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Discrete vector spatial solitons in a nonlinear waveguide array
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Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526

~Received 2 November 2001; published 21 May 2002!

A vector discrete diffraction managed soliton system is introduced. The vector model describes propagation
of two polarization modes interacting in a nonlinear waveguide array with varying diffraction via the cross-
phase modulation coupling. In the limit of strong diffraction we derive averaged equations governing the slow
dynamics of the beam’s amplitudes, and their stationary~in the form of bright-bright vector bound state! and
traveling wave solutions are found. Through an extensive series of direct numerical simulations, interactions
between diffraction-managed solitons for different values of velocities, diffraction, and cross-phase modulation
coefficient are studied. We compare each collision case with its classical counterpart~constant diffraction! and
find that in both the scalar and vector diffraction management cases, the interaction picture involves beam
shaping, fusion, fission, nearly elastic collisions, and, in some cases, multihump structures. The collision
scenario is found, in both the scalar and vector diffraction managed cases, to be rather different from the
classical case.

DOI: 10.1103/PhysRevE.65.056618 PACS number~s!: 42.65.Wi
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I. INTRODUCTION

Recently, there has been considerable interest in the s
of discrete spatial solitons in nonlinear media. Such solit
are localized modes of nonlinear lattices that form when d
crete diffraction is balanced by nonlinearity. Discrete solito
have been demonstrated to exist in a wide range of phys
systems; cf. Ref.@1#. An array of coupled optical waveguide
is a setting that represents a convenient laboratory for exp
mental observations.

Discrete solitons in an optical waveguide array were th
retically predicted in@2#. Later on, many theoretical studie
of discrete solitons in a waveguide array reported switchi
steering, and other collision properties of these solitons@3,4#
~see also the review papers@5#!. In all of the above cases, th
localized modes are solutions of the well-known discr
nonlinear Schro¨dinger~DNLS! equation that describes bea
propagation in Kerr nonlinear media~according to coupled
mode theory!. However, discrete bright and dark soliton
have also been found in quadratic media@6#. In some cases
their properties differ from their Kerr counterparts@7#.

It took almost a decade until self-trapping of light in di
crete nonlinear waveguide array was experimentally
served@8,9#. When a low intensity beam is injected into on
or a few waveguides, the propagating field spreads over
adjacent waveguides, hence experiencing discrete diff
tion. However, at sufficiently high power, the beam self-tra
to form a localized state~a soliton! in the center waveguides
Subsequently, many interesting properties of nonlinear
tices and discrete solitons were reported. For example,
experimental observation of linear and nonlinear Bloch
cillations in AlGaAs waveguides@10#, polymer waveguides
@11#, and in an array of curved optical waveguides@12#. Dis-
crete systems have unique properties that are absent in
tinuous media such as the possibility of producinganoma-
lous diffraction @13#. Hence, self-focusing and defocusin
processes can be achieved in the same medium~structure!
and wavelength. This also leads to the possibility of obse
ing discrete dark solitons in self-focusing Kerr media@14#.

The recent experimental observations of discrete solit
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@8# and diffraction management@13# have inspired further
interest in discrete solitons in nonlinear lattices. This
cludes the newly proposed model of discrete diffraction m
aged nonlinear Schro¨dinger equation@15# whose width and
peak amplitude vary periodically; optical spatial solitons
nonlinear photonic crystals@16# and the possibility of creat-
ing discrete solitons in Bose-Einstein condensation@17#.
Also, very recently it was shown that discrete solitons
two-dimensional networks of nonlinear waveguides can
used to realize intellegent functional operations such
blocking, routing, logic functions, and time gating@18#.

Here, we propose a vector discrete diffraction manag
soliton system. The vector model describes propagation
two polarization modes interacting in a waveguide array w
Kerr nonlinearity in the presence of varying diffraction. Th
coupling of the two fields is via the cross-phase modulat
coefficient. In the limit of strong diffraction we derive ave
aged equations governing the slow dynamics of the bea
amplitudes. Stationary~in the form of bright-bright vector
bound state! and traveling wave solutions are obtaine
Through an extensive series of direct numerical simulatio
we study interactions between periodic diffraction-manag
solitons for different values of velocities, diffraction, an
cross-phase modulation coefficient. In both the scalar
vector cases, we find that the interaction picture involv
beam shaping, fusion, fission, nearly elastic collision, and
some cases, multihump structures. The collision results,
the diffraction managed case, are often very different fr
their classical~constant diffraction! counterpart.

The paper is organized as follows. In Sec. II we set u
physical model that describes the propagation of two in
acting optical fields in nonlinear waveguide array with var
ing diffraction. In Sec. III we discuss first the scalar limit o
diffraction managed solitons. Section IV includes a deriv
tion of the averaged equations that describe the slow dyn
ics of the beam’s amplitude, followed in Sec. V by a discu
sion of the stationary solutions of a vector bright-brig
bound state. Analysis of traveling wave solutions is d
cussed in Sec. VI. Different scenarios involving collisio
between scalar and vector periodic diffraction-managed
crete solitons are presented in Sec. VII. Finally, we conclu
in Sec. VIII.
©2002 The American Physical Society18-1
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II. MODEL DESCRIPTION

We begin our analysis by considering an infinite array
weakly coupled optical waveguides with equal separationd.
The equation that governs the evolution of two interact
electric fieldsEn

(1) andEn
(2) , according to nonlinear couple

mode theory@2,15,20,21#, is given by

dEn
( j )

dz
5 iC~En11

( j ) 1En21
( j ) !1 ikw

( j )En
( j )1 i ~kEn! jEn

( j ) ,

j 51,2, ~1!

where k is a 232 matrix with k j j and k j l , j Þ l are the
self- and cross-phase modulation coefficients, respectiv
which result from the nonlinear index change;En

5(uEn
(1)u2,uEn

(2)u2)T, C is a coupling constant,z is the propa-
gation distance, andkw

(1,2) are the propagation constants
the waveguides. When a cw mode of the form

En
(1,2)~z!5A1,2exp@ i ~kzz2nkxd!#, ~2!

is inserted into the linearized version of Eqs.~1!, it yields

kz5kw
(1,2)12C cos~kxd!,

kz9522Cd2 cos~kxd!, ~3!

where in close analogy to the definition of dispersion, d
crete diffraction is given bykz9 . An important consequenc
of Eqs. ~3! is that kz9 can have a negative sign ifp/2
,ukxdu<p, hence, a light beam can experience anomal
diffraction. Experimentally, the sign and local value of t
diffraction can be controlled and manipulated by launch
light at a particular angle with respect to the normal to
waveguides or equivalently by tilting the waveguide arr
To build a nonlinear model of diffraction management, w
use a cascade of different segments of the waveguide,
piece being tilted by an angle zero andg, respectively. The
actual physical angleg ~the waveguide tilt angle! is related
to the wave numberkx by the relation@13# sing5kx /k where
k52pn0 /l0 (l051.53 mm is the central wavelength in
vacuum and we taken053.3 to be the linear refractive in
dex!. In this way, we generate a waveguide array with alt
nating diffraction. Next, we define the dimensionless am
tudesUn

( j ) (Un
(1)[Un ,Un

(2)[Vn) by

En
( j )5AP* Un

( j )ei (kw
( j )

12C)z, z85z/z* , ~4!

where P* 5max(uUnumax
2 ,uVnumax

2 ) is the characteristic powe
andz* is the nonlinear length scale. Substituting these qu
tities into Eqs.~1! yields the following~dropping the prime!
diffraction-managed vector discrete nonlinear Schro¨dinger
equations:

i
dUn

dz
1

D~z/zw!

2h2
dn

2Un1~ uUnu21huVnu2!Un50,
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dVn

dz
1

D~z/zw!

2h2
dn

2Vn1~huUnu21uVnu2!Vn50, ~5!

with

dn
2An[An111An2122An , ~6!

where h5k12/k11 ~we take k115k22, k125k21! and z*
51/(k11P* ). We assume thatz* C cos(kxd)5D(z/zw)/(2h2)
whereD(z/zw) is a piecewise constant periodic function th
measures the local value of diffraction. Herezw[2L/z* with
L being the physical length of each waveguide segment@see
Fig. 1~a! for a schematic representation#. Equations~5! de-
scribe the dynamical evolution of coupled beams in a K
medium with varying diffraction. When the ‘‘effective’’ non
linearity balances the average diffraction then brig
vector discrete solitons can form. The dependence
the coupling constantC on the waveguide width (l ) and
separation ~d! is given by ~for AlGaAs waveguide! C
5(0.009 84/l )exp(20.22d) ~see Eq. 13.8-10 on pp. 523 o
Ref. @19#!. Therefore, the coupling constantC that corre-
sponds to the experimental data reported in Ref.@14# ~for
2.5 mm waveguide separation and width! is found to beC
52.27 mm21. For typical powerP* '300 W; typical non-
linear Kerr coefficientk1153.6 m21 W21 and typical wave-
guide lengthL'100 mm we findz* '1 mm andzw'0.2,
which suggests the use of asymptotic theory based on s
zw . Model ~5! admits stationary soliton solution even whe
zw is of order one. To this end, we consider here the cas
which the diffraction takes the form

D~z/zw!5da1
1

zw
D~z/zw!, ~7!

whereda is the average diffraction~taken to be positive! and
D(z/zw) is a periodic function@see Fig. 1~b!#.

III. SCALAR CASE

In this section we review the scalar case, i.e., for wh
the cross-phase modulation coefficient vanishes (h50). In
this case, Eq.~5! yields the following diffraction-managed
DNLS ~DM-DNLS! equation (Un5Vn[Fn) @15#:

dFn

dz
5 i

D~z/zw!

2h2
dn

2Fn1 i uFnu2Fn . ~8!

FIG. 1. Schematic presentation of the waveguide array~a! and
of the diffraction map~b!.
8-2
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Since we are considering the case in which the diffract
changes rapidly (zw!1) and that Eq.~8! contains both
slowly and rapidly varying terms, we introduce new fast a
slow scalesz5z/zw andZ5z, respectively, and expandFn
in powers ofzw ,

Fn5Fn
(0)~z,Z!1zwFn

(1)~z,Z!1O~zw
2 !. ~9!

Substituting Eqs.~9! and ~7! into Eq. ~8! we find that the
leading order in 1/zw and the order 1 equations are, respe
tively, given by

L~Fn
(0)!50, L~Fn

(1)!52Fn , ~10!

where

L~An![ i
]An

]z
1

D~z!

2h2
dn

2An , ~11!

and

Fn5 i
]Fn

(0)

]Z
1

da

2h2
dn

2Fn
(0)1uFn

(0)u2Fn
(0) .

To solve at order 1/zw , we introduce thediscreteFourier
transform

ŵ~q,z,Z!5 (
n52`

1`

wn~z,Z!e2 iqnh, ~12!

with the inverse transform given by

wn~z,Z!5
h

2pE2p/h

p/h

ŵ~q,z,Z!eiqnhdq. ~13!

The solution is therefore given in the Fourier representa
by (F̂0 being the Fourier transform ofFn

(0)!

F̂0~q,z,Z!5ŵ~Z,q!exp@2 iV~q!C~z!#, ~14!

with V(q)5@12cos(qh)#/h2 and C(z)5*0
zD(z8)dz8. The

amplitudeŵ(Z,q) is an arbitrary function whose dynamic
evolution will be determined by a secularity condition ass
ciated with Eq.~10!. In other words, the condition of th
orthogonality ofFn to all eigenfunctionsxn of the adjoint
homogeneous linear problem, which, when written in
Fourier domain, takes the form

E
0

1

dzF̂~q,z,Z!x̂~q,z,Z!50, ~15!

where F̂, x̂ are the Fourier transform ofFn , xn , respec-
tively. Here,Ĵ †x̂50, with Ĵ † being the adjoint operator to
L̂[ id/dz2D(z)V(q). Substituting Eq.~14! into F̂ using
x̂5exp@iV(q)C(z)# and performing the integration in cond
tion ~15! yields the following nonlinear evolution equatio
for ŵ(Z,q):
05661
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dŵ~Z,q!

dZ
5daV~q!ŵ~Z,q!2R@ŵ~Z,q!#,

R[E dqK~q,q1 ,q2!ŵ~q1!ŵ~q2!ŵ* ~q11q22q!,

~16!

wheredq[dq1dq2 and the kernelK is defined by

K~q,q1 ,q2!5
h2

4p2E0

1

dz exp@ iC~z!L~q,q1 ,q2!#,

L5
4

h2
cosS h~q11q2!

2 D )
j 51

2

sinS h~qj2q!

2 D . ~17!

Equation ~16! governs the evolution in Fourier space of
single optical beam in a coupled nonlinear waveguide ar
in the regime of strong diffraction. In the special case
two-step diffraction map shown in Fig. 1~b!, i.e., when two
waveguide segments are tilted by angle zero andg alterna-
tively, we haveD(z)5D1 for 0<uzu,u/2 and D2 in the
regionu/2,uzu,1/2, whereu is the fraction of the map with
diffraction D1. In this case, the kernelK takes the simple
form

K5
h2

4p2

sin~sL!

sL
, ~18!

with s5@uD12(12u)D2#/4. Importantly, these paramete
can be related to the experiments reported in Ref.@13#. To
achieve a waveguide configuration with alternate diffractio
we use two values ofkxd50 and 2p/3 (h51), which cor-
respond to waveguide tilt anglesg50 and 3.43°. In this case
we find, for u50.5, D152D250.681, da51.135 ands
50.17. Different sets of parameters with a smaller angleg
are also realizable. Next, we look for a stationary solution
Eq. ~16! ~for the particular kernel given above! in the form
ŵ(Z,q)5ŵs(q)exp(ivsZ). Inserting this ansatz into Eq.~16!
leads to

ŵs~q!5
1

daV~q!1vs
R@ŵs~q!#[Q@ŵs~q!#, ~19!

which implies that the modeŵs(q) is a fixed point of the
nonlinear functionalQ. To numerically find the fixed point
we employ a modified Neumann iteration scheme@22–24#
and write Eq.~19! in the form

ŵs
(m11)~q!5S sL~ ŵs

(m)!

sR~ ŵs
(m)!

D 3/2

Q@ŵs
(m)~q!#, m>0,

sL5E uŵs
(m)~q!u2dq, sR5E ŵs

(m)~q!Q@ŵs
(m)~q!#dq.

The factorssL andsR are introduced to stabilize an otherwis
divergent Neumann iteration scheme. This method is use
find stationary soliton solutions to the integral equation~16!,
8-3
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which in turn provides an asymptotic description of t
diffraction-managed DNLS Eq.~8!. It should also be noted
that we can obtain periodic diffraction-compensated soli
solutions directly from Eq.~8!. The technique is an alterna
tive for finding periodic dispersion-managed solitons in co
munications problems@27–29#. The averaging procedur
does not require that the map period,zw , be small. To imple-
ment the method, initially we start with a guess, saywn

(0)

5sech(nh) with E05(n52`
` sech2(nh). Over one period

this initial ansatz will evolve town
(0)8 , which in general will

have a chirp@30#. We then define an average:

wn
(0)95

1

2
~wn

(0)1wn
(0)8exp@2 iQn# !,

where wn
(0)85uwn

(0)8uexp(iQn), which has powerE09 . Then

wn
(1)5wn

(0)9AE0 /E09 is the new guess and in general themth
iteration takes the form

wn
(m11)5AE0 /Em9 wn

(m)9 , Em9 5 (
n52`

`

uwn
(m)9u2. ~20!

In Fig. 2 the mode profiles associated with a stationary so
tion are depicted for two typical parameter values. The p
files are obtained by using both the integral equation
proach as well as the averaged method. The evolution
these discrete diffraction managed solitons are illustrate
Figs. 3 and 4 for the same two set of parameter values a
Fig. 2, respectively. We note that initially the beam has z
chirp @30#. During propagation a chirp develops and the pe

FIG. 2. Mode profile in physical space obtained from Eq.~19!
~solid line! and from the average method~dashed line!. Parameters
are: ~a! vs51, h51, s50.17, D152D250.681, da51.135, and
zw50.2; ~b! vs51, h50.5, s51, D152D254, da51, andzw

50.2.

FIG. 3. Beam propagation over one period using Eq.~37! as
initial condition obtained by a direct numerical simulation of E
~8!. Parameters used are the same as in Fig. 2~a!.
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amplitude of the beam begins to decrease and, as a resul
beam becomes wider~due to conservation of power!. A full
recovery of the soliton’s initial amplitude and width
achieved at the end of the map period. This breathing beh
ior is shown in Figs. 3 and 4 for both strongly and mod
ately confined beams, respectively.

To establish the relation between the two approaches
to highlight the periodic nature of these new solitons,
calculate the nonlinear chirp by both the integral equat
approach and the averaging method. It is clear that for sm
values of the map period,zw , the asymptotic analysis is in
good agreement with the averaging method, as shown in
5. We also mention briefly that the method of analysis as
ciated with Eq.~8! can be modified to account for situation
where the average diffraction is small, i.e.,da!1 and the
local diffraction is O(1). In such a situation we writeda

5eDa , D5eDa1D(z), z5j/e, andFn5AeCn . Then it is
found thatCn satisfies:

dCn

dj
5 i

D~j/e!

2h2
~Cn111Cn2122Cn!1 i uCnu2Cn ,

~21!

whereD(j/e)5Da1(1/e)D(j/e). The model~21! is valid
in parameter regimes, which applies to a physical situat
where the average diffraction is small and local diffraction
of order one.

IV. VECTOR CASE: AVERAGED EQUATIONS

In this section we will discuss the full vector system~5! in
the limit of strong diffraction. Following Sec. III we agai
expand the fieldsUn , Vn in powers ofzw ,

Un5Un
(0)~z,Z!1zwUn

(1)~z,Z!1O~zw
2 !,

Vn5Vn
(0)~z,Z!1zwVn

(1)~z,Z!1O~zw
2 !. ~22!

Substituting Eqs.~22! and ~7! into Eqs.~5! we find that at
leading order@O(1/zw)#,

L~Un
(0)!50, L~Vn

(0)!50, ~23!

while the order 1 equations are

L~Un
(1)!52G n

(1) , L~Vn
(1)!52G n

(2) , ~24!

where the linear operatorL is given in Eq.~11! and

FIG. 4. Beam propagation over one period~a! and stationary
evolution ~b! obtained by a direct numerical simulation of Eq.~8!
evaluated at end map period. Parameters used are the same
Fig. 2~b!.
8-4
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G n
(1)5 i

]Un
(0)

]Z
1

da

2h2
dn

2Un
(0)1~ uUn

(0)u21huVn
(0)u2!Un

(0) ,

G n
(2)5 i

]Vn
(0)

]Z
1

da

2h2
dn

2Vn
(0)1~huUn

(0)u21uVn
(0)u2!Vn

(0) .

To solve at order 1/zw , we make use of the discrete Fouri
transform~12!. The solution to Eqs.~23! is thus given in the
Fourier representation by

Û05ĉ~Z,q!e2 iV(q)C(z), V̂05f̂~Z,q!e2 iV(q)C(z),
~25!

whereÛ0 , V̂0 are the Fourier transforms ofUn
(0) andVn

(0) .

The amplitudesĉ and f̂ are arbitrary functions whose dy
namical evolution will be determined by a secularity con
tion associated with Eqs.~24!. In other words, the condition
of the orthogonality ofG n

(1,2) to all eigenfunctionsxn of the
homogeneous adjoint linear problem that, when written
the Fourier domain, takes the form

E
0

1

dzĜ(1,2)~q,z,Z!x̂~q,z,Z!50, ~26!

where Ĝ(1,2),x̂ are the Fourier transforms ofG n
(1,2) and xn ,

respectively;x̂ satisfiesL̂†x̂50 with L̂† being the adjoint
operator toL̂[ i (]/]z)2D(z)V(q). Substituting Eq.~25!

into Ĝ(1,2) and performing the integration in condition~26!

with x̂5exp@iV(q)C(z)# yields the following coupled nonlin-
ear evolution equations for the amplitudesĉ and f̂:

i
dĉ~Z,q!

dZ
5daV~q!ĉ~Z,q!2A@ĉ,f̂#,

i
df̂~Z,q!

dZ
5daV~q!f̂~Z,q!2B @ĉ,f̂#, ~27!

with

FIG. 5. Periodic evolution of the beam chirp versus maxim
peak power. Solid line represents the leading order approxima
i.e., Eq.~14!; dashed line represents numerical solution of the D
DNLS, and dotted line depicts the evolution of the leading or
solution under Eq.~8!. Parameters used are the same as in Fig. 2~b!
with zw5 0.2 ~a! and 0.1~b!.
05661
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n

A5E dqK~q,q1 ,q2!@ĉ~q1!ĉ~q2!ĉ* ~q11q22q!

1hf̂~q1!ĉ~q2!f̂* ~q11q22q!#,

B5E dqK~q,q1 ,q2!@f̂~q1!f̂~q2!f̂* ~q11q22q!

1hĉ~q1!f̂~q2!ĉ* ~q11q22q!#,

where as beforedq[dq1dq2 and the kernelK is given by
Eq. ~17!. Equations~27! govern the averaged evolution~in
Fourier space! of coupled optical beams in a nonlinear wav
guide array in the regime of strong diffraction. The abo
results are general and hold for any diffraction map. Ho
ever, the analysis simplifies significantly in the special ca
of two-step diffraction map shown in Fig. 1~b!, in which case
the kernel is given by Eq.~18!.

V. STATIONARY SOLUTIONS

We now look for a stationary solution for Eqs.~27! @for
the particular kernel given in Eq.~18!# in the form

ĉ~Z,q!5ĉse
imZ, f̂~Z,q!5f̂se

inZ. ~28!

Inserting this ansatz into Eq.~27! leads to

ĉs~q!5A/@daV~q!1m#[M,

f̂s~q!5B/@daV~q!1n#[N. ~29!

To numerically find the modesĉs(q) andf̂s(q), we employ
the modified Neumann iteration scheme mentioned in S
III and write Eqs.~29! in the form

ĉs
(m11)5S sL

(1)

sR
(1)D a

Mm , f̂s
(m11)5S sL

(2)

sR
(2)D a

Nm , ~30!

sL
(1)5E uĉs

(m)u2dq, sL
(2)5E uf̂s

(m)u2dq,

sR
(1)5E ĉs

(m)Mmdq, sR
(2)5E f̂s

(m)Nmdq.

The factora53/2 is chosen to make the right-hand side
Eqs. ~30! of degree zero, which yields convergence of t
scheme@22,23#. Clearly, when ĉs

(m)(q)→ĉs(q), f̂s
(m)(q)

→f̂s(q) as m→` then sL
(1)/sR

(1)→1, sL
(2)/sR

(2)→1 and in

turn f̂s(q), ĉs(q) will be the solutions to Eqs.~29!. The
factors sL

( j ) and sR
( j ) , j 51,2 are introduced to stabilize a

otherwise divergent simple Neumann iteration scheme. N
that when applying the continuous Fourier transform to fi
stationary solutions, the numerical scheme based on Eq.~30!
does not converge which indicates that, contrary to the ve
integrable DNLS @25,26#, continuous stationary solution
may not exist. Figures 6,7 show typical solutions to Eq.~29!
both in the Fourier domain~Fig. 6! and in physical space

n,
-
r
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~Fig. 7! for lattice spacingh50.5. The evolution of these
discrete diffraction managed solitons is illustrated in Fig
for the same set of parameter values as in Fig. 6. We n
that initially the vector solitons have zero chirp. Durin
propagation a chirp develops and the peak amplitude of e
beam begins to decrease and, as a result, the two be
become wider~due to conservation of power!. A full recov-
ery of the vector soliton’s initial amplitudes and widths
achieved at the end of the map period. This breathing beh
ior is shown in Fig. 8 for different values of cross-pha
modulation (h). Finally, in Fig. 9 we show the stationar
evolution of these beams evaluated at each map period.

VI. TRAVELING SOLITONS

In this section we will discuss traveling wave solution
Eqs.~5! in the limit of strong diffraction management. Wit
soliton collisions in mind we consider here the case wh
the two interacting beams are initially well separated,
which case, the overlap termsuVnu2Un anduUnu2Vn are very
small compared to the self-phase modulation term. The
fore, in what follows we find travelling wave solutions in th
caseh50, i.e., in the scalar diffraction managed model. O
approach can be generalized to thehÞ0 case for which the
two polarizations travel possibly at different speed. We lo
for a traveling wave solution in the form

Un~z!5u~j,z!e2 iwn, j5nh2VE
0

z

D, ~31!

FIG. 6. Mode profiles,ĉs ~solid line! andf̂s ~dashed line! in the
Fourier space obtained from Eqs.~30!. Parameters arevs51, h
50.5, s51, D152D254, da51, andzw50.2. ~a! h52/3 and~b!
h51.

FIG. 7. Mode profiles,Un ~solid line! and Vn ~dashed line! in
physical space. Parameters are the same as in Fig. 6 withh 52/3
~a! and 1~b!. Circles denote grid points.
05661
te

ch
ms

v-

e

e-

r

k

with wn5bnh2v*0
zD. Note that we allow the amplitudeu

to depend explicitly onz. The reason is that when the di
fraction is constant (D5D05const) and the amplitudeu is
independent ofz, then the problem reduces to finding trave
ing wave solution to the DNLS equation@31–36#. However,
recent studies@24# of traveling solitons of the DNLS equa
tion reveal the important conclusion that a uniformly movi
continuous wave solution is unlikely to exist. These resu
differ from those of Ref.@31# in which ‘‘continuous’’ travel-
ing solitary waves were reported using Fourier series exp
sions with finite periodL while assuming convergenceas
L→`. Even then, for moderately localized pulses, ‘‘appro
mate’’ traveling waves are found to persist for long distanc
without radiation. However, for strongly localized beams, t
wave front gets distorted during propagation and it dece
ates. Nevertheless, the pulse travels almost uniformly o
the experimental distance~6 mm!.

Mathematically, we analzse the problem as follows. S
stituting Eq.~31! into Eq. ~5! leads to

FIG. 8. Beam propagation over one period using Eq.~25! as
initial conditions obtained by a direct numerical simulation of Eq
~5!. Parameters used are the same as in Fig. 6 withh52/3 ~a!, ~b!
andh51 ~c!, ~d!.

FIG. 9. Stationary evolution obtained by a direct numeric
simulation of Eqs.~5! evaluated at end map period. Parameters u
are the same as in Fig. 6 withh52/3 ~a!, ~b! andh51 ~c!, ~d!.
8-6
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i
]u

]z
5D~z/zw!S iV

]u

]j
2

T bu

2h2
1vuD 2uuu2u, ~32!

whereD(z/zw) is the diffraction function given in Eq.~7!
and

T bu[e2 ibhu~j1h!1eibhu~j2h!22u~j!.

Since in this case, Eq.~32! contains both slowly and rapidly
varying terms, we proceed as before and define new fast
slow scalesz5z/zw andZ5z, respectively, and expandu in
powers ofzw ,

u~j,z!5u0~z,j,Z!1zwu1~z,j,Z!1O~zw
2 !. ~33!

Substituting Eq.~33! into ~32! we find that the leading orde
@O(1/zw)# and the order 1 equations are, respectively, giv
by

J~u0!50, J~u1!52U, ~34!

where

J~A![ i
]A

]z
2 iVD~z!

]A

]j
2vD~z!A1

D~z!

2h2
TbA,

U5 i
]u0

]Z
2daS iV

]u0

]j
2

Tbu0

2h2
1vu0D 1uu0u2u0 .

To solve at order 1/zw , we again introduce thediscreteFou-
rier transform~treatingj as a discrete variable!

û0~q,z,Z!5 (
j[mhPZ

u0~z,j,Z!e2 iqj,

u0~z,j,Z!5
h

2pE2p/h

p/h

û0~q,z,Z!eiqjdq. ~35!

At this stage it is useful to make some further comments
the Fourier transform. Sincej is a continuous variable i
implies that Eq.~32! is a continuous equation in bothj andz.
Therefore it seems natural to solve Eqs.~34! using thecon-
tinuousFourier transform given by

û0~q,z,Z!5E
2`

`

u0~z,j,Z!e2 iqjdj,

u0~z,j,Z!5
1

2pE2`

`

û0~q,z,Z!eiqjdq. ~36!

But when applying the continuous Fourier transform, o
numerical scheme fails to converge@24#. However, when we
use the discrete Fourier transform our method yields an
proximate butnot exact solution. The solution atO(1/zw) is
given in the Fourier representation by

û0~q,z,Z!5Û~Z,q!exp@2 iS~q,b!C~z!#, ~37!
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with S(q,b)5v2qV1$12cos@(q2b)h#%/h2. As in Sec. III
the amplitudeÛ(Z,q) is an arbitrary function whose dy
namical evolution is determined by a secularity conditi
associated with the order 1 equation. In other words,
condition of the orthogonality ofU to all eigenfunctionsxb
of the adjoint linear problem, which, when written in th
Fourier domain, takes the form

E
0

1

dzÛ~q,z,Z!x̂b~q,z,Z!50, ~38!

whereÛ, x̂b are the Fourier transform ofU, xb respectively.
Here, Ĵ †x̂b50 with Ĵ † being the adjoint operator toĴ
[ id/dz2D(z)S(q,b). Substituting Eq.~37! into Û using
x̂b5exp@iS(q,b)C(z)# and performing the integration in con
dition ~38! yields the following nonlinear evolution equatio
for Û(Z,q):

i
dÛ~Z,q!

dZ
2daS~q,b!Û~Z,q!1P @Û~Z,q!#50,

P[E dqKb~q,q1 ,q2!Û~q1!Û~q2!Û* ~q11q22q!,

~39!

wheredq[dq1dq2 and the kernelKb is defined by

Kb~q,q1 ,q2!5
h2

4p2E0

1

dz exp@ iC~z!Lb~q,q1 ,q2!#,

Lb5
4

h2
cosS h~q11q222b!

2 D )
j 51

2

sinS h~qj2q!

2 D .

Restricting the discussion to the two-step diffraction m
~see Fig. 1 and Sec. III!, we findKb5h2sin(sLb)/(4p2sLb).
To find a moving solitary wave solution to system~39!, we
write

Û~Z,q!5ÛTW~q!eivZ5@Ûe~q!1Ûo~q!#eivZ, ~40!

with Ûe(q) and Ûe(q) being the even and odd parts o
ÛTW(q). This choice of ansatz is consistent with the proble
of finding traveling solitary waves for the DNLS equatio
~constant diffraction! where it was shown@24# that the mode
profile in physical space can be written asU5@F(j)
1 iG(j)#exp(bnh2vz) with F,G being even and odd func
tions, respectively. Substituting Eq.~40! into Eq. ~39! we
arrive at

ÛTW
(m11)~q!5S sL

sR
D 3/2 P @ÛTW

(m)~q!#

v1daS~q,b!
, ~41!

wheresL and sR are the convergence factors introduced
Sec. III. For a given set of parametersh,v, andb.0, the
mode shapes and soliton velocity are found by iterating
~41! with an initial guess, e.g.,Ûe

(0)(q)5sech(q), Ûo
(0)(q)

5sech(q)tanh(q), andV5V* ,0. The iterations are carried
8-7
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out until the conditionusL2sRu,e is satisfied withe.0
being a prescribed tolerance. However, unlike the station
case, here, the soliton velocity is still to be determined.
any choice ofV* ,0 if usL2sRu²e, we seek a different
value ofV* at whichsL2sR changes sign. Then, we use th
bisection method to changeV* in order to locate the correc
velocity V and modesÛe , Ûo for eachv, b, andh. A typi-
cal soliton mode is shown in Fig. 10 for velocityV520.5
and lattice spacingh50.5.

VII. COLLISIONS BETWEEN DISCRETE SOLITONS

Having found a moving discrete diffraction managed so
tary wave we next study interactions between them@Fig. 11#.
We have conducted a series of numerical simulations bot
the scalar~for different soliton velocities! and vector~for
different values of the cross-phase modulation coeffici
and different velocities!. Below we discuss each case sep
rately. To keep the paper self-contained, we consider
interactions between scalar and vector discrete soli
waves in the case of constant diffraction, i.e., whenD1 and
D2 are both zero (s50), which implies constant kernelK
5h2/4p2.

A. Scalar interaction: Constant diffraction

Scalar discrete excitations propagating in a media w
normal diffraction are solutions of the DNLS equation@see
Eq. ~8! with constantD(z/zw)[1#:

dWn

dz
5

i

2h2
dn

2Wn1 i uWnu2Wn . ~42!

FIG. 10. Traveling wave solution to Eq.~39! in real space.~a!
shows the even part and~b! the odd part. Parameters ares51,
D152D254, da51, zw50.1, v51, h50.5, b50.5, andV5
20.5. Circles denote grid points.
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To simulate the collision process between discrete solit
we first need to obtain a traveling wave solution to the abo
equation. To do so, we look for traveling localized modes
the form

Wn~z!5w~j!exp~2 ibnh1 ivz!, ~43!

with j5nh2Vz whereV andv are the soliton velocity and
wave number shift, respectively. Assumingw is complex,
i.e., w(j)5wR(j)1 iwI(j) then Eq.~42! takes the form

VwI81J1wR1J2wI1~wR
21wI

2!wR5vwR ,

2VwR81J1wI2J2wR1~wR
21wI

2!wI5vwI , ~44!

where prime denotes derivative with respect toj and

J1X5
1

h2
@cos~bh!~E11E2!X22X#,

J2X5
sin~bh!

h2
~E12E2!X, ~45!

with E6X(j)[X(j6h). Note that system~44! is invariant
under the transformation:b→2b, wI→2wI , and V→
2V, which will play a central role in collision processes. T
find the mode shapes and soliton velocity, we proceed
before by taking the discrete Fourier transform of Eqs.~44!,
which yields the following iteration scheme:

ŵR
(m11)~q!5

V2~q!

V1~q!
w̃I

(m)~q!1~sL
(1)/sR

(1)!3/2I1 ,

w̃I
(m11)~q!5

V2~q!

V1~q!
ŵR

(m)~q!1~sL
(2)/sR

(2)!3/2I2 , ~46!

where ŵR(q) and ŵI(q)[2 iw̃ I(q) are the Fourier trans
forms of wR(j) andwI(j), respectively, and

I15
h2

4p2V1~q!
~ŵR* ŵR* ŵR2w̃I* w̃I* ŵR!,

I25
h2

4p2V1~q!
~ŵR* ŵR* w̃I2w̃I* w̃I* w̃I !. ~47!

FIG. 11. Evolution of a moderately localized soliton in physic
domain obtained by a direct numerical simulation of Eq.~8! evalu-
ated at end map period. Parameters ares51, D152D254, da

51, zw50.1, v51, h50.5, b50.5, andV520.5. Shown on the
vertical axis is the beam intensityuUnu2.
8-8
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The convergence factorssL
( j ) andsR

( j ) , j 51,2 are

sL
(1)5E ŵR

(m)~q!S ŵR
(m)~q!2

V2~q!

V1~q!
w̃I

(m)~q! Ddq,

sR
(1)5E ŵR

(m)~q!I1dq, sR
(2)5E w̃I

(m)~q!I2dq, ~48!

andsL
(2) is obtained fromsL

(1) by interchangingŵR and w̃I .
Here, V1(q)5v1(2/h2)@12cos(hq)cos(bh)# and V2(q)
5(2/h2)sin(hq)sin(bh)1Vq. For a given set of parameter
h, v, and b.0, the mode shapes and soliton velocity a
found by iterating system~46! together with the bisection
technique outlined in Sec. VI. Typical traveling solito
modes are shown in Fig. 12. Having obtained moving s
tary wave solutions, we investigated next the collision p
cess. If the soliton speed is less than a critical velocity,uVu
,Vc'0.2, then the solitons are found to fuse after collisi
accompanied with radiation modes, see Figs. 13~a!, 13~b!.
However, when the two modes move sufficiently fastV
.Vc) then they pass through each other. This collision
sults in two ‘‘nonstationary’’ travelling waves moving in th
opposite directions with modulated envelopes@Fig. 13~c!#.

B. Vector interaction: Constant diffraction

The vector discrete system with constant diffraction
described by the following coupled discrete NLS equatio

i
dUn

dz
1

1

2h2
dn

2Un1~ uUnu21huVnu2!Un50,

FIG. 12. Mode shapes in physical space forv51 andb50.5.
Solid line corresponds toh50.5 and velocityV520.5, whereas
dashed line forh51 andV520.3.
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dVn

dz
1

1

2h2
dn

2Vn1~huUnu21uVnu2!Vn50, ~49!

whereUn , Vn are the two interacting beams andh is the
cross-phase modulation coefficient. To study interaction
tween vector solitons, we consider the case in which the
modes are initially well separated and orthogonally pol
ized. In this situation, the two modes are completely dec
pled and each one of them satisfies a scalar DNLS equa
for which a traveling solitary wave was obtained in the p
ceding section. In Fig. 14 we show a typical collision expe
ment for different values of cross-phase modulation coe
cient and different soliton velocities. In all cases theUn
mode is always stationary while the other one moves w
speedV. When h52/3 and the second mode (Vn) moves
slowly (V520.1), we observe power exchange@see Fig.
14~a! and Fig. 15~a!#, i.e., the outgoing beams have amp
tudes different from the one before the collision. TheVn field
mostly survived the collision whereasUn undergoes a fission
process and two solitons are born. Each one of them
amplitude almost half the original one. The interaction p
ture is more ‘‘clean’’ at higher speed (V520.4) in which the
two modes pass each other nearly unaffected@except for a
phase shift in the soliton position, Fig. 14~b! and Fig. 15~b!#.
Decreasing the value ofh to 0.5 leads to a different picture
In this case whenV520.1 the the two beams fuse@see Fig.
14~c! and Fig. 15~c!# and form a single fused traveling wav

FIG. 13. Interaction between scalar ‘‘classical’’ discrete solito
for different values of velocity obtained by a direct numerical sim
lation of Eq. ~42!. Parameters areh50.5, and V570.1, b5
60.1 ~a!; V570.25, b560.25 ~b!; andV570.5, b560.5 ~c!.
Shown on the vertical axis is the intensityuWnu2
8-9
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MARK J. ABLOWITZ AND ZIAD H. MUSSLIMANI PHYSICAL REVIEW E 65 056618
whereas the two modes simply go through each othe
higher velocity (V520.5) as shown in Fig. 14~d! and Fig.
15~d!. Notice that the collision process reported in Fig. 15~d!
is nearly elastic. Unlike the symmetric discrete vector N
equation, where the nonlinear terms are taken to be (uUnu2
1huVnu2)(Un111Un21) and (huUnu21uVnu2)(Vn11
1Vn21) @25#, here~vector nonintegrable case!, we did not
find a bouncing process. This could be attributed to the s
cial properties of the symmetric vector NLS system.

C. Scalar interaction: Diffraction management

In this section we study interactions between scalar
crete diffraction managed solitons. In what follows, we hig

FIG. 14. Interaction between discrete ‘‘classical’’ vector solito
for different values of cross-phase modulation coefficienth and
different soliton velocity. Shown on the vertical axis is the intens
of the two colliding beams, i.e.,I n5uUnu21uVnu2. Before collision,
Un is the left beam, whereasVn is the right beam. In all the parts
the incomingUn mode is stationary, whereasVn travels with a
speedV. Parameters used areh52/3, V520.1, b50.1 ~a!; h
52/3, V520.4, b50.4 ~b!; h50.5, V520.1, b50.1 ~c!; and
h51, V520.5, b50.5 ~d!.
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FIG. 15. Snapshot showing the final state of the collision illu
trated in Fig. 14.~a!–~d! correspond to Figs. 14~a!–14~d!, respec-
tively. Dashed~solid! line corresponds toUn (Vn).

FIG. 16. Interaction between scalar diffraction-managed solit
for different values of velocity obtained by a direct numerical sim
lation of Eq. ~8! evaluated at end map period. Parameters
v51, h50.5, s51, D152D254, da51, andzw50.1. The ve-
locity V andb are, respectively, equal to20.1, 0.1~a!; 20.25, 0.25
~b!; and 20.5, 0.5~c!. Shown on the vertical axis is the intensit
uUnu2.
8-10
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DISCRETE VECTOR SPATIAL SOLITONS IN A. . . PHYSICAL REVIEW E65 056618
light the similarity and differences between ‘‘classical’’ sc
lar discrete solitons and diffraction managed solitons. Fig
16 illustrates different possible interactions for which the t
colliding beams are identical and move in opposite directi
with identical speed. For small relative velocity the two co
liding beams fuse and form a new state that is character
by a localized core and oscillating tail. When propagat
along thez direction, the core starts to develop double-hum
pattern and becomes wider. As a result of an instability,
core beam reshapes itself into a Gaussian-like form and
comes narrower as more radiation is emitted~see Fig. 17!.
This behavior repeats and represents a ‘‘periodic’’ diffract
managed analog of the fused ‘‘classical’’ case@compare with
Fig. 13~a!#. For higher velocities, the two beams cross ea
others trajectory. The outgoing traveling waves are cha
terized by modulated envelopes. The higher the collision
locity the larger the modulation amplitude. This behavior
similar to the one observed with ‘‘classical’’ soliton@com-
pare with Figs. 13~b!, 13~c!#.

D. Vector interaction: Diffraction management

Next, we investigate what happens in the vector ca
when the two beams interact via the cross-phase coup
Figure 18 depicts different soliton collision scenarios
various values ofh but fixed soliton velocities. In othe
words, the modeUn is always stationary whileVn moves
with fixed velocity V520.1 and the only parameter w
change ish. It turns out that interactions between discre
diffraction-managed solitons differ fundamentally from the
‘‘classical’’ counterparts, as can be seen from Fig. 18~see,
for example, Fig. 14!. For small value ofh50.1 the interac-
tion results in a facinating process. Immediately after
collision, the two modes partially pass each other@see Figs.
19~a!, 19~b!# and then, as a result of an attractive force, b
beams turn over and come back to the initial state. Instea
continuing to go away from each other the two polarizat
modes turn back again. This behavior persists for very lo
distances and demonstrate a bound state recurrencelike
nomena.

FIG. 17. Snapshot showing the evolution stages of the collis
illustrated in Fig. 16~a!.
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Increasing the value ofh to 2/3 changes the interactio
picture as more radiation is emitted and the resulting co
sion products exhibit multihump structure and constan
change their relative position. When the interaction tak
place, theUn ~dashed line! intensity has a double-humpe
profile while Vn ~solid line! is single humped@see Figs.
20~a!, 20~b!#. After propagating for some distance, then e
actly the opposite happens. Now the intensity of theVn po-
larization is double-humped whereasUn has a single hump
When the cross- and self-phase modulation coefficients
identical then the collision product is a bound state co
posed of single- and double-humped intensity profiles. Up
propagation, this bound state hops to the right and left, b
and forth in a periodic manner@see Figs. 21~a!, 21~b!#. Moni-
toring the evolution of theVn mode shows that its doubl
hump structure~in intensity! is preserved but exhibits a
‘‘internal’’ dynamics, i.e., the distance between the first a
second maximum changes withz. In all of the above cases

n

FIG. 18. Interaction between diffraction managed vector s
tons for different values of cross-phase modulation coefficienth)
obtained by a direct numerical simulation of Eq.~5! evaluated at
each map period. Shown on the vertical axis is the intensity~verti-
cal axis! of the two colliding beamsI n5uUnu21uVnu2. Before col-
lision, Un is the stationary beam on the left andVn is the mode on
the right that travels with velocityV. Parameters arev51, h
50.5, s51, D152D254, da51, andzw50.1. The velocityV5
20.1 andb50.1 with h equal to 0.1~a!, 2/3 ~b!, 1 ~c!, and 2~d!.
8-11
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MARK J. ABLOWITZ AND ZIAD H. MUSSLIMANI PHYSICAL REVIEW E 65 056618
the resulting beam moves with a negative velocity. Intere
ingly, for h52, the collision process results in a ‘‘fused
travelinglike wave that moves in the positive direction wit
an additional small residual beam that propagates in
negative direction@Fig. 18~d!#. This fused state evolved from
an intricate process. After collision, the intensities of bo
polarizations develop multihump structures@Fig. 22~a!#,
which decay as a result of instability and form two lump
together with a side wave@Fig. 22~b!#. This residual wave
escapes away from the center and, as a result, bothUn and
Vn relax into a ‘‘fused’’ state@Figs. 22~c!, 22~d!# with emis-
sion of additional radiation.

VIII. CONCLUSIONS

In this paper we have investigated scalar and vector d
crete diffraction managed systems. We have compared

FIG. 19. Snapshot showing the evolution stages of the collis
illustrated in Fig. 18~a!. Dashed~solid! lines depictsuUnu2 (uVnu2).
~a! is the initial condition and~b!–~d! shows interactions at different
increasing distances fromz50, respectively.

FIG. 20. Snapshot showing the evolution stages of the collis
illustrated in Fig. 18~b!. Dashed~solid! lines depictuUnu2 (uVnu2).
056618
-
e

iffraction managed cases with their ‘‘classical’’ count
arts. The proposed vector model describes propagatio

wo polarization modes interacting in a waveguide array w
err nonlinearity in the presence of varying diffraction. T
oupling of the two fields is described via the cross-ph
odulation coefficient. In the limit of strong diffraction ma
gement we derive averaged equations governing the
ynamics of the beam’s amplitudes and stationary~in the

orm of bright-bright vector bound state! as well as ‘‘ap-
roximate’’ traveling wave solutions are obtained. Throu
n extensive series of direct numerical simulations, we s

nteractions between periodic diffraction-managed solit
or different values of velocities, diffraction, and cross-ph
odulation coefficients. In both the scalar and vector ca
e find that the interaction picture involves beam shap

usion, fission, nearly elastic collision, and, in some ca
ultihump structures.
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