 higher than Eq(70) for g,,. Very similar results are ob-
e:f4:2e:d1q4:e:d2p4:H exp(:di s o(q+Bip)4). (70 'I[éamed for the original problem with the previous value of
i=1 op -
[I)\Iotice that the error at the minimum decreases by several
We took 100 different initial conditions in the regiap,p,  ©Orders of magnitude, and it is very sensitive to the value of
e (—1/2,1/2) and measured the valuesm{8) andE,(8) B In addition, at the minimum we see thaf~ B3, and this
for a large number of different values q8;,8,.8s¢ fact makes the corresponding Vandermonde matrix nearly

(—2,2). Numerical experiments indicated that most localSingular, and the coefficients, can take large values. We
minimums of E; and E, nearly coincide, as expected. In thinkitis important to better understand this point in order to
particular, an interesting local minimum for both was foundlocate the minimums, especially when we are working in a
at Bop=(B1,B2.B3)=(—0.897-0.239;- 1.033). However, higher-dimensional space, were magy; coefficients are

if we slightly change our problem, for example replacinginvolved. S .
a{® by a*)/10, we observe thas,, is no longer optimal so, In Refs.[16,4] a factorization similar to Eq(60) is con-

. . 53). .
a new search has to be done, and the optimal value we fourgidered but, replacing the” J_  factors by more general lin-
is Bop=(—1.030,0.217-1.022). In order to illustrate how ear symplectic transformations;. From the relation be-
the error depends on the choice of tBe, in Fig. 1 we tween this set of linear transformation@cting on a
present, for this last case, the results obtainedEfgB) and ~ hormalized basis of polynomials depending only on coordi-
E,(B) along the uniparametric family A&;,8,83) nate$ and another basis for general polynomigemposed
=(—1.0303,0.2173,—1.0228) with Be(0.9,1.1), which by normalized monomiaJsthey build the namedensitive
approximately cross through the minimumgt 1. Observe ~ Vectors From these vectors they build the corresponding
that the minimum is very narrow. This is in agreement with Gram matrix whose eigenvalues indicate how good is the
the comments ofé4] where only very few values of the pa- choice of the set of;. For instance, if we choose the basis
rameters in the Cremona maps had small error coefficient$(q+8ip)*_o, the sensitve vectors are o
For comparison, we have computed =(0p, ....0%), r=0,...,4,with ¢}=(Cy)*?8], and the

056703-11



SERGIO BLANES PHYSICAL REVIEW E 65 056703

components of the Gram matrix args= %214:00'}0']-3, being many different ways. The efficiency of a method depends on
closely related to the Vandermonde matrix. its computational cost and its accuracy. But, it depends on
In our context, this analysis would be equivalent, in somehow H is separated. We have analyzed this aspect in the
sense, to the study of the eigenvalues of the matricepaper and presented methogsost of them are Cremona
v(mmms) for maximizing the minimum eigenvalue, in order maps with the following properties. _ _
to get relatively small values for the Coefﬁciemgnlmzms). (1) They are cheap to compute. The cost, in general, is

One expects that, after the composition of the exponentialé’,ery similar to the corresponding Taylor map up to the same

the error will remain relatively small. On the other hand, Weord(;r._rh . N i d dure for buildi
observed that the optimal choice for the linear transforma- (2) There is a systematic and easy procedure for building

tions also depends on each particular problem the coef- € énfl"_tr?()di' ber of f ers for ontimizi
ficients CT ). However, this analysis for the eigenvalues (3) They have a number of free parameters for optimizing

(Mymymhe) . . , . the methods, and this can be done very easily.
of VT can give a good starting point for the numerical = e hymerical experiments clearly confirm the efficiency
search of thes coefficients, and this could be the subject of 5t the new methods versus other schemes, although this is

a future work. ultimately dependent on each particular problem.
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