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Discrete vector spatial solitons in a nonlinear waveguide array
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A vector discrete diffraction managed soliton system is introduced. The vector model describes propagation
of two polarization modes interacting in a nonlinear waveguide array with varying diffraction via the cross-
phase modulation coupling. In the limit of strong diffraction we derive averaged equations governing the slow
dynamics of the beam’s amplitudes, and their statioieryhe form of bright-bright vector bound statand
traveling wave solutions are found. Through an extensive series of direct numerical simulations, interactions
between diffraction-managed solitons for different values of velocities, diffraction, and cross-phase modulation
coefficient are studied. We compare each collision case with its classical countegueatant diffractiopand
find that in both the scalar and vector diffraction management cases, the interaction picture involves beam
shaping, fusion, fission, nearly elastic collisions, and, in some cases, multihump structures. The collision
scenario is found, in both the scalar and vector diffraction managed cases, to be rather different from the
classical case.
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I. INTRODUCTION [8] and diffraction managemenfi3] have inspired further
interest in discrete solitons in nonlinear lattices. This in-
Recently, there has been considerable interest in the stududes the newly proposed model of discrete diffraction man-
of discrete spatial solitons in nonlinear media. Such solitongged nonlinear Schdinger equatiorf15] whose width and

are localized modes of nonlinear lattices that form when disP€ak amplitude vary periodically; optical spatial solitons in

crete diffraction is balanced by nonlinearity. Discrete solitonsnon“near photonic crystalslé] and the possibility of creat-

have been demonstrated to exist in a wide range of ph sicIng discrete solitons in Bose-Einstein condensatiaf].
9 pny %so, very recently it was shown that discrete solitons in

systems; cf. Re{1]. An array of coup[ed optical waveguides two-dimensional networks of nonlinear waveguides can be
is a setting that represents a convenient laboratory for experjjsaq to realize intellegent functional operations such as

mental observations. _ _ blocking, routing, logic functions, and time gatifigg].

Discrete solitons in an optical waveguide array were theo- Here, we propose a vector discrete diffraction managed
retically predicted ir{2]. Later on, many theoretical studies soliton system. The vector model describes propagation of
of discrete solitons in a waveguide array reported switchingywo polarization modes interacting in a waveguide array with
steering, and other collision properties of these solif@¥  Kerr nonlinearity in the presence of varying diffraction. The
(see also the review papds)). In all of the above cases, the coupling of the two fields is via the cross-phase modulation
localized modes are solutions of the well-known discretecoefficient. In the limit of strong diffraction we derive aver-
nonlinear Schrdinger(DNLS) equation that describes beam aged equations governing the slow dynamics of the beam’s
propagation in Kerr nonlinear mediaccording to coupled amplitudes. Stationaryin the form of bright-bright vector
mode theory. However, discrete bright and dark solitons bound state and traveling wave solutions are obtained.
have also been found in quadratic mefBa In some cases, Through an extensive series of direct numerical simulations,
their properties differ from their Kerr counterpafd. we study interactions between periodic diffraction-managed

It took almost a decade until self-trapping of light in dis- Solitons for different values of velocities, diffraction, and
crete nonlinear waveguide array was experimentally obCross-phase modulation coefficient. In both the scalar and
served(8,9]. When a low intensity beam is injected into one VECtor cases, we find that the interaction picture involves
or a few waveguides, the propagating field spreads over thg€am shaping, fusion, fission, nearly elastic collision, and, in
adjacent waveguides, hence experiencing discrete diffrac°™Me Cases, multihump structures. The collision results, for
tion. However, at sufficiently high power, the beam seIf-trapstﬂgirdgzzgti?an[gggg%?%i;?:gt’ioahrgoﬂ?ﬁenr Vaert[y different from
to form a localized statéa soliton in the center waveguides. part.

Subsequently, many interesting properties of nonlinear lat- The paper is organized as follows. In Sec. Il we set up a
- quently, vl g prop physical model that describes the propagation of two inter-
tices and discrete solitons were reported. For example, th

§cting optical fields in nonlinear waveguide array with vary-

experimental observation of linear and nonlinear Bloch 0y, diffraction. In Sec. Il we discuss first the scalar limit of

cillations in AlGaAs Wavegwdegl(_)], polymer Wavegu!des diffraction managed solitons. Section IV includes a deriva-
[11], and in an array of curved optical waveguidég]. Dis-  tjon of the averaged equations that describe the slow dynam-
crete systems have unique properties that are absent in cogs of the beam’s amplitude, followed in Sec. V by a discus-
tinuous media such as the possibility of producamma-  sjon of the stationary solutions of a vector bright-bright
lous diffraction [13]. Hence, self-focusing and defocusing bound state. Analysis of traveling wave solutions is dis-
processes can be achieved in the same med8iractur¢  cussed in Sec. VI. Different scenarios involving collisions
and wavelength. This also leads to the possibility of observbetween scalar and vector periodic diffraction-managed dis-
ing discrete dark solitons in self-focusing Kerr mefiid]. crete solitons are presented in Sec. VII. Finally, we conclude
The recent experimental observations of discrete solitons Sec. VIII.
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Il. MODEL DESCRIPTION (@) (b)
We begin our analysis by considering an infinite array of _ AG Loy =
weakly coupled optical waveguides with equal separation 1
The equation that governs the evolution of two interacting
electric fieldsE(") andE®, according to nonlinear coupled o |1-0n
mode theonyf2,15,20,2], is given by 2L g
A
dEs‘j) (1) (1) (OI={0)) () 2
———=iC(EJ) (+EJ) ) +ikVEN +i(kE,) EY,
dz (Entat Bqso) ik By +1(x&0n)iEy FIG. 1. Schematic presentation of the waveguide afaayand

of the diffraction map(b).
=12, (1)
ian . D(z/z,)
dz 2h2

where i is a 2x2 matrix with x;; and «;;, j#1 are the SaVat (n|U2+|Vo[)V,=0, (5
self- and cross-phase modulation coefficients, respectively,
which result from the nonlinear index changeg,
=(|EW)2,|EP)|AT, Cis a coupling constant,is the propa-
gation distance, an#{1? are the propagation constants of S2AN=Ans 1+ A1~ 2A,, (6)
the waveguides. When a cw mode of the form

with

where n= K12/K11 (We take K11= K22, Ki12=— K21) and Z,

ECP(2)=Ay xdi(kz—nkd)], (2 =1/(kyP,). We assume that, C cosk,d)=D(zz,)/(2h?)
whereD(z/z,) is a piecewise constant periodic function that
is inserted into the linearized version of E@$), it yields measures the local value of diffraction. Hege=2L/z, with
L being the physical length of each waveguide segriess
k,= k§V1'2)+ 2C cogk,d), Fig. 1(a) for a schematic representatiorEquations(5) de-
scribe the dynamical evolution of coupled beams in a Kerr
k= —2Cd?cogk,d), (3) medium with varying diffraction. When the “effective” non-

linearity balances the average diffraction then bright

where in close analogy to the definition of dispersion, dis-ector discrete solitons can form. The dependence of
crete diffraction is given b’ . An important consequence € coupling constan€ on the waveguide width/() and

f Eas. is that K" h : ian /2 separation(d) is given by (for AlGaAs waveguidg C
of Egs. (3) Is thatk; can have a negative sign i/ =(0.009 84/ )exp(—0.24) (see Eq. 13.8-10 on pp. 523 of

<|k,d|=<m, hence, a light beam can experience anomalou§2 :
. . : : ef. [19]). Therefore, the coupling constaft that corre-
diffraction. Experimentally, the sign and local value of the sponds to the experimental data reported in Rid] (for

diffraction can be controlled and manipulated by launching . . .
. : ; 2.5 um waveguide separation and widtis found to beC
light at ticul I th t to th | to th - .

'gnt at a particuiar angie With respect 1o te normat o e=2.27 mm L. For typical poweP, ~300 W; typical non-

waveguides or equivalently by tilting the waveguide array... o . i 1 '
To build a nonlinear model of diffraction management, weinar Kerr coefficient;,=3.6 m =W " and typical wave-
ide lengthL~100 um we findz,~1 mm andz,~0.2,

use a cascade of different segments of the waveguide, ea@?f}_ .
piece being tilted by an angle zero apdrespectively. The W ich suggests thg- use O.f asymptotic theory based on small
actual physical angle’ (the waveguide tilt ang)eis related Zw Model (5) admits stqtlonary soliton s_olutlon even When_
to the wave numbek, by the relatior{13] siny=k, /k where ~ Zw IS of ordgr one. To this end, we consider here the case in
k=2mng/Ng (A\g=1.53 um is the central wavelength in which the diffraction takes the form

vacuum and we takey=3.3 to be the linear refractive in- 1

dex. In this way, we generate a waveguide array with alter- D(z/z,)=6,+ —A(z/z,), (7)
nating diffraction. Next, we define the dimensionless ampli- Zw

tudesUy) (UP=u,,uP=V,) b
n (Us nen ) bY whered, is the average diffractiottaken to be positiveand
£ \/P_*Ufﬂ)ei(kg)”c)z, —— @ A(z/z,) is a periodic functiorfsee Fig. 1b)].

2 Ill. SCALAR CASE

where P, =max(U,[2.,.|Vi|2a) is the characteristic power
andz, is the nonlinear length scale. Substituting these quan- In this section we review the scalar case, i.e., for which
tities into Eqgs.(1) yields the following(dropping the primg  the cross-phase modulation coefficient vanishes Q). In
diffraction-managed vector discrete nonlinear Sdimger this case, Eq(5) yields the following diffraction-managed
equations: DNLS (DM-DNLS) equation U,=V,=®,) [15]:

do D(z/z
52U, + ([Unf2+ 7l Vo2 Up=0, 4%, _,D(z/z)

~du, D(z/z,)
| + dz oh2

dz 2h2

S +i| DD, ®)
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Since we are considering the case in which the diffraction d{o(Z,q) . R
changes rapidly ,<1) and that Eq.(8) contains both i =38,Q(q9)e(Z,9)—R[¢(Z,9)],
slowly and rapidly varying terms, we introduce new fast and dZ

slow scales =z/z,, andZ=z, respectively, and expandl,,

in powers ofz,, R= f dgK(d,ds,d2) ¢(d1) ¢(d2) ¢* (s + 02— ),
®,=DP(L,2) + 2,28 (£,2)+0(25). ) (16
wheredg=dqg;dqg, and the kernelC is defined by

Substituting Eqs(9) and (7) into Eq. (8) we find that the

leading order in X, and the order 1 equations are, respec- h2 (1
tively, given by K(d,01.02)= FJO dlexdiC({)A(9,q1,02)],
a
L) =0, L(O)=—F,, (10
4 [h(a+az)|ry . (h(g—a)
where A= FCOS(T j]:[l sin — | (17
L(A,)=i a_A”JFA(_i) 82A,, (11)  Equation(16) governs the evolution in Fourier space of a
df  2h single optical beam in a coupled nonlinear waveguide array

in the regime of strong diffraction. In the special case of
and two-step diffraction map shown in Fig(H), i.e., when two
waveguide segments are tilted by angle zero aralterna-
tively, we haveA({)=A, for 0<|Z|<6/2 and A, in the
region 0/2<|{|<1/2, whered is the fraction of the map with
diffraction A;. In this case, the kerné( takes the simple
To solve at order %/,, we introduce thediscrete Fourier ~ form
transform

¢ (0)

n

Fn=i 7

8
+2—:25ﬁq>$1°)+|<1>§1°>|2q>g°).

h? sin(sA)
+oo =—

.02~ S wi@zie ™, 12 4mt St

: (18

with s=[6A;—(1— #)A,]/4. Importantly, these parameters
with the inverse transform given by can be related to the experiments reported in RES]. To
achieve a waveguide configuration with alternate diffraction,
_hofah iqnh we use two values df,d=0 and 27/3 (h=1), which cor-
Wn(¢,2)= EJ? ﬂ/hw(q,g,Z)e dq. (13 respond to waveguide tilt angles=0 and 3.43°. In this case
we find, for #=0.5, A;=—A,=0.681, §,=1.135 ands
The solution is therefore given in the Fourier representatior=0.17. Different sets of parameters with a smaller angle
by (&, being the Fourier transform @%O)) are also realizable. N_ext, we look fo_r a stationary solution for
Eq. (16) (for the particular kernel given abové the form

$o(0,4,2)= @(Z,q)exd —iQ(q)C(2)], (14) Iqu(Zd,q)=<,?>s(q)exp6wsZ). Inserting this ansatz into E¢16)
eads to

with Q(q)=[1-cos@h)/h? and C(¢)=f4A(L')d¢’. The )

amplitude(Z,q) is an arbitrary function whose dynamical es(q)= —~—R[o(N]= ps(q)], (19
evolution will be determined by a secularity condition asso- 0aU(q) + s

ciated with Eq.(10). In other words, the condition of the o - ) . )
orthogonality of F, to all eigenfunctionsy,, of the adjoint ~ Which implies that the mode(q) is a fixed point of the

homogeneous linear problem, which, when written in thenhonlinear functionalkd. To numerically find the fixed point,
Fourier domain. takes the form we employ a modified Neumann iteration schef@g—24

and write Eg.(19) in the form

Si( (:ng)

l ~ ~

f dgf(q,é’,Z)X(q,g,Z)=0, (15) 3/2 -

0 S| Aer@) m=o
RU%'s

&aé‘““)(q>=(
where F, x are the Fourier transform of;,, x,, respec-

tively. Here,7Ty=0, with 7' being the adjoint operator to SL:f 160 (q)[2dq SR:I 5™ () [ o™ (q)]dg

~ ~ S ' S S "
L=id/d{—A($)Q(q). Substituting Eq.(14) into F using

x =exdiQ(q)C({)] and performing the integration in condi- The factorss, andsg are introduced to stabilize an otherwise

tion (15) yields the following nonlinear evolution equation divergent Neumann iteration scheme. This method is used to
for ¢(Z,q): find stationary soliton solutions to the integral equatid6),
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1.2 [ 1 ///////////////////// )
(@ | .
N—c N_: /////////////;{/%%M///////// //////\‘\
< » e
0.6 | 05 il /}//,,,,//Z%% :
o
D FIG. 4. Beam propagation over one peri@ and stationary
qo "*50") s 0 s evolution (b) obtained by a direct numerical simulation of E)
B n - -8 on ° 10 evaluated at end map period. Parameters used are the same as in

FIG. 2. Mode profile in physical space obtained from Ep) Fig. ZAb).
(solid ling) and from the average methddashed ling Parameters
are:(a) ws=1, h=1, s=0.17,A,=-A,=0.681,6,=1.135, and  gmplitude of the beam begins to decrease and, as a result, the
2,=0.2; (b) ws=1, h=0.5,s=1, A;=—A,=4, 5,=1, andz,  pheam becomes widédue to conservation of powerA full
=02. recovery of the soliton’s initial amplitude and width is
o . , - achieved at the end of the map period. This breathing behav-
which in turn provides an asymptotic description of the;y. is shown in Figs. 3 and 4 for both strongly and moder-
diffraction-managed DNLS Eg8). It should also be noted ately confined beams, respectively.
that we can obtain periodic diffraction-compensated soliton 4 egtapiish the relation between the two approaches and
solutions directly from Eq(8). The technique is an alterna- y, nighjight the periodic nature of these new solitons, we
tive for finding periodic dispersion-managed solitons in CoM-c1cjjate the nonlinear chirp by both the integral equation
munications problem$27-29. The averaging procedure ,,5r0ach and the averaging method. It is clear that for small
does not require that the map periag, be small. To |mpl)e- values of the map period,,, the asymptotic analysis is in
ment the method, initially we start with a guess, 35559 good agreement with the averaging method, as shown in Fig.
=sechfih) with &=2;__.seci(nh). Over one period 5 e also mention briefly that the method of analysis asso-
this initial ansatz will evolve topgo)/ , which in general will  ciated with Eq.(8) can be modified to account for situations
have a chird 30]. We then define an average: where the average diffraction is small, i.8,<1 and the
local diffraction isO(1). In such a situation we writeS,

(0)”:%((p§]0)+ o ex —i0,]), =eD,, D=€eD,+A(2), z=&le, andd,= eV, . Then it is

n found thatWV, satisfies:
where o9 =] |exp(®,), which has powerg;. Then d¥, D(éle)
” - =y + _ + H 2
oM= " \/&,/&5 is the new guess and in general tmeh de ' ope (Wnea+Wooy=2W0) +i[Wo[ "Wy,
iteration takes the form (21
. Y : ~ " where D(é/e)=D 4+ (1/e)A(&l€). The model(21) is valid
@ﬁmﬂ)z 5o/gm¢$1m) S ;x |<P§1m) 2. (20 in parameter regimes, which applies to a physical situation

where the average diffraction is small and local diffraction is

In Fig. 2 the mode profiles associated with a stationary solu®f order one.

tion are depicted for two typical parameter values. The pro-

files are obtained by using both the integral equation ap- IV. VECTOR CASE: AVERAGED EQUATIONS

proach as well as the averaged method. The evolutions of . . T :

: . ; : ; -~ In this section we will discuss the full vector systé in

these discrete diffraction managed solitons are illustrated Be limi . . . .
. the limit of strong diffraction. Following Sec. Il we again

Figs. 3 and 4 for the same two set of parameter values as ) sand the fields).. V. in bowers ofz

Fig. 2, respectively. We note that initially the beam has zero P n: Vo NP w

chirp[30]. During propagation a chirp develops and the peak U, = UEO)(&Z)JFZWU%)(&ZH O(va)v

V,=V{(¢,2)+2,V{M(L,2)+ O(Z2). (22

Substituting Eqs(22) and (7) into Egs.(5) we find that at
leading ordef O(1/z,)]1,

Lu=o, v =o, (23

while the order 1 equations are

FIG. 3. Beam propagation over one period using BY) as ﬁ(Ugl))= —le), £(V$11))= —gf?’, (24
initial condition obtained by a direct numerical simulation of Eg.
(8). Parameters used are the same as in Ra). 2 where the linear operatat is given in Eqg.(11) and
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01 orf ©e A= J daiC(a, 1, 02)[#(0l2) #(0l2) #* (A1 + 02— Q)
80 £o +7¢(d1) (02 * (qu+a2=a)],
01 o1p e B= f daki(a,dy,d2)[ A1) $(a) * (dy +d2—q)
0zt } _ogl 1 (A1) $(2) ¥+ (At a2 = )],

0.85 09 095 0.85 09 095
peak amplitude peak amplitude

FIG. 5. Periodic evolution of the beam chirp versus maximumWhe{fnasEb?g{gg:ggldgée?giggeatg;Qe'ec dlse\?cl)\lll?t? c(i?1y
peak power. Solid line represents the leading order approximatio 9. g d 9 - . 9 .
ourier spaceof coupled optical beams in a nonlinear wave-

i.e., Eq.(14); dashed line represents numerical solution of the DM-" - in th . f iff . h
DNLS, and dotted line depicts the evolution of the leading orderdUide array in the regime of strong diffraction. The above
solution under Eq(8). Parameters used are the same as in Rig. 2 'esults are general and hold for any diffraction map. How-

with z,= 0.2 (a) and 0.1(b). ever, the analysis simplifies significantly in the special case
of two-step diffraction map shown in Fig(H), in which case

(0) the kernel is given by Eq18).

U )
G{P=1 =2+ 2% SUO+(UP+ A VORU,
2h V. STATIONARY SOLUTIONS
NO s We now look for a stationary solution for EgR7) [for
GP=j (9—£+2—:25ﬁvf1°)+(77|uf1°)|2+|Vf1°)|2)V§,0). the particular kernel given in Eq18)] in the form

_ _ WZ.0)= ™2 P(Z,0)= s (28)
To solve at order ¥,, we make use of the discrete Fourier
transform(12). The solution to Eqs(23) is thus given in the Inserting this ansatz into E@27) leads to

Fourier representation by A
.. . N _ () = Al[522(q) + n]=M,
U= w(zlq)e—lﬂ(q)C(O, Vo= ¢(Z,q)e_'Q(Q)Cm,

(25 b(q)=BI[ 3,0(q) + v]=N. (29

whereUy, V, are the Fourier transforms &f(") andV{®. 14 numerically find the modeg4(q) and ¢<(q), we employ
The amplitudes) and ¢ are arbitrary functions whose dy- the modified Neumann iteration scheme mentioned in Sec.
namical evolution will be determined by a secularity condi- 11l and write Egs.(29) in the form

tion associated with Eq$24). In other words, the condition

of the orthogonality o (! to all eigenfunctionsy, of the N st “ o i) s{?) “N 0
homogeneous adjoint linear problem that, when written in s - @ M, s - @ m, (30)
the Fourier domain, takes the form R R

" " (1) 7 (m) (2) _ 7 (m)
f:dég“ﬁ)(q,g,zu(q,§,2>=o, (26 Stl‘f [4s"I%da, Sf‘f |457°da,

where G2,y are the Fourier transforms ¢f{? and y,, Sl(?l):f P M,da, S(R2)=f M Nyda.
respectively;y satisfiesZ y=0 with £T being the adjoint
operator toL=i(d/3{)—A()Q(q). Substituting Eq.(25)
into G+ and performing the integration in conditid@6)
with y=exiQ(g)C()] yields the following coupled nonlin-
ear evolution equations for the amplitudgsand ¢:

The factora=3/2 is chosen to make the right-hand side of
Egs. (30) of degree zero, which yields convergence of the
scheme[22,23. Clearly, when ™ (q)— ¢s(q), ™ (q)
—¢¢(q) as m—x thensV/sP—1, sP/s -1 and in
turn ¢<(q), ¥(q) will be the solutions to Eqs(29). The
factorss!) ands), j=1,2 are introduced to stabilize an

d(Z,q) . .
(SN () ¥(Z,q) — AL ¢, &1, otherwise divergent simple Neumann iteration scheme. Note
dz 4 : . .
that when applying the continuous Fourier transform to find
4H(Z.0) stationary solutions, the numerical scheme based orf3®y.
. a) - ot G does not converge which indicates that, contrary to the vector
"4z =% () $(2,0) =~ BLy. 41, @7 integrable DNLS[25,26], continuous stationary solutions
may not exist. Figures 6,7 show typical solutions to E9)
with both in the Fourier domairfFig. 6) and in physical space
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10 10
(a)
»
<& .e-w
" <&
<9‘5 <B_m5
\
0 = 0
-4 0q 4 -4 0 q

FIG. 6. Mode profilesy; (solid line) and ¢ (dashed lingin the
Fourier space obtained from Eq®0). Parameters are,=1, h
=0.5,s=1,A,=—A,=4, §,=1, andz,=0.2.(a) »=2/3 and(b)
n=1.

(Fig. 7) for lattice spacingh=0.5. The evolution of these FIG. 8. Beam propagation over one period using EXp) as
discrete diffraction managed solitons is illustrated in Fig. 8initial conditions obtained by a direct numerical simulation of Egs.
for the same set of parameter values as in Fig. 6. We noté). Parameters used are the same as in Fig. 6 witt2/3 (a), (b)
that initially the vector solitons have zero chirp. During and =1 (c), (d).
propagation a chirp develops and the peak amplitude of each
beam beg_ins to decrease and_, as a result, the two beaqsp on=Bnh—w[2D. Note that we allow the amplitude
become widerdue to conservation of powerA full recov-  , jenend explicitly ore. The reason is that when the dif-
ery _of the vector soliton’s initial ar_nplltud_es and WIdthS IS fraction is constant@ =D, = const) and the amplitude is
gch!eved at th_e en_d of the map period. This breathing beh‘"“fr'ldependent of, then the problem reduces to finding travel-
o 1S shown in Fig. 8 f_or d_|fferent values of cross_-phaseing wave solution to the DNLS equati¢B1—36. However,
modulation (7). Finally, in Fig. 9 we show the stationary ecent studie§24] of traveling solitons of the DNLS equa-
evolution of these beams evaluated at each map period. o, yeveal the important conclusion that a uniformly moving
continuous wave solution is unlikely to exist. These results
VI. TRAVELING SOLITONS _differ fr_om those of Ref[31] in which “continL_Jous” t_ravel-
ing solitary waves were reported using Fourier series expan-
In this section we will discuss traveling wave solution to sions with finite periodL while assuming convergencas
Egs.(5) in the limit of strong diffraction management. With | — . Even then, for moderately localized pulses, “approxi-
soliton collisions in mind we consider here the case wherenate” traveling waves are found to persist for long distances
the two interacting beams are initially well separated, inwithout radiation. However, for strongly localized beams, the
which case, the overlap termig,|°U, and|U,|?V, are very  wave front gets distorted during propagation and it deceler-
small compared to the self-phase modulation term. Thereates. Nevertheless, the pulse travels almost uniformly over
fore, in what follows we find travelling wave solutions in the the experimental distand® mm).
casen=0, i.e., in the scalar diffraction managed model. Our Mathematically, we analzse the problem as follows. Sub-
approach can be generalized to the& 0 case for which the stituting Eq.(31) into Eq. (5) leads to
two polarizations travel possibly at different speed. We look
for a traveling wave solution in the form

Un(z)=Uu(é&,z)e 'n, §=nh—VJZD, (32)
0

1 1
(@)
. ~ 0.6
) =
>
0.5 #faq 05 03
? &
\
i 0
20
Q 0 a - n
-10 -5 0, 5 10 -10 On 10 o -5 n 0o -5
FIG. 7. Mode profilesU, (solid line) andV,, (dashed lingin FIG. 9. Stationary evolution obtained by a direct numerical
physical space. Parameters are the same as in Fig. 62witl2/3 simulation of Eqs(5) evaluated at end map period. Parameters used
(a) and 1(b). Circles denote grid points. are the same as in Fig. 6 with=2/3 (a), (b) and =1 (c), (d).
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IV u, (32
[ ﬂ_f W wu |U| u, ( )

du
|E:D(z/zw)

where D(z/z,) is the diffraction function given in Eq(7)
and

Tgu=e "Phu(é+h)+ePu(é—h)—2u(é).

Since in this case, Eq32) contains both slowly and rapidly
varying terms, we proceed as before and define new fast and

slow scaleg =2z/z,, andZ=z, respectively, and expandin
powers ofz,,,

U(€,2)=Uo(L,€,2) +2,u,(L,E,2)+0(22). (33

PHYSICAL REVIEW B5 056618

with S(g,8) = w—qV+{1—cog(q—B)h]/n? As in Sec. IlI

the amplitudeU(Z,q) is an arbitrary function whose dy-
namical evolution is determined by a secularity condition
associated with the order 1 equation. In other words, the
condition of the orthogonality o#/ to all eigenfunctionsy

of the adjoint linear problem, which, when written in the
Fourier domain, takes the form

1 ~ ~
fO dg“b{(q,é’,Z))(ﬁ(q,{,Z)=0, (38)
wherel/, )}B are the Fourier transform of, x; respectively.
Here, 7'x5=0 with 7' being the adjoint operator t&/
=id/d{—A(£)S(q,8). Substituting Eq.(37) into i/ using

Substituting Eq(33) into (32) we find that the leading order Xs=@xdiS(0,8)C(¢)] and performing the integration in con-

by
JUg)=0, Juy)=-U, (34)
where
J(A)Ei?—iVA(J)%—wA(é“)AJFﬂ%A,
4 9¢ 2h?
u:i%_5a(iv(z_u§0_%+qu + | uol?up.

To solve at order ¥,, we again introduce thdiscreteFou-
rier transform(treating¢ as a discrete variable

Uo(9,8,2)= X Uup({,é2Z)e 19,
¢&=mheZ

(S

h wlh .
uo(5,5,2)=5ﬁ L Uo(a.¢,2)e%da. (35

At this stage it is useful to make some further comments on

the Fourier transform. Sincé is a continuous variable it
implies that Eq(32) is a continuous equation in bothandz
Therefore it seems natural to solve E(34) using thecon-
tinuousFourier transform given by

boa.6.2)= | ug(.e.20e e

1 (> . )
uO(ging):ﬂf_qu(qréaz)elquq- (36)

But when applying the continuous Fourier transform, our

numerical scheme fails to converp®]. However, when we

for U(Z,q):

dU(z,q9)

57— %50.80(Z.9)+P[0Z,9)]=0,

PEJ dgK4(,91,02)0(a1)U(a2) 0% (9 +a,—a),
(39

wheredgq=dq,dq, and the kernek’; is defined by

h? 1 ,
Ko, Gr.00) = ﬁfo dZ exifiC(OA 4(0,01,02)],

h - 2 [h(g—
AB:%COS( (Q1+22 ZB))H Sin( (q,2 q)

=1
Restricting the discussion to the two-step diffraction map
(see Fig. 1 and Sec. )llwe find K ;= h?sin(sA g)/(47°sA ).

To find a moving solitary wave solution to systdB9), we
write

U(Z,0)=Unw(a)e“?=[Uq(q)+Uy(q)]e'“?, (40)

with U.(q) and Ug(q) being the even and odd parts of
UTW(q). This choice of ansatz is consistent with the problem
of finding traveling solitary waves for the DNLS equation
(constant diffractionwhere it was showh24] that the mode
profile in physical space can be written &$=[F(¢)
+iG(£)]exp(Bnh—w2) with F,G being even and odd func-
tions, respectively. Substituting E¢40) into Eq. (39 we
arrive at

¥ PIUTW(Q)]
©+5,5(0,6)’

SL

o (41)

0o~ |

use the discrete Fourier transform our method yields an apvheres_ andsg are the convergence factors introduced in

proximate butnot exact solution. The solution &(1/z,) is
given in the Fourier representation by

Uo(a,£,2)=0(Z,q)exd —iS(q,8)C()], (37

Sec. lll. For a given set of parametédisw, and >0, the
mode shapes and soliton velocity are found by iterating Eq.
(41) with an initial guess, e.gU®(q)=sechg), U (q)
=sech@)tanh(), andV=V, <0. The iterations are carried
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1.2
(a)
0.8 100
w
-20
0.4 n 0 20 0
FIG. 11. Evolution of a moderately localized soliton in physical
domain obtained by a direct numerical simulation of B).evalu-
98 —4 0 & 4 8 ated at end map period. Parameters srel, Aj=—A,=4, §,
=1,2,=0.1, =1, h=0.5, 3=0.5, andV= —0.5. Shown on the
0.1 - vertical axis is the beam intensity | 2.
0.05 To simulate the collision process between discrete solitons
we first need to obtain a traveling wave solution to the above
o 0 equation. To do so, we look for traveling localized modes in
the form
-0.05 W,(2) =w(é)exp(—ipnh+iwz), (43
—0.1 with é&=nh—Vz whereV andw are the soliton velocity and

-10 0 ¢ 10 wave number shift, respectively. Assumingis complex,

FIG. 10. Traveling wave solution to E¢39) in real space(a) i.e., w(&)=wg(€)+iw,(€) then Eq.(42) takes the form
shows the even part an@) the odd part. Parameters ase-1,
A=—A,=4, 5,=1, z,=0.1, =1, h=0.5, =05, andV= VW, + 2 Wr+ E oW, + (W3 + W) W= oWg,
—0.5. Circles denote grid points.

— VWt B W, — EWrt (Wa+ W)W = 0w, ,  (44)

out until the condition|s, —sg|<e€ is satisfied withe>0
being a prescribed tolerance. However, unlike the stationaryhere prime denotes derivative with respecttand
case, here, the soliton velocity is still to be determined. For
any choice ofV, <0 if |s . —sg|<e, we seek a different
value ofV, at whichs, —sg changes sign. Then, we use the

1
2 X= ﬁ[cos{ﬂh)(Eﬁr E_)X—2X],
bisection method to changg, in order to locate the correct

velocity V and modedJ,, U, for eachw, 8, andh. A typi- sin(gh)
cal soliton mode is shown in Fig. 10 for velocity=—0.5 B X= (EL—E_)X, (45)
and lattice spacing=0.5. h?

with E.-X(&)=X(£€xh). Note that systent44) is invariant
VII. COLLISIONS BETWEEN DISCRETE SOLITONS under the transformationd— — B, w,— —w,, and V—

Having found a moving discrete diffraction managed soli-~ v which will play a central rol_e in coIIisi_on processes. To
tary wave we next study interactions between th€ig. 11]. fm? th% moﬁe shr?peas and sI(:)I|ton velocnfy e fprog;ed as
We have conducted a series of numerical simulations both iff¢70re Py taking the discrete Fourier transform of Heg),

the scalar(for different soliton velocities and vector(for ~ Which yields the following iteration scheme:
different values of the cross-phase modulation coefficient

and different velocities Below we discuss each case sepa- wit(q) = Z(q)wl(m)(q)+(S(1)/3(1))3/27;

rately. To keep the paper self-contained, we consider first Q4(q)

interactions between scalar and vector discrete solitary Q)

waves in the case of constant diffraction, i.e., wiagnand = mr1)g oy =22 D ~ 1 (52523027, 4
A, are both zero £=0), which implies constant kernél W (@) Ql(q)WR (@F(s75%") "o, (46)
=h?/4=2.

where wg(q) and w,(q)=—iw,(q) are the Fourier trans-

A. Scalar interaction: Constant diffraction forms of wg(£) andw,(£), respectively, and

Scalar discrete excitations propagating in a media with h2 o
normal diffraction are solutions of the DNLS equatisee Ti=———(Wr*x Wrx Wg— W, * W;*x Wg),
2
Eq. (8) with constantD(z/z,)=11]: 4m04(q)
W _ | a‘zw +i| Wi W (42) T ’ (Wrk Wrk Wy — Wik Wix W), (47)
i . =————(Wr* WRx W, — W% W% W, ).
dZ n n n 2 477291((:]) R R | | | |
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1.2 a)

04

0.2
%6 -3 o0& 3 6

FIG. 12. Mode shapes in physical space éor1 andB=0.5.
Solid line corresponds th=0.5 and velocityV=—0.5, whereas

dashed line foh=1 andv=-0.3. FIG. 13. Interaction between scalar “classical” discrete solitons
N 0 for different values of velocity obtained by a direct numerical simu-
The convergence factosg” ands{, j=1,2 are lation of Eq. (42). Parameters aré=0.5, andV=750.1, 8=

+0.1(a); V=50.25, 8= +0.25(b); andV=*0.5, B==*0.5(c).

~ ~ Qy(q)~ Shown on the vertical axis is the intens|iy, 2
o= [ @ @ - D)o W
1(9)
dv, 1
o [~ o [ = iy 5 OVt (7lUn®+ Ve )V,e=0,  (49)
SR ZJWR (9)Z,dg, sy :J'W| (q)Z,dg, (48 2h
) _ whereU,,, V, are the two interacting beams andis the
ands{® is obtained froms{") by interchangingvg andw,.  cross-phase modulation coefficient. To study interaction be-

Here, Q,(q)=w+ (2/h?)[1-coshg)cosBh)] and Q,(q) tween vector solitons, we consider the case in which the two
=(2/h?)sin(hag)sin(Bn)+Va. For a given set of parameters modes are initially well separated and orthogonally polar-
h, o, and 8>0, the mode shapes and soliton velocity areized. In this situation, the two modes are completely decou-
found by iterating systent46) together with the bisection pled and each one of them satisfies a scalar DNLS equation
technique outlined in Sec. VI. Typical traveling soliton for which a traveling solitary wave was obtained in the pre-
modes are shown in Fig. 12. Having obtained moving soli-ceding section. In Fig. 14 we show a typical collision experi-
tary wave solutions, we investigated next the collision pro-ment for different values of cross-phase modulation coeffi-
cess. If the soliton speed is less than a critical velo¢ity, cient and different soliton velocities. In all cases tbg
<V.~0.2, then the solitons are found to fuse after collisionmode is always stationary while the other one moves with
accompanied with radiation modes, see Figdajn3L3(b). speedV. When »=2/3 and the second mod&/() moves
However, when the two modes move sufficiently fast ( slowly (V=-0.1), we observe power exchanfgee Fig.
>V,) then they pass through each other. This collision re-14(a) and Fig. 1%a)], i.e., the outgoing beams have ampli-
sults in two “nonstationary” travelling waves moving in the tudes different from the one before the collision. Mgfield

opposite directions with modulated envelopegy. 13c)]. mostly survived the collision where&k, undergoes a fission
process and two solitons are born. Each one of them has
B. Vector interaction: Constant diffraction amplitude almost half the original one. The interaction pic-

ture is more “clean” at higher spee/& —0.4) in which the
two modes pass each other nearly unaffe¢edept for a
phase shift in the soliton position, Fig. (b4 and Fig. 1%b)].

1 Decreasing the value of to 0.5 leads to a different picture.
+—— 82U+ (|Un2+ 7| V,a|H)U,=0, In this case whei = —0.1 the the two beams fugsee Fig.
dz  2p? 14(c) and Fig. 1%c)] and form a single fused traveling wave

The vector discrete system with constant diffraction is
described by the following coupled discrete NLS equations

_dU,
|

056618-9



MARK J. ABLOWITZ AND ZIAD H. MUSSLIMANI

PHYSICAL REVIEW E 65056618
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FIG. 15. Snapshot showing the final state of the collision illus-
trated in Fig. 14(a)—(d) correspond to Figs. 14 -14(d), respec-
tively. Dashed(solid) line corresponds tdJ,, (V,,).

200

o=
)

200

50 0

FIG. 14. Interaction between discrete “classical” vector solitons
for different values of cross-phase modulation coefficignand
different soliton velocity. Shown on the vertical axis is the intensity
of the two colliding beams, i.el,=|U,|?+|V,|2. Before collision,

U, is the left beam, whereaé, is the right beam. In all the parts,
the incomingU,, mode is stationary, whereag, travels with a
speedV. Parameters used arg=2/3, V=-0.1, 8=0.1 (a); 7
=2/3, V=-0.4, B=0.4 (b); »=0.5, V=-0.1, =0.1 (¢); and
n=1,V=-0.5, =0.5(d).

whereas the two modes simply go through each other at
higher velocity =—0.5) as shown in Fig. 1d) and Fig.
15(d). Notice that the collision process reported in Fig(d5

is nearly elastic. Unlike the symmetric discrete vector NLS
equation, where the nonlinear terms are taken to|bk|¢
+77|Vn|2)(un+l+unfl) and (77|Un|2+|vn|2)(vn+l
+V,_1) [25], here(vector nonintegrable cagewe did not

find a bouncing process. This could be attributed to the spe- ';'f(f; 16. '”tlera‘:“?” k)letvyeenbsqala(; f)iﬁragt_ion'ma”ag_ed ISO_'”O”S
cial properties of the symmetric vector NLS system. or different values of velocity obtained by a direct numerical simu-
lation of Eq. (8) evaluated at end map period. Parameters are

w=1,h=05,s=1, A,=—-A,=4, §,=1, andz,=0.1. The ve-
locity V and g are, respectively, equal te 0.1, 0.1(a); —0.25, 0.25

In this section we study interactions between scalar dis¢b); and —0.5, 0.5(c). Shown on the vertical axis is the intensity
crete diffraction managed solitons. In what follows, we high-|U,|2.

C. Scalar interaction: Diffraction management

056618-10
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@ 0.9} (b)
0.6
0.5
0.3
Q 0

7 200

0.5 07

- 0n 20 40 S0 20 On 20 40
FIG. 17. Snapshot showing the evolution stages of the collision

illustrated in Fig. 16a). /200

light the similarity and differences between “classical” sca-
lar discrete solitons and diffraction managed solitons. Figure
16 illustrates different possible interactions for which the two
colliding beams are identical and move in opposite directions
with identical speed. For small relative velocity the two col-
liding beams fuse and form a new state that is characterized
by a localized core and oscillating tail. When propagating
along thez direction, the core starts to develop double-hump
pattern and becomes wider. As a result of an instability, the
core beam reshapes itself into a Gaussian-like form and be-
comes narrower as more radiation is emittede Fig. 17.

This behavior repeats and represents a “periodic” diffraction

0 0
managed analog Of the fused “Class|ca|” Cisempare Wlth FIG. 18. Interaction between diffraction managed vector soli-

Fig. 13a)]. For higher velocities, the two beams cross eacﬂons.for dif'ferent. values of c.ross-.phase. modulation coefficient (
others trajectory. The outgoing traveling waves are charac@btained by a direct numerical simulation of B§) evaluated at

each map period. Shown on the vertical axis is the inter{siyti-
cal axig of the two colliding beams,=|U,|?+|V,|2. Before col-
lision, U,, is the stationary beam on the left ak{ is the mode on
the right that travels with velocityy. Parameters ar=1, h
=0.5,s=1, A;=—A,=4, §,=1, andz,=0.1. The velocityV=
—0.1 andB=0.1 with % equal to 0.1(a), 2/3 (b), 1 (c), and 2(d).

terized by modulated envelopes. The higher the collision ve
locity the larger the modulation amplitude. This behavior is
similar to the one observed with “classical” solitdeom-
pare with Figs. 1®), 13(c)].

D. Vector interaction: Diffraction management

Next, we investigate what happens in the vector case, Increasing the value ofy to 2/3 changes the interaction
when the two beams interact via the cross-phase couplingicture as more radiation is emitted and the resulting colli-
Figure 18 depicts different soliton collision scenarios forsion products exhibit multihump structure and constantly
various values ofp but fixed soliton velocities. In other change their relative position. When the interaction takes
words, the moddJ,, is always stationary while/,, moves place, theU, (dashed ling intensity has a double-humped
with fixed velocity V=—0.1 and the only parameter we profile while V,, (solid line) is single humpedsee Figs.
change isz. It turns out that interactions between discrete20(a), 20(b)]. After propagating for some distance, then ex-
diffraction-managed solitons differ fundamentally from their actly the opposite happens. Now the intensity of ¥hepo-
“classical” counterparts, as can be seen from Fig.(48e, larization is double-humped whereds has a single hump.
for example, Fig. 14 For small value ofp=0.1 the interac- When the cross- and self-phase modulation coefficients are
tion results in a facinating process. Immediately after thedentical then the collision product is a bound state com-
collision, the two modes partially pass each otfsme Figs. posed of single- and double-humped intensity profiles. Upon
19(a), 19(b)] and then, as a result of an attractive force, bothpropagation, this bound state hops to the right and left, back
beams turn over and come back to the initial state. Instead @fnd forth in a periodic manngsee Figs. 2(), 21(b)]. Moni-
continuing to go away from each other the two polarizationtoring the evolution of the/, mode shows that its double
modes turn back again. This behavior persists for very longiump structure(in intensity is preserved but exhibits an
distances and demonstrate a bound state recurrencelike pHeternal” dynamics, i.e., the distance between the first and
nomena. second maximum changes withIn all of the above cases,
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1.4 1.4 1
(a) (b) 4 () (b)
0.7 ;’ \ 0.7 | l~| 0.7 0.5
Y i
—020 -10 Opn 10 20 -%0 -10 On 10 20 -020 -10 Oop 10 20 _%o -10 On 10 20
4 4 FIG. 21. Snapshot showing the intensity profile of both modes,
(o) () |U,|? (dashedland|V,|? (solid) right after the collision(a) and the
\ last computational stage of the collisifln). These snapshots corre-
" A spond to Fig. 1&).
07 N 0.7 i\
o O _ _ . : .
! ‘.\ diffraction managed cases with their “classical” counter-
N A parts. The proposed vector model describes propagation of
B0 1o 0np 10 20 B0 o 0n 10 20 two polarization modes interacting in a waveguide array with
FIG. 19. Snapshot showing the evolution stages of the collisiorKerr nonlinearity in the presence of varying diffraction. The

illustrated in Fig. 183). Dashed(solid) lines depictdU,|? (|[V4?).  coupling of the two fields is described via the cross-phase
(a) is the initial condition andb)—(d) shows interactions at different modulation coefficient. In the limit of strong diffraction man-
increasing distances from=0, respectively. agement we derive averaged equations governing the slow
dynamics of the beam’s amplitudes and station@anythe
the resulting beam moves with a negative velocity. Interestform of bright-bright vector bound states well as “ap-
ingly, for =2, the collision process results in a “fused” proximate” traveling wave solutions are obtained. Through
travelinglike wave that moves in the positive direction with an extensive series of direct numerical simulations, we study
an additional small residual beam that propagates in théteractions between periodic diffraction-managed solitons
negative directiofiFig. 18d)]. This fused state evolved from for different values of velocities, diffraction, and cross-phase
an intricate process. After collision, the intensities of bothmodulation coefficients. In both the scalar and vector cases,
polarizations develop multihump structur¢fig. 22a)], we find that the interaction picture involves beam shaping,
which decay as a result of instability and form two lumpsfusion, fission, nearly elastic collision, and, in some cases,
together with a side wavfFig. 22b)]. This residual wave multihump structures.
escapes away from the center and, as a result, bgthnd
V, relax into a “fused” statgFigs. 2Zc), 22(d)] with emis-

sion of additional radiation. ACKNOWLEDGMENTS
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FIG. 20. Snapshot showing the evolution stages of the collision
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FIG. 22. Snapshot showing the evolution stages of the collision
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