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Photonic band structure of cholesteric elastomers
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~Received 16 October 2001; revised manuscript received 19 February 2002; published 16 May 2002!

We calculate the photonic band structure along and oblique to the helix axis of cholesteric elastomers. They
are highly deformable, self-assembling systems. They display brilliantly colored reflections and lasing owing to
stop bands in their photonic band structure. This band structure varies sensitively and extensively with strain.
We show how additional stop bands open up and how they all shift in frequency. We predict a ‘‘total’’ stop
band, that is, for both circular polarizations and show analytically how stop bands scale with strain. The
extension of stop bands to a range of angles thereby creates pseudogaps, and the relevance to low-threshold
lasing is discussed.
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I. INTRODUCTION

Photonic band materials~PBMs! interact with light analo-
gously to the way semiconductors interact with electron
via the periodic modulation of dielectric properties on
length scale matching the wavelengths of the quanta of
terest. Light is manipulated by the structure rather than
underlying atomic or molecular properties. Structures can
manufactured; for instance, Yablonovitch and Gmitter co
structed an fcc photonic crystal by drilling holes into a d
electric medium@1#. Later, Ozbay and co-workers designed
picket fence structure, which is assembled by stacking t
dimensional~2D! layers@2#.

Self-assembling PBMs are preferred at optical and ne
infrared wavelengths. Several examples include air holes
titania matrix @3#, copolymer-homopolymer films that form
lamellar structures@4#, thin films of polymethylmethacrylate
infilled with SnS2 @5#. Cholesteric liquid crystals~CLCs!
@6–10# are classical PBMs. Their brilliant colors are we
known and arise from a periodictwistingof their anisotropic
dielectric properties, distinct from the systems mention
above. Local orientational ordering along a directorn rotates
as a periodic function of distance along the pitch axisz. The
director of an ideal CLC advances uniformly, tracing ou
helix of pitch p0, which can be adjusted to match the wav
length of visible light. At normal incidence, circularly pola
ized light that twists in the same sense as a helix is refle
with its original polarization, while circularly polarized ligh
that twists in the opposite sense is transmitted unchanged
solving Maxwell’s equations in a rotating frame, de Vri
found a single stop band, a one-dimensional band gap in
photonic structure@6#. We shall additionally be concerne
with oblique incidence, and also in the effects of exter
fields on modifying cholesteric spirals and hence their ba
structures.

PBMs have unique properties, which have spurred inte
in their design. In an early exposition of electromagne
band structure, John also suggested how light can be lo
ized @11#. The spontaneous emission spectrum from ato
and molecules can be modified in these materials@12–14#,
leading among other things to low-threshold lasing: Yablo
vitch @13# predicted that the lasing threshold would be d
creased by introducing a defect into an otherwise per
1063-651X/2002/65~5!/056614~16!/$20.00 65 0566
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photonic material. Spontaneous emission is suppressed i
bulk and excitation would not be drained by any emiss
into nonlasing modes. Such low-threshold lasing has rece
been observed in two-dimensional photonic crystals@15#. Al-
ternatively, one can design lasers that take advantage o
enhanced dwell time associated with the band edge di
gence of the density of states@16#. Indeed, experimentally
the first observations of this type of lasing was in CLCs,
Kopp et al. @17# and by Taheri and Palffy-Muhoray@18#.
Kopp et al.showed that the lasing was at the stop band ed
and not, as expected, at the center where the reflection
largest. The band structures we predict, especially away f
normal incidence, add weight to their analysis and findin
Lasing has subsequently also been seen in cholesteric
tomers~CEs! @19#. CEs are made by cross-linking choleste
polymer liquid crystals@20# to form defect-free monodomain
rubber strips tens of centimeters long. They display specta
lar opticomechanical effects, viz., large changes in the
quencies of reflection and of lasing@19# in response to im-
posed mechanical strains.

Our calculations on CEs point to phenomena and appl
tions that are not possible in existing photonics, and hithe
unsuspected in the liquid crystal field. For instance, we fi
multiple 1D band gaps, some not at the zone edges, in c
trast to classical CLCs. We also observe gaps for light of
opposite handedness to the underlying helix, again un
pected in classical CLC systems. At some directions the g
for both polarizations overlap in frequency, giving a tot
stop band of significance when polarization control is
quired. Our systems are highly deformable~many-fold! and
we shall find shifts in the~developing! band structure tha
can be large@19–21#.

By contrast, existent photonic media~noncholesteric!
typically have piecewise variation of a typically isotrop
refractive index in going between a matrix and its inclusio
In one theoretical proposal and calculation, Busch and J
@22# considered nematic liquid crystals filling an inverse op
structure. The voids in the skeleton thereby had an an
tropic refractive index, as in our case, and we closely foll
the analysis that was introduced there to deal with the ad
complexity of the tensorial structure to the dielectric const
and thus also with polarization effects. Busch and John p
posed applying fields to the nematic liquid to redirect t
director and thereby tune the contrast with the various cr
©2002 The American Physical Society14-1
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P. A. BERMEL AND M. WARNER PHYSICAL REVIEW E65 056614
tallographic directions and thus to create gaps. Howe
piecewise dielectric continuity is retained and the direct
of anisotropy is homogeneous in the whole crystal. By c
trast, CLC’s have a continuous variation of the principal ax
of birefringence—which corresponds to a continuously ro
ing coordinate frame. The principal axes guide the wa
along a generally nontrivial, periodic path and give rise
sharply different behaviors for each polarization. Polari
tion effects are thus very subtle and become more so
oblique incidence. Control of polarization is at the heart
LC and optical devices; we thus view this work as a s
toward fresh classes of photonic solids with deformable, t
able band structures highly sensitive to polarization.

We first describe how CEs deform and how their direc
distribution is coarsened from an initially ideal helix. Th
creation of additional harmonics in the dielectric distributi
~the ‘‘photonic potential’’ in an analogy to semiconductor!
is what creates the additional stop bands and, in part, t
extensions to oblique incidence. We then sketch the class
~normal incidence! photonics of cholesterics before calcula
ing the 3D band structure in both the ideal and distort
systems. We draw a contrast between the photonic struc
of distorting elastomers and that of liquids with extern
magnetic fields applied.

II. CHOLESTERIC STRUCTURES OF DEFORMING
LIQUIDS AND SOLIDS

A cholesteric locally has nematic~orientational! ordering
along a directorn, which rotates as a periodic function o
distance along the pitch axisz, as illustrated in Fig. 1~a!
~which will also serve to illustrate strains applied to CEs!,

n5cos~q0z!x̂1sin~q0z!ŷ. ~1!

FIG. 1. Schematic diagrams of~a! an expanded view of a sec
tion of a strip of elastomer showing its cholesteric director distrib
tion. The director twists periodically along the pitch axis, here thz
axis in each case. For the elastic strip,z is perpendicular to the fla
face. Cholesterics are approximately optically uniaxial, with diel
tric constantse i shown along the nematic order, ande' in the
perpendicular plane. Elements of the deformation gradient te
~for the solid case! l= are shown:lxx , a stretch applied in thex
direction,lzz andlyy are the attendant contractions alongz andy,
respectively.~b! The geometry of the strip,~a! being a section from
this.
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The director of an ideal cholesteric advances uniformly, tr
ing out a helix of pitchp052p/q0. Such a distribution is
created by molecules with a handedness inducing a tw
that is, the Frank twist elastic energy density1

2 K2@n•(“
3n)1q0#2 will be minimized whenn•(“3n)52q0 . K2 is
the Frank twist elastic constant.

A cholesteric can be considered approximately loca
uniaxial, with an anisotropic permittivity, for instance, d
electric,e i alongn ande' perpendicular ton.

Cholesteric liquids.The twisted structure of a cholester
liquid can be unwound by a magnetic~or electric! field ap-
plied perpendicular to the helix axis, a classical problem fi
considered by Meyer@7# and by de Gennes@8#, see also
Dreher @23# for the case of finite samples with bounda
conditions. Consider a magnetic fieldH along the y
direction. Since cholesterics have an anisotropic magn
susceptibility xa5x i2x' , the magnetic energy isFext
52 1

2 *drxa(H•n)2. The helix untwists~increasing the pe-
riod! and coarsens until the energy gain from aligning w
the field balances the Frank penalty for deviations from
original structure. The director orientations coarsen, as
Fig. 2, but with thez coordinate being reduced toz̃ by a
lengtheningperiod ~but see @23#!. At a critical field Hc

5(pq0/2)AK22/xa, the period diverges logarithmically a
the entire sample aligns with the external field. For typic
cholesteric liquids with a pitch of 20mm, Hc515 000 G
and Ec550 s V/cm. The characteristic lengthj
[H21AK2 /xa, a liquid cholesteric magnetic penetratio
depth, arises from the interplay between magnetic and Fr
energies.j is comparable to the wavelength of visible ligh
thus giving rise to interesting photonic-magnetic-field effe
in liquids. The central idea is the same as in our work
elastomers: distorted cholesteric structures have harmo
introduced into their director fields and thus higher-order
fects in their band structure.

Chouet al. @9# first considered the effect of these disto
tions on the cholesteric photonic structure, see also Dre
@24# and Shtrikman and Tur@25#. We shall compare with
their ~normal! calculation when calculating the changin
band structure of cholesteric elastomers under strain.
needs the variation of the director angle withz in order to
calculate the photonics. Differences from CEs under str
are detailed in@26,27#. One important difference is that th

-

-

or

FIG. 2. Angular orientation of the directoru versus the reduced

position z̃5z/p for several values of the reduced fieldh5H/Hc .
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PHOTONIC BAND STRUCTURE OF CHOLESTERIC ELASTOMERS PHYSICAL REVIEW E65 056614
penetration depth arises from the competition between ela
and Frank energies. It is much shorter thanj in liquids with
the effect that we can ignore Frank elasticity for the so
systems.

Cholesteric elastomers.Nematic polymers are elongate
~in the prolate case! by their surrounding nematic order. The
are distributed as anisotropic random walks with me
square extentŝRiRj&5 1

3 , i j L, where there are effective ste
lengths parallel and perpendicular to the director and thu
effective step length tensor describing its Gaussian distr
tion

, i j 5~, i2,'!ninj1,'d i j , ~2!

andL is the total contour length of the chain between cro
links. Being Gaussians, the chains are capable of huge
tensions and, therefore, the rubber they compose when c
linked will be too.

One can easily show, by analogy with classical rub
elasticity, that the free-energy density of a rubber compo
of such chains is

F5
1

2
m Tr~,0lT,21l!, ~3!

where m is the shear modulus when the rubber is in t
isotropic phase (m5nxkBT, wherenx is the number of such
chains per unit volume!. ,= 0 represents the distribution locall
at the time of formation of the elastomer,,= represents it after
distortion, for instance, if the director has rotated in
sponse, so will,= . Since the director rotates through the in
tial structure and~perhaps differently! through that after de-
formation, the energy density will be a function of positionz
along the pitch. The deformation tensor isl= , for instance,
lxx is the stretch in thex direction ~the new length divided
by the old length in thex direction!. Since rubber is a sof
solid, deformations are at constant volume, that is detl= )
51.

We shall consider imposed stretches of magnitudel in
thex direction, allowing constant volume contractions in t
two perpendicular directions and suppressing shears~in this
geometry they cost an energy that scales linearly with
sample size—in the thermodynamic limit, they are forb
den; see@26,27# for more details!. Thus

l= 5S l 0 0

0 lyy 0

0 0
1

llyy

D . ~4!

By construction, det(l= )51; however, contractions in they
andz directions will be different, in general, since these tw
directions differ in their symmetry.

For a cholesteric rubber, one substitutes the CLC dire
distribution equation~1! into Eq. ~2! for the initial effective
step length tensor to obtain an explicit variation~which will
resemble the later distribution of the dielectric constant
related second-rank tensor that follows the rotating nem
order!,
05661
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,= 05,'F d=1~r 21!S cos2 f0 cosf0 sinf0 0

cosf0 sinf0 sin2 f0 0

0 0 0
D G .

~5!

We have extracted a factor of,' from ,= 0, which we shall
hereafter neglect since it cancels with the inverse facto
,'

21 , which we extract from,=21 that appears multiplica-
tively with ,= 0 in the free-energy density~3!. The ratio r
5, i /,' thereafter characterizes the,= tensors and is a mea
sure of the anisotropy of the chains. For instance, it de
mines the spontaneous distortion of elastomers when
enter the nematic state,ls5r 1/3. The anisotropy is in the
range ofr;1.1–50 depending upon the types of chains m
ing up the elastomer.

We show in an appendix how the transverse contracti
take up highly nonclassical formslyy;l25/7 and lzz
;l22/7 on imposition of a stretchl along x. In particular,
convection of the cholesteric structure along withlzz gives
an increase of the cholesteric wave vectorq5q0 /lzz
5q0l2/7. This is the first aspect of a deformable band stru
ture that emerges: the fundamental stop band, and any
tures in the band structure created by distortion, will a
shift in wave vector withl2/7. Thus the change of color an
lasing toward the violet on stretching that has been obser
in CEs is easily explained.

We also sketch in the Appendix how to calculate t
variation of the director angle with distancez along the helix
axis as anx strainl is imposed, see also@26,27# for details.
The result forf(z) in terms of the original anglef05q0z is

tan 2f5
2~r 21!llyy sin 2f0

~r 21!~l21lyy
2 !cos 2f01~r 11!~l22lyy

2 !
.

~6!

The initially helical director structure coarsens to that dom
nated by regions of slowly varying angles, separated by
creasingly sharp twist walls@26,27#; see Fig. 3.

It is this nonuniform rotation of the director that gives th
higher harmonics that generate the additional features in
photonic band structure as strain is imposed. At a critical
5lc , the walls become thermodynamically unstable and
director experiences periodic oscillations aboutf50, which
diminish in amplitude with increasingl.

III. WAVES IN CHOLESTERIC STRUCTURES

The usual wave equation in linear media for magne
fields harmonically varying asH(r ,t)5H(r )eivt is

“3@e=21~r !~“3H!#5
v2

c2
H. ~7!
4-3
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P. A. BERMEL AND M. WARNER PHYSICAL REVIEW E65 056614
The spatial dependence of the inverse dielectric tensor
its control of polarization since it is not spherical is at t
heart of our problem. Induced changes in the spatial dep
dence give the varying band structure.

We expect most cholesteric liquid crystals to be loca
uniaxial with one optical axis along the director fieldn(r ).
Of course, in general, cholesteric liquid crystals must be
cally biaxial since there exist, at a point, three distinct a
~the director withe i , the helix axis withe3, and the perpen-
dicular direction withe'), but theoretical considerations@28#
and studies of oblique incidence by Berreman and Sche
@10# strongly suggest thate35e' to one part in (q0a)2

'1024, wherea is the molecular dimension of liquid-crysta
subunits. In fact as part of this study Berreman and Sche
@10# were the first to calculate the band properties of cho
terics away from normal incidence. They took one particu
oblique angle (45°), rather than the general case that
shall present. A more general study of the oblique struct
of undistorted cholesteric liquids is that of Dreher and Me
@29#.

As a result, we can write the dielectric tensor in the fo
e i j 5(e i2e')ninj1e'd i j , wheree i is the dielectric constan
along the long axis of the nematic mesogen ande', is the
dielectric constant in any direction perpendicular to the
rector; see Fig. 1. Likewise the inverse tensor ise i j

215(1/e i
21/e')ninj11/e'd i j . If we rotate to the laboratory fram
that is not based uponn̂, then this second-rank tensor tran
forms in the usual way, that is, as a function of 2f,

e=215bF d=2aS cos 2f sin 2f 0

sin 2f 2cos 2f 0

0 0 21
D G , ~8!

wherea5(e i2e')/(e i1e') and b5 1
2 (1/e i11/e'). It is a

form reminiscent of,=21 and recognizes that the vectorsn
and 2n are indistinguishable; in effect the actual period
the liquid crystal is halved.

Reduction of variables.We can reduce the wave equatio
~7! to a dimensionless form by extracting the constantb from

FIG. 3. Dependence of the orientation of the director on dista
along the pitch axis for helices subjected to several differenx
strains of magnitudel. Notice the qualitative change in behavior
l crosses throughlc'1.19.
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e=21 to give e=215bẽ=21 ~the tilde denoting a reduced quan
tity!. a is thus the effective reduced dielectric anisotrop
One reduces lengths by noting simpifications in factors l
cos 2f5cos 2qz→cosz̃ if 2qz→ z̃. Thus a natural choice fo
reduction of the wave vector isk̃5k/2q.

The wave equation becomes

“̃3@e=̃21~ z̃!~“̃3H!#5ṽ2H. ~9!

The reduced frequency isṽ5v/2cqAb. Thus the affine con-
traction of space, asl22/7, enters the reduction toz̃ and also
into the frequency sinceq5q0l2/7. These shifts towards the
violet and the contraction of the Brillouin zone should
recalled when examining the band structures that will be p
sented in reduced form.

de Vries first solved the electric-field equivalent of Eq.~7!
for normally incident light, (v/c)2D52]2E/]z2, by trans-
forming E(z) into a coordinate frame rotating spatially wit
the dielectric tensor, so that the matrix connectingD with E
is diagonal@6#. For this reason it was simpler to examine t
electric- rather than magnetic-field variation. We first revie
the classical case in unreduced units. Given thatf5q0z, in
the rotating coordinate system (j,h), the fields are such tha

S Ex

Ey
D 5S cos~qz! 2sin~qz!

sin~qz! cos~qz!
D S Ej

Eh
D ~10!

with the simple connection betweenD andE,

Dj5e iEj ,
~11!

Dh5e'Eh .

Substituting transformation~10! into the electric wave equa
tion, we obtain the eigenlike equation

S v

c D 2S e iEj

e'Eh
D 52S ]z

22q2 22q]z

2q]z ]z
22q2D S Ej

Eh
D . ~12!

In this spatially rotating coordinate system, even a state w
]zEj50 and]zEh50 has a nonzero energyv5cq, arising
from the variations inB and E associated with the frame
rotation. For a simply rotating system, Eq.~12! has constant
coefficients so that both components are described b
single plane wave of the formE;exp@i(kz2vt)#. In the ro-
tating frame,k50 corresponds to solutions at the norma
incidence band edges—these solutions are perfectly in p
with the material rotation. The generic solution has elliptic
polarization, parametrized by

~Ej ,Eh!5~A,iB !exp@ i ~kz2vt !#, ~13!

which in Eq.~12! yields the 232 matrix equation

e

4-4
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S e iS v

c D 2

2q22k2 22iqk

22iqk e'S v

c D 2

2q22k2
D S A

iB D 5S 0

0D .

~14!

In reduced variables, the eigenequation~14! is

S 4

12a
ṽ224k̃221 24i k̃

4i k̃
4

11a
ṽ224k̃221

D S A

iB D 5S 0

0D ,

~15!

which yields the solutions

l52124k̃21
4aṽ26A~12a2!2k̃21a2ṽ4

12a2
, ~16!

A

B
5

aṽ26Ak̃2~12a2!21a2ṽ4

k̃~12a2!
. ~17!

Settingl50 yields the dispersion relation

ṽ56
1

2
A114k̃26@16a2k̃418~22a2!k̃21a2#1/2.

~18!

It is evident that there is one gap in the dispersion relat
when k̃50 with eigenstates corresponding to the coher
superposition of two plane waves with wave vectors of61/2
in reduced units@28#. Equation ~18! also implies that the
lower branch will have a reduced frequencyṽ l5

1
2 A12a

and B/A50, while the upper branch will have a reduce
frequencyṽu5 1

2 A11a and A/B50. Both eigenmodes a
the band edge are thus standing circularly polarized wa
the resulting plane of linear polarization~in an infinite
sample! rotating with the cholesteric structure. The low
branch points wholly along the rotatingj axis, that is, along
the director and thus with a higher effective dielectric co
stant 1/(12a) in reduced units, while the upper branc
points along the rotatingh axis, that is, perpendicular to th
director and thus with an effective dielectric constant 1
1a). Between them is a range of forbidden frequencies
the band gap. This is most clearly discussed by Kopp
Genack@30#. In the degenerate perturbation analysis for g
scaling in distorted cholesterics of Sec. V B 1 we discu
why simple cholesterics only have one gap.

These solutions inside the cholesteric translate into l
and right-handed circularly polarized light outside the ch
lesteric. The eigenstate that is split by a band gap is cle
the one that rotates in the same direction of the helix. Tha
why cholesterics are observed to reflect light with one se
of circular polarization, while light polarized with the oppo
site circular polarization is transmitted unaffected.
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With imposed fields, e.g., electric, magnetic, or mecha
cal, the simple linear relationship betweenf and z is lost.
Now, transformation into a set of coordinates rotating w
an arbitraryf5f(z) yields

S Ex

Ey
D 5S cosf 2sinf

sinf cosf D S Ej

Eh
D . ~19!

We can then insert this expression into the electric wa
equation and use Eqs.~11! to obtain instead of Eq.~12! the
relation

S v

c D 2S e iEj

e'Eh
D 5S f822]z

2 2f8]z1f9

22f8]z2f9 f822]z
2 D S Ej

Eh
D .

~20!

In generalf8 andf9 are nontrivial functions ofz, see Figs.
2 and 3, and de Vries’s approach in Eq.~20! fails to give
analytical results. In the following section we develop
band-structure alternative of greater applicability.

IV. CHOLESTERIC PHOTONIC BAND STRUCTURE

The technique we use below was introduced by Ho, Ch
and Soukoulis@31# for the case of scalar dielectric constan
They Fourier transformed the dielectric constant and th
inverted it. A refinement of Meade and co-workers@32# re-
versed the order of these processes; we follow this route.
subtleties of relative rates of convergence in the two ca
are further discussed by Busch and John@22#, who also con-
sider the tensor dielectric constant case that we follow bel
The above authors were concerned with calculating the p
erties of light propagating through an only piecewise co
tinuous dielectric medium: their photonic media typica
consist of periodic inclusions of different dielectric co
stants. By contrast we are concerned with continuous me
the periodic rotation of the tensor dielectric constant lead
to more subtle effects. We do not find the convergence d
culties introduced by the spatial discontinuities in the s
tems of the above authors. A related, highly tensorial ba
structural problem is that of the liquid-crystal blue phas
with, in some sense, a helical cholesteric variation in th
dimensions; see, for instance, Hornreichet al. @33#.

Using Bloch’s theorem, the solutions to Eq.~7! can be
expanded as

H~r !5(
G

hGei (k1G)•r, ~21!

where $G% is the set of all reciprocal lattice vectors~with
eiG•T51).

SinceH is transverse, we can pick two unit basis vecto
ê(Gg) for eachG such that

; ~Gg! @ ê(Gg)•~k1G!#50 , ~22!

; ~Ggg8! @ ê(Gg)•ê(Gg8)#5dg,g8 . ~23!
4-5
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Thusk1G and ê(Gg) form an orthogonal triad of vectors i
space for eachG, andê(Gg) may be different for eachG, in
general. Each plane-wave component ofH is thus guaranteed
to point to the plane created by theê(Gg) . This gives the
Fourier representation of theH field ~21!,

H~r !5(
G

(
g51

2

h(Gg)ê(Gg)e
i (k1G)•r. ~24!

We also expande=21 in a plane-wave basis,

e=21~r !5(
G8

e=G
21eiG8•r. ~25!

Substituting Eqs.~24! and ~25! into Eq. ~7! gives

S v

c D 2

(
G

(
g51

2

ê(Gg)h(Gg)e
i (k1G)•r

52 (
G,G8

(
g51

2

h(Gg)~k1G1G8!

3$e=G8
21

@~k1G!ê(Gg)#%exp@ i ~k1G1G8!•r #. ~26!

TransformingG8→G82G, multiplying by e2 i (k1G0)•r and
integrating over the unit cell gives

S v

c D 2

(
g

h(G8g)ê(G8g)52(
G

(
g

h(Gg)~k1G8!

3$e=G82G
21

@~k1G!3ê(Gg)#%.

~27!
-
r

05661
If we multiply Eq. ~27! by ê(Gg)8 and assume without loss o
generality that

~k1G!3ê(G1)5ê(G2) and ~k1G!3ê(G2)52ê(G1) ,

~28!

we obtain

S v

c D 2

h(Gg)852uk1Gu(
G

h(G1)ê(Gg)8•@~k1G8!

3~e=G82G
21

•ê(G2)!#2h(G2)ê(Gg)8•@~k1G8!

3~e=G82G
21

•ê(G1)!#. ~29!

In Eq. ~29! the h(Gg) are linked acrossG and g spaces.
Defining a doublet

hG5S h(G1)

h(G2)
D ,

Eq. ~29! becomes a matrix equation

S v

c D 2

hG85(
G

A= G8,GhG , ~30!

whereA= G8,G is given by
A= G8,G52uk1GuS ê(G81)•@~k1G8!3~e=G82G
21

•ê(G2)!# 2ê(G81)•@~k1G8!3~e=G82G
21

•ê(G1)!#

ê(G82)•@~k1G8!3~eG82G
21

•ê(G2)!# 2ê(G82)•@~k1G8!3~e=G82G
21

•ê(G1)!#
D . ~31!
rse
For 1D structures periodic alongz, the reciprocal lattice vec
tors G are G52nqẑ, n being an integer. We now conside
specific cases of increasing complexity.

A. Normal incidence

It is clear that the two unit vectorsê(Gg) are in thexy

plane. Choose without loss of generality;G ê(G1)5 x̂ and
;G ê(G2)5 ŷ. In this case, it is obvious from Eq.~31! that the
z components of the reduced inverse dielectric tensore=21

can be suppressed~the tilde is also suppressed!, which allows
one to write

e=G82G
21

5S ~e=G82G
21

!xx ~e=G82G
21

!xy

~e=G82G
21

!yx ~e=G82G
21

!yy
D . ~32!
From Eq.~31! the matrixA= G8,G becomes

AG8,G5uk1Gu uk1G8uS ~eG82G
21

!yy 2~eG82G
21

!yx

2~eG82G
21

!xy ~eG82G
21

!xx
D .

~33!

From Eq.~8! the Fourier components of the reduced inve
dielectric tensor become

e=G82G
21

5S dGG82acG82G 2asG82G 0

2asG82G dGG81acG82G 0

0 0 ~11a!dG,G8

D ,

~34!
4-6
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where

cG5E
unit cell

dr e2 iG•r cos 2f, ~35!

sG5E
unit cell

dr e2 iG•r sin 2f. ~36!

If the first reciprocal lattice vector isG1, then uniform helical
advancement (f5q0z) gives c6G1

51/2, ;GÞ6G1
cG50,

s6G1
571/2, and ;GÞ6G1

sG50. With distortions and,

therefore, harmonics, more of thecG and thesG will be
important.

Given this definite form fore=G82G
21 , we can substitute into

Eq. ~33! to find that for normal incidence

A= G8,G5uk1Guuk1G8u

3S dG,G81acG82G asG82G

asG82G dG,G82acG82G
D . ~37!

Equation~37! should be rewritten in a fully dimensionles
form. G points alongẑ and for normal incidencek does too.
Thus uk1Gu5k1G simply. Recall thatG52nqẑ, n being
an integer, and using the previous definitions fork̃ and ṽ,
one obtains the matrix form of the reduced wave equatio

ṽ2hn85~ k̃1n8!(
n

~ k̃1n!

3S dnn81acn82n asn82n

asn82n dnn82acn82n
D hn . ~38!

B. Oblique incidence

We now allowk to point in any direction. Cholesterics
when coarse grained, have cylindrical symmetry. Thus,
optical properties will be the same, to within the same pha
for any combination ofkx andky with the same overall mag
nitude kr5Akx

21ky
2. Thus, without loss of generality,k

5krr̂1kzẑ in cylindrical coordinates. Thus from Bloch’
theorem, one writesH as a product of plane waves alongr̂,
and ẑ times a function periodic inz, and Eq.~24! takes the
form

H~r !5(
G

(
g51

2

h(Gg)ê(Gg) exp$ i @krr1~kz1G!z#%.

~39!
05661
,
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We can easily show that

“•H~r !5 i(
G

(
g51

2

h(Gg)@krr̂1~kz1G!ẑ#•ê(Gg)

3exp$ i @krr1~kz1G!z#% ~40!

and enforce the transversality constraint“•H50 by requir-
ing individual components of Eq.~40! to be transverse. Sinc
components are linearly independent, this is also the m
general way available to ensure transversality. Then the
ticular form of k allows us to write Eq.~22! as

;G,g @krr̂1~kz1G!ẑ#•ê(Gg)50. ~41!

That condition puts two constraints on the coefficients

$ê(Gg)% for a given G. There is one constraint for eachg
imposed by the requirement that eachê(Gg) is a unit vector,
and one more constraint from the orthogonality requirem
given by Eq.~23!. Thus, there are a total of five constrain
and six components ofê(Gg) for each G, allowing us to
choose one of the components arbitrarily. The simpl
choice is to setê(G1)5 û, whereû is the unit vector in thexy

plane orthogonal tor̂. This choice trivially satisfies the or
thogonality condition~41!. We then obtain for the direction
of ê(G2) ,

ê(G2)5
1

Akr
21~kz1G!2

@~kz1G!r̂2krẑ# ~42!

~which is unique to within a factor of61!. Most importantly,
we observe that unlike what we saw for normal inciden
eachê(Gg) will be different for eachG, in general.

We can find a solution forAn8,n in the reduced form

ṽ2hn85(
n

An8,nhn , ~43!

which is equivalent to Eq.~30! in a dimensionless form. Fo
simplicity, we calculateA in Cartesian coordinates. Thushn

must also be in Cartesian coordinates, and we are oblige
expressk̃5 k̃rŷ1 k̃zẑ. The result is
A= n8,n5S ~ k̃z1n!~ k̃z1n8!~dnn81acn82n!1 k̃r
2~11a!dnn8 ~ k̃z1n!~ k̃z1n8!asn82n 2 k̃r~ k̃z1n8!asn82n

a~ k̃z1n!~ k̃z1n8!sn82n ~ k̃z1n!~ k̃z1n8!~dnn82acn82n! 2 k̃r~ k̃1n8!~dnn82acn82n!

2 k̃r~ k̃z1n!asn82n 2 k̃r~ k̃z1n!~dnn82acn82n! k̃r
2~dnn82acn82n!

D . ~44!
4-7
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However, sinceH(r ) must be transverse, we know that
really only has two degrees of freedom for eachG, i.e., an
h(G1) and anh(G2) , i.e.,h(Gx) , h(Gy) , andh(Gz) are interde-
pendent. This implies that we can transformA= n8,n into a
232 matrix, which we denote asA= n8, n

8 , so that the solution
for the analog of Eq.~43! is

ṽ2hn8
8 5(

n
A= n8,n

8 hn8 , ~45!
e-

by

rix
w

e
s
ia

o
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where the doublet

hn85S h(n1)

h(n2)
D .

The resulting expression forA8 is
A= n8,n
8 5S ~ k̃z1n!~ k̃z1n8!~dnn81acn82n!1 k̃r

2~11a!dnn8 a~ k̃z1n!~ k̃z1n8!A11S k̃r

k̃z1n
D 2

sn82n

a~ k̃z1n!~ k̃z1n8!A11S k̃r

k̃z1n8
D 2

sn82n ~ k̃z1n!~ k̃z1n8!~dnn81acn82n!A11S k̃r

k̃z1n
D 2A11S k̃r

k̃z1n8
D 2D .

~46!
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V. SOLUTION OF THE BAND STRUCTURES

A. Method

Solution of Eq.~38! requires a reasonably sized plan
wave basis set. Ifn and n8 range from N to 2N, we
have a 2(2N11)32(2N11) matrix, which links
h5(•••h(21,1) h(0,1) h(1,1)••• h(21,2) h(0,2)h(1,2)•••) and
h8, which is defined similarly. We represent this linkage
the eigenvalue equation in the simple form

ṽ2h85A= h, ~47!

where

A= 5S A= 1,1 A= 1,2

A= 2,1 A= 2,2D , ~48!

and each individualA= a,b is an (2N11)3(2N11) array,
calculated from the corresponding components of Eq.~38!,
e.g., An8,n

1,1
5( k̃1n)( k̃1n8)(dnn81acn82n). Since (An,n8

b,a )*
5An8,n

a,b , thenA= is Hermitian by inspection.
To solve the eigenvalue problem, we first construct theA=

matrix, then diagonalize it. The construction of the mat
requires the calculation of the Fourier coefficients, which
do by first calculating the angle of the director for 2N11
evenly spaced values ofz from Eq. ~6! and the appropriate
trigonometric identities for a fixedr, l, and thuslyy . Then
we populate the matrix using Eqs.~38! and ~48! for a given
a and k̃. Next, we diagonalize the matrix, using the proc
dure ‘‘zheev’’ in LAPACK, which computes all the eigenvalue
and eigenvectors of a complex, double-precision Hermit
matrix @34#.

For piecewise continuous systems the subtleties of c
vergence can be great@22#. Here we simply doubleN and see
if there are any differences in the structures we obtain~none
could be discerned on doubling our working value ofN). If
e

-

n

n-

we were to calculate band structures for elastomers clos
the critical strain, where the twist walls and hence the spa
rotation of the dielectric tensor are very sharp, we wou
expect many more Fourier components of the dielectric t
sor to arise. From this would come also an increasing imp
tance of the very much higher order stop bands, but exp
mentally these would then be deep into the ultraviolet wh
does not interest us particularly. On either side of the criti
strain where the director twist is more moderate, there se
to be no convergence problems.

B. Normal incidence

Ideal helices. There are only two Fourier component
whencecn and sn are simple:c6151/2, ; unuÞ1 cn50 and
s6157 i /2, ; unuÞ1 sn50. These sine and cosine comp
nents link matrix elements a distance ofn apart. Since they
vanish forn.1, we need only consider a small (N52) ma-
trix, which we then diagonalize to obtain the system’s eige
values while stepping through values ofk for half of one
Brillouin zone. The results are depicted in Fig. 4. In
extended-zone scheme, there would be two bands assoc
with eachk, two for eachk12q, two for eachk14q, etc.
Two bands arise, in general, because photons have two tr
verse, orthogonal polarizations. We have discussed above
qualitative nature of the eigenstates.

Note that the reduced wave vectork̃ of the discussion
around Eqs.~15!–~18! of the de Vries analysis, hencefort
referred to ask̃8, is in the spatially rotating coordinate fram
while the k̃ here is in the stationary lab frame. Qualitative
a wave with ak̃8 in the rotating frame is a coherent supe
position of two waves with wave vectorsk̃811/2 and k̃8
21/2 in the stationary frame. The gap in the dispersion
lation that occurs atk̃850 in the de Vries analysis thus co
responds in a nonrotating frame to a coherent superpos
of states withk̃51/2 and k̃521/2. The two polarizations
4-8
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PHOTONIC BAND STRUCTURE OF CHOLESTERIC ELASTOMERS PHYSICAL REVIEW E65 056614
have distinctive behaviors—one eigenstate has one gap a
first Brillouin-zone boundary, while the other has no su
gap. Also there are no gaps for higher-order reflections.
absence of higher-order gaps does not hold, in general,
only for normal incidence.

Distorted helices. We choose a~fixed! representative
value for the mechanical anisotropyr and values ofl. We
numerically minimize the coarse-grained energyF(l,lyy ,r )
with respect tolyy to obtain its value. Trigonometric identi
ties can be used to obtain the corresponding values of cof
and sin 2f from tan 2f in Eq. ~6!. A fast Fourier transform
yields values ofcn andsn .

Given values ofsn andcn at a givenl, we can calculate
the band structure numerically corresponding to this de
mation. We illustrate two examples:l51.1,lc in Fig. 5
andl51.3.lc in Fig. 6, both for a network withr 51.9. In
Fig. 5, the sample is stretched by less than the critical str
which is given bylc'r 2/7'1.19@26,27#. Stretching leads to
coarsening of the helix, which in turn gives rise to more ga
at higher orders at the Brillouin-zone boundaries, particula
for the polarization that rotates along with the helix. B
there are also smaller gaps that arise for the opposite h
edness even before we reach the critical strainec . We can
explain this phenomenon by considering that, in the u
formly rotating frame in which our originalEj andEh live,
there are, in effect, rotations ofn both forwards and back
wards that arise from deviations off8(z) from the unper-
turbed constant value ofq0 ~see Figs. 2 and 3!. The size and
scaling of these gaps is discussed below. The position
these gaps is constant to the first order in reduced units,
actually varies in a physical system. In particular, since
uniaxial strain of l along x leads to a contractionlzz
5l22/7, the wave vectorq5q0l2/7 currently reducing physi-
cal wave vectors is increasing. Since the Brillouin-zo
boundaries occur at integer multiples ofq, they will thus
shift to higher values. Physically, that will correspond to
flections at higher frequencies. Sinceṽ5v/2cqAb, a con-
stantṽ corresponds to a physicalv that also scales likev
5v0l2/7, wherev0 denotes a frequency of interest at ze
strain. Thus, these shifts are scaled away in Figs. 5 an
Experimental evidence for the predicted shift in the 1D ba

FIG. 4. Dispersion relation at normal incidence from ban

structure calculations (ṽ versus k̃) for an ideal helix, with a

50.18. There is one gap for one polarization, atk̃51, and no gap
for the other polarization.
05661
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gaps toward the ultraviolet has been seen in two sets of
periments. First, there is a change in the color of cholest
monodomain rubbers upon stretching@20,35#. Furthermore,
there are changes in the color of the lasing mode as stre
ing proceeds@19#.

In Fig. 6, the sample is stretched beyond the criti
strain. This gives rise to a qualitative change in the behav
of the director f(z) ~see Fig. 3!, and thus a qualitative
change in the band structure. The most important effect is
elimination of the persistent bias toward rotation in one
rection present at smaller strains; now, the director rota
periodically, swinging almost equally in both directions. R
moving this bias means that there should be little differen
between the optical properties of left- and right-circula
polarized light. Furthermore, the magnitude of this differen
will decrease with increasinge. As a result, the circular di-
chroism of the material should disappear, and the eig
modes of light inside the stretched cholesteric medi
should be linearly polarized. Also, we note that the scal
behavior oflzz crosses over from the nonclassicall22/7 re-
sponse to al21/2 response, the classical exponent predic
for isotropic elastomers~e.g., rubbers without nematic orde
ing!. That in turn implies that the frequencies reflected
crease more quickly with strain, i.e.,v5v0l1/2, but the
range decreases in width, owing to the decreasing magni
of the oscillations aboutf50.

- FIG. 5. Band structure for a cholesteric elastomer at a defor
tion of l51.1, with anisotropyr 51.9. The single stop band of th
ideal helix evolves into that indicated by the dots.

FIG. 6. Band structure for a cholesteric elastomer at a defor
tion of l51.3, with anisotropyr 51.9.
4-9
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Perturbation theory of gap scaling at normal incidence

A case where semianalytical perturbative understand
can be gained is that of small deviations from ideal behav
For cholesteric elastomers, small deviations from idea
correspond to a moderatex strain perpendicular to the pitc
axis. Perturbation theory shows that small deviations aw
from ideality lead to small values forcn andsn , whereunu
Þ1. We expect these small values to scale as power law
the small parameter of the problem, the elastic straine[l
21. The scaling of these coefficients is given by

sn5H 0 if n50

7
i

2
@12O~e2!# if n561

7 iO~en21! otherwise,

~49!

cn5H O~e! if n50

1

2
@12O~e2!# if n561

O~en21! otherwise.

~50!

The variation of the Fourier components of cos 2f(z) is
illustrated in Fig. 7 for a cholesteric elastomer under ax
strain of e. The solid lines are the perturbation theoretic
results of Eq.~50!. Equally precise agreement between p
turbation analysis and numerics is found for the Fourier co
ponents of sin 2f(z).

A similar pattern can be seen in the case of a liquid c
lesteric under an external electric or magnetic field, as sho
in Fig. 8, with the corresponding Fourier components
sin 2f(z) also given precisely by the perturbation analys
We can calculate the scaling behavior forcn and sn in an
external field by transforming the scaling laws given in E
~49! and ~50!, and effecting the transformatione
→(H/Hc)

2, for H<Hc .
We can apply second-order degenerate perturba

theory to calculate the approximate size and scaling of
normal-incidence band gaps. Identifying two degener
states,n and n8, we construct the reduced matrixD= with
couplings betweenAn8n5Ann8 between them,

D= 5S Ann Ann8

An8n An8n8
D . ~51!

For light normally incident upon a distorted cholesteric hel
Eq. ~38! gives Ann5( k̃1n)2(11ac0) and An8n85( k̃
1n8)2(12ac0). The off-diagonal elements areAn8n

5(Ann8)* 5a( k̃1n)( k̃1n8)sn82n ~since A is Hermitian!.
Since we are interested in splitting between nearly dege
ate energy levels,Ann'An8n8 , which is satisfied whenuk̃
1nu5uk̃1n8u. For the interesting case wherenÞn8, one has
k̃52(n1n8)/2. Substituting back into Eq.~51!, we obtain
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D= 5S ~n2n8!2

4
~11ac0! 2a

~n2n8!2

4
sn82n

2a
~n2n8!2

4
sn2n8

~n2n8!2

4
~12ac0!

D .

~52!

From Eq. ~52!, we obtain a pair of eigenvalues corre
sponding to the two fresh frequencies resulting from
splitting of the degeneracy. In a dimensionless form, they
given by the expression

ṽ25S dn

2 D 2

@16aAc0
22sdn

2 #, ~53!

where dn5n2n8. For an undistorted helix,c050, s21
52s15 i /2, and ; unuÞ1 sn50, which gives us the resul
ṽ25 1

4 (16 1
2 a), corresponding for smalla to a splitting

dṽ5a/4, a linear dependence on the reduced dielectric
isotropy, as originally predicted by de Vries. All other ga
will vanish since; udnuÞ1 sdn50.

For a slightly distorted helix, given the scaling relatio
we found before, we can generalize from Eq.~53! to calcu-
late the size of the gap for any order. Given thatc050, we
obtain dṽ5(dn/2)ausdnu. Since we already know how th
Fourier coefficients scale with the~small! straine, we imme-
diately know how the gaps should behave as well:dṽ
'(dn/2)aedn21. These predictions are confirmed qualit
tively, however, the results are not exact.

One must be more precise with the polarization vectors
the photons, perhaps analogous to the detail required in
polarized electronic structure calculations. Physically, this
because the inverse dielectric tensor represents an effe
potential for the photons. Deviations of the dielectric tens
from a multiple of the unit tensor represent the magnitude
the difference of the effective potential acting upon differe
polarizations. Moreover, in our problem the direction of th
anisotropy is rotating and, in reduced units, its magnitudea
is considerable (;0.2).

The vectorized approach requires us to include a tota
16 elements, arranged in two levels of 232 matrices. The
inner matrices each consist of elements for a giveng andg8

FIG. 7. Dependence of the Fourier coefficientscn on uniaxialx
straine in a cholesteric elastomer.
4-10
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for all combinations ofn andn8. The outer matrices obviously vary forg andg8 then. Thus

D= 5S ~k1n!2~11ac0! a~k1n!~k1n8!cn82n 0 a~k1n!~k1n8!sn82n

a~k1n!~k1n8!cn2n8 ~k1n8!2~11ac0! a~k1n!~k1n8!sn2n8 0

0 a~k1n!~k1n8!sn82n ~k1n!2~12ac0! 2a~k1n!~k1n8!cn82n

a~k1n!~k1n8!sn2n8 0 2a~k1n!~k1n8!cn2n8 ~k1n8!2~12ac0!

D . ~54!
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Given thatk̃52(n1n8)/2, we obtain the eigenvalues

ṽ25S dn

2 D 2

@16a~cdn6Ac0
22sdn

2 !#. ~55!

This now gives us four eigenvalues at the Brillouin-zo
boundary, split from a quadruple degeneracy of two disp
sion relations with two polarizations each meeting at o
point in k̃. Clearly in the undistorted case, we will obta

ṽ25 1
4 @16a( 1

2 6 1
2 )#. We interpret this answer as corre

sponding to two eigenmodes rotating with the helix that
split such thatṽ25 1

4 @16a#, and two eigenmodes rotatin
against the helix that are unsplit so that bothṽ25 1

4 . We
obtain the same result through numerical diagonalization
the A matrix for N>2. For a distorted helix, given thatc0

5 f e and thats15 i (1/22ge2) andc151/22he2, with con-
stantsf, g, andh, we expect that

ṽ25
1

4
@16a$1/22he26A~ f e!21~1/22ge2!2%#,

~56!

which corresponds to a large gap for the polarization t
rotates along with the helix, given byṽ25(1/4)@16a(1
1( f 22g2h)d2)#, and a small gap for the opposite helicit
given byṽ2'(1/4)@16a(g2h2 f 2)d2#, corresponding to a
gap of widthdv5(1/2)a(g2h2 f 2)d2. Sinceg2h2 f 2 is
nonvanishing, in general, we expect that both gaps in

FIG. 8. Dependence of the Fourier coefficientscn in a liquid
cholesteric on an external uniform electric or magnetic field. N
that allcn except forc0 go abruptly to zero for fieldsH greater than
the critical fieldHc ~unlike in Fig. 7!.
05661
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dispersion relation will be nonzero. These results corresp
qualitatively to the scaling behavior observed in Figs. 9 a
10. Since the smaller gap is centered about the same valu

ṽ2 as the larger gap, we predict afull photonic band gap for
a distorted helix at normal incidence, i.e., we expect t
normally incident light ofany polarization with frequencies
within the band gap will be totally reflected.

We now extend the theory for splitting at the fir
Brillouin-zone boundary to higher orders. An important fa
tor affects these anticrossings, namely, the gradual separ
of the dispersion relations for eigenmodes that tend to p
alonge' and eigenmodes that tend to point alonge i . Since
these two sets of eigenmodes experience a different effec
refractive index, they have different slopes, which gives r
to two meeting points that gradually separate as we go
higher bands~corresponding to higher Brillouin zones in a
extended-zone scheme!. Furthermore, some of the highe
crossings can take place away from the zone bounda
however, those effects require mixing between two nea
orthogonal modes and are usually small. In practical ter
this means that rather than four-wave splitting, we must
stead consider two-wave splitting at higher Brillouin-zo
boundaries—a simpler problem, where the matrixD be-
comes

D= 5S S dn

2 D 2

~16ac0! 7aS dn

2 D 2

sdn

7aS dn

2 D 2

sdn* S dn

2 D 2

~16ac0!
D . ~57!

e
FIG. 9. Scaling of elastomer gaps with straine. The lines are the

results of our perturbation analysis.
4-11
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There are two pairs of eigenvalues:ṽ25(dn/2)2@12a(c0

6 isdn)# and ṽ25(dn/2)2@11a(c06 isdn)#, corresponding
to a band gap of magnitudedv'(dn/2)ausdnu.

C. Experimental scaling of band gaps with mechanical strain

Of experimental interest is thein vacuowavelengthL of
the light corresponding to a givenṽ on the CE dispersion
relation, particularly at the gaps. The previous definitio
give L5p0 /(ṽAbl2/7). Pitchesp0 typically give a band in
the visible region, so the initial wavelengths areL0

5p0 /Ab;500 nm atṽ51/2 andl51, which allow us to
write L5L0 /(2ṽl2/7). Likewise the first-order de Vries ga
is given by DL'L0 /l2/7a. The higher-order gaps of th
same polarization will have widths of DLn
'CL0en21/(nl2/7), whereC is a prefactor of order unity
that will depend onr anda. For example, the second-ord
gap in rubber withr 51.9, a50.18, ande50.1 will be
DL2'0.045L0. For L0'800 nm, this implies that a secon
stop band for the light with a circular polarization in th
same sense as the helix will be observed forL5362 nm to
L5398 nm. We have taken for illustration in this papere i
53.3 ande'52.3, giving the extraordinary and ordinary r
fractive indicesne51.82 andno51.52. Thena50.18 and
b5 1

2 (1/e i11/e')50.368. Actually,b does not appear in th
calculation of band structures, but would be needed in c
structing the light lineṽ5 k̃/Ab, which limits propagation in
a projected density of states diagram in the manner of F
et al. @36#.

VI. OBLIQUE INCIDENCE

In Figs. 12 and 13, we show the full band structure, c
culated by diagonalization of the matrix in Eq.~46!, for ar-
bitrary angles of propagation~i.e., arbitraryk inside the cho-
lesteric medium!. As in electronic band structures, the
photonic band structures traverse a range ofk’s to see howv
varies in 3D. We increase or decrease a component ok
~eitherkr andkz) until we hit a zone boundary, then ‘‘reflec
back’’ or continue in a different direction. The lack of per
odicity alongr ~perpendicular to the pitch axis! means that

FIG. 10. Scaling of gaps in cholesteric liquids with reduc
external field (H/Hc)

2. Note how the scaling corresponds to th
seen in Fig. 9.
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eachkr is unique, and hence there is no zone boundary
that direction. However, the lowest bands~corresponding to
visible light when the pitch is about one optical waveleng!
will have a natural limit onkr sincein vacuo, v>cukru, and
in the cholesteric medium,ṽ>(12a)uk̃ru. Qualitatively,
these results mean that low frequencies must have a co
spondingly lowkr .

Starting from (0,0) on thek axis, in the first segment only
kz increases, corresponding to the band structure for nor
incidence. We can verify that the first parts of the full ba
structures we present, Figs. 11–13, are identical to Figs. 4
respectively. At the first zone boundary (1/2,0), one obser
the familiar stop bands. Then increasingkr from 0 corre-
sponds to a gradual tilt away from normal propagation alo
the helix axis, until the two components are equal
(1/2,1/2). At that point, thek corresponds to 45° propagatio
within the medium. We then gradually decrease the mag
tude ofk, without changing the direction away from 45°. I
the fourth and final segment of the axis, we look at the c
of kz50, corresponding to 90° propagation, along a dire
tion perpendicular to the pitch axis~taken to be alongŷ for
simplicity!.

FIG. 11. Full dispersion relation at several directions of prop
gation in an ideal helix:~1! normal, ~2! increasingly away from
normal up to 45°,~3! 45° propagation for a decreasing magnitu
of k, and~4! 90°

FIG. 12. Full dispersion relation at angles as in Fig. 11 fo
helix distorted by a straine51.1,ec (r 51.9).
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Ideal helix structures. Figure 11 shows the band structu
for an ideal cholesteric. Leaving normal incidence, one
serves hints of a Bragg reflection even for the sense of
larization opposite to that of the helix. Oblique Bragg refle
tions are not unexpected from this periodic 1D struct
acting as a grating coupler, but the stop band is weak for
other sense of polarization until one approaches 45°. S
the gap for the opposite sense circular polarized light
inside that for the same sense polarized light, there is a
band for both polarizations, which one might call, in th
context of circularly polarized reflections, a ‘‘total’’ sto
band. This contrasts strongly with the normally incident ca
in which only one polarization experiences a reflection. Mo
reflections would be visible if we were to sweep over
broader range ofkr values.

On moving away from normal incidence with constantk,
the large, fundamental~de Vries! gap for the polarization tha
rotates with the helix scales asa@1/22O(u2)#. The smaller
gap opening up for the opposite polarization scales asu2.
Bragg reflections correspond to the incoming and outgo
wave vectors being the same, modulo a reciprocal lat
vector, i.e., k25(k1G)2, equivalently 2k•G5G2, yields
k̃z56n/2, n being an integer. At a given angle of propag
tion u.0 such thatk̃r5 k̃ sinu and k̃z5 k̃ cosu, the reflec-
tions will take place atk̃56n/(2 cosu), consistently with
the above observations for the smaller gap.

Thus the dispersion relations for ideal cholesterics g
the fundamental~de Vries! stop band trending upwards as th
angle of incidence increases. This may provide an expla
tion for the success of lasing close to the upper band edg
cholesterics@17#. To wit, a lasing mode just above the upp
frequency allowed at normal incidence~that is, at the lowest
part of the upper band! will be forbidden above a critica
angle. As one gets closer to the bottom of the upper par
the dispersion curve, the smaller the critical angle becom
For a small enough critical angle, light will essentially b
forced to propagate straight through the cholesteric medi
which will clearly assist in the collimation of light and th
focusing of the energy of an emitter—more of the pump
power is utilized. This is an observation and interpretation
Kopp et al. @37#.

FIG. 13. Full dispersion relation at angles as in Fig. 11 fo
helix distorted by a straine51.3.ec (r 51.9).
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The eigenmodes of a beam propagating at an angle
from normal will differ enormously from what was discusse
previously for normal incidence. Of the two lowest eige
modes, one has a dispersion relation given byṽ25(1
1a) k̃r

2 and a linear polarization alongx̂ ~assuming k
52qk̃rŷ). This polarization corresponds to anE, which
points wholly alongẑ, the direction of the unvarying dielec
tric constant. The other polarization points all over space
highly nontrivial manner, as a periodic function ofy and z.
This periodic variation costs a larger amount of energy th
pointing along a constant direction. Nonetheless, since
polarization is able to take advantage of being able to dir
its E along a higher dielectric constant direction than t
trivial polarization, it is lower in energy despite its twistin
and turning. This can be confirmed by a visualization of t
eigenfunctions, which we present elsewhere.

Distorted helix structures. The band structures for choles
teric elastomers distorted by strains ofe51.1 ande51.3,
below and above the critical strain, respectively, are sho
in Figs. 12 and 13.

Small stretching of a cholesteric rubber yields a sma
gap for the opposite handedness already at normal-incide
scaling ase, with the larger gap scaling asa@1/22O(e2)#.
One can think of the opposite handedness gap arising
cause, in the rotating~de Vries! frame, with distortion of the
helix there is effectively rotation backwards and thus a F
rier mode for the hitherto trivial polarization to couple t
Thus one sees in Fig. 12 a wider gap for the opposite ha
edness in the segment (0,1/2)→(1/2,1/2) than in the nondis
torted case. Above the critical point, Fig. 14, in the sa
interval, the two branches have gaps of almost equal s
Since there is no net rotation, but forward and backw
rotation in equal measure, both handednesses couple to
photonic structure similarly, producing similar gaps. No
also that the primary stop band has moved away from
zone center, a result of the different slopes of the linear d
persion relations for the two branches in the segment incr
ing up from (0,0).

Inspection of the primary gaps in Figs. 11–13 shows t
the frequencies at which the reflections take place is see
increase as the angle away from normal incidence is
creased, as is predicted by the previous considerations
elastic scattering, and observed experimentally by Take
et al. @38#.

Projected band structure. The data in Figs. 11–13 is no
directly applicable to experiment. The character of the eig
functions in the medium is not that of the correspondi
waves outside~we have given the example of the eigenfun
tions inside and outside the body at frequencies correspo
ing to the lower and upper edges of the fundamental s
band!. The conversion, in general, of our eigenfunctions in
exterior waves will be presented elsewhere.

The second reason is that not all angles of propaga
inside the medium are accessible outside. It is a more c
plex form of the total internal reflection problem—whenkz
→0 outside the medium, the propagation there being gr
ing, kz inside is not yet vanishing and the interior beam is
from being at grazing. The free space dispersion relation
light outside the medium,v5ck, can be reexpressed in ou
4-13
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reduced, dimensionless variablesṽ and k̃ to ṽ5(1/Ab) k̃.
Recall thatb5 1

2 (1/e111/e2). The in-plane component o
the wave vectork̃r is by boundary conditions continuou
between the inside and outside of the body. Thus whate
the dispersion relation inside the body, at a givenk̃r the
minimum possibleṽ is ṽ51/Abk̃—the so-called light line.

Our stop bands do not extend to all angles, and thus
not produce a genuine gap in the density of states in
quency when taken over all angles. However, the restric
to a cone of angles in the material corresponding to an
0 –p/2 outside means that, measured from the outside,
can approach omnireflectivity in materials with only part
gaps. Finket al. @36# take this view. We present detaile
projections elsewhere.

VII. CONCLUSIONS

An entirely different type of photonic material has be
described and characterized. Not only is it self-assemb
and easily available as large, defect-free single crystals, b
is highly deformable. Earlier descriptions@7,8,26,27# of its
modified periodic dielectric structure have been used as
basis for calculating its band structure. Additional gaps a
and their widths scale in a well-understood fashion with
stretch applied to the material or the strength of the exte
field. The midgap frequencies shift position by large amou
comparable to their initial values. Total gaps~for both hand-
ednesses of circularly polarized light! arise. The band struc
ture has been calculated for arbitrary obliquity. The ext
sion of gaps to oblique incidence confirms the explanat
and observation of Koppet al. of low-threshold upper band
lasing.
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APPENDIX: MECHANICAL RELAXATION OF
CHOLESTERIC ELASTOMERS

To calculate the free energy, substitute Eqs.~4! and ~5!
~and a similar expression for the current inverse step len
tensor! in the free-energy expression, Eq.~3!, to obtain an
expression for the free energyF(l,lyy ,r ,f,f0) given in
@26,27#,

F5
1

2
nkBTH l21lyy

2 1
1

l2lyy
2

1
r 21

r
@l2~r cos2 f0 sin2 f2sin2 f0 cos2 f!

1lyy
2 ~r sin2f0cos2 f2cos2 f0 sin2 f!

22~r 21!llyy cosf cosf0 sinf sinf0#J . ~A1!
05661
er

o
-
n
s

ne
l

g
t it

e
e
e
al
ts

-
n

le
,

.
ll
r

th

The local director orientation is determined by]^F&/]f
50. This rearranges to Eq.~6! for f(f0).

One can determine whether thef values given by Eq.~6!
are stable by calculating]2^F&/]f2 from Eq.~A1! and back-
substituting Eq.~6! into the expression for the second deriv
tive. We obtain

]2^F&

]f2
5

1

4rllyy
nkBT$@~r 11!~l22lyy

2 !

1~r 21!~l21lyy
2 !cos 2f0#2

14~r 21!2l2lyy
2 sin22f0%S sin 2f

sin 2f0
D . ~A2!

Since the quantities in braces are positive definite, the sig
]2^F&/]f2 will be given by the sign of sin 2f/sin 2f0. Thus,
when sin 2f and sin 2f0 are of the same sign, the secon
derivative will be positive, corresponding to a local min
mum in free energy. One can then use Eq.~6! and this sta-
bility analysis to obtain cos 2f and sin 2f, which are thus
given by

sin 2f5
~r 21!llyy sin 2f0

Aa1
224rl2lyy

2
~A3!

and

cos 2f52
lyy

2 2rl21~r 21!~l21lyy
2 !sin2 f0

Aa1
224rl2lyy

2
,

~A4!

where a15rl21lyy
2 2(r 21)(l22lyy

2 )sin2 f0. These are
required to generate the harmonics for the band-struc
analysis. We can substitute these values back into Eq.~A1! to
obtainF(l,lyy ,r ,f0). We then coarse grain this free energ
over one turn of the helix to give F(l,lyy ,r )
5*0

p df0 F(l,lyy ,r ,f0). Given a fixed value forl and r,
we can find the minimum-energy value oflyy by setting
]F/]lyy50. The relaxationlyy(l) is shown in Fig. 14.

If we assume thatlyy is a power law in terms ofl in the
limit of small strainse5l21→0, then we can use a pertu
bation analysis to obtain the exponent. First, energy mini
zation is explicitly

05p2
p

l2lyy
4

1
p

4

~r 21!2

r

1
r 21

r E
0

p/2

df0F ~r sin2 f01cos2 f0!cos 2f

2
r 21

2

l

lyy
sin 2f0 sin 2fG , ~A5!
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Next, substitution of the appropriate expressions
sin 2f and cos 2f, Eqs.~A3! and~A4!, yields an expression
for lyy(l),

p

4

~r 11!2

r
2

p

l2lyy
4

2
r 21

r E
0

p/2

df0H a1@11~r 21!sin2f0#22rl2

Aa1
224rl2lyy

2 J 50.

~A6!

Equation~A6! may be written in a simplified form such tha

p

4

~r 11!2

r
2

p

b2l6

2
r 21

r E
0

p/2

df0H a18@11~r 21!sin2f0#22r

Aa18
224rb

J 50,

~A7!

wherea185a1 /l2 and b5lyy
2 /l2. Expanding fore!1, we

havel511e and b5l2Ã'12Ãe, which can be substi-
tuted into Eq.~A7! to produce an expression to the first ord
in e, namely,

pF ~r 11!2

4r
211~622Ã!eG2

p

4r
@~r 21!22rÃe#50.

~A8!

FIG. 14. Numerical calculation of the contraction of a chole
teric elasotmerlyy as a function of the applied uniaxial strainl for
r 51.9 (lc'1.19). An exponent of23/4 gives a good fit for
lyy(l) up to large strains, an exponent close to the exact, sm
strain value of25/7.
.T.
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The left-hand side vanishes whenÃ524/7 ~to the first or-
der!, which, given the definitions ofb and Ã, implies that
lyy5l25/7. Of course, this scaling is only valid for smalle.
There is a critical strain, denoted byec , and an accompany
ing critical deformationlc511ec , at which the twist walls
created by the strain become thermodynamically unfav
able. At that point the director fails to accumulate any n
cholesteric twist and oscillates back and forth aroundf50.
Twist walls must be lost by a topological process such as
growth of disclination loops. Experimentally the dynamics
approaching the untwisted state suggest such a complex
cess. There will also be a crossover from the scaling beh
ior lyy;l25/7 for small strain, to the classical isotropic re
sponselyy;l21/2 for large strain.

In Eq. ~6! one sees that tan 2f will only diverge if the
denominator crosses zero, so the critical strain correspo
to the point at which the denominator is guaranteed to
greater than or equal to zero. Thus

;f0
~r 21!~l21lyy

2 !cos 2f01~r 11!~l22lyy
2 !>0.

~A9!

Since cos 2f0 is bounded between61, Eq. ~A9! requires

~r 11!~l22lyy
2 !>~r 21!~l21lyy

2 !. ~A10!

If it is assumed thate!1, and thatlyy;l2k, this implies

~r 11!~11k!e>~r 21!@11~12k!e#. ~A11!

Thus, the critical strain is

ec'
r 21

~r 11!~k11!1~r 21!~k21!
. ~A12!

Expanding the expression forec to the first order inr 21
yields the resultec5(r 21)/@2(11k)#. Inspection of Fig.
14 suggests thatk'3/4, a value close to the initialk55/7,
which is strictly correct only forl→1. As a result, it can
easily be shown thatlc'r 2/7, to the first order.

Although obtaining an exact analytic solution is infe
sible, we can find the critical values forF ~with respect to
lyy) numerically, as shown in Fig. 14. We confirm that, f
parameter values of interest~e.g., r 51.9, 1<l<1.4), a
minimum-energy state occurs at values oflyy'l23/4 for e
,ec . There is also evidently a crossover to the classi
scalinglyy'l21/2 for e.ec .
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