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Progressive motion of an ac-driven kink in an annular damped system
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A novel dynamical effect is presented: systematic drift of a topological soliton in ac-driven weakly damped
systems with periodic boundary conditions. The effect is demonstrated in detail for a long annular Josephson
junction. Unlike earlier considered cases of the ac-driven motion of flu¢anks), in the present case the long
junction isspatially uniform Numerical simulations reveal that progressive motion of the fluxon commences
if the amplitude of the ac drive exceeds a threshold value. The direction of the motion is randomly selected by
initial conditions, and a strong hysteresis is observed. An analytical approach to the problem is based on
consideration of the interaction between plasma waves emitted by the fluxon under the action of the ac drive
and the fluxon itself, after the waves complete round trip in the annular junction. The analysis predicts
instability of the zero-average-velocity state of the fluxon interacting with its own radiation tails, provided that
the drive’s amplitude exceeds an explicitly found threshold. The result is valid if the phasep shifthe
radiation wave, gained after the round trip, is such thatsif, the threshold amplitude strongly depending on
¢. A very similar dependence is found in the simulations, testifying to the relevance of the analytical consid-
eration.
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I. INTRODUCTION where o and L are the frequency of the ac drive and the
period of the spatial modulation. The sign of the velocity is
It is well known that progressive motion of topological determined by a random initial push applied to the kink.
solitons (kinks in lossy media can be supported by a dcwhile the velocity selected by the locking conditith) does
(constart field which couples to the soliton’s topological ot gepend on the amplitude of the ac drive, the driven pro-
charge[1]. In this case, the kink is, effectively, a quasiparti- o eqqjve motion cannot take place unless the drive's ampli-
cle. The same quasiparticle approximation strongly sugges de e exceeds a certain minimurfihreshold value e,

that ac(time-periodic with zero mean valpéeld(s) applied o . 7 hr
to the kink in an infinitely long homogeneous system can[vgﬂig is usually proportional to the friction coefficient

only give rise to its oscillatory motion. . .
A more sophisticated possibility is to drive a kink by a  1ne effect was generalized to include a case when a com-
pure ac force in a lossy system subjected to a periodic spati@ination of ac and dc fields is applig8]. In this case, a
modulation. In particular, spatial periodicity is an inherentconstant-velocity steps predicted, in the form of an ac-
feature of discrete systentdynamical lattices As was first ~ frequency-locked valugl) of the mean velocity of the
predicted in an analytical form for damped lattices of thedriven kink in a finite interval of values of the dc component
Frenkel-KontorovaFK) and Toda types in Ref2] and[3],  of the drive.
respectively, and for a periodically modulated lossy con- The possibility of stable ac-driven motion of the soliton in
tinuum system of the sine-Gord¢sG) type in Ref[4], reso-  the lossy Toda lattice was later demonstrated in simulations
nances(of different orders between the time-periodic driv- [6] and in a laboratory experiment with an electrical trans-
ing force and periodic passage of a moving kink through themission line described by this modél]. The search for such
spatial inhomogeneities make it possible to support progregegimes in FK models turned out to be more difficult, but
sive motion of the kink without any dc field. This mechanism simulations have finally demonstrated that the soliton in the
selects absolute values of the mean velocity of the ac-driveform of a dislocation may be driven with a nonzero mean
kink which provide for the resonance of the oraem, velocity by the ac forc¢8].
In terms of physical applications, the most appropriate
(1) medium where these effects may be realized is provided by
long Josephson junction$.JJ9 [4,5], which support topo-
logical solitons in the form of trapped fluxomagnetic-flux
quanta[9]). A convenient way to implement the periodic
*URL: http://www.geocities.com/e_goldobin; Electronic address:spatial modulation in LJJs is to apply a constéht) mag-
e_gold@mail.ru netic field to an annulatand sufficiently longjunction, with
"Electronic address: malomed@eng.tau.ac.il the field’s vector lying in the plane of the annular junction. In
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this case, the full length of the ring-shaped junction plays the Il. NUMERICAL RESULTS
role of the modulation periot in Eg. (1). Note that the use

of the LJJ of the annular shape is very natural also because it _ ) )
preserves the number of fluxons trapped in it. The necessary The QC-d”VGH weakly damped annular Josephs(_)n junction
drive can be readily provided by ac electric bias current dis!S described by the well-known perturbed sG equation for the
tributed along the junction. Josephson phasg(x,t) [9],

As was first proposed in Ref.10], this configuration — bu—sind= _ in( ot 2
gives rise to a harmonic spatial modulation in the corre- P P $=ad= yasin(ot), @

sponding sG model, the modulation amplitude being proporyhere the subscripts stand for the partial derivatives, the co-
tional to the external magnetic fielthe perturbation gener- qginatex, running along the junction, and the tinteare
ated by the magnetic field is formally tantamount 0 annormalized so that the Josephson penetration length and
additional spatially modulated dc drive with zero avejage plasma frequency are both equal to &,is the damping
The resonant relatiolil) applies to this case, the periad  coefficient, andy,. is the amplitude of ac drive. In the infi-
being the circumference of the annular junction, as was memite system without perturbations: & Yac=0), the fluxon is
tioned above. Experimental observation of the ac-driven moedescribed by the kink solution to the sG equation,

tion of a fluxon in the annular LJJ in the presence of the

constant magnetic field was reported in Réd], in the form X— &(t)
of nonzero dc voltage across the junction, induced by ac bias =4 arctanexp o i

current applied to it.
A A re!atedfissue is prodgressive motion of (tjhe ﬂgx_on qndﬁé/vhereu is the velocity of the fluxong =+ 1 is its polarity
the action of a pure ac drive, or even a random drive, in t . . ) . SO
so-calledratchet(asymmetrig effective potential12]. How- a?gi |§s ;[rhjtI?nStt?]rgili%uzfcf?ggdQittieor?fcllt‘str?sr}ltl?;o\ghll?gIS
ever, a principal difference is that, in the case of the ratchelgingle f(iuxon is trapped in the annular junction Eﬁ).is
there is ana priori selected preferred direction of motion. L '
Experimental realization of a ratchet for fluxons in LJJs Wassupplemented by the boundary conditidbs)
very recently reported in Ref13]. (L, t)=p(0t)+ 2, (4)
Thus, ac-driven progressive motion of a topological soli-
ton in an indefinitely long lossy system can only be possible
if it is assisted by the spatial periodic modulation. The ob-
jective of this work is to show, both numerically and analyti-
cally, that, quite surprisingly, the ordinary spatially uniform
ac drive may support progressive, on average, motion of
fluxon in either direction in the perfectlyniform annular
junction with nonzero losses, provided that the amplitude o

A. The model and computational procedure

: ()

(L, )= dx(01), ®)

wherelL is the circumference of the ring.

Equation(2) with b.c.(4) and(5) was simulated by means
the “sTkJJ software package, described in detail else-
here[16]. The results have been checked by comparing

hem with simulations carried out with thesbLITON" pack-

the drive exceeds a certain threshold value. The effect 'ﬁge[17] and good agreement was found in all the cases
clearly stipulated by the finite size of the ringlike junction, consider,ed.

t_)eing possibl_e because a fluxon pgrturbed by the .driving The simulations were performed as follows. We started
field rr|1_ay “er:m smalI’—’am!‘all';]udeéqua’snmea} Wavesl(radlar; with an initial state corresponding to a fluxon trapped in the
tion, alias “plasmons” or “phononsj propagating along the gy tam at the zero amplitude of ac drive. Then the amplitude

junction and eventually hitting t.he. same fluxon. .was increased by small steps/,., each time calculating the
We note that a somewhat similar effect was observed '%verage dc voltag¥y, across the junction
C ]

numerical simulations reported recentiy,15, which, how-
ever, was related to the above-mentioned ratchet mechanism 1 [T (L
supporting unidirectional motion of ac-driven fluxons, and Vy= _f dtj dx ¢éy(X,t)
the ac drive was always a two-frequency one. It was stated 2mTLJo 0
that the progressive motion is possible due to the simulta- 1 L
neous action of driving forces oscillating at frequencies E_j dx[ ¢(x,T)— ¢(x,0)], (6)
and 2w in the absence of a static spatial potential. We stress 2mwTLJo
that in our work the ac drive is always represented by a
single-frequency harmonic. where T is a sufficiently large time-averaging intervigh

The rest of the paper is organized as follows. Numericaphysical units, the average voltage is given by the expression
results which show the ac-driven progressive motion of th€6) multiplied by the magnetic flux quantud,]. The value
fluxon are displayed in Sec. Il. A theoretical explanation, thatof T was taken as a multiple of the ac drive’s periog/2.
reflects our understanding of the effect, which is based on The dependencé,(y.) characterizes the average veloc-
interaction of the fluxon with its own radiation “tails,” is set ity of the progressive motion of the fluxon in the annular
forth in Sec. Ill. Comparison of the analytical and numericaljunction. Indeed, substituting a solution for the moving
results is presented in Sec. IV, and Sec. V concludes th8uxon in the form ¢(x,t) = ¢q[x—&(1)], see EQ.(3), into
work. the first integral expression in E(6), we obtain
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_ 1 T deft , 1.0 T T T T ! T I T T
V=571 . dtge . dx og[x—&(1)] 1(a) ©=0.75 |
80.5 -
= ! J’Tdtdg L,t 0t g ) T
= 22T, il (L= ¢n(00)] Bon I
g0 >
1 (7 dé g i
== 0dta, (7 £0.5 .
s .
where b.c.(5) was used. A natural definition of the fluxon’s -1.0 — 77—
average velocity being 1 (b) ©=1.05 T
B -
_ 1detd§ >_,0.5
=) Sar g ]
E 0.0
Eq. (7) yields an expression for the average velocity interms &
of the average dc voltage, §-0.5 -
>
(] -
U:LVdC. (8) -1.0 T T T T T T T |
N . . 1) o=1.12 BEai
The results of the simulations are displayed below in the 20,5 %
form u=u(y.), using numerically found dependences .
Vad 70 and the relatior(8). This way of the presentation of g
results is the most appropriate one if the objective is to look ° 0.0
for dynamical regimes with a nonzero average velocity of the 8 -
ac-driven kink. g.o_s _ _
For some values of,. the motion of the fluxon is appar- 2 ] i
ently chaotic(see below. In such cases, the average velocity 1.0

calculated with Eq(7) will not converge a§ — . To avoid L L L

this problem, we used two different averaging procedures. 1(d) »=1.20 : N
(i) The averaging was made simply over one periad @ 0.5 /_—f"_——_—-
of the ac drive, and the amplitudg,. was changed in ex- .
tremely' small step.sayac=0.0001, while, otheryvise&yac 200 : _
=0.01 is used. This, in a sense, means that instead of one 2
point on theu(y,c) dependence we get 100 closely situated §&
. a L . . . 0.5 - —
points. If the dynamics is chaotic, those 100 points will have 2
a large spread in. On the other hand, all the points will give
almost equal values af if the dynamics is regular and av-
eraging converges. Although some artifacts may appear
around bifurcation points, this technique provides very good
insight into dynamical states of the system.
. (i) T.he averaging Was_ performed |terat|vely_for_gradually FIG. 1. The dependences y,) obtained by sweeping,. up
increasing values of until the convergence ofi with the  (black point$ and down(gray points at four different frequencies
accuracy 0.001 was reached, but not longer thanTor of the ac drive:w=0.75 (a), w=1.05 (b), ®=1.12 (c), and w
=1000. In this case, for the nonchaotic states the averaging 1.20 (d). The length of the annular junction Is=10, and the
gives the true value of equilibrium average veloaitywhile ~ damping coefficient ist=0.1.
for chaotic states averaging was interrupted &t1000, and . . . '
the corresponding nonconverged value wfwas included ~Creasing(black points the drive’s amplitudey for the an-

city

-1 .0 T I T I T I T I T
0.0 0.2 0.4 0.6 0.8 1.0

amplitude of ac bias current, y

into the plot. nular LJJ of the length. =10, with the dissipation constant
Results produced by means of both methods will be dis®=0-1 and four different values of the driving frequensy
played below. are shown in Fig. 1. In Fig. (&), corresponding ta=0.75,

the average velocity of the fluxon remains zero in the region
vac<0.38. However, in the interval 0.38y,<0.6, the av-
erage velocity idifferentfrom zero, which means that the
First, we present dependenceéy,) generated by the fluxon moves, on average, in one direction. As one sees in
averaging methodi). Four characteristic examples of the Fig. 1(a), the signs of the average velocity are different for
dependences, obtained by increasiggay point$ and de- the branches of the characteristi€¢y,) corresponding to

B. The ac-driven progressive motion
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_ =0.20) v, = 0.40 Y, = 0.80
40 _@F‘EI '4 (B)' T @
35 } S FIG. 2. The coordinate of the
30 S fluxon’s center as a function of
25 ] | 1] ) 5 1 time for the ac drive’s frequency
R _ S w=1.05 [which corresponds to
o 204 g q C the case shown in Fig.()] and
£ sy /11 . 1 |- .- 3 . different values of the drive’'s am-
0. j S plitude y,.: 0.2 (a), 0.4 (b), 0.5
i - (c), and 0.8(d). The rightmost
5 S plot shows the driving ac signal
0 sin(wt) vs time.
L (NLEY M LAY I LI SR S R B B LN B B I LAY LA L B T

0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 100 2 4 6 8 10-10 1
coordinate &(f) coordinate &(r) coordinate £(z) coordinate £(7) sin(wt)

“sweeping up” and “sweeping down,” i.e., increasing and which suggests that there are two different mechanisms
decreasingy,.. Due to the symmetry of the system, thesewhich generate the nonzero average velocity. The additional
signs are actually picked up randomly, depending on the inistep may correspond to switching of the system between
tial conditions and peculiarities of the simulations, such ashese two different mechanisms. To visualize the fluxon mo-
the way y,c was varied. tion, in Fig. 2 we present the law of motiog(t), of the

At the frequencyw =1.05, corresponding to Fig(l), the  fluxon's center for different values of the ac driving ampli-
fluxon is set into motion in the regiop,.>0.1. The average tyde and fixed driving frequencw=1.05, which corre-

velocity u increases withy,., but aty,~0.26 a transition to sponds to the dependena€y,) shown in Fig. 1b). It is
a chaoticlike behavior takes place. In the latter case, the a\qearly seen in Fig. @) that, indeed, ay,.=0.2 a systematic
eraging over a long time interval does not produce any defigyit of the fluxon in one direction is superimposed on peri-
nite value of the mean velocity. Closer inspection of thisggic oscillations. In Fig. @), which corresponds to the qua-
region shows that we are dealing not with true chaos, bugjperiodic motion aty,.= 0.4, we see that the fluxon motion
rather with a deterministic quasiperiodic regime with a non-ig qualitatively similar to that displayed in Fig. 2, but it is
zero average velocity. In particular, the fundamental freqggg regular and nonperiodic.
quency of the corresponding time series is, effectively, in-  The fluxon’s law of motion for the case which corre-
commensurate with the ac driving frequency in this casegponds to the generation of the subharmonieyat=0.5 is
which is w_hy the average velocity_ cannot be effectively cal-shown in Fig. 2c). One can easily see that the period of the
culated using the algorithm described above. _ oscillatory part of the soliton’s motion in this case is indeed
Continuing the consideration of Fig.(t, we notice a tyice the period of the ac drive, as the trajectories look
split branch in the interval 0.48y,.<0.54, where the aver- gjightly different during alternatingeven and oddperiods of
age velocity isu~0.3. Accurate inspection shows that the the ac drive.
averaging during one period yields a point belonging to one Finally, in Fig. 2d) one can see the trajectories corre-
branch, while averaging over the next period produces a&ponding to the pointy,.=0.8, which belongs to a narrow
point situated on the other branch, and so on. This means thatindow in Fig. 1b), where a deterministic law of motion
the fundamental frequency of the oscillatory component obecomes stable again. Qualitatively, this plot is similar to
the fluxon’s motion ishalf the driving frequency. While gen- that in Fig. Za), but has a higher average velocity.
eration of higher harmonics is common to all nonlinear sys- Results produced by the averaging meth@d are dis-
tems, the appearance of subharmonics is a more specific gftayed, foro=1.05, in Fig. 3a). As is seen from the com-
fect, implying the existence of a certain form of parametricparison of this figure with Fig. (b), details of the pictures
instability. For larger values of,., the system enters the generated by the averaging proceduii¢snd i) are some-
region of chaos, which is shortly interrupted by a determin-what different inside the chaotic regions. Nevertheless, both
istic branch with a nonzero average velocity in the intervalmethods identify the same regions of the regular motion, and
0.75< 4<0.80. . _ yield the same dependenceéy,) in the regular cases. In
For driving frequencies that are 10%—-20% higher than  fact, the consideration of the regular motion with nonzero
the Josephson plasma frequerfashich is 1 in the notation  ayerage velocity, rather than of chaotic regimes, is the main
adopted above one can observe the fluxon’s motion with a subject of this work.
nonzero average velocity in a broad rangeygf, see Figs. Our numerical simulations of the perturbed sG equation
1(c) and Xd). It is noteworthy that the average velocity may (2) uysed a finite-difference scheme. Since the ac-driven pro-
attain relatively large values, which become comparable t@ressive motion of kinks is possible in indefinitely long dis-
the Swihart velocity of the junction=1 in our notatioh.  crete lossy latticef2,3,6,8, it is necessary to check that the
For instance, in Fig. ) u~0.5 aty,.=0.5, and reaches the effects reported above are not artifacts produced by the dis-
value~0.7 for larger values of. cretization of the model. To this end, simulations were run
It is also interesting to note that the dependen€eg,) with the smaller value of the step sizkx of the finite-
shown in Fig. 1d) features an additional step a~0.6, difference scheme. Comparing the results, we have con-
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1.0 e S B s e e p As is known from earlier works on the perturbation theory
1 (a) "honest' averaging with T__=1000 J (PT) fOI.’ the S.G equatiorisee a re\_/ievfl]), a kjnk (ﬂu>§on)

205 NPV R IE oscillating, without any systematic progressive motion, un-
3 e T S der the action of the ac drive emits radiation, in the lowest
S /oe""(’,x L] approximation, to the left and to the right at two wave num-
800 4— R bers+k, where
o i L3 = - . " .
§0.5 . I 4 k=Vw?—1, (9)
> I
“’1 0 A provided thatw>1, i.e., that the driving frequency exceeds

(b) dx=0.005

the plasma frequency of the junction.df<1, the emission
takes place in higher orders of Rat higher harmonigs

Here, we concentrate on the case-1. The numerical
results(both those displayed in Fig. 1 and those which are
not shown heresuggest that the strongest effect takes place
when (@?—1) is a positive but relatively small parameter. In
this case, the application of PT, which needs the drive’'s am-
plitude y,. and the damping coefficiert to be small, pre-
dicts that the oscillating fluxon emits two waves, which, far
from the fluxon, have the following forrtneglecting, for the
time being, the action of the dissipatjon

u

b

o
l

[=]
o
|

average velocity,
ot
[§)]
I L

'
-
o

I T
0.2

o
=)

amplitude of ac bias current, »_ b+ =AgSIN(K X— wt). (10

FIG. 3. The dependenagy.) produced usinga) the alterna- The amplitude of the two emitted waves is predicted by PT

tive averaging procedurgef. Fig. 1A(b)] and (b) a smaller spatial to be[1]
step of the finite-difference integration scheme. The scattered points 2
in panel(a) are those at which the averaging did not converge, thus Ao= YacK*, 1D
they mark regions of the chaotic motion of the ac-driven fluxon. o .
which is correct if
cluded that they are almost identical, except for small varia- k2>7521/cg and K2 a. (12

tions in the location of the thresholds at which the system
switches from one state to the other. For example, High 3 In fact, the former inequality does not hold in many cases

displays the dependenagy,g obtained for the same case as when the simulation reveals the progressive motion of the

in Fig. 1(b), but with Ax=0.005, rather thathx=0.01 used  ac-driven fluxon, but this is not a principal limitation: instead

in Fig. 1(b). As for the different signs of the average velocity of the expressiolil1), one can use more general o623

in some regions of the regular motion in Figgblland 3b),  and(6.18 from Ref.[1]. In such a case, a relation between

this sign is always randomly selected by the initial condi-a; and the drive’s amplitude,. is more complex than that

tions, as was explained above. given by Eq.(11), but there will be no essential change in the
The numerical results presented above clearly demongnalysis presented below, nor significant changes in the final

strate that progressive motion of a fluxon can indeed be sugagylts.

ported, in either direction, by the uniformly distributed ac  Attenuation of the emitted waves due to the presence of

drive (bias currentin annular uniform weakly damped LJJ. the |oss term in Eq(2) will play a crucially important role

An explanation of this effect will be proposed in the next pejow. To consider the attenuation, it is convenient to use a

section. reference frame x(',t’) moving at a constant velocitﬁ
which, as well as in the previous section, is the average ve-
IIl. ANALYTICAL CONSIDERATION locity of the fluxon(if it moves on average In the analysis,
A. Radiation waves emitted by the ac-driven fluxon we will treatu as the smallest parameter, in comparison with

The analysis developed below is based on a basic proptac: ¢ and “’Zflzkz’ the main objective being to.Sh,OW
erty of the system under consideration: the fluxon oscillating"at: at @ certain threshold value )y of the ac drive’s
under the action of the ac drive emits plasma waves in bot@Mmplitude, the state with=0 becomesinstable and a sym-
directions, and, due to the annular shape of the junctionr,netric pair of new ngntrivial states with finite but very small
these waves interact with the same fluxon after completing average velocities- u appears as a result of an instability-
round trip. However, this property does not offer an imme-triggered pitchfork bifurcation[18] if 7y, slightly exceeds
diate explanation of the possibility that the fluxon will be y,,.
able to systematically drift in one direction, if pushed ini- In the moving reference frame, the linearized version of
tially. Therefore, a detailed analysis is necessary, which i€q.(2), which governs the propagation and attenuation of the
developed below. radiation waves, becomes
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a av in the analysis is that the veloc@is very small. Neverthe-
Dxrxr = v — = _2¢t/_ = éx» (13)  |ess, small corrections-u and ~u?, which are retained in
Vi—-u Vi—-u Egs.(19) and(20), respectively, will play an important role

. _ o _ below.
wherex’ =(x—ut)/y1—u? andt’=(t—ux) V1—u?. A sta-
tionary shape of the radiation wave in the moving reference B. Dragging the fluxon by the radiation waves
frame is sought for afcf. Eq. (10)] in the circular system
bo=A.(X)siN =o' Z—1x' —w't!), (14) As we are dealing with the circular system, each emitted

wave, after having completed its round trip, strikes the
where a slow dependenégx’) is produced by the dissipa- quxpn and exerts some dragging force acting on it. Dragging
tive damping of the wave, and’ is the driving frequency in @ kink by a radiation wave passing through it was analyzed

the moving reference frame, in detail in Ref.[19]. It was found that a nonzero dragging
force appears at the second order in the dragging wave'’s
I3 amplitude, provided tha## 0. An expression for the drag-
o'= —. (15 ging forces induced by the two waves. can be shown to
V1-u? take the following form:
In the first approximation, which assumes that both the loss Fdirag= + (7r/4)2akA2i (21

constante and the average veIociEare small, the substi-

tution of Eq.(14) into Eq.(13) gives rise to an equation (this expression assumes that the kink's mass is normalized

to be 1). However, taking the expressiai®) for the am-

dA. « o plitudesA. and substituting them into the expressi@1),
—=F—(1% UérU)A: , (16) one can readily see that the resultant force, produced by the
dx’ 2Ug, asymmetry between the two waves, would not be accelerat-

) o , . ing, butbraking the fluxon’s motion.

wher_e the notation for the radiation wave’s group velocity ~p key point for the explanation of the possibility of the
was introduced, ac-driven progressive motion is to notice that the waas

do’ act on the fluxon in combination with the direct ac drive. To

o _ . .
U= = o 2= 1/e ~K[ 1+ U2/ (2K2)1. 1 te_lke all the forces'lnto account, a knoyvn perturbatlve tgch-
TR o'~k (291 @7 nique may be appliefiL]: the net wave field is sought for in
the form

To obtain the final expression in E(L7), it was assumed

that, in accord with what was said abow#<k2<1 (hence (X, =h(X, 1)+ Po(t) + d (X, 1) +d_(X,1), (22

the second term in the square brackets is a small CONGCtiOF\Nhere y(x.) is the field of the fluxong. are the emitted
A solution to Eq.(16) is obvious: Waves(lo), and *

bo() == (Yac/K?)SiN(w1) (23

is a term representing uniform background oscillations gen-
erated by the ac drive, as follows from a straightforward
solution to the linearized equatio2) (recall that k
o > 7 =Jw?-1). Then, an effective equation for the fluxon field
=0 tox’=L’=LV1—u", where the Lorentz contraction is  js gbtained by the substitution of the combinati@g) into
taken into account. According to Eq4.8) and(17), we find  {he underlying perturbed sG equatié), expansion of sir,

1 and taking into regard the expressi@3) for the background

A+(L’)=K0( 1;_a|_j), (19  component of the field. The final resulritten in the labo-
2 ratory reference framas

o
AL(X")=Agexpg — —F—=
{ 2ug V1-u?

In particular, we will need the value of the emitted wave’s
amplitude after the completion of the round trip, from

(1iuéru_) X’

]_ a9

where Y~ ot SN+ aty
-~ al =—(1—cosy){Ag[sin(kx— wt+kL)
AOEAoeX - _, o
2Ug +sin(—kx— wt+kL)]— 2aLAgu[ sin(kx— wt+ kL)

_2 : .
~A0exp( — %) ( 1+ “:Tl;) (20) —sin(—kx— ot+KL) ]+ (yac/k?)sin(wt)}, (24

where the amplitudd\, is defined by Eq(20), and the cor-

(hereafter, it is implied that= Jw?— 1 is taken as a positive rections + (1/2)aLu from Eq. (19) are taken into account.
square root As was said above, the fundamental assumptiormhe phase shifkL appearing on the right-hand side of Eq.
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(24) is accumulated by the wave after the completion of thetion for the slow variable€,, in whichd¢&,/dt may be iden-
round trip along the ring. Note that the renormalization of thejfied by the average Vebcitgof the systematic motion of
driving amplitude in the first term on the right-hand side of the fluxon. Finally, the equation for the slow motion can be
Eq. (24) is quite essential in the present case, whém w”  cast into the form of a first-order evolution equation for the

—1is small. o average velocity,
It is straightforward to derive in the lowesadiabati¢
approximatior{ 1] an equation of motion for the coordinage du _ WZL”AO (ac)
of the fluxon driven by the terms on the right-hand side of T —au— T(oxu)sin(kL). (28

Eqg. (24). In the “nonrelativistic’ approximationfor small

velocities), it takes the form The amplitudeA, in Eq. (28) can be replaced by the expres-

sions(11) and(20), which casts the equation into a form

d?¢ dé¢ omw o . -
— + = = ——(Yac/KA)Sin(wt) + Aq[ sin(wt —kL—k¢) _
dt dt 4 du ('}’ac)z —
- = —1|au
1 dt |y
+sin(wt—kL+ké)]— 5 alAgu
1/ mlayy ;{ al) | KT 29
X [sin( wt—kL—kg) —sin(wt—kL+ké)] 2| T | P T 2k sinkbun (29
(25 where the threshold value of the drive’s amplitude is defined
[recall thato=+1 is the fluxon’s polarity, see Eq3)]. as
The right-hand sidér.h.s) of Eq. (25 may be expanded 30/ 2)k3 L
for small ¢£. Then one concludes that the first term and the Y2 =— ( .77 ) ex;{a_ ] (30)
following pair of terms on the r.h.s. are essentially similar to e Lsin(kL) 2k

each othe(in the lowest approximation, they do not contain ) ) o )
£), but, with regard to Eqs(11) and (20), the amplitude in The equation of motiori29) has a trivial stationary solu-

front of the latter pair of termsh,, differs from the ampli-  tion (trivial fixed point FP) u=0, which, obviously, corre-
tude in front of the first term by the exponential factor expSPONds to no systematic motion of the fluxon. A crucially
[—al/(2K)], which we assume to be small enough. Theremportant issue is the stability of this FP. The linearization of
fore, this pair may be neglected, and, keeping a term linear ifeg. (29) for u—0 immediately demonstrates that the trivial
& which is produced by the expansion of the last pair ofFP isunstableif the drive’s amplitude exceeds the threshold
terms on the r.h.s. in EG25), we arrive at a simplified equa- Value given by Eq(30). In this case, a transition to a non-
tion of motion for the driven fluxon, trivial regime with anonzero velocityf the progressive mo-
tion (in other words, a bifurcatiormust take place.

d2¢  dé om| ya An essential feature of the expressi@0) is its depen-
- T T —23in( ot) dence on the phasd. gained by the emitted wave as a result
dt k of the round trip. In fact, the ac-driven motion is predicted to

exist only if y2,>0, or, as it follows from Eq(30),

+aLlAjkucodwt—kL)E|.  (26)
° sin(kL)<0. (31)
We seek a solution to E26) in a natural form(similarto  In the opposite case, the effect is absent, or, possibly, the
that employed in Refl19]), threshold amplitude is very largghen the perturbative ap-
proach is irrelevant

If 52 2 >0, the existence of two mutuall tri
__ 9TYac_. Yac™ Yt 0, Vo y symmetric

§H)=- 212 sin(wt) + £o(1), (27 nhontrivial FPs, with finite velocitiestu, may be expected.

One can try to find these velocities close to the bifurcation

where the first term is a response to the ac driving force o0int, i.e., for a case @ Yac~ Yior< Yihr» taking into account
the r.h.s. of Eq(26) (we neglect a small correction to it from the cubic corrections in Eq29). In fact, in the particular
the friction force on the left-hand side of the equation, and@Pproximation in which the cubic term, which is present in
set 1l?~1, which is true in the case under consideration Eq.(29), was derived, a formal result will be’°<0, which,
and the termgy(t) takes into account a possibility of a slow actually, implies that the bifurcation isubcritical i.e., it
systematic motioridrift) of the fluxon. takes place by a finite jump; in the opposite case, one should
In the next approximation, we replace the multiplét) expect a soft supercritical transitignorresponding to a bi-
in the second term on the r.h.s. of E&6) by the first term  furcation of the usual pitchfork typll8]) without a jump.
from the expressioli27). In order to single out terms con- The bifurcations observed in Fig(a and, especially, in
tributing to the slow drift, we perform averaging in the rapid Fig. 1(b) look very much like a supercritical pitchfork bifur-
oscillations. Thus we arrive at an effective evolution equa-cation, while Figs. {c) and 1d), corresponding to larger
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values of the parametd’®=w?— 1, strongly suggest that a 0.6 T
subcritical bifurcation(the one giving rise to a jumpakes oF . ¢ .
place in these cases. In many other runs of the simulations, 2 0.5+ * .
not displayed here, we observed a very similar trend, namely S iy . 7
to have a supercritical bifurcation for very small valuekdf § 0.4+ * 7
and a transition to a subcritical bifurcation at somewhat S 03_' '_ . i
largerk2. An accurate prediction of the type of the bifurca- 3 ] . |
tion (subcritical or supercriticalis a rather difficult issue, as 3 0.2 > ®eee a
it demands precise summation of the lowest-order nonlinear g {1 . ‘,' i
corrections at the ordar?, which may originate from many B 014 .
different terms in the above analysis. = . .

Lastly, we note that the case shown in Figa)1with the 0.0 +—+——"T—""1 T T T
driving frequencyw =0.75, which is smaller than 1, cannot 5 10 15 20 25
be directly explained in the framework of the approach de- LJJ length, L

veloped here. However, it seems very plausible that the per-

sistent motion of the ac-driven fluxon in this case can be F|G. 4. The minimum(threshold value of the amplitude of the

explained if one takes into account the fact that the kinkac driving field, at which the progressive motion of the fluxon com-

oscillating under the action of the driving frequeney 1 mences, vs the length of the annular Josephson junction, as found

emits radiation at the second-harmonic frequenay pro-  from the numerical simulations. The driving frequency and dissipa-

vided that 20>1 [1], which is the case in Fig.(4). In ac- tive constant arev=1.12 anda=0.1.

cord with this, the effect seen in Fig(al is very weak be-

cause it is accounted for by the second order of PT. On the other hand, the value of the wave number correspond-
ing to w=1.12 isk~0.53[see EQq.(9)], and Eq.(30) then

predicts minimum values of the threshold at the points where
IV. COMPARISON OF ANALYTICAL sinkl)=—1, i.e., at

AND NUMERICAL RESULTS

The main prediction of the analysis presented in the pre-
vious section is the loss of stability of the zero-average- (L)Y oo
velocity state of the fluxon in the ac-driven weakly damped
annular uniform LJJ. As a result, the fluxon must inevitably ) ) ) )
perform a transition to a nontrivial state with a nonzero av-Comparison of the numerical resul@2) with the analytical
erage velocity, which we consider as the cause for the effed"edictions(33) demonstrates very good agreement.
revealed by the simulations. Besides that, the analysis may, Figure 4 also shows thay, diverges at some point be-
in principle, predict the character of the bifurcation— tween the two minima, and in a part of the region between
supercritical or subcritical. them, where the data are absent m_the figure, the_ effe_ct does
While the comparison of the particular type of the analyti- Nt take place at alor the threshold is extremely highThis
cally predicted bifurcation with results of the simulations is aféature also agrees well with the theoretical predictid®),
sophisticated problem, it is much more straightforwéadd ~ Which yields divergences at points=mn/k with integern,
more importantto compare the theoretically predicted and a_n_d nonexistence of the effect in the mtervgls where t_hg con-
numerically found points of the transition to the progressivedition (31) does not hold. However, unlike the minima
motion, i.e., as a matter of fact, dependences of the threshoRPINtS, detailed comparison of the numerically found and
amplitude of the ac drive on various parameters of the Sys:;malytlcally predicted positions of the dlvergence points is
tem. A crucially important prediction of the analysis is the N0t relevant, as the perturbation theory which was used to
fact that the transition to the nonzero velocity ocolwithin ~ derive Eq.(30) clearly breaks down in a vicinity of the di-
the framework of the perturbation thedrgnly in those in-  Vergence points. _ o
tervals of values of the ring’s length (if all the other pa- 10 Verify the analytical prediction for the threshold am-
rameters are fixddwhere the conditiorf30) holds. Another plitude of the ac drive as a fu_nctlon of _the_d|SS|pat|ve_ con-
important and, at the same time, simple prediction is that thét@nte, the dependencey,(«) is shown in Fig. 5. The first
threshold valug30) remains finite(neither vanishes nor di- noteworthy feature of the plot is strong hysteresis. For the
verges in the limit a—0. comparison with the analytl_cal prediction, the reIevapt
Comparing the analytical and numerical results, we fo-Pranch is the upper one, which corresponds to “sweeping
cused on these two basic features. In Fig. 4, the thresholdP.” i-€., gradual increase of,c, as precisely in this case we
value of the ac drive’s amplitude, as found from the simula-can detect the point at which the zero—avc_arage-velocr_[y state
tions, is plotted versus the lengthof the annular junction pecomes unstable and the fluxon starts its progressive mo-
for fixed valuesw=1.12 anda=0.1. Salient peculiarities of tON-:

the dependence are the existence of two minima at As itis evident in Fig. 5, this branch of the dependence of
vinr VErsusa indeed yields a finite value in the limit—0,

) @ as is predicted by Eq30); it should be stressed, though, that
(L nin) nun~8-5{ L i) num™=20.5. (82 accurate simulations are quite difficult for very small as

37

8.95(L(2)) :7—7T~2090 (33
2k . min/ theor 2k . .

056613-8



PROGRESSIVE MOTION OF AN AC-DRIVEN KINK'IN . .. PHYSICAL REVIEW B5 056613

20— 7 sive (on averagge motion of the fluxon commences if the
amplitude of the ac drive exceeds a certain threshold value.
With the increase of the amplitude, both regular and chaotic
dynamical regimes are observed. The direction of the pro-
gressive motion is randomly selected by initial conditions,
and regular dynamical regimes are characterized by strong
hysteresis. The simulations demonstrate the effect in a well-
pronounced form in the case in which the driving frequency
exceeds, but is rather close to, the plasma frequency of the
junction.
The analytical approach to the problem was based on con-
T sideration of the interaction between plasma waves emitted
0.0 0.1 0.2 by the fluxon oscillating under the action of the ac drive and
Damping coefficient o the fluxon itself, after the waves complete the round trip
along the annular junction and hit the fluxon. In particular, a
FIG. 5. The threshold value of the amplitude of the ac drivingweaker effect, which is observed in the case in which the
field vs the dissipative constamt. The length of the annular Jo- driving frequency is smaller than the plasma frequency, may
sephson junction and driving frequency dre10 andw=1.12.  be explained by the emission of the plasma waves at the
The upper branch of the plot corresponds to the case in whiclkecond harmonic by the oscillating fluxon. The main finding
simulations start with a quiescent fluxon, and the drive’s amplitudeyhich the analytical consideration yields is possible instabil-
is gradually increased until the fluxon starts to drift. The lower |ty of the Zero-average-ve|ocity state of the fluxon interacting
branch corresponds to the opposite case in which the simulationgith its own radiation tails. The instability sets in if the
start with a fluxon moving under the action of a sufficiently strong §rjye’s amplitude exceeds an explicitly found threshold. The
drive, and the amplitude is gradually decreased until the ﬂuxonanalysis predicts that the effect is only possible if the phase
ceases to drift. shift ¢=kL of the radiation wave, gained after the round

. . . . . . trip, is such that sip<O0 [see Eq.(31)], and the threshold
relaxation of the dynamical regime to its established form IS, molitude stronaly depends see Eq.(30). Numerical
very slow in this case. A particular value that Eg0) yields P gl dep 9P, g-3b).

T - S results show a similar dependence, and analytically predicted
fac))r:ci—lg |ri15the (E?zsfos)rf\cl)vgmm'/:r:?csﬁ A;OaunthS, I;ejeleosa\?v(ijth values of the length of the annular junction at which the
what.caryl be);tg:ald off from. F’ig 5 gny ag threshold has well-pronounced minima are found to be in

T very good agreement with numerical findings, see E8®)
and(33). Additionally, the analysis predicts that the threshold
V. CONCLUSION amplitude remains finite as the dissipative constant is vanish-

This work presents a novel dynamical effect: systematid"d. which is also confirmed by the numerical results.
drift of a topological soliton in an ac-driven weakly damped
system with periodi(_: bounda_ry conditions. The effect has ACKNOWLEDGMENTS
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