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Symplectic maps for approximating polynomial Hamiltonian systems
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We study how to approximate polynomial Hamiltonian systems by composition of symplectic maps. Re-
cently, a number of methods preserving the symplectic character have appeared. However, they are not com-
pletely satisfactory because, in general, they are computationally expensive, very difficult to obtain or their
accuracy is relatively low. The efficiency of a numerical method depends on both its computational cost and its
accuracy. Polynomial Hamiltonians are separable in exactly solvable parts, and this can be done in many
different ways. Here we study how to find a separation for the Hamiltonian in a small number of cheaply
computed terms. Since the proposed methods depend on some free parameters, we also indicate how to choose
these parameters in order to improve the accuracy without increasing the computational cost.
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I. INTRODUCTION

Polynomial Hamiltonian systems appear frequently in
celerator physics@1–7# and it is important to build good
integrators for numerical simulations. For the experiments
accelerator physics the particles are stored for a long ti
During this time the particles give a huge number of tu
around the storage ring, and it is very important to study
stability of the trajectories in order to avoid disappearance
too many of these particles in the walls of the ring.

Provided that the synchrotron radiation is neglected,
system can be considered as a Hamiltonian. Each part o
accelerator has associated a Hamiltonian and, by comp
tion, it is possible to consider only one Hamiltonian for a
proximating a complete turn to the ring. Ifz5(q,p) are the
coordinates and momenta of a particle andz0 are the initial
conditions, we have, after one turn,z(1)5MHz0, where
MH is the map associated to the Hamiltonian. Consider
that the system is periodic, forN turns we havez(N)
5M H

Nz0.
In general, it is not possible to find analytical expressio

for z(N), so numerical methods are required. Methods p
serving the qualitative properties of the exact solution
essential in order to have a good picture of the stability
gions. Therefore, we only considersymplectic integrators,
that is, numerical methods that, when applied to a class
Hamiltonian system, preserve its symplectic character.
approach we propose belongs to this family of methods
it is usually referred to assymplectification of mapsin the
accelerator physics community.

One of the most important methods is the truncated Ta
map

z(T)5M Tz05R1 (
m51

MT

(
i 1 , . . . ,i m

Ri 1 , . . . ,i m
zi 1

0
•••zi m

0 , ~1!

wherez(T) is an approximation toz(1), R is a vector, andzi
0

is the i th component ofz0 ~beingz0[z0). Here,MT has to
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be high enough to preserve symplecticity up to a round-
error. In general, the dynamics of the system is mainly
termined by the low order polynomials,m51, . . . ,M21
and the valuesm5M ,M11, . . . ,MT are introduced solely
to preserve symplecticity up to round-off. Since the comp
tational cost grows extraordinarily withm, it means that most
of the work is done just to preserve symplecticity. For th
reason, it seems logical to look directly for methods th
exactly preserve symplecticity. It is well known that an
transformation defined implicitly by amixed variableca-
nonical generator gives a symplectic map. Thus, in orde
produce a symplectic map accurate up to orderM, it is re-
quired that the map produced from the generating funct
agrees with it to that order. Unfortunately, the equations
solve are implicit and they have to be solved up to round-
to preserve symplecticity. If the generating function is che
to compute~for example, a polynomial function! and a good
starting point for the iteration algorithm is known, efficie
methods can be obtained@8–12#.

However, in general, explicit methods are faster a
easier to implement, and in this paper we only consider
plicit methods. Most of these algorithms are compositions
maps like

do i 51,k1

zi5Mi~zi 21! ~2!

enddo

where Mi are symplectic maps such thatzk15z(1)1r M ,
with r M representing a polynomial of degreeM and higher.
There is a number of such methods@5,7,13# that are rela-
tively simple but, the mapsMi usually involve the compu-
tation of roots and exponentials,k1 can be relatively large,
and the accuracy of the algorithms is frequently not ve
good. So, we are still paying a high price for preservi
symplecticity.

A much cheaper but sophisticated approach was in
duced by Irwin@14#. It can be considered as a particular ca
of Eq. ~2!, and looks like
©2002 The American Physical Society03-1
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do i 51,k2

z̄i5Ri~b!zi 21

qi5q̄i ~3!

pi5 p̄i1Gi~qi ,b!

enddo

wherez̄i5(q̄i ,p̄i), Ri are symplectic linear transformation
b5(b1, . . . ,b j k2

), b5(b1 , . . . ,bl k2
) are parameters to b

fixed, Gi are polynomial functions depending only on th
coordinates, and are such thatzk25(qk2,pk2)5z(1)1r M .
This algorithm can be very cheap@usually with similar cost
to the Taylor series map up to orderM then, much cheaper to
compute than Eq.~1! for M,MT#. Irwin proposed to fix the
values ofb and to obtainb from a linear system of equation
He also proposed an optimization criterion in case we
more bi variables than equations. Nevertheless, when
technique was implemented on some problems, its accu
was rather poor, and it was abandoned. A deeper anal
following Irwin’s idea, for reducing the number of maps,k2,
was carried out in@15# using group properties for the linea
maps but, as we mention later in more detail, the cost is
much reduced and still is not useful enough to make
technique competitive. However, Abell and Dragt@16,4# re-
alized that the optimization of Eq.~3! should be done on the
set ofb coefficients. An impressive analysis was conduc
and they found, for example, that in the two-dimensio
phase space ‘‘almost all sets are bad, good sets are rare, a
very good sets are exceptional.’’ However, the complexity
was so high that, even recently, some experts in symplec
cation of maps using generating functions@11# said that ‘‘the
approximation theory of that technique is difficult to manag
and the prospects of a practical advantage are still unc
tain.’’ After the submission of the present paper, Ref.@17#
appeared showing that, in spite of its complexity, it is s
possible to find efficient methods for practical problems.

In @16,4#, for given values ofM and of the dimension o
the phase space, sensitive vectors and Gram matrices
defined, and a set ofb coefficients that maximized the min
mum of their eigenvalues was sought. As the authors noti
the results are very sensitive tob, and the optimal value is
independent of the studied problem@16# @Chap. 16#. The
sensitivity of the results withb seems logical because in
perturbation technique, such as this, the linear part gives
main contribution to the error, so small changes in theb
coefficients can affect seriously the accuracy of the meth
This indicates that, for most particular cases, the optim
method obtained will be a good one, but still not the optim
for each problem. Here, we propose a simple procedur
obtain the optimal solution for each particular problem.

In this paper we use kicks instead of the general lin
transformationRi ~without loosing much generality!, simpli-
fying considerably the algorithm~3!. For this particular case
we explicitly obtain the minimum value ofk2 in terms of the
dimension of the phase space andM. Moreover, we reduce
05670
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the number ofb i parameters just by introducing into th
algorithm some simple and cheap~but not necessarily poly-
nomial! maps. Then, instead of looking for optimal valu
for the b i in a j k2

-dimensional space, we will do it in a
lower-dimensional space, reducing significantly the nume
cal search for their optimal values. In addition, we indica
how to introduce more terms~and more parameters! into the
algorithm, in case a further optimization is desired. T
whole procedure of optimization takes into account the
efficients of the Hamiltonian. The algorithm we propo
looks like

do i 51,k38

zi5Mi~zi 21!

enddo

do i 5k3811,k3 ~4!

qi5qi1Gi ,1~pi 21,b!

pi5pi1Gi ,2~qi ,b!

enddo

whereMi are some cheap symplectic maps~polynomials or
quotient of polynomials!, theGi ,1 are linear functions but, if
desired, nonlinear terms can be included easily, and theGi ,2
are analogous to theGi in Eq. ~3!. Thebi coefficients are the
solution of linear systems, depending on theb j and the co-
efficients of the particular problem considered. Finally, w
indicate how to make numerical searches to find the opti
set ofb for each particular problem. In order to illustrate th
benefits of this proposed technique, we explicitly show h
to implement it on simple examples.

II. MATHEMATICAL BACKGROUND

Let us denote byz5(q,p)5(q1 , . . . ,qn ,p1 , . . . ,pn) a
vector in a 2n-dimensional phase space, andf (z), g(z) two
analytical functions. We denote the Poisson bracket off and
g by

$ f ,g%5(
i , j

] f

]zi
Ji j

]g

]zj
with J5S 0 I

2I 0D . ~5!

HereI and 0 are then3n identity and zero matrices, respe
tively. Following @1# we denote by :f (z): the Lie operator
associated tof (z). It acts on a functiong(z) as

: f ~z!:g~z!5$ f ~z!,g~z!%. ~6!

We define the Lie transformation associated tof by

e: f :5 (
k50

`
: f :k

k!
, ~7!
3-2
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where :f :0g5g and :f :kg5$ f ,: f :k21g%. In order to make
the paper self-contained, in the following we collect som
properties of Lie operators and Lie transformations that
used later. We highly recommend Refs.@1,2# for more details
and proofs.

Given an analytical functiong(z), an important property
of Lie transformations is

e: f (z):g~z!5g~e: f (z):z!, ~8!

where bye: f (z):z we must understand that the Lie transfo
mation acts on each component ofz. The relation

@ : f :,:g:#[: f ::g:2:g:: f :5:$ f ,g%: ~9!

indicates that the Lie algebra of functions, with the Poiss
bracket as the product, is intimately related to the Lie alge
of Lie operators associated to functions, with the commuta
as the product. Using the Baker-Campbell-Hausdorff~BCH!
formula and Eq.~9!, we have that

e: f :e:g:5e:h:, ~10!

where

h5 f 1g1 1
2 $ f ,g%1 1

12 ~ˆf ,$ f ,g%‰1ˆg,$g, f %‰!1••• ,
~11!

and the inverse ofe: f (z): is e2: f (z):. Another useful property
is

e: f (z)::g~z!:e2: f (z):5:e: f (z):g~z!:5:g~e: f (z):z!: ~12!

and then

e: f (z):e:g(z):e2: f (z):5exp@ :g~e: f (z):z!:#. ~13!

For the particular casesf (q) andg(p), the Taylor series
expansion of their associated Lie transformations~7! termi-
nates when acting on (q,p) ,

e: f (q):H q

pJ 5H q

p1“qf ~q!
J ; e:g(p):H q

pJ 5H q2“pg~p!

p J .

~14!

Given a Hamiltonian function,H(z):R2n→R, the Hamil-
ton equations are given by

ż5$z,H~z!%52:H~z!:z,

where the dot indicates derivative respect tot. The solution is

zt5e2t:H(z0):z0 , ~15!

which can be considered as a change of coordinates fromz0
to zt so, the Poisson bracket, :H(z0):z05$H(z0),z0% @it has
to be read as the Poisson bracket ofH(z0) with each com-
ponent of z0# is well defined. If the Hamiltonian is time
independent, thenH(z) is a constant of the motion becau
(d/dt)H(z)52$H(z),H(z)%50, and then

zt5e2t:H(z0):z0 ⇒ z05et:H(zt):zt , ~16!
05670
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sinceH(zt)5H(z0). Finally, the action of a Lie transforma
tion e: f (z):z can be considered as the time-1 flow of t
HamiltonianH(z)52 f (z).

III. SPLITTING THE MAP IN SOLVABLE PARTS

SupposeH(z) is the Hamiltonian containing all elemen
of the ring. In accelerator physics one is interested in
motion around the design orbit, soizi ~for an unspecified
norm! will be small. For this reason, it makes sense to wr
H5( iHi , whereHi are homogeneous polynomials of d
greei, and to consider only terms up to a given order, sayM,

H;(
i 51

M

Hi . ~17!

SinceH1 and H2 are exactly solvable, we can formall
write

exp~2:H: !5exp~ : f 1 : !exp~ : f 2 : !N ~18!

with

N5expS :(
i .2

f i : D , ~19!

and wheref i are homogeneous polynomials of degreei. Usu-
ally it is only known the Taylor series expansion ofe2:H:z0

up to orderM , T H
(M )(z0), which, in general, does not pre

serve symplecticity. However, following@18# it is possible to
write

e:g1 :e:g2 :
•••e:gM :z05T H

(M )~z0!1r M~z0!, ~20!

where r M is a polynomial with terms of degreeM and/or
higher and thegi are homogeneous polynomials of degreei.
In the following, any letter with a subindex, i.e.,gk , will
denote a generic and unspecified polynomial with terms
degreek or higher. We will indicate explicitly if the polyno-
mial is homogeneous. Occurrences of the symbolgk in dif-
ferent places do not necessarily refer to the same polynom
Finally, from Eq.~20! and using the BCH formula, Eqs.~18!
and ~19! are easily obtained.

In this paper we are interested in approximating

e: f 31 . . . 1 f M :z, ~21!

but, this transformation usually cannot be solved analytica
Given the homogeneous polynomial in a two-dimensio

phase space

f m5(
i 50

m

aiq
m2 i pi , ~22!

it is possible to write it as a sum of exactly solvable pa
@5,7,19,20,13#. For example, each monomialaqnpm is ex-
actly solvable

H q̄

p̄
J 5ea:q0

np0
m :H q0

p0
J 5H Amq0

p0 /AnJ ~23!
3-3
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SERGIO BLANES PHYSICAL REVIEW E 65 056703
with A5@11(n2m)aq0
n21p0

m21#1/(m2n) if mÞn. For m
5n ,

H q̄

p̄
J 5ea:q0

mp0
m :H q0

p0
J 5H Eq0

p0 /EJ , ~24!

with E5exp(2amq0
m21p0

m21). Observe that the evaluation o
each map involves the computation of an exponential o
root @unlessn/(n2m) and m/(n2m) were both integers#.
Here (q̄,p̄) are written in terms of a summable infinite seri
on (q0 ,p0). Notice also that Eq.~23! has singularities.

Another inconvenience is that, when considering the po
nomial f 31•••1 f M , the number of monomials increase
considerably. However, the number of solvable terms can
reduced by grouping monomials that still have exact so
tion. The procedure is relatively simple, one has to find th
Hamiltonians whose Hamilton equations

q̇5
]H

]p
, ṗ52

]H

]q
~25!

are exactly solvable. For example, in Eq.~24!, if we take the
HamiltonianH52aqmpm, the system to solve is

q̇52maqmpm21 ⇒ q̇52ma~q0
m21p0

m21!q ,

ṗ5maqm21pm ⇒ ṗ5ma~q0
m21p0

m21!p, ~26!

where we have considered the known fact thatH05
2aq0

mp0
m is a constant of the motion soqp5q0p0, and inte-

grating Eq.~26! from t50 to 1, the solution~24! is obtained.
Similarly, we can prove Eq.~23! ~see @19#!. On the other
hand, if we considerH52(aqm1bqm21p), m.2, we have
@6#

q̇52bqm21 ⇒ q̄5q0@11~m22!bq0
m22#1/(22m),

ṗ5amqm211b~m21!qm22p

⇒ p̄5~H02aq̄m!/~bq̄m21!. ~27!

There are several works looking for different groups of m
nomials with exact solution, for splitting a polynomial in a
few number of solvable terms as possible@6,7,13#. However,
we must say that there is no unique way to separate a Ha
tonian in solvable parts, and in the following section w
present a different way to split the Hamiltonian that usua
gives more efficient methods. For higher-dimensional s
tems, it is interesting to remember the following propertie

~1! Given the 2r -dimensional Hamiltonian

H5)
i 51

r

H ( i )~qi ,pi !, ~28!

then eachH ( i )(qi ,pi), i 51, . . . ,r is a constant of the mo
tion. In order to compute the flow for (qs ,ps) the Hamil-
05670
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tonian aH (s)(qs ,ps) may be considered with a
5) i 5” sH

( i )(qi ,pi) being a constant.
~2! Given the 2r -dimensional Hamiltonian

H5(
i 51

r

H ( i )~qi ,pi ! ~29!

then eachH ( i )(qi ,pi), i 51, . . . ,r is a constant of the mo
tion. In order to compute the flow for (qs ,ps) only the
HamiltonianH (s)(qs ,ps) has to be considered.

In many problems the Hamiltonian is separable in tw
parts, i.e.,H5A(p)1B(q) then,e:eA1eB: has to be approxi-
mated up to a given order ine ~usually the time step! where
e:eA: and e:eB: are exactly solvable. In Refs.@21–28# the
following approximations are proposed

e:eA1eB:5)
i 51

k

e:eaiA:e:ebiB:1O~eM11!, ~30!

wherek is fixed but sufficiently large, and the coefficien
$ai ,bi% i 51

k have to solve a system of nonlinear equations
For some of these problems, other members of the

algebra generated byA and B are also solvable. This is th
case whenA5p2, where$B(q),$B(q),A(p)%%5C(q). Then,
if the e:ebiB: maps are replaced by the more gene
exp(:ebiB1e3ciC:) maps ~with ci constants to be deter
mined!, the resulting methods are, in general, more effici
@21,29,26#. We observe that an efficient way to build an i
tegrator is to consider all maps that can be cheaply evalu
and to try to reproduce the original problem up to a giv
order by composition of these maps, and this is the proced
we propose in the following sections.

IV. USING CHEAP SOLVABLE MAPS

Let us consider the HamiltonianH5 1
2 (p416p2q2

1q4). The fourth-order Taylor map, associated to the time
flow of H, is given by

q5q012p0~p0
213q0

2!,

p5p022q0~q0
213p0

2!,

which can be computed with eight multiplications and fo
additions. If we use the fourth-order factorizatione2:H:

.e2:(1/2)p4:e2:(1/2)q4:e2:3p2q2:, the algorithm we obtain is

q15q012p0
3 ,

p15p022q1
3 ,

a5exp~6q1p1!,

q5aq1 ,

p5p1 /a,
3-4
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which agrees with the Taylor map up to the fourth order
requires ten multiplications, two additions and one expon
tial, being clearly more expensive. However, a different sy
plectification is given by

q15q01p0 ,

p15p02q1
3 ,

q25q122p0 ,

p5p12q2
3 ,

q5q21p,

which needs only five multiplications and five additions. T
algorithm has been obtained using the approximatione2:H:

.e2:(1/2)p2:e2:(1/4)q4:e:p2:e2:(1/4)q4:e2:(1/2)p2:. This can be
seen as a symplectification of the truncated Taylor map
adding new polynomial terms to the series. This is a cl
example showing that different symplectification techniqu
can produce algorithms with significantly different cost.
addition, we observe that it is possible to build a symple
fication with similar cost to the Taylor map, or even cheap

Encouraged by the significant cost reduction that
method showed in examples like the above one, we stu
how, given a general Hamiltonian, to build a factorizati
that preserves symplecticity and agrees with the Taylor se
map up to a given order, having similar computational co
We have seen from Eq.~14! that the computation ofe: f (q):

ande:g(p): is trivial. Therefore, we are interested in lookin
for integrators, which can be written as

exp~ : f 31•••1 f M : !5)
i 51

k

e:Q( i )(q): e:P( i )(p):1O~RM11!,

~31!

whereO(RM11) contains operators associated to polynom
als with terms of degreeM11 or higher andQ( i )(q),
P( i )(p) are polynomial functions depending only on the c
ordinates and momenta, respectively.
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Definition. A Cremona map is a symplectic map who
Taylor series expansion terminates.

Observe that

z15)
i 51

k

e:Q( i ):e:P( i ):z05F~z0! ~32!

is a polynomial function ofz0, and this approximation can b
considered as a Cremona map@4,16,14#.

In the following we show in a simple way that this kind o
factorization is always possible, and we present how to
tain some of them. Obviously, the optimal integrator~the
best choice fork and the polynomialsQ( i ) andP( i )) depends
on each particular problem. This is what happens in symp
tic integrators for Eq.~30! where the best choice ofk and the
coefficients$ai , bi% depend on the structure ofA andB ~if
$B,ˆB,$B,A%‰%50, or if iBi!iAi , etc.! as well as the de-
sired accuracy.

A. Two-dimensional system

For simplicity, we start with the two-dimensional system
z5(q,p)PR2, and we consider the homogeneous polyn
mial of degreem, Eq. ~22!. We have the following theorem

Theorem 1. Given b iPR, i 50, . . . ,m, such that b i
Þb j , iÞ j then we can write

(
i 50

m

aiq
m2 i pi5(

j 50

m

bj~q1b j p!m. ~33!

Proof. We prove the theorem by giving the solution fo
the coefficientsbj . We have

~q1b j p!m5(
i 50

m

Cm
i b j

i qm2 i pi , ~34!

whereCm
i
ªm!/ i !(m2 i )!. Then, from Eq.~33! we have

ai5(
j 50

m

Cm
i b j

i bj , i 50, . . . ,m, ~35!

which can be written in matrix form
~36!
3-5
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Observe thatV(m)(b) is a Vandermonde matrix having in
verse provided thatb iÞb j for iÞ j , as is the case. Then, th
solution is given by

H b0

A

bm

J 5~V(m)!21H a0 /Cm
0

A

am /Cm
m
J . ~37!

j

This theorem can be considered equivalent to the Th
rem 5 given in@30#, but here we give the explicit relatio
between the coefficientsbi and b i , ai . In @31# a similar
separation was done where theb j coefficients correspond to
the Gaussian points and then thebj can be written in terms o
the Gaussian weights and Legendre polynomials of theb j
that minimize a given norm. However, for the purpose of t
work, we prefer not to fix the values of theb j coefficients at
this point.

We can think of$qm2 i pi% i 50
m and$(q1b i p)m% i 50

m as two
different bases for homogeneous polynomials of degreem,
and the linear relation~37! corresponds to a change of coo
dinates. For a general polynomial we have the following.

Corollary 1. Given a general polynomial of degreeM in
two dimensions andb iPR, i 50, . . . ,M , such thatb iÞb j
for iÞ j then we can write

(
m51

M

(
i 50

m

ai
(m)qm2 i pi5 (

m51

M S (
j 50

m

bj
(m)~q1b j p!mD

5(
j 50

M S (
m5 j

M

bj
(m)~q1b j p!mD ~38!

with b0
(0)50.

Theorem 2. The Lie transformation associated to the po
nomial

(
m5 j

M

bj
(m)~q1b j p!m ~39!

has a finite Taylor series expansion, being a Cremona m
Proof. From Eq.~14! we have

e2b
1
2 :p2:q5q1bp, ~40!

and from Eq.~13! we have

exp~2b 1
2 :p2: !exp~ :bqm: !exp~b 1

2 :p2: !

5exp@ :b~e2b(1/2):p2:q!m:#5exp@ :b~q1bp!m:#.

Similarly

expS 2b j

1

2
:p2: DexpS : (

m5 j

M

bj
(m)qm: D expS b j

1

2
:p2: D

5expS : (
m5 j

M

bj
(m)~q1b j p!m: D . ~41!
05670
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Considering that the three exponentials on the left hand
of Eq. ~41! are exactly solvable in a finite Taylor series e
pansion, then it is the whole map. j

Using the result of Theorem 2 and Corollary 1 we ha
that the polynomial we are interested,f 31•••1 f M , is sepa-
rable inM11 solvable parts.

Finally, we have the following theorem.
Theorem 3. Under conditions of Corollary 1 and given th

polynomial

f 31 . . . 1 f M5 (
m53

M

(
i 50

m

ai
(m)qm2 i pi , ~42!

it is possible to write

e: f 31 . . . 1 f M :.)
j 50

M

expS : (
m5 j

M

dj
(m)~q1b j p!m: D ~43!

5)
j 50

M

expS :2b j

1

2
p2: DexpS : (

m5 j

M

dj
(m)qm: D

3expS :b j

1

2
p2: D

5expS :2b0

1

2
p2: D )

j 50

M

exp~ :Q( j )~q!: !

3exp@ :P( j )~p!:#, ~44!

where Q( j )5(m5 j
M dj

(m)qm, P( j )5(b j2b j 11) 1
2 p2, with

bM1150, dj
(m)50 for m,3 and j .m, and wheredj

(m) are
functions depending onaj

(m) andb j .
Proof. Using the BCH formula, equating terms and pr

ceeding order by order~starting with m53! we get recur-
sively ~see@4,15# for more details on this kind of procedure!
the coefficientsdj

(m) in terms of theaj
(m)’s andb j ’s. j

Example 4.1. Let us consider the following functions:

f 45(
i 50

4

ai
(4)q42 i pi , f 65(

i 50

6

ai
(6)q62 i pi . ~45!

These functions appear, for example, when considering
Hamiltonian associated to the pendulum (H5p2/22cosq),
after taking the factorization

e:H:5M̂e: f 41 f 6 :1O~R8!, ~46!

M̂ being a linear transformation@32#. In the approximation
to e: f 41 f 6 : we compare the cost of the methods following t
separation in groups of monomials and the new separa
previously proposed. According to@13# it is possible to sepa-
rate f 31•••1 f 6 in 12 terms. If f 35 f 550 only eight of
them are different from 0, and we can write

e: f 41 f 6 :5)
i 51

8

e:g( i ):1O~R8!, ~47!

where
3-6
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g(1)5c1q41c2q3p, g(4)5c6q4p2, g(7)5c10q
3p3,

g(2)5c3q2p2, g(5)5c7q2p4, g(8)5c11qp51c12p
6,

g(3)5c4qp31c5p4, g(6)5c8q61c9q5p.

The coefficientsci can be evaluated in terms of theai
(n)

using the BCH formula and equating terms@13#. Observe
that the evaluation ofg(1), g(3), g(6), and g(8) involve the
computation of a root and forg(2) and g(7) an exponential,
being g(4) and g(5) the cheapest to compute. On the oth
hand, from Theorem 3 we have

exp~ : f 41 f 6 : ! ~48!

5expS 2:b0

1

2
p2: D)

i 50

6

exp~ :di
(4)q41di

(6)q6: !

3expF :~b i2b i 11!
1

2
p2: G1O~R8!

with b750 andd5
(4)5d6

(4)50. Observe that the number o
Lie transformations is very similar to Eq.~47! but now each
one involves only few multiplications and additions. W
have computed Eqs.~47! and ~48! repeatedly on differen
initial conditions and values ofai

(n) , and we found that Eq
~48! is approximately four times faster. In addition, the alg
rithm has still seven free parameters,b0 , . . . ,b6, to improve
the accuracy of the method.

V. GENERALIZATION TO MORE VARIABLES

Let us consider the system with six variables,z
5(q1 ,q2 ,q3 ,p1 ,p2 ,p3), where a homogeneous polynomi
of degreem can be written as

f m5 (
i (6)5m

ai 1 , . . . ,i 6
q1

i 1p1
i 2q2

i 3p2
i 4q3

i 5p3
i 6 , ~49!
05670
r

-

with i (6)5 i 11•••1 i 6, which containsCm15
m monomials.

Grouping terms we can rewrite Eq.~49! in the form

f m5 (
m(3)5m

gm1m2m3
, ~50!

with m(3)5m11m21m3 and

gm1m2m3
5 (

i 150

m1

(
i 250

m2

(
i 350

m3

ai 1i 2i 3

(m1m2m3)q1
m12 i 1p1

i 1q2
m22 i 2

3p2
i 2q3

m32 i 3p3
i 3 , ~51!

with ai 1i 2i 3

(m1m2m3)
5am12 i 1 ,i 1 ,m22 i 2 ,i 2 ,m32 i 3 ,i 3

. Each polynomial

gm1m2m3
containsRm1m2m3

[(m111)(m211)(m311) mo-
nomials, and these monomials are the same that appear w
expanding the product

~q11b1p1!m1~q21b2p2!m2~q31b3p3!m3

5 (
i 150

m1

(
i 250

m2

(
i 350

m3

Cm1

i 1 Cm2

i 2 Cm3

i 3 b1
i 1b2

i 2b3
i 3q1

m12 i 1

3p1
i 1q2

m22 i 2p2
i 2q3

m32 i 3p3
i 3 . ~52!

There is a problem in the generalization of Theorem 1
more variables. The matrices with elementsb1

i 1b2
i 2b3

i 3, for
different values ofb1 ,b2 ,b3, are not necessarily Vande
monde matrices, and their inverse is not guaranteed. Kee
this in mind, we proceed as follows.

Let us denoteS(m)5max$Rm1m2m3
:m11m21m35m%. We

define the ceiling function Ce:R→Z such that given a rea
number it rounds up to the next integer. Then, it is easy
prove that
S(m)55
S m

3
11D 3

if
m

3
5CeS m

3 D ,

S m11

3
11D 2S m22

3
11D if

m11

3
5CeS m11

3 D ,

S m12

3
11D S m21

3
11D 2

if
m12

3
5CeS m12

3 D ,

~53!

and in a four-dimensional space (m350)

S(m)5H S m

2
11D 2

if
m

2
5CeS m

2 D ,

S m11

2
11D S m21

2
11D if

m11

2
5CeS m11

2 D .

~54!
3-7
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Theorem 4. Given b j5(b j ,1 ,b j ,2 ,b j ,3)PR3, j
51, . . . ,S(m)1r , with r>0 chosen such that the matrice
V(m1m2m3) with components

Vu,s
(m1m2m3)

5b j s,1
i 1 b j s,2

i 2 b j s,3
i 3 , ~55!

with u5(m311)(m211)i 11(m311)i 21 i 311, i k
50, . . . ,mk , k51,2,3, m11m21m35m, s51, . . . ,

Rm1m2m3
are nonsingular for at least one subset$ j i% i 51

Rm1m2m3 of

$1,2, . . . ,S(m)1r %, then each polynomial gm1m2m3

in Eq. ~50! can be written as

gm1m2m3
5 (

s51

Rm1m2m3

bj s

(m1m2m3)
~q11b j s,1

p1!m1

3~q21b j s,2
p2!m2~q31b j s,3

p3!m3 ~56!

for different subsets$ j i% i 51

Rm1m2m3 .
Proof. Similarly to the proof of Theorem 1, there exist

least one subset$ j i% i 51

Rm1m2m3 of $1,2, . . . ,S(m)1r % such that
the matrix with elements given in Eq.~55! is nonsingular.
Then, after expanding Eq.~56! we see that

H bj 1

(m1m2m3)

A

bj Rm1m2m3

(m1m2m3)J 5~V(m1m2m3)!21H A1
(m1m2m3)

A

ARm1m2m3

(m1m2m3)J ~57!

with

A(m311)(m211)i 11(m311)i 21 i 311
(m1m2m3)

5am12 i 1 ,i 1 ,m22 i 2 ,i 2 ,m32 i 3 ,i 3
/~Cm1

i 1 Cm2

i 2 Cm3

i 3 !.

Here,b(m1m2m3)PRN with N5S(m)1r but, only the previous
Rm1m2m3

components of the vector are different from 0.
Corollary 2. It is possible to write

f m5 (
s51

S(m)1r S (
m(3)5m

bs
(m1m2m3)

~q11bs,1p1!m1

3~q21bs,2p2!m2~q31bs,3p3!m3D , ~58!

where one possible solution for the vectorsb(m1m2m3)PRN

can be obtained taking only theRm1m2m3
components of each

vector different from 0 according to Theorem 4.
Theorem 5. The Lie transformation associated to the po

nomial

(
m(3)5m

bs
(m1m2m3)

~q11bs,1p1!m1~q21bs,2p2!m2

3~q31bs,3p3!m3 ~59!
05670
-

has a finite Taylor expansion, being a Cremona map.
Theorem 6. Under conditions of Theorem 4 and given

general polynomial f 31•••1 f M in the six-dimensional
phase space, it is possible to write

e: f 31 . . . 1 f M :.e:P(0): )
j 51

S(m)1r

e:Q( j ):e:P( j ): ~60!

with

Q( j )5 (
m53

M

(
m(3)5m

dj
(m1m2m3)q1

m1q2
m2q3

m3 , ~61!

P( j )5
1

2 (
i 51

3

~b j ,i2b j 11,i !pi
2 , j 50, . . . ,S(m)1r ,

with Q(0)5b0,i5bS(m)1r 11,i50 and where the coefficient
dj

(m1m2m3) depend on the coefficient
am12 i 1 ,i 1 ,m22 i 2 ,i 2 ,m32 i 3 ,i 3

andb j ,i .

Using the notationq5(q1 ,q2 ,q3), p5(p1 ,p2 ,p3) and

“qQ( i )5S ]Q( i )

]q1
,
]Q( i )

]q2
,
]Q( i )

]q3
D ,

“pP( i )5S ]P( i )

]p1
,
]P( i )

]p2
,
]P( i )

]p3
D ,

the algorithm for computing Eq.~60! is given by

q15q02“pP(0)~p0!

do j 51,S(m)1r

pj5pj 211“qQ( j )~qj !

qj 115qj2“pP( j )~pj !

enddo

whereq0 and p0 correspond to the initial conditions. Here
qi , pi correspond to the value of the vectors at the interm
diate stages. Considering that the Lie transformation acts
initial conditions, the computation has to be done from left
right.

Observe that each evaluation is very cheap, where m
of the coefficients ofdj

(m1m2m3) can be taken identically 0. In
general, if the polynomialf 31•••1 f M contains all mono-
mials ((m53

M Cm15
m ), it is possible to consider the same num

ber of coefficientsdj
(m1m2m3) different from 0.

A. Generalization of the linear transformations

In this paper we have considered as linear maps the

transformations associated to( jb j
1
2 pj

2 but, more general
transformations depending only on the momenta can be c
sidered
3-8
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P5(
i j

b i j pipj1(
i jk

g i jkpipj pk1•••, ~62!

where theg i jk , . . . can easily be used for reducing the nu
ber of dj

(m1m2m3) coefficients, or just to have more free p
rameters for optimizing the algorithm. Another possibility
to consider the most general linear transformati
( i , jSi , j zizj , with S a symmetric matrix. In the two-

dimensional phase space we haveK5a 1
2 p21bpq1c 1

2 q2,
and

e2:K:q5~Aq1Bp!5AS q1
B

A
pD5Ae2(B/2A):p2:q,

if AÞ0, where A5cosh(h)1(b/h)sinh(h),B5(a/h)sinh(h)
andh5Ab22ac. Then, with the exception of the trivial cas
A50, to use the linear transformations depending only op
is equivalent to the most general linear transformation. Ho
ever, this is not the case for higher dimensions since alqi
and pi are mixed by the linear transformations. It increas
considerably the number of parameters of the method at
price of a higher computational cost but, allows to write t
algorithm with less that S(m)1r transformations
@16,4,14,15#. However, the number of coefficientsdj

(m1m2m3)

different from 0 is essentially the same. Since we will
interested in using these parameters for optimizing the a
rithm, we think that to work with such a number of fre
parameters can increase the error of the method~instead of
reducing it! unless an extremely delicate analysis is carr
out. For this reason, we decided just to use the previ
cheap and simple maps, depending only on the moment

For our scheme, the coefficientsb i , j have to satisfy very
few constraints and the coefficientsdj

(m1m2m3) are relatively
easy to obtain. In addition, in most cases it is possible to t
r 50. This is the case, for example, in the four dimensio
space (m350). All matrices that have to be nonsingula
according to Theorem 4, are submatrices of a matrix w
elementsb j ,1

i 1 b j ,2
i 2 , i 150, . . . ,m1 ,i 250, . . . ,m2 , 0< i 11 i 2

<m which is of dimensionRu3u with u5( i 50
m ( i 11)

5@(m11)(m12)#/2. According to Eq.~54! we have that
u,2S(m) and we can choose 2S(m) values ofb j ,1 , b j ,2 such
that all previous matrices are invertible. However, in the s
dimensional space we have thatu5( i 50

m @( i 11)(i 12)#/2
5@6111m16m21m3#/6, which is higher than 3S(m) for
m.4. However, as mentioned, this fact does not make
algorithm much more costly.

Example 5.1. In order to illustrate how to obtain one po
sible method in a high-dimensional system, we consider
example in four dimensions presented in@15# for a static
storage ring represented by the symplectic map

M45M̂e: f 3 :e: f 4 :, ~63!

where M̂ is a 434 symplectic matrix andf 3 , f 4 can be
written in the following form:
05670
-

,

-

s
he

o-

d
s

e
l

h

-

e

e

f 35a1,1
(3)q1

31a1,2
(3)q1

2p11a1,3
(3)q1p1

21a1,4
(3)p1

31a2,1
(3)q1q2

2

1a2,2
(3)q1q2p21a2,3

(3)q1p2
21a2,4

(3)p1q2
21a2,5

(3)p1q2p2

1a2,6
(3)p1p2

2 ,

f 45a1,1
(4)q1

41a1,2
(4)q1

3p11a1,3
(4)q1

2p1
21a1,4

(4)q1p1
31a1,5

(4)p1
4

1a2,1
(4)q2

41a2,2
(4)q2

3p21a2,3
(4)q2

2p2
21a2,4

(4)q2p2
31a2,5

(4)p2
4

1a3,1
(4)q1

2q2
21a3,2

(4)q1
2q2p21a3,3

(4)q1
2p2

21a3,4
(4)q1p1q2

2

1a3,5
(4)q1p1q2p21a3,6

(4)q1p1p2
21a3,7

(4)p1
2q2

21a3,8
(4)p1

2q2p2

1a3,9
(4)p1

2p2
2 .

Observe thatf 3 and f 4 only contain 29 from amongst th
C6

31C7
4554 monomials. If we define ui

(n)5(q1

1bp1)n2 i(q21bp2) i we observe that all monomials ap
pearing inf 3 , f 4 are the monomials contained inu0

(3) , u2
(3) ,

u0
(4) , u2

(4) , andu4
(4) . SinceS(4)59 and this number corre

sponds to the number of monomials inu2
(4) then we can take

e: f 3 :e: f 4 :5e:P(0)(p):)
j 51

9

e:Q( j )(q):e:P( j )(p):1O~R5! ~64!

with

Q( j )5d1,j
(3)q1

31d2,j
(3)q1q2

21d1,j
(4)q1

41d2,j
(4)q2

41d3,j
(4)q1

2q2
2 ,

~65!

P( j )5 1
2 ~b j ,12b j 11,1!p1

21 1
2 ~b j ,22b j 11,2!p2

2 , j 50, . . . ,9,

andQ(0)5b0,15b0,25b10,15b10,250.
We can choose nine pairsb j ,1 ,b j ,2 , j 51, . . . ,9such that

all matrices originating from the previous products are no
singular. We haved(3),d(4)PR9 but, onlyd3,j

(4) has to have all
components different from 0. However, if desired, we c
take all components of the vectors different from 0 and
optimization procedure can be used. This reduces, in gen
the absolute value of the coefficientsdj ,k

( i ) , producing a
method with smaller errors@14,15#. In the following we
show how to simplify even more the procedure for bo
choosing theb i , j and obtaining the coefficientsdi , j

(k) .
Finally, we must mention that the approximation toM4

using Eq.~64! is several times faster than using a factoriz
tion in monomials @5# or different groups of monomials
@13,7#.

VI. CHOOSING AN ALTERNATIVE BASIS

In the preceding sections we observed that the comp
tional cost of a given splitting method is clearly depende
on how the Hamiltonian has been split. In the tw
dimensional phase space we have considered two base
writing an homogeneous polynomial of degreem,

f m5(
i 50

m

a i
(1,2)Pm,i

(1,2) ~66!
3-9
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with Pm,i
(1)5qm2 i pi andPm,i

(2)5(q1b i p)m, i 50, . . . ,m. The
drawback of usingPm,i

(1) is that the Lie transformations ass
ciated to some elements of the basis are relatively costly.
problem of usingPm,i

(2) could be that, for largem, manyb i are
necessary. This may be uncomfortable to work with, s
cially when a higher-dimensional space is considered,
when looking for a good set of values for theseb i .

On the other hand, the Lie transformation associa
to some elements ofPm,i

(1) are very cheap to compute
Suppose thatPm,i

(1) , i 50, . . . ,r are the cheap terms
then we can consider the new basis$Pm,i

(3)% i 50
m

5$Pm,0
(1) , . . . ,Pm,r

(1) ,Pm,r 11
(2) , . . . ,Pm,m

(2) % where all terms are
cheap to compute and a smaller number ofb i are necessary

Example 6.1. In f 6 we have $P6,i
(1)% i 50

6

5$q6,q5p,q4p2,q3p3,q2p4,qp5,p6% but, the Lie transfor-
mations associated toq6, q4p2, q2p4, and p6 only involve
multiplications and additions. Then, an interesting ba
could be $P6,i

(3)% i 50
6 5$q6,q4p2,q2p4,p6,(q1b1p)6,(q

1b2p)6,(q1b3p)6%. If f 4 also appears in the Hamiltonian
the natural choice for the basis would be$P4,i

(3)% i 50
4

5$q4,p4,(q1b1p)4,(q1b2p)4,(q1b3p)4%, which allows
to group them with the elements ofP6,i

(3) without needing
additional Lie transformations. Finally,e: f 41 f 6 : can be writ-
ten as the product of seven simple Lie transformations.
serve that this is not a Cremona map since the termsq4p2

and q2p4 are now present. These terms have a singula
and one has to decide if it is or it is not worth to use them
a given problem.

Example 6.2. The polynomial f 31 f 4 in the four-
dimensional phase space has 55 independent monomials
28 among them can be grouped in four cheaply and exa
solvable polynomials,

g15(
i 51

3

biq1
32 iq2

i 1(
i 50

4

b41 iq1
42 iq2

i ,

g35(
i 51

3

p1
i ~b1512iq2

32 i1b1612iq2
42 i !,

g25(
i 51

3

b81 i p1
32 i p2

i 1(
i 50

4

b121 i p1
42 i p2

i ,

g45(
i 51

3

q1
i ~b2112i p2

32 i1b2212i p2
42 i !.

The polynomialsui
(n)5(q11bp1)n2 i(q21bp2) i contain

(n2 i 11)(i 11) different monomials. Then, among allui
(n) ,

we have to consider more carefullyu1
(4) , u2

(4) , and u3
(4) ,

since they have 8, 9 and 8 different monomials, respectiv
But, observe that eachgi contains an element ofu1

(4) , u2
(4) ,

andu3
(4) so, only five more terms are necessary to reprod

all monomials, and this can be achieved with

e: f 31 f 4 :5S )
i 51

4

e:gi :D e:P(0)(p):)
i 51

5

e:Q( i )(q):e:P( i )(p):1O~R5!.

~67!
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We can choose five pairsb j ,1 ,b j ,2 , j 51, . . . ,5such that
all matrices originating from the previous products are no
singular, and we have to invert matrices of dimension 535
or smaller. We have nowd(3),d(4)PR5, having most of them
several components identically 0.

VII. OPTIMIZING THE ALGORITHMS

In previous sections we only considered the compu
tional cost of the algorithms. It is possible to use the fr
parametersb i in order to slightly reduce the number of map
in the factorization at the extraordinary price of needing
solve very complicated nonlinear systems of equations.
the other hand, to consider algorithms with free parame
for optimization purposes usually produces more effici
methods@28#. Then, we can use theseb i in order to get
~without increasing the cost! more accurate results. From
Theorem 3 we have, in the two-dimensional phase spac

exp~ : f 31•••1 f M : !5Fe:2b0(1/2)p2:)
i 50

M

e:Q( i )(q):e:P( i )(p):G
3e:RM11 :1O~RM12!, ~68!

where RM11 is a homogeneous polynomial of degreeM
11, containing the leading error terms

RM115 (
i 50

M11

a iq
M112 i pi ~69!

and a i , i 50, . . . ,M11, depend on the coefficientsb i , i
50, . . . ,M we have chosen, and the coefficients of the pro
lem. If we define the error of a method byE1[(( ia i

2)1/2,
then we can look for the coefficientsb i that minimizeE1.
SinceE1 also depends on the coefficientsai

(m) , the optimal
choice for theb i will depend on each particular problem.
simpler procedure to choose the best set of coefficientsb i is
to consider thatF(z)5 f 31•••1 f M is a constant of the mo
tion. Then, we can take a number of different initial cond
tions in the region of interest. For each initial conditionz0,
we evaluate the relative erroru@F(z1)2F(z0)#/F(z0)u,
wherez1 is the one map approximation, and finally we ta
its average value, sayE2(b). Next, we have to repeat th
same process for different values ofb5(b0 , . . . ,bM) and
to look for the value that minimizesE2(b). In general,
E1(b) and E2(b) have their minimum very close to eac
other, and it is enough to compute onlyE2 since it is easier
to do it. Observe thatE1 , E2 :RM11→R are positive definite
functions, and their minimums can be obtained numerica
in a relatively easy way. If the problem is simple enough,
can take random values for theb i , to computeE1 and/orE2,
and to make a finer search around the best results. Alte
tively, we can choose a randomized approach as initial gu
and to apply a combination of Powell’s hybrid method~NAG
routine C05NBF! and the optimization routine E04JYF. I
case the routine does not converge to a local minimum
new random value can be used for a new search@28#. Several
local minimums can be found, and one has to choose
optimal one.
3-10
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FIG. 1. Error of the method
~70! for (b1 ,b2 ,b3)
5(21.030,0.217,21.022)b. E1

measures the Euclidean norm o
the coefficients at the leading er
ror term andE2 measures the av
erage relative error in the Hamil
tonian. The horizontal lines
correspond to the errors obtaine
with Eq. ~71!.
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Example 7.1. Let us considerf 4 from Eq. ~45! with @32#

~a0
(4) , . . . ,a4

(4)!510223~2.411,23.812,3.716,

22.089,0.5168!

and the basis$q4,p4,(q1b1p)4,(q1b2p)4,(q1b3p)4%.
We consider the approximation

e: f 4 :.e:d1q4:e:d2p4:)
i 51

3

exp~ :di 12~q1b i p!4: !. ~70!

We took 100 different initial conditions in the regionq0 ,p0
P(21/2,1/2) and measured the values ofE1(b) andE2(b)
for a large number of different values ofb1 ,b2 ,b3P
(22,2). Numerical experiments indicated that most lo
minimums of E1 and E2 nearly coincide, as expected. I
particular, an interesting local minimum for both was fou
at bop5(b1 ,b2 ,b3).(20.897,20.239,21.033). However,
if we slightly change our problem, for example replaci
a1

(4) by a1
(4)/10, we observe thatbop is no longer optimal so,

a new search has to be done, and the optimal value we fo
is bop.(21.030,0.217,21.022). In order to illustrate how
the error depends on the choice of theb i , in Fig. 1 we
present, for this last case, the results obtained forE1(b) and
E2(b) along the uniparametric family (b1 ,b2 ,b3)
5(21.030b,0.217b,21.022b) with bP(0.9,1.1), which
approximately cross through the minimum atb51. Observe
that the minimum is very narrow. This is in agreement w
the comments on@4# where only very few values of the pa
rameters in the Cremona maps had small error coefficie
For comparison, we have computed
05670
l

nd

ts.

e: f 4 :5e:g(1):e:g(2):e:g(3): ~71!

with g(1)5c1q41c2q3p, g(2)5c3q2p2, and g(3)5c4qp3

1c5p4. In Fig. 1 we show in horizontal lines the values
E1 andE2 obtained. We found that the computational cost
Eq. ~71! is approximately three times more expensive a
still it gives an error more than one order of magnitu
higher than Eq.~70! for bop . Very similar results are ob-
tained for the original problem with the previous value
bop .

Notice that the error at the minimum decreases by sev
orders of magnitude, and it is very sensitive to the value
b. In addition, at the minimum we see thatb1'b3, and this
fact makes the corresponding Vandermonde matrix ne
singular, and the coefficientsbi can take large values. W
think it is important to better understand this point in order
locate the minimums, especially when we are working in
higher-dimensional space, were manyb i , j coefficients are
involved.

In Refs. @16,4# a factorization similar to Eq.~60! is con-
sidered but, replacing thee:P( j ): factors by more general lin
ear symplectic transformationsLj . From the relation be-
tween this set of linear transformations~acting on a
normalized basis of polynomials depending only on coor
nates! and another basis for general polynomials~composed
by normalized monomials! they build the namedsensitive
vectors. From these vectors they build the correspond
Gram matrix, whose eigenvalues indicate how good is t
choice of the set ofLj . For instance, if we choose the bas
$(q1b i p)4% i 50

4 , the sensitive vectors are s r

5(s0
r , . . . ,s4

r ), r 50, . . . ,4, with s j
r5(C4

r )1/2b j
r , and the
3-11
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components of the Gram matrix areG rs5 1
5 ( j 50

4 s j
rs j

s , being
closely related to the Vandermonde matrix.

In our context, this analysis would be equivalent, in so
sense, to the study of the eigenvalues of the matr
V(m1m2m3) for maximizing the minimum eigenvalue, in orde
to get relatively small values for the coefficientsbj

(m1m2m3) .
One expects that, after the composition of the exponent
the error will remain relatively small. On the other hand, w
observed that the optimal choice for the linear transform
tions also depends on each particular problem~on the coef-
ficients ai 1 , . . . ). However, this analysis for the eigenvalu

of V(m1m2m3) can give a good starting point for the numeric
search of theb coefficients, and this could be the subject
a future work.

VIII. CONCLUSIONS

In this paper we have studied different symplectic m
approximations for polynomial Hamiltonian systems. In ge
eral, one has to separate the Hamiltonian in solvable p
Next, one has to compute each part and finally, to comp
the results in order to have an approximation to the origi
Hamiltonian. However, the Hamiltonian can be separated
s
f.

i-
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many different ways. The efficiency of a method depends
its computational cost and its accuracy. But, it depends
how H is separated. We have analyzed this aspect in
paper and presented methods~most of them are Cremon
maps! with the following properties.

~1! They are cheap to compute. The cost, in general
very similar to the corresponding Taylor map up to the sa
order.

~2! There is a systematic and easy procedure for build
the methods.

~3! They have a number of free parameters for optimiz
the methods, and this can be done very easily.

The numerical experiments clearly confirm the efficien
of the new methods versus other schemes, although th
ultimately dependent on each particular problem.
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