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Photonic band structure of cholesteric elastomers
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We calculate the photonic band structure along and oblique to the helix axis of cholesteric elastomers. They
are highly deformable, self-assembling systems. They display brilliantly colored reflections and lasing owing to
stop bands in their photonic band structure. This band structure varies sensitively and extensively with strain.
We show how additional stop bands open up and how they all shift in frequency. We predict a “total” stop
band, that is, for both circular polarizations and show analytically how stop bands scale with strain. The
extension of stop bands to a range of angles thereby creates pseudogaps, and the relevance to low-threshold
lasing is discussed.
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[. INTRODUCTION photonic material. Spontaneous emission is suppressed in the
bulk and excitation would not be drained by any emission
Photonic band material®BMs) interact with light analo-  into nonlasing modes. Such low-threshold lasing has recently
gously to the way semiconductors interact with electrons—been observed in two-dimensional photonic crysitafg. Al-
via the periodic modulation of dielectric properties on glernatively, one can design lasers that take advantage of the

length scale matching the wavelengths of the quanta of ingnhanced dwell time associated with the band edge diver-

terest. Light is manipulated by the structure rather than b heen?ifstogtt)ZZrS:{i]ggg g]f ts‘htgt?%]e' cl)??;;ﬂ’ %gsrilr:ngrctggy,b
underlying atomic or molecular properties. Structures can b yp g » 0y

manufactured; for instance, Yablonovitch and Gmitter con¢

STUCt?d and_fcc photonic cryts)tal byddrilling Eolesdint_o a gi' and not, as expected, at the center where the reflection was
electric mediunj1]. Later, Ozbay and co-workers designed a|514est. The band structures we predict, especially away from

picket fence structure, which is assembled by stacking tWoporma incidence, add weight to their analysis and findings.
dimensional(2D) layers|2]. _ Lasing has subsequently also been seen in cholesteric elas-
Self-assembling PBMs are preferred at optical and nearpmers(CEs [19]. CEs are made by cross-linking cholesteric
infrared wavelengths. Several examples include air holes in golymer liquid crystal$20] to form defect-free monodomain
titania matrix[3], copolymer-homopolymer films that form rubber strips tens of centimeters long. They display spectacu-
lamellar structure$4], thin films of polymethylmethacrylate |ar opticomechanical effects, viz., large changes in the fre-
infilled with SnS [5]. Cholesteric liquid crystal§CLCs)  quencies of reflection and of lasii@9] in response to im-
[6—10Q] are classical PBMs. Their brilliant colors are well posed mechanical strains.
known and arise from a periodiwisting of their anisotropic Our calculations on CEs point to phenomena and applica-
dielectric properties, distinct from the systems mentionedions that are not possible in existing photonics, and hitherto
above. Local orientational ordering along a directaptates  unsuspected in the liquid crystal field. For instance, we find
as a periodic function of distance along the pitch axifhe  multiple 1D band gaps, some not at the zone edges, in con-
director of an ideal CLC advances uniformly, tracing out atrast to classical CLCs. We also observe gaps for light of the
helix of pitch py, which can be adjusted to match the wave-opposite handedness to the underlying helix, again unex-
length of visible light. At normal incidence, circularly polar- pected in classical CLC systems. At some directions the gaps
ized light that twists in the same sense as a helix is reflectefibr both polarizations overlap in frequency, giving a total
with its original polarization, while circularly polarized light stop band of significance when polarization control is re-
that twists in the opposite sense is transmitted unchanged. Byuired. Our systems are highly deformalgheany-fold and
solving Maxwell's equations in a rotating frame, de Vries we shall find shifts in thgdeveloping band structure that
found a single stop band, a one-dimensional band gap in thean be largg19-21l.
photonic structurg6]. We shall additionally be concerned By contrast, existent photonic mediaoncholesteric
with oblique incidence, and also in the effects of externaltypically have piecewise variation of a typically isotropic
fields on modifying cholesteric spirals and hence their bandefractive index in going between a matrix and its inclusions.
structures. In one theoretical proposal and calculation, Busch and John
PBMs have unique properties, which have spurred intere§@2] considered nematic liquid crystals filling an inverse opal
in their design. In an early exposition of electromagneticstructure. The voids in the skeleton thereby had an aniso-
band structure, John also suggested how light can be localropic refractive index, as in our case, and we closely follow
ized [11]. The spontaneous emission spectrum from atomshe analysis that was introduced there to deal with the added
and molecules can be modified in these matefials-14,  complexity of the tensorial structure to the dielectric constant
leading among other things to low-threshold lasing: Yablono-and thus also with polarization effects. Busch and John pro-
vitch [13] predicted that the lasing threshold would be de-posed applying fields to the nematic liquid to redirect the
creased by introducing a defect into an otherwise perfectlirector and thereby tune the contrast with the various crys-

opp et al. [17] and by Taheri and Palffy-Muhora}18].
opp et al. showed that the lasing was at the stop band edges
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FIG. 1. Schematic diagrams ¢f) an expanded view of a sec-
tion of a strip of elastomer showing its cholesteric director distribu-
tion. The director twists periodically along the pitch axis, herezhe ~ FIG. 2. Angular orientation of the directarversus the reduced
axis in each case. For the elastic stdps perpendicular to the flat positionz=z/p for several values of the reduced fidie- H/H .
face. Cholesterics are approximately optically uniaxial, with dielec-
tric constantse; shown along the nematic order, ard in the
perpendicular plane. Elements of the deformation gradient tens

(for the solid case) are shown:\,,, a stretch applied in th& . . . 3
direction,\,, and\, are the attendant contractions alangndy, that is, the Frank twist elastic energy densﬁt(z[n(v

2\ inimi — i
respectively(b) The geometry of the striga) being a section from XN) +qo] W'_” be m|r_1|m|zed whem: (VXn)=—qo. K, is
this. the Frank twist elastic constant.

A cholesteric can be considered approximately locally

o uniaxial, with an anisotropic permittivity, for instance, di-
tallographic directions and thus to create gaps. HOWGVeéIectric,e” alongn ande, perpendicular ton.

piecewise dielectric continuity is retained and the direction  Cholesteric liquidsThe twisted structure of a cholesteric
of anisotropy is homogeneous in the whole crystal. By confiquid can be unwound by a magnetior electrig field ap-
trast, CLC's have a continuous variation of the principal axesglied perpendicular to the helix axis, a classical problem first
of birefringence—which corresponds to a continuously rotatconsidered by Meyef7] and by de Gennef8], see also
ing coordinate frame. The principal axes guide the wave®reher[23] for the case of finite samples with boundary
along a generally nontrivial, periodic path and give rise toconditions. Consider a magnetic fielti along they
sharply different behaviors for each polarization. Polariza-direction. Since cholesterics have an anisotropic magnetic
tion effects are thus very subtle and become more so fosusceptibility y,=x;—x., the magnetic energy gy
oblique incidence. Control of polarization is at the heart of= — 3/ drxa(H-n)% The helix untwists(increasing the pe-
LC and optical devices; we thus view this work as a stepiod) and coarsens until the energy gain from aligning with
toward fresh classes of photonic solids with deformable, tunthe field balances the Frank penalty for deviations from the
able band structures highly sensitive to polarization. original structure. The director orientations coarsen, as in
We first describe how CEs deform and how their directorFig. 2, but with thez coordinate being reduced E)by a
d|str|put|on is gqarsened from an |n|t|aII_y |dea_1I hgahx'. Th|s lengthening period (but see[23]). At a critical field H,
creat‘!on of agidltlonal 'ha}’rmonlcs in the dlelectrlc_: d'St”bUt'Onz(qu/Z)m, the period diverges logarithmically as
(the “photonic potential” in an analogy to semiconductors e entire sample aligns with the external field. For typical

is what creates the additional stop bands and, in part, thelfholesteric liquids with a pitch of 2Qum, H,=15000 G
extensions to oblique incidence. We then sketch the classical,y £ =50 s\v/em. The characte'risticc length &
(normal incidencephotonics of cholesterics before calculat- _ -1 < o . . .
ing the 3D band structure in both the ideal and distortin H™"VKz/xa, a liquid cholesteric magnetic penetration

¢ We d trast bet the photonic struct depth, arises from the interplay between magnetic and Frank
systems. VVe draw a contrast between the photonic struc ureehergiesg is comparable to the wavelength of visible light,
of distorting elastomers and that of liquids with external

magnetic fields applied f[hu's giying rise to intere.:sting. photonic—magngtic-field effects
' in liquids. The central idea is the same as in our work on
elastomers: distorted cholesteric structures have harmonics
introduced into their director fields and thus higher-order ef-
fects in their band structure.
Chouet al. [9] first considered the effect of these distor-
A cholesteric locally has nematiorientational ordering  tions on the cholesteric photonic structure, see also Dreher
along a directom, which rotates as a periodic function of [24] and Shtrikman and Tuf25]. We shall compare with
distance along the pitch axig as illustrated in Fig. (8  their (norma) calculation when calculating the changing
(which will also serve to illustrate strains applied to ¢Es band structure of cholesteric elastomers under strain. One
needs the variation of the director angle wilin order to
R R calculate the photonics. Differences from CEs under strain
n=cogqyz)X+sin(qgz)y. (1)  are detailed i 26,27]. One important difference is that the

The director of an ideal cholesteric advances uniformly, trac-
dpg out a helix of pitchpy=2m/q,. Such a distribution is
created by molecules with a handedness inducing a twist,

IIl. CHOLESTERIC STRUCTURES OF DEFORMING
LIQUIDS AND SOLIDS
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penetration depth arises from the competition between elastic cog ¢, CoSySiNgy 0O

and Frank energies. It is much shorter tigaim liquids with . .

the effect that we can ignore Frank elasticity for the solid o=t.| o+(r—1)| cosgoSingo sinf o 0

systems. 0 0 0
Cholesteric elastomers\ematic polymers are elongated

(in the prolate cagdby their surrounding nematic order. They

are distributed as anisotropic random walks with mean ©)

square extentéR;R;) = %eijc, where there are effective step

lengths parallel and perpendicular to the director and thus aA,e have extracted a factor &, from €,, which we shall
effective step length tensor describing its Gaussian distribusereatter neglect since it cancels with the inverse factor of

tion 611, which we extract fromg‘1 that appears multiplica-
== €+, 8, ) tively with {4 in the free-energy density3). The ratior

={ /¢, thereafter characterizes tifetensors and is a mea-
and L is the total contour length of the chain between crosssure of the anisotropy of the chains. For instance, it deter-
links. Being Gaussians, the chains are capable of huge exnines the spontaneous distortion of elastomers when they
tensions and, therefore, the rubber they compose when croester the nematic state,s=r>. The anisotropy is in the
linked will be too. range ofr ~1.1-50 depending upon the types of chains mak-

One can easily show, by analogy with classical rubbeing up the elastomer.
elasticity, that the free-energy density of a rubber composed We show in an appendix how the transverse contractions
of such chains is take up highly nonclassical formsxyy~)f5’7 and \,,
~X"?7 on imposition of a stretch alongx. In particular,
convection of the cholesteric structure along wit}y gives
an increase of the cholesteric wave vectrqg/\,,
=qo\?". This is the first aspect of a deformable band struc-
where u is the shear modulus when the rubber is in theture that emerges: the fundamental stop band, and any fea-
isotropic phase g =n,kgT, wheren, is the number of such tures in the band structure created by distortion, will also
chains per unit volume{, represents the distribution locally shift in wave vector witth?”. Thus the change of color and
at the time of formation of the elastomérrepresents it after lasing toward the violet on stretching that has been observed
distortion, for instance, if the director has rotated in re-in CEs is easily explained.
sponse, so wilk. Since the director rotates through the ini-  We also sketch in the Appendix how to calculate the
tial structure andperhaps differentlythrough that after de- variation of the director angle with distanzelong the helix
formation, the energy density will be a function of position axis as arx strain\ is imposed, see ald@6,27| for details.
along the pitch. The deformation tensors for instance, The result forg(z) in terms of the original angléy=qgz is
N,y is the stretch in thex direction (the new length divided
by the old length in thex direction. Since rubber is a soft
solid, deformations are at constant volume, that is )et( tan 2= 2(r=1)AAyysin 2¢g
=1 o e (r=1)(A2+2)cos 2o+ (r +1)(A2=A2)
We shall consider imposed stretches of magnitidm (6)

the x direction, allowing constant volume contractions in the
two perpendicular directions and suppressing shearthis
geometry they cost an energy that scales linearly with thd he initially helical director structure coarsens to that domi-
sample size—in the thermodynamic limit, they are forbid-nated by regions of slowly varying angles, separated by in-

1
F=§,uTr(€0)\T€‘1)\), ©)

den; sed 26,27 for more details Thus creasingly sharp twist wall26,27; see Fig. 3.
It is this nonuniform rotation of the director that gives the
AN O 0 higher harmonics that generate the additional features in the
0 \ 0 photonic band structure as strain is imposed. At a critical
A= v . (4) =\, the walls become thermodynamically unstable and the
) 0 0 L director experiences periodic oscillations abgut 0, which
Ay diminish in amplitude with increasiny.

By construction, def()=1; however, contractions in thg

andz directions will be different, in general, since these two Ill. WAVES IN CHOLESTERIC STRUCTURES

directions differ in their symmetry. L ) )
For a cholesteric rubber, one substitutes the CLC directoy 1h€ usual wave equation in linear mei‘i'ta, for magnetic

distribution equatior(1) into Eq. (2) for the initial effective  felds harmonically varying asi(r,t)=H(r)e'*" is

step length tensor to obtain an explicit variati@vhich will

resemble the later distribution of the dielectric constant, a 2
related second-rank tensor that follows the rotating nematic VX[e Xr)(VXH)]= CH 7)
ordey, = c?
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o i ' ' ' ' e 1to givee '=be ! (the tilde denoting a reduced quan-
tity). a is thus the effective reduced dielectric anisotropy.
3n/4t- - i AR . ;
One reduces lengths by noting simpifications in factors like
Y — Ccos 2p=cos Hz—cosz if 2qz—z. Thus a natural choice for
T |- — = -1 3 ~
— A=1.05 reduction of the wave vector is=k/2q.
— o The wave equation becomes
/4 - = T
— =12
A=1.25 P ~
S ¥ — The reduced frequency is= w/2cqyb. Thus the affine con-
z/p traction of space, as 27, enters the reduction and also

S _ _ into the frequency sincg=qo\?". These shifts towards the
FIG. 3. Dependence of the orientation of the director on distancgiglet and the contraction of the Brillouin zone should be
along the pitch axis for helices subjected to several diffesent (acaj1ed when examining the band structures that will be pre-
strains of magnituda. Notice the qualitative change in behavior as sented in reduced form
A crosses through~1.19. de Vries first solved the electric-field equivalent of Eg.
_ , , _ qf{gr normally incident light, (/c)?D= — §°E/9z?, by trans-
The spatial dependence of the inverse dielectric tensor a rming E(z) into a coordinate frame rotating spatially with
its control of polarization since it is not spherical is at thethe dielectric tensor, so that the matrix connectihgyith E
geart of our Emb'e"?‘- Ingucgd changes in the spatial depens diagonal 6]. For this reason it was simpler to examine the
ence give the varying band structure. electric- rather than magnetic-field variation. We first review
We expect most cholesteric liquid crystals to be Iocally,[he classical case in unreduced units. Given thatq,z, in

uniaxial W't.h one optical axis alpng the director figir). the rotating coordinate systerd, @), the fields are such that
Of course, in general, cholesteric liquid crystals must be lo-

cally biaxial since there exist, at a point, three distinct axes

(the director withe|, the helix axis withez, and the perpen- (EX) _ ( cogqz) —sm(qz))( Eé) (10
dicular direction withe, ), but theoretical consideratiof28] Ey sin(qz) codqz) /\E,

and studies of oblique incidence by Berreman and Scheffer

[10] strongly suggest thats=€, to one part in §oa)*  \ith the simple connection betwe@hand E

~10"4, wherea is the molecular dimension of liquid-crystal ’

subunits. In fact as part of this study Berreman and Scheffer

[10] were the first to calculate the band properties of choles- D¢=¢E;,

terics away from normal incidence. They took one particular (13)
oblique angle (45°), rather than the general case that we D,=¢E,.

shall present. A more general study of the oblique structure

<[)2fgu]nd|storted cholesteric liquids is that of Dreher and MelerSubstituting transformatiofi.0) into the electric wave equa-

As a result, we can write the dielectric tensor in the formtlon’ we obtain the eigenlike equation
€ij=(€/—€,)nin;+ €, &; , whereg is the dielectric constant
along the long axis of the nematic mesogen andis the w\?
dielectric constant in any direction perpendicular to the di- (E)
rector; see Fig. 1. Likewise the inverse tensoeiTsl:(l/e”

— /e )ninj+1/e, 5 . If we rotate to the laboratory frame

that is not based upom, then this second-rank tensor trans-
forms in the usual way, that is, as a function ap,2

E||E§)_ &§—q2 —2qd,
eE,) | 299, -0?

( E’;). (12)

E,

7

In this spatially rotating coordinate system, even a state with

d,E,=0 andd,E,=0 has a nonzero energy=cq, arising

from the variations inB and E associated with the frame

] rotation. For a simply rotating system, EHd2) has constant
coszp sin2¢ 0 coefficients so that both components are described by a

e l=b| 6—«| sin2¢ —cos2p O (8) single plane wave of the forrB~exgi(kz—wt)]. In the ro-

B h 0 0 1 tating frame,k=0 corresponds to solutions at the normal-

incidence band edges—these solutions are perfectly in phase

with the material rotation. The generic solution has elliptical

wherea=(¢/—€,)/(¢/+€,) and b=%(1/6H+1/6J_). Itis a polarization, parametrized by

form reminiscent of¢ ! and recognizes that the vectars
and —n are indistinguishable; in effect the actual period of
the liquid crystal is halved.

Reduction of variablesaNe can reduce the wave equation
(7) to a dimensionless form by extracting the constaftom  which in Eq.(12) yields the 2<2 matrix equation

(E¢.E,)=(AiB)exdi(kz— wt)], (13)
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With imposed fields, e.g., electric, magnetic, or mechani-

2
w .
6”(3) i —2igk ( A) (0) cal, the simple linear relationship betweénand z is lost.

5 ] ) Now, transformation into a set of coordinates rotating with
~2igk q(%) Pk iB/ 10 an arbitrary¢ = ¢(z) yields
(14 E cos¢g —sing\ /[ E
EX | sin cos E.f ' (19
In reduced variables, the eigenequatid#d) is Y né ¢ n
4 We can then insert this expression into the electric wave
02— 4k2-1 —4ik equation and use Eqgll) to obtain instead of Eq.12) the
1-a A _ 0 relation
- 4 -, -, iB 0/’ ,
4ik 17 a” -4k -1 2)2( 6E§): ¢/2_(92 28" 9,+ " Eg)
(15 c/ \eE,) \-2¢'9,—¢" ¢'2-0> |\E,)
L . (20)
which yields the solutions
5 _ In general¢’ and ¢” are nontrivial functions of, see Figs.
~, Aaw’* V(1- a®) K2+ a?o? 2 and 3, and de Vries’s approach in EO) fails to give
A=—1-4k"+ 11— .+ (180 apalytical results. In the following section we develop a
band-structure alternative of greater applicability.
~2 209 _ ,2\2 274
A_aot> S 1 IV. CHOLESTERIC PHOTONIC BAND STRUCTURE
B "1-a?) : 17
—

The technique we use below was introduced by Ho, Chan,
and Soukouli$31] for the case of scalar dielectric constants.
They Fourier transformed the dielectric constant and then
1 inverted it. A refinement of Meade and co-worké¢g2] re-
_\/;|_4r4”|;24_r [16aZk*+8(2— e K2+ a?]V2 versed the order of these processes; we follow this route. The
2 subtleties of relative rates of convergence in the two cases

(18) are further discussed by Busch and Jp2&|, who also con-
_ ) _ ) _ _ _sider the tensor dielectric constant case that we follow below.

Itis evident that there is one gap in the dispersion relationrne ahove authors were concerned with calculating the prop-
when k=0 with eigenstates corresponding to the coherenkrties of light propagating through an only piecewise con-
superposition of two plane waves with wave vectors-df/2  tinuous dielectric medium: their photonic media typically
in reduced unitf28]. Equation(18) also implies that the consist of periodic inclusions of different dielectric con-
lower branch will have a reduced frequeney=3\1—«  Stants. By contrast we are concerned with continuous media,
and B/A=0, while the upper branch will have a reduced the periodic rotation of the tensor dielectric constant leading

frequencyz)u:%\/m and A/B=0. Both eigenmodes at to more subtle effects. We do not find the convergence diffi-

the band edge are thus standing circularly polarized wave&Ulties introduced by the spatial discontinuities in the sys-
the resulting plane of linear polarizatiofin an infinite tems of the above authors. A related, highly tensorial band-

samplé rotating with the cholesteric structure. The lower Structural problem is that of the liquid-crystal blue phases
branch points wholly along the rotatirigaxis, that is, along Wlth, in some sense, a helical choles'terlc variation in three
the director and thus with a higher effective dielectric con-dimensions; see, for instance, Hormregtral. [33].
stant 1/(1-a) in reduced units, while the upper branch  USing Bloch's theorem, the solutions to E() can be
points along the rotating axis, that is, perpendicular to the €XPanded as
director and thus with an effective dielectric constant 1/(1
+ ). Between them is a range of forbidden frequencies— H(r)zZ hee! (F 0T, (21)
the band gap. This is most clearly discussed by Kopp and G
Genack{30]. In the degenerate perturbation analysis for gap
scaling in distorted cholesterics of Sec. VB 1 we discussvhere{G} is the set of all reciprocal lattice vectofwith
why simple cholesterics only have one gap. et T=1).

These solutions inside the cholesteric translate into left- SinceH is transverse, we can pick two unit basis vectors
and rl_ght-hand_ed circularly p_olarlz_ed light outside t_he cho-g &, for eachG such that
lesteric. The eigenstate that is split by a band gap is clearly
the one that rotates in the same direction of the helix. That is

Setting\ =0 yields the dispersion relation

w==*

why cholesterics are observed to reflect light with one sense V(Gy) [egy (k+G)]=0, (22
of circular polarization, while light polarized with the oppo- R R
site circular polarization is transmitted unaffected. YV (GyY'") [€cy €cy)]=0y, - (23
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Thusk+G and é(Gy) form an orthogonal triad of vectors in If we multiply Eq. (27) by é(Gy)’ and assume without loss of
space for eacks, andeg,, may be different for eacts, in ~ generality that
general. Each plane-wave componenHas thus guaranteed

to point to the plane created by thﬁgcy). This gives the (k+ G)Xé(Gl):é(G2) and (k+ G)Xé(G2):_é(Gl)v
Fourier representation of the field (21),

2 . (28)
H(r):%: 72::1 h(Gy)e(Gy)el(k+G).r. (24)
we obtain
We also expana{l in a plane-wave basis,
L w 2 A ’
S.*l(r):E s(ElelG -r_ (25) E h(Gy)r:_|k+G|§ h(Gl)e(Gy),-[(k—i—G )
G/
Substituting Eqs(24) and (25) into Eq. (7) gives X (g €62) 1~ Ne2)ay  [(K+G')
2 2 TN
1) - : X(€qr_ " €c1) ] (29
(3) 2 2 eepheye® O (foreten)]
G y=1

In Eq. (29) the h(g,) are linked acrosss and y spaces.

2

Defini I

RN oy (k+G+G) efining a doublet
GG r=1

- € i h1
X{eaL(k+G)eeyliexdi(k+G+G)-r].  (26) hG:(h( )>,
) (G2)
TransformingG’ — G’ — G, multiplying by e~ """ and
integrating over the unit cell gives Eq. (29) becomes a matrix equation
2
@ -
- Z h NS :_2 2 h (k+G,) 2
(C ” (G'M=(G"y) G v (Gv) (% hG,ZE AG’,GhGy (30)
< ©

x{ear o[ (k+G)X &gy}

(27)  whereAg' g is given by

é(G'l)'[(k+G,)X(§(;fl7@'é(Gz))] _é(G/l)'[(k+ G,)X(SG}G'é(Gl))])

éG',G:_|k+G| ~ , -1 ~ ~ , _1 ~ (31)
€cr2) [(K+G)X(eg_g €c2)] —€cr2) [(K+G)X(eg_ g €c1))]
|
For 1D structures periodic alormythe reciprocal lattice vec- From Eq.(31) the matrixAg: ¢ becomes
tors G are G=2nqz n being an integer. We now consider (6—1 ) _(6—1 )
specific cases of increasing complexity. , _G' -Gy _G'-G/¥x
P g compiextity Ag o=|k+G| |k+G'| L - .
= _(EG’*G)XY (EG’7G)XX
A. Normal incidence 33

Itis clear that .the tWo unit Vectorsa,) are.m Ehexy From Eq.(8) the Fourier components of the reduced inverse
plane. Choose without loss of generalM eg1)=x and  gjglectric tensor become

Ve é(62)=§/. In this case, it is obvious from E¢31) that the =
z components of the reduced inverse dielectric tensof  €c'-c
can be suppresséthe tilde is also suppressgavhich allows

one to write deer—aCg - —QaSg_g 0
= _aSG’_G 5GGr+aCGr_G O ,
(eor-c)ox (€a1-0)x
L | Tee ee 0 0 (1+ @) Se.or
€c-c=|, 1 -1 - (32 ;
(€c-clyx (€o-clyy (34)
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where We can easily show that
CG=f ~ dre'®"cos 2, (35) 2 A o
unit cell V~H(r)=i% 21 heylk.p+ (k+G)Z]- €y
=
sezf dre '®"sin2¢. (36) xexpi[k,p+ (k,+G)z]} (40
unit cell

If the first reciprocal lattice vector i§,, then uniform helical ~ and enforce the transversality constra¥htH=0 by requir-
advancement ¢=doz) gives €., =1/2, V.16, Cc=0,  ing individual components of EG40) to be transverse. Since
SiGlle/Z, and VG#Gl sg=0. With distortions and, components are_linearly independent, this _is also the most
therefore, harmonics, more of the; and thesg will be general way available to ensure transversality. Then the par-
important. ticular form ofk allows us to write Eq(22) as

Given this definite form fon;eg,l_G , we can substitute into

Eq. (33 to find that for normal incidence Ve, [kpﬁ+(kz+ G)z]- é(Gy)zo_ (41)

Ac' c=|k+Gl|lk+G'|
That condition puts two constraints on the coefficients of
5(3 G/‘i‘aCG/,G aSG/,G ~ . . .

X ’ . (37 {ew,) for a givenG. There is one constraint for each

aSe' -G %66~ aCe'—c imposed by the requirement that eagf,, is a unit vector,
Equation(37) should be rewritten in a fully dimensionless and one more constraint from the orthogonality requirement
. - . given by Eq.(23). Thus, there are a total of five constraints

form. G points alongz and for normal incidenck does too.

B . _ B . and six components oé(Gy) for each G, allowing us to
ThL!S|k+G|—k+G. simply. Rec_all thatG_—__anan be'fg choose one of the components arbitrarily. The simplest
an integer, and using the previous definitions koand w,

one obtains the matrix form of the reduced wave equation,ChOIce IS to See(Gl)A: 0, whereg is the unit vector in thety

plane orthogonal t@. This choice trivially satisfies the or-

~ ~ ~ thogonality condition(41). We then obtain for the direction
w?h, =(k+n") >, (k+n) ofég( | Y
n G2)»

5nnr+acn1_n a’Snr_n

h,. (38 R 1

asSps_p St — aCpr gy kz+G);)_kp2] (42

B. Oblique incidence

We now allowk to point in any direction. Cholesterics, (which is unique to within a factor of 1). Most importantly,
when coarse grained, have cylindrical symmetry. Thus, thave observe that unlike what we saw for normal incidence,
optical properties will be the same, to within the same phaseeaché(e,/) will be different for eachG, in general.
for any combination ok, andk, with the same overall mag- We can find a solution foA, , in the reduced form
nitude kpz\/kxz+ky2. Thus, without loss of generalityk -

=k,p+k,z in cylindrical coordinates. Thus from Bloch’s ~
theorem, one writes! as a product of plane waves alopg w?h, = En: in’,nhny (43

andz times a function periodic irz, and Eq.(24) takes the

form

which is equivalent to Eq30) in a dimensionless form. For

B 2 2 A . simplicity, we calculateA in Cartesian coordinates. Thbg

H(r)= 5~ N(eyeey explilk,p+ (k,+G)z}. must also be in Cartesian coordinates, and we are obliged to
(39)  expressk=k,y+k,z. The result is

2

(k) (Rp+ ") (S + aCy— ) + KA1+ @) Sy (k,+n)k,+n"as, _, —K,(k+n")as, _,
Ay o= a(k,+n)(k,+n")s, (kM) (K +n")(Sqn—aChi—) K (k+n)(Spp—acy_n) |. (44
—K,(k+n)as, _, K, (ky+ 1) (S — aCpi—p) K2( 8o — aCyr )
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However, sinceH(r) must be transverse, we know that it where the doublet
really only has two degrees of freedom for edghi.e., an
h(1) and anh(G_z), |:e.,h(GX), h(y), andhg, are mterde-
pendent. This implies that we can transfody. , into a ) h(n)

2x 2 matrix, which we denote a8, , so that the solution = .

. h(n2)
for the analog of Eq(43) is
Z)Zhr’ﬂ=; Al ohy (45 The resulting expression fa' is
~k 2
(k) (K +0") (Sy + @Gy ) KA1+ @) Sy a(k,+n)(k,+n") 1+<T< ? ) Sy _n
,+n

e‘n’,n_ — 2 — 2 o 2
- K, . K, K,
a(k,+n)(k,+n") 1+| = Sn’—n (ky+n)(k,+n")(Spr +aCrr—p) 1+| = 1+| =
k,+n’ k,+n k,+n’

z

V. SOLUTION OF THE BAND STRUCTURES we were to calculate band structures for elastomers close to
A M the critical strain, where the twist walls and hence the spatial
. Method . . -
rotation of the dielectric tensor are very sharp, we would
Solution of Eq.(38) requires a reasonably sized plane- expect many more Fourier components of the dielectric ten-
wave basis set. Ifln and n’ range fromN to —N, we  sor to arise. From this would come also an increasing impor-
have a 2(N+1)X2(2N+1) matrix, which links tance of the very much higher order stop bands, but experi-
h=(---h11)he1 iy - 12 ho2hrz --) and  mentally these would then be deep into the ultraviolet which
h’, which is defined similarly. We represent this linkage by does not interest us particularly. On either side of the critical
the eigenvalue equation in the simple form strain where the director twist is more moderate, there seem
- to be no convergence problems.
w?h’=Ah, (47)

B. Normal incidence
where ] }
Ideal helices There are only two Fourier components,

ALl Al2 whencec, ands,, are simple:c.,=1/2, V|1 ¢,=0 and
:( ) (48)  si1==il2, V|5 +1 S,=0. These sine and cosine compo-

= = nents link matrix elements a distancerofpart. Since they
o 2B vanish forn>1, we need only consider a smaN & 2) ma-
and each individuaA® is an (N+1)X(2N+1) array, iy which we then diagonalize to obtain the system’s eigen-
calculalttl-zd from the corresponding components of &), | aues while stepping through values loffor half of one
.. Ay = (k+n)(K+n") (8o + acy ). Since B2%)*  Brillouin zone. The results are depicted in Fig. 4. In an
=Ar‘1’;’ﬁn, thenA is Hermitian by inspection. extended-zone scheme, there would be two bands associated

To solve the eigenvalue problem, we first constructAhe With eachk, two for eachk+2q, two for eachk+4q, etc.
matrix, then diagonalize it. The construction of the matrix Two bands arise, in general, because photons have two trans-
requires the calculation of the Fourier coefficients, which weverse, orthogonal polarizations. We have discussed above the
do by first calculating the angle of the director foN21  qualitative nature of the eigenstates.
evenly spaced values affrom Eq. (6) and the appropriate Note that the reduced wave vectlrof the discussion
trigonometric identities for a fixed, A, and thus\,,. Then  around Eqs(15—(18) of the de Vries analysis, henceforth
we populate the matrix using Eq&8) and (48) for a given  referred to a&’, is in the spatially rotating coordinate frame,

a andk. Next, we diagonalize the matrix, using the proce-yile thek here is in the stationary lab frame. Qualitatively,
dure “zheev” in LAPACK, which computes all the eigenvalues a wave with &k’ in the rotating frame is a coherent super-

and eigenvectors of a complex, double-precision Hermitian ) ~ ~,
matrix [34]. position of two waves with wave vectols +1/2 andk

For piecewise continuous systems the subtleties of con- 1/2 in the stationary frame. The gap in the dispersion re-
vergence can be gref@?2)]. Here we simply doubl®&l and see  lation that occurs ak’ =0 in the de Vries analysis thus cor-
if there are any differences in the structures we obtaone  responds in a nonrotating frame to a coherent superposition
could be discerned on doubling our working valueNyf. If ~ of states withk=1/2 andk=—1/2. The two polarizations
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FIG. 4. Dispersion relation at normal incidence from band- FIG. 5. Band structure for a cholesteric elastomer at a deforma-
structure calculations versusk) for an ideal helix, withe  tion of A=1.1, with anisotropy =1.9. The single stop band of the
=0.18. There is one gap for one polarizationkat1, and no gap ideal helix evolves into that indicated by the dots.
for the other polarization.

gaps toward the ultraviolet has been seen in two sets of ex-
have distinctive behaviors—one eigenstate has one gap at theriments. First, there is a change in the color of cholesteric
first Brillouin-zone boundary, while the other has no suchmonodomain rubbers upon stretchif2p,35. Furthermore,
gap. Also there are no gaps for higher-order reflections. Thehere are changes in the color of the lasing mode as stretch-
absence of higher-order gaps does not hold, in general, bifg proceed$19].
only for normal incidence. In Fig. 6, the sample is stretched beyond the critical

Distorted helices We choose a(fixed) representative  strain. This gives rise to a qualitative change in the behavior
value for the mechanical anisotropyand values oi. We  of the director ¢(z) (see Fig. 3, and thus a qualitative
numerically minimize the coarse-grained enefgj,Ay,,r)  change in the band structure. The most important effect is the
with respect ta\, to obtain its value. Trigonometric identi- elimination of the persistent bias toward rotation in one di-
ties can be used to obtain the corresponding values of$0s 2rection present at smaller strains; now, the director rotates
and sin 2 from tan 2¢ in Eq. (6). A fast Fourier transform periodically, swinging almost equally in both directions. Re-
yields values oft,, ands,,. moving this bias means that there should be little difference

Given values ofs, andc, at a given\, we can calculate between the optical properties of left- and right-circularly
the band structure numerically corresponding to this deforpolarized light. Furthermore, the magnitude of this difference
mation. We illustrate two example&=1.1<\. in Fig. 5  will decrease with increasing As a result, the circular di-
and\=1.3>\. in Fig. 6, both for a network with=1.9. In  chroism of the material should disappear, and the eigen-
Fig. 5, the sample is stretched by less than the critical strainmodes of light inside the stretched cholesteric medium
which is given by .~r?7~1.19[26,27. Stretching leads to should be linearly polarized. Also, we note that the scaling
coarsening of the helix, which in turn gives rise to more gapehavior of\,, crosses over from the nonclassiaal?” re-
at higher orders at the Brillouin-zone boundaries, particularlysponse to a ~*? response, the classical exponent predicted
for the polarization that rotates along with the helix. Butfor isotropic elastomerge.g., rubbers without nematic order-
there are also smaller gaps that arise for the opposite handig). That in turn implies that the frequencies reflected in-
edness even before we reach the critical stminWe can  crease more quickly with strain, i.eq=wo\?, but the
explain this phenomenon by considering that, in the uni+tange decreases in width, owing to the decreasing magnitude
formly rotating frame in which our originet, andE,, live,  of the oscillations abou=0.
there are, in effect, rotations of both forwards and back-
wards that arise from deviations @f’ (z) from the unper- 25
turbed constant value @f, (see Figs. 2 and)3The size and ~ |
scaling of these gaps is discussed below. The position of ® ) A /.
these gaps is constant to the first order in reduced units, but I P T ]

actually varies in a physical system. In particular, since a 15&& ]
uniaxial strain of A along x leads to a contraction\,, Il \

=\"27, the wave vectog=qgo\?7 currently reducing physi- N A ]
cal wave vectors is increasing. Since the Brillouin-zone | e

boundaries occur at integer multiples gf they will thus T T

shift to higher values. Physically, that will correspond to re-
flections at higher frequencies. Singe= w/2cqyb, a con-
stantw corresponds to a physical that also scales like»
=woh?’, wherew, denotes a frequency of interest at zero

strain. Thus, these shifts are scaled away in Figs. 5 and 6. FIG. 6. Band structure for a cholesteric elastomer at a deforma-
Experimental evidence for the predicted shift in the 1D bandion of A =1.3, with anisotropy =1.9.
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Perturbation theory of gap scaling at normal incidence lg

A case where semianalytical perturbative understanding
can be gained is that of small deviations from ideal behavior. :
For cholesteric elastomers, small deviations from ideality 0.01%
correspond to a moderakestrain perpendicular to the pitch
axis. Perturbation theory shows that small deviations away 0.001

o * llesll

. . * c E

from ideality lead to small values far, ands,, where|n| i N ” o H
. 3 )
#1. We expect these small values to scale as power laws in ~ 0-0001¢ o el

the small parameter of the problem, the elastic stesn\ ¥ * o 12-|cll| 1

—1. The scaling of these coefficients is given by 1'05§_ leoll |3
0 if n=0 19601 B . 'é""l
| =
i FIG. 7. Dependence of the Fourier coefficieafson uniaxialx
Sy= 15[1—O(e2)] if n=+1 (49) straine in a cholesteric elastomer.
Fio(e" 1) otherwise, (n—n")? (n—n")?
T(1+ac0) —aTsn,,n
. D=
O(e) if n=0 = (n—n")? (n—n")?
1 —aTsn_n, T(l—aco)
Cp= E[l—O(ez)] if n==1 (50) (52)

n—1 ;
O(e™")  otherwise. From Eq.(52), we obtain a pair of eigenvalues corre-

sponding to the two fresh frequencies resulting from the

The variation of the Fourier components of ca%2 is splitting of the degeneracy. In a dimensionless form, they are
illustrated in Fig. 7 for a cholesteric elastomer underxan 9iven by the expression
strain ofe. The solid lines are the perturbation theoretical )2
resultg of Eq.(SQ). Equally prgcige agreement betwe_en per- . (_n) [1+ a\/m], (53)
turbation analysis and numerics is found for the Fourier com- 2
ponents of sin &(2).

A similar pattern can be seen in the case of a liquid chowhere Sn=n—n’. For an undistorted helixgco=0, s_;
lesteric under an external electric or magnetic field, as showra- —s, =i/2, and Y |n+1 Sa=0, which gives us the result

in Fig. 8, with the corresponding Fourier components of;zz%(li%a), corresponding for smalk to a splitting

sin 24(2) also given preusgly by the. perturbation gnalyas.(s;: al4, a linear dependence on the reduced dielectric an-
We can calculate the scaling behavior fgy and s, in an

external field by transforming the scaling laws given in Eqs.'SOtrOpy’ as originally predicted by de Vries. All other gaps

. : will vanish sinceV sy x1 Ssn=0.
(is?H/ﬁ'm)jz (;?)H <a|:1d effecting the transformatione For a slightly distorted helix, given the scaling relations
c) =llc-

We can apply second-order degenerate perturbatiowe found before, we can generalize from EBJ) to calcu-

theory to calculate the approximate size and scaling of th(la.ér[e the size of the gap for any order. Given thgt-0, we

normal-incidence band gaps. Identifying two degenerat@Ptain w=(dn/2)a|sy|. Since we already know how the
states.n andn’, we construct the reduced matrix with Fourier coefficients scale with tiemall) straine, we imme-
couplings betweed,,,=A,, between them, B diately know how the gaps should behave as wélb
~(6n/2)ae® 1. These predictions are confirmed qualita-
tively, however, the results are not exact.

One must be more precise with the polarization vectors of
the photons, perhaps analogous to the detail required in spin
polarized electronic structure calculations. Physically, this is
because the inverse dielectric tensor represents an effective
For light normally incident upon a distorted cholesteric helix, potential for the photons. Deviations of the dielectric tensor
Eq. (38 gives A= ("|2+ n)2(1+ac,) and Ay, = (T( from a multiple of the unit tensor represent the magnitude of
+n’)?(1-acy). The off-diagonal elements are\,, the difference of the effective potential acting upon different
= (Any)* = a(~k+n)(T<+n’)sn,,n (since A is Hermitian). po!anzauoqs. Morgover, in our problem t_he Q|rect|on pf this
Since we are interested in splitting between nearly degeneEnfoo;g?ggrs’blrgfgn% and, in reduced units, its magnitude
ate energy levelsA,,~Ay,/, which is satisfied wherk The vectorized approach requires us to include a total of
+ n[=[k+n’|. For the interesting case where-n’, one has 16 elements, arranged in two levels ok2 matrices. The
k=—(n+n’)/2. Substituting back into Eq51), we obtain  inner matrices each consist of elements for a giyeand y’

= (51)

( Ann Ann’ )
An!n An!n! '
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for all combinations oh andn’. The outer matrices obviously vary farand y’ then. Thus

(k+n)2(1+ acy) a(k+n)(k+n")c,_p 0 a(k+n)(k+n")s, _p,
a(k+n)(k+n e,y (k+n")%(1+ acy) a(k+n)(k+n")s,_ 0
D= 0 a(k+n)(k+n")s,_, (k+n)2(1— acy) —a(k+n)(k+n")c_, | (54)
a(k+n)(k+n")s,_ 0 —a(k+n)(k+n’)c,_y (k+n")2(1— acy)

Given thatk= —(n+n’')/2, we obtain the eigenvalues dispersion relation will be nonzero. These results correspond
qualitatively to the scaling behavior observed in Figs. 9 and
~ on\2 T 10. Since the smaller gap is centered about the same value of
w'= (7) [1% a(Con= VCo—S5n) ] 59 %2 asthe larger gap, we predictal photonic band gap for
a distorted helix at normal incidence, i.e., we expect that
This now gives us four eigenvalues at the Brillouin-zonenormally incident light ofany polarization with frequencies
boundary, split from a quadruple degeneracy of two disperwithin the band gap will be totally reflected.
sion relations with two polarizations each meeting at one We now extend the theory for splitting at the first
point in k. Clearly in the undistorted case, we will obtain Brillouin-zone boundary to higher orders. An important fac-
w?=1[1xa(i+1)]. We interpret this answer as corre- tor affects these anticrossings, namely, the gradual separation

sponding to two eigenmodes rotating with the helix that areof the dispersion relations for eigenmodes that tend to point

split such thatw?=1[1+ «], and two eigenmodes rotating flr:ong ‘:i andteig;anmodes (tjhat tend to point S.Ifon'Hg Stin%e y
against the helix that are unsplit so that baiR=1. We ese wo sels of elgenmodes experience a ditterent etiective

obtain the same result through numerical diagonalization oEefractlve md_ex, thgy have different slopes, which gives rise
the A matrix for N=2. For a distorted helix, given that, 0 two meeting points that gradually separate as we go to

— té&and thats, =i (1/2— ge?) andc,=1/2— he?, with con- higher bandgcorresponding to higher Brillouin zones 'in an
stantsf, g, andh, we expect that exten_ded-zone schemeFurthermore, some of the hlghe_r .
crossings can take place away from the zone boundaries;
1 however, those effects require mixing between two nearly
w2=Z[1t a{112—he?+ \(fe)’+ (12— ge?)?}], orthogonal modes and are usually small. In practical terms,
(56) this means that rather than four-wave splitting, we must in-
stead consider two-wave splitting at higher Brillouin-zone

which corresponds to a large gap for the polarization thaPoundaries—a simpler problem, where the matdix be-

rotates along with the helix, given by?=(1/4)[1+a(1  COMeS
+(f2—g—h)6?)], and a small gap for the opposite helicity,
given byw?~ (1/4)[ 1+ a(g—h— f?) §2], corresponding to a sn\2 sn\2
gap of width dw=(1/2)a(g—h—f?)8°. Sinceg—h—1? is (_) (1+ac,) = a(_) Ssn
nonvanishing, in general, we expect that both gaps in the 2 2
D= 2 2 (57)
= oyt on
g . . ————— +al 5| S > (1*acy)
Fo ] sl
¢, OE [ lell
| sl I . :
001E | |, | Ao F gap 1 (RP)| 1
L o 12-|lc, |l o gap 1 (LP)|]
0.001E llcoll 0.1¢ o gap 2 (RP)|3
: : |2 gap 2 (LP)|
0.0001¢ 3 0 01’ % |v gap 3 (RP)|]
i - 7 |* gap 3 (LP)|
1.05£E E < gap 4 (RP)| ]
¥ ¥ X : 0.001f > gap 4 (LP)| |
LG e :
H/H, i ;
0.0001 i e
FIG. 8. Dependence of the Fourier coefficientsin a liquid ol Bl & 1 e
cholesteric on an external uniform electric or magnetic field. Note
that allc, except forcy, go abruptly to zero for fieldsl greater than FIG. 9. Scaling of elastomer gaps with strairrhe lines are the
the critical fieldH . (unlike in Fig. 7. results of our perturbation analysis.
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Ao}
0.1- |~ gap 1 (RP) i |
: o gap 1 (LP) B2
L | o gap 2 (RP) 5
0.01¢ |~ gap 2 (LP) o .
| v gap 3 (RP) o o 1 __— |
7|« gap 3 (LP) o *
0.001¢ |« gap 4 (RP) o 4/ x
| > gap 4 (LP) > 12
L u] *
OOO%.01 0.1 1
~ 1 |
% (0,0) ©,12) (12,172 (0,0) (172, 0)

FIG. 10. Scaling of gaps in cholesteric liquids with reduced o k)
external field H/H.)?. Note how the scaling corresponds to that

seen in Fig. 9. FIG. 11. Full dispersion relation at several directions of propa-

gation in an ideal helix(1) normal, (2) increasingly away from
) ) - normal up to 45°(3) 45° propagation for a decreasing magnitude
There are two pairs of eigenvalues?=(n/2)1—a(Co  of k, and(4) 90°
*iss,)] and w?=(n/2)4 1+ a(co*iss)], corresponding
to a band gap of magnitudéw~ (n/2)a|s|. eachk,, is unique, and hence there is no zone boundary in
that direction. However, the lowest ban@®rresponding to
visible light when the pitch is about one optical wavelength
. _ o will have a natural limit ork, sincein vacug w=c|k,|, and

Of experimental interest is thia vacuowavelengthA of iy the cholesteric mediump=(1-a)[k,|. Qualitatively,
the light corresponding to a gives on the CE dispersion these results mean that low frequencies must have a corre-
relation, particularly at the gaps. The previous definitionsspondingly lowk, .
give A=py/(wbA?"). Pitchesp, typically give a band in Starting from (0,0) on th& axis, in the first segment only
the visible region, so the initial wavelengths ark, k, increases, corresponding to the band structure for normal
=po/b~500 nm atw=1/2 and\ =1, which allow us to  incidence. We can verify that the first parts of the full band
write A=A, /(2w\?"). Likewise the first-order de Vries gap structu:_es ;/veApt)rtisefnt,tF|gs. 1;_13(1’ are T/ezngcal to F'%S' 4-6,
is given by AA~Ay/\?"a. The higher-order gaps of the :ﬁspfec |¥.e Y- ; % |rsd Zo_lr_]ﬁ oundary '(h f’ ), ogeo SErves
same polarization will have widths of AA, € familiar stop bands. Then increasikg from U corre-

~CAge" (o), whereC is & prfacor of order iy SPOIS 10 radue it awey Fom nore propageton song
that will depend o and . For example, the second-order ' . P R qua
. L — = . (1/2,1/2). At that point, thé corresponds to 45° propagation
gap in rubber withr=1.9, «=0.18, ande=0.1 will be o ! :
S within the medium. We then gradually decrease the magni-
AA,~0.04% . For A;=~800 nm, this implies that a second : . S o
: . . AT tude ofk, without changing the direction away from 45°. In

stop band for the light with a circular polarization in the . .

o the fourth and final segment of the axis, we look at the case
same sense as the helix will be observedAet 362 nm to

A=398 nm. We have taken for illustration in this pager of k;=0, corresponding to 90° propagation, anngAa direc-
—3.3 ande, = 2.3, giving the extraordinary and ordinary re- tion perpendicular to the pitch axigaken to be alony for
fractive indicesn.=1.82 andn,=1.52. Thena=0.18 and  SIMPIicity).

b= %(1/5” +1/e,)=0.368. Actually,b does not appear in the 2
calculation of band structures, but would be needed in con-
structing the light linew=%k/ /b, which limits propagation in

a projected density of states diagram in the manner of Fink 32| .
et al. [36].

C. Experimental scaling of band gaps with mechanical strain

1
|

VI. OBLIQUE INCIDENCE

In Figs. 12 and 13, we show the full band structure, cal-
culated by diagonalization of the matrix in E@6), for ar- 12
bitrary angles of propagatiaie., arbitraryk inside the cho-
lesteric medium As in electronic band structures, these

photonic band structures traverse a rangk'®fo see howw (0,0) ©, '1/2) (1/2,' 172) (0, 0) 1/2,0)

varies in 3D. We increase or decrease a componerk of )

(eitherk, andk,) until we hit a zone boundary, then “reflect r

back” or continue in a different direction. The lack of peri-  FIG. 12. Full dispersion relation at angles as in Fig. 11 for a

odicity alongp (perpendicular to the pitch ajisneans that helix distorted by a straie=1.1<e, (r =1.9).
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FIG. 13. Full dispersion relation at angles as in Fig. 11 for a
helix distorted by a straie=1.3>¢e. (r=1.9).

Ideal helix structuresFigure 11 shows the band structure
for an ideal cholesteric. Leaving normal incidence, one o
serves hints of a Bragg reflection even for the sense of p
larization opposite to that of the helix. Oblique Bragg reflec-
tions are not unexpected from this periodic 1D structur

acting as a grating coupler, but the stop band is weak for thac@/ing ase, with the larger gap scaling ag 1/2—O(e")
_sinc2ne can think of the opposite handedness gap arising be-

t7fbause, in the rotatin¢de Vrieg frame, with distortion of the

other sense of polarization until one approaches 45°
the gap for the opposite sense circular polarized light si
inside that for the same sense polarized light, there is a st
band for both polarizations, which one might call, in the
context of circularly polarized reflections, a “total” stop

band. This contrasts strongly with the normally incident case
in which only one polarization experiences a reflection. More;

reflections would be visible if we were to sweep over a
broader range ok, values.

On moving away from normal incidence with constant
the large, fundamentétle Vrieg gap for the polarization that
rotates with the helix scales ag1/2— O(6?)]. The smaller
gap opening up for the opposite polarization scale¥%as
Bragg reflections correspond to the incoming and outgoin
wave vectors being the same, modulo a reciprocal lattic
vector, i.e., k?=(k+G)?, equivalently X-G=G?, yields
k,=*n/2, n being an integer. At a given angle of propaga-
tion 6>0 such thatk,=k sin# andk,=k cosé, the reflec-

tions will take place ak=*n/(2 cosé), consistently with
the above observations for the smaller gap.

PHYSICAL REVIEWGE 056614

The eigenmodes of a beam propagating at an angle 90°
from normal will differ enormously from what was discussed
previously for normal incidence. Of the two lowest eigen-

modes, one has a dispersion relation given d%=(1
+a)k’ and a linear polarization along (assumingk
=2qk,y). This polarization corresponds to @, which

points wholly alongi, the direction of the unvarying dielec-
tric constant. The other polarization points all over space in a
highly nontrivial manner, as a periodic function pfand z
This periodic variation costs a larger amount of energy than
pointing along a constant direction. Nonetheless, since this
polarization is able to take advantage of being able to direct
its E along a higher dielectric constant direction than the
trivial polarization, it is lower in energy despite its twisting
and turning. This can be confirmed by a visualization of the
eigenfunctions, which we present elsewhere.

Distorted helix structuresThe band structures for choles-
teric elastomers distorted by strains @ 1.1 ande=1.3,

pPelow and above the critical strain, respectively, are shown
gn Figs. 12 and 13.

Small stretching of a cholesteric rubber yields a smaller

gap for the opposite handedness already at normal-incidence

A)].

elix there is effectively rotation backwards and thus a Fou-
ier mode for the hitherto trivial polarization to couple to.
Thus one sees in Fig. 12 a wider gap for the opposite hand-
edness in the segment (0,1/2)1/2,1/2) than in the nondis-
forted case. Above the critical point, Fig. 14, in the same
interval, the two branches have gaps of almost equal size.
Since there is no net rotation, but forward and backward
rotation in equal measure, both handednesses couple to the
photonic structure similarly, producing similar gaps. Note
also that the primary stop band has moved away from the
zone center, a result of the different slopes of the linear dis-
ersion relations for the two branches in the segment increas-

g up from (0,0).

Inspection of the primary gaps in Figs. 11-13 shows that
the frequencies at which the reflections take place is seen to
increase as the angle away from normal incidence is in-
creased, as is predicted by the previous considerations for
elastic scattering, and observed experimentally by Takezoe
et al.[38].

Thus the dispersion relations for ideal cholesterics give Projected band structureThe data in Figs. 11-13 is not

the fundamentalde Vries stop band trending upwards as the

directly applicable to experiment. The character of the eigen-

angle of incidence increases. This may provide an explandunctions in the medium is not that of the corresponding
tion for the success of lasing close to the upper band edge afaves outsidéwe have given the example of the eigenfunc-

cholesteric§17]. To wit, a lasing mode just above the upper
frequency allowed at normal inciden@bat is, at the lowest
part of the upper bandwill be forbidden above a critical

tions inside and outside the body at frequencies correspond-
ing to the lower and upper edges of the fundamental stop
band. The conversion, in general, of our eigenfunctions into

angle. As one gets closer to the bottom of the upper part oéxterior waves will be presented elsewhere.

the dispersion curve, the smaller the critical angle becomes. The second reason is that not all angles of propagation
For a small enough critical angle, light will essentially be inside the medium are accessible outside. It is a more com-
forced to propagate straight through the cholesteric mediunplex form of the total internal reflection problem—whkp
which will clearly assist in the collimation of light and the —0 outside the medium, the propagation there being graz-
focusing of the energy of an emitter—more of the pumpinging, k, inside is not yet vanishing and the interior beam is far
power is utilized. This is an observation and interpretation byfrom being at grazing. The free space dispersion relation for
Kopp et al. [37]. light outside the mediumy = ck, can be reexpressed in our
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reduced, dimensionless variablesandk to w=(1/\/b)k. ~ The local director orientation is determined BYF)/d¢
Recall thatb=3(1/e,+ 1/e;). The in-plane component of =0. This rearranges to E(6) for ¢(bo).

the wave vectoik, is by boundary conditions continuous ~ ©One can determine whether tzbevalues given by Eq(6)
between the inside and outside of the body. Thus whatevei'e Stable by calculating(F)/d¢? from Eq.(A1) and back-
the dispersion relation inside the body, at a gi\TqJnthe substituting Eq(6) into the expression for the second deriva-

minimum possiblew is w=1/\J/bk—the so-called light line. tive. We obtain
Our stop bands do not extend to all angles, and thus do

not produce a genuine gap in the density of states in fre- 92(F)
guency when taken over all angles. However, the restriction =
to a cone of angles in the material corresponding to angles
0—m/2 outside means that, measured from the outside, one 2.\ 2 2
can approach omnireflectivity in materials with only partial F(r=1)(A+ hyy)cos 2po]

gaps. Finket al. [36] take this view. We present detailed sin 2¢

projections elsewhere. +4(r— 1)2A2A§ysin22¢o}(m) . (A2)

2_y2
e —4rMyykaT{[(r+1)(>\ \2)

VIl. CONCLUSIONS

An entirely different type of photonic material has beenSince the quantities in braces are positive definite, the sign of
described and characterized. Not only is it self-assembling®(F)/d¢? will be given by the sign of sin@/sin 2¢,. Thus,
and easily available as large, defect-free single crystals, butwhen sin2) and sin 25, are of the same sign, the second
is highly deformable. Earlier descriptiog,8,26,27 of its  derivative will be positive, corresponding to a local mini-
modified periodic dielectric structure have been used as thewum in free energy. One can then use E).and this sta-
basis for calculating its band structure. Additional gaps arisility analysis to obtain cos® and sin 25, which are thus
and their widths scale in a well-understood fashion with theg?iven by
stretch applied to the material or the strength of the externa
field. The midgap frequencies shift position by large amounts

comparable to their initial values. Total gaffer both hand- , (r=1)NNyysin2¢g
ednesses of circularly polarized ligharise. The band struc- sin 2¢= JaZ—arnan2 (A3)
ture has been calculated for arbitrary obliquity. The exten- ap— A Ay
sion of gaps to oblique incidence confirms the explanation
and observation of Koppt al. of low-threshold upper band gnd
lasing.
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financial support. obtainF(\,\yy,r, ¢o). We then coarse grain this free energy
over one turn of the helix to giveF(\,\,,r)
APPENDIX: MECHANICAL RELAXATION OF = [TdhoF(N,\yy I, o). Given a fixed value fo andr,

CHOLESTERIC ELASTOMERS we can find the minimum-energy value af, by setting
To calculate the free energy, substitute E@s. and (5) dFIdNyy=0. The relaxation\,y(\) is shown in Fig. 14.
(and a similar expression for the current inverse step length If we assume thak, is a power law in terms of in the
tensoj in the free-energy expression, E@), to obtain an  limit of small strainse=\ —1—0, then we can use a pertur-
expression for the free enerdy(\,\yy.r,é,¢o) given in  bation analysis to obtain the exponent. First, energy minimi-

[26,27, zation is explicitly
1
F=-vkgT{ N2+ NS+ ——
277 RN 7w (r-1)?
O=m— —
r-1 ., _ _ ANE, 4T
+——[\A(r cog ¢ Sir? ¢p—sir? ¢y oS ) v
r—1 (=2 )

+N5y(1 SirpoCOS ¢p—COS ¢y Sir? ) + Tfo debo| (1 SiN’ o+ cOS’ o) COS 2
—2(r—1)\\y, COS¢ COSgSing Singpg] | . (AL) —%)\Lsin&ﬁosin 26|, (A5)

yy
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1 T The left-hand side vanishes whew=24/7 (to the first or-

i den, which, given the definitions o and w, implies that

W , Ayy=\"%". Of course, this scaling is only valid for small

ool i There is a critical strain, denoted ley, and an accompany-

ing critical deformation\.=1+e., at which the twist walls

o created by the strain become thermodynamically unfavor-

able. At that point the director fails to accumulate any net

| cholesteric twist and oscillates back and forth arodne0.

Twist walls must be lost by a topological process such as the

growth of disclination loops. Experimentally the dynamics of

approaching the untwisted state suggest such a complex pro-
cess. There will also be a crossover from the scaling behav-

07} ™ 2 5 T4 ior yy~X\ "5 for small strain, to the classical isotropic re-

A sponse\,,~\~*Z for large strain.

In Eq. (6) one sees that tan®2 will only diverge if the
denominator crosses zero, so the critical strain corresponds
to the point at which the denominator is guaranteed to be
greater than or equal to zero. Thus

0,
O
Oo,
oo, 033
0.8 )

FIG. 14. Numerical calculation of the contraction of a choles-
teric elasotmeh ,, as a function of the applied uniaxial strairfor
r=1.9 \.~1.19). An exponent of—3/4 gives a good fit for
Ayy(N\) up to large strains, an exponent close to the exact, sma
strain value of—5/7. 5 5

V4, (T=1)(N2+\j)cos 2o+ (r+1)(A*—\y,)=0.

Next, substitution of the appropriate expressions for

sin 2¢ and cos 2, Egs.(A3) and(A4), yields an expression (A9)
for Nyy(N),
7 (r+1)2 - Since cos 8, is bounded betweer: 1, Eq.(A9) requires
4 T 2y 4
4 ANy (r+D2=A2)=(r—1)(\2+)\2).  (AL0)
r—1 (= a[1+(r—1)sirf¢o]—2rA\? - - i il
- 0 = — =0. If it is assumed thae<1, and that,,~\"*, this implies
r Vai—4an\g,
(AB) (r+1)(1+x)e=(r—1)[1+(1—k)e]. (Al1)

Equation(A6) may be written in a simplified form such that 11,5 the critical strain is

m(r+1)2 T

_ r-1
C(r+)(k+ 1)+ (r—1)(k—1)"

4 r ,82)\6 € (A].Z)

Expanding the expression fa to the first order inr—1
yields the resulte,=(r—1)/[2(1+ «)]. Inspection of Fig.
(A7) 14 suggests that~3/4, a value close to the initiat=5/7,
which is strictly correct only foln—1. As a result, it can

7/N2. Expanding fore<1, we  easily be shown that.~r?", to the first order.

rJo

-1 wlzd aj[1+(r—1)sif¢y]—2r o

wherea;=a;/\? and B=\

haveA=1+e and B=\""~1-—we, which can be substi- Although obtaining an exact analytic solution is infea-
tuted into Eq(A7) to produce an expression to the first ordersible, we can find the critical values fér (with respect to
in e, namely, \yy) numerically, as shown in Fig. 14. We confirm that, for
parameter values of interege.g., r=1.9, 1=s\<14), a
(r+1)? minimum-energy state occurs at values\gf~X~3*for e

a
— — — —[(r=1)%= =
7 1+(6-2w)e 4r[(r D roe]=0. <e.. There is also evidently a crossover to the classical

(A8)  scalinghy,~\""2for e>e.
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