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Progressive motion of an ac-driven kink in an annular damped system
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A novel dynamical effect is presented: systematic drift of a topological soliton in ac-driven weakly damped
systems with periodic boundary conditions. The effect is demonstrated in detail for a long annular Josephson
junction. Unlike earlier considered cases of the ac-driven motion of fluxons~kinks!, in the present case the long
junction isspatially uniform. Numerical simulations reveal that progressive motion of the fluxon commences
if the amplitude of the ac drive exceeds a threshold value. The direction of the motion is randomly selected by
initial conditions, and a strong hysteresis is observed. An analytical approach to the problem is based on
consideration of the interaction between plasma waves emitted by the fluxon under the action of the ac drive
and the fluxon itself, after the waves complete round trip in the annular junction. The analysis predicts
instability of the zero-average-velocity state of the fluxon interacting with its own radiation tails, provided that
the drive’s amplitude exceeds an explicitly found threshold. The result is valid if the phase shiftw of the
radiation wave, gained after the round trip, is such that sinw,0, the threshold amplitude strongly depending on
w. A very similar dependence is found in the simulations, testifying to the relevance of the analytical consid-
eration.
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I. INTRODUCTION

It is well known that progressive motion of topologic
solitons ~kinks! in lossy media can be supported by a
~constant! field which couples to the soliton’s topologica
charge@1#. In this case, the kink is, effectively, a quasipar
cle. The same quasiparticle approximation strongly sugg
that ac~time-periodic with zero mean value! field~s! applied
to the kink in an infinitely long homogeneous system c
only give rise to its oscillatory motion.

A more sophisticated possibility is to drive a kink by
pure ac force in a lossy system subjected to a periodic sp
modulation. In particular, spatial periodicity is an inhere
feature of discrete systems~dynamical lattices!. As was first
predicted in an analytical form for damped lattices of t
Frenkel-Kontorova~FK! and Toda types in Refs.@2# and@3#,
respectively, and for a periodically modulated lossy co
tinuum system of the sine-Gordon~sG! type in Ref.@4#, reso-
nances~of different orders! between the time-periodic driv
ing force and periodic passage of a moving kink through
spatial inhomogeneities make it possible to support prog
sive motion of the kink without any dc field. This mechanis
selects absolute values of the mean velocity of the ac-dr
kink which provide for the resonance of the orderm:n,

u5
mvL

2pn
, ~1!
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where v and L are the frequency of the ac drive and th
period of the spatial modulation. The sign of the velocity
determined by a random initial push applied to the kin
While the velocity selected by the locking condition~1! does
not depend on the amplitude of the ac drive, the driven p
gressive motion cannot take place unless the drive’s am
tude e exceeds a certain minimum~threshold! value e thr ,
which is usually proportional to the friction coefficien
@2–4#.

The effect was generalized to include a case when a c
bination of ac and dc fields is applied@5#. In this case, a
constant-velocity stepis predicted, in the form of an ac
frequency-locked value~1! of the mean velocity of the
driven kink in a finite interval of values of the dc compone
of the drive.

The possibility of stable ac-driven motion of the soliton
the lossy Toda lattice was later demonstrated in simulati
@6# and in a laboratory experiment with an electrical tran
mission line described by this model@7#. The search for such
regimes in FK models turned out to be more difficult, b
simulations have finally demonstrated that the soliton in
form of a dislocation may be driven with a nonzero me
velocity by the ac force@8#.

In terms of physical applications, the most appropria
medium where these effects may be realized is provided
long Josephson junctions~LJJs! @4,5#, which support topo-
logical solitons in the form of trapped fluxons~magnetic-flux
quanta @9#!. A convenient way to implement the period
spatial modulation in LJJs is to apply a constant~dc! mag-
netic field to an annular~and sufficiently long! junction, with
the field’s vector lying in the plane of the annular junction.

:
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this case, the full length of the ring-shaped junction plays
role of the modulation periodL in Eq. ~1!. Note that the use
of the LJJ of the annular shape is very natural also becau
preserves the number of fluxons trapped in it. The neces
drive can be readily provided by ac electric bias current d
tributed along the junction.

As was first proposed in Ref.@10#, this configuration
gives rise to a harmonic spatial modulation in the cor
sponding sG model, the modulation amplitude being prop
tional to the external magnetic field~the perturbation gener
ated by the magnetic field is formally tantamount to
additional spatially modulated dc drive with zero averag!.
The resonant relation~1! applies to this case, the periodL
being the circumference of the annular junction, as was m
tioned above. Experimental observation of the ac-driven m
tion of a fluxon in the annular LJJ in the presence of
constant magnetic field was reported in Ref.@11#, in the form
of nonzero dc voltage across the junction, induced by ac
current applied to it.

A related issue is progressive motion of the fluxon un
the action of a pure ac drive, or even a random drive, in
so-calledratchet~asymmetric! effective potential@12#. How-
ever, a principal difference is that, in the case of the ratc
there is ana priori selected preferred direction of motion
Experimental realization of a ratchet for fluxons in LJJs w
very recently reported in Ref.@13#.

Thus, ac-driven progressive motion of a topological so
ton in an indefinitely long lossy system can only be possi
if it is assisted by the spatial periodic modulation. The o
jective of this work is to show, both numerically and analy
cally, that, quite surprisingly, the ordinary spatially unifor
ac drive may support progressive, on average, motion
fluxon in either direction in the perfectlyuniform annular
junction with nonzero losses, provided that the amplitude
the drive exceeds a certain threshold value. The effec
clearly stipulated by the finite size of the ringlike junctio
being possible because a fluxon perturbed by the driv
field may emit small-amplitude~quasilinear! waves~radia-
tion, alias ‘‘plasmons’’ or ‘‘phonons’’! propagating along the
junction and eventually hitting the same fluxon.

We note that a somewhat similar effect was observed
numerical simulations reported recently@14,15#, which, how-
ever, was related to the above-mentioned ratchet mecha
supporting unidirectional motion of ac-driven fluxons, a
the ac drive was always a two-frequency one. It was sta
that the progressive motion is possible due to the simu
neous action of driving forces oscillating at frequenciesv
and 2v in the absence of a static spatial potential. We str
that in our work the ac drive is always represented by
single-frequency harmonic.

The rest of the paper is organized as follows. Numeri
results which show the ac-driven progressive motion of
fluxon are displayed in Sec. II. A theoretical explanation, t
reflects our understanding of the effect, which is based
interaction of the fluxon with its own radiation ‘‘tails,’’ is se
forth in Sec. III. Comparison of the analytical and numeric
results is presented in Sec. IV, and Sec. V concludes
work.
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II. NUMERICAL RESULTS

A. The model and computational procedure

The ac-driven weakly damped annular Josephson junc
is described by the well-known perturbed sG equation for
Josephson phasef(x,t) @9#,

fxx2f tt2sinf5af t2gacsin~vt !, ~2!

where the subscripts stand for the partial derivatives, the
ordinatex, running along the junction, and the timet are
normalized so that the Josephson penetration length
plasma frequency are both equal to 1,a is the damping
coefficient, andgac is the amplitude of ac drive. In the infi
nite system without perturbations (a5gac50), the fluxon is
described by the kink solution to the sG equation,

ffl54 arctanFexpS s
x2j~ t !

A12u2D G , ~3!

whereu is the velocity of the fluxon,s561 is its polarity,
andj is the instantaneous coordinate of its center, which
j(t)5j01ut in the case of free motion of the fluxon. If
single fluxon is trapped in the annular junction, Eq.~2! is
supplemented by the boundary conditions~b.c.!

f~L,t !5f~0,t !12p, ~4!

fx~L,t !5fx~0,t !, ~5!

whereL is the circumference of the ring.
Equation~2! with b.c.~4! and~5! was simulated by mean

of the ‘‘STKJJ’’ software package, described in detail els
where @16#. The results have been checked by compar
them with simulations carried out with the ‘‘SOLITON’’ pack-
age @17#, and good agreement was found in all the ca
considered.

The simulations were performed as follows. We star
with an initial state corresponding to a fluxon trapped in t
system at the zero amplitude of ac drive. Then the amplit
was increased by small stepsDgac, each time calculating the
average dc voltageVdc across the junction,

Vdc[
1

2pTLE0

T

dtE
0

L

dx f t~x,t !

[
1

2pTLE0

L

dx @f~x,T!2f~x,0!#, ~6!

where T is a sufficiently large time-averaging interval@in
physical units, the average voltage is given by the expres
~6! multiplied by the magnetic flux quantumF0#. The value
of T was taken as a multiple of the ac drive’s period 2p/v.

The dependenceVdc(gac) characterizes the average velo
ity of the progressive motion of the fluxon in the annul
junction. Indeed, substituting a solution for the movin
fluxon in the formf(x,t)5ffl@x2j(t)#, see Eq.~3!, into
the first integral expression in Eq.~6!, we obtain
3-2
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Vdc[
1

2pTLE0

T

dt
dj

dtE0

L

dx ffl8@x2j~ t !#

5
1

2pTLE0

T

dt
dj

dt
@ffl~L,t !2ffl~0,t !#

5
1

TLE0

T

dt
dj

dt
, ~7!

where b.c.~5! was used. A natural definition of the fluxon
average velocity being

ū5
1

TE0

T

dt
dj

dt
,

Eq. ~7! yields an expression for the average velocity in ter
of the average dc voltage,

ū5LVdc. ~8!

The results of the simulations are displayed below in
form ū5ū(gac), using numerically found dependenc
Vdc(gac) and the relation~8!. This way of the presentation o
results is the most appropriate one if the objective is to lo
for dynamical regimes with a nonzero average velocity of
ac-driven kink.

For some values ofgac the motion of the fluxon is appar
ently chaotic~see below!. In such cases, the average veloc
calculated with Eq.~7! will not converge asT→`. To avoid
this problem, we used two different averaging procedure

~i! The averaging was made simply over one period 2p/v
of the ac drive, and the amplitudegac was changed in ex
tremely small steps,dgac50.0001, while, otherwise,dgac
50.01 is used. This, in a sense, means that instead of
point on theū(gac) dependence we get 100 closely situat
points. If the dynamics is chaotic, those 100 points will ha
a large spread inū. On the other hand, all the points will giv
almost equal values ofū if the dynamics is regular and av
eraging converges. Although some artifacts may app
around bifurcation points, this technique provides very go
insight into dynamical states of the system.

~ii ! The averaging was performed iteratively for gradua
increasing values ofT until the convergence ofū with the
accuracy 0.001 was reached, but not longer than foT
51000. In this case, for the nonchaotic states the avera
gives the true value of equilibrium average velocityū, while
for chaotic states averaging was interrupted atT51000, and
the corresponding nonconverged value ofū was included
into the plot.

Results produced by means of both methods will be d
played below.

B. The ac-driven progressive motion

First, we present dependencesū(gac) generated by the
averaging method~i!. Four characteristic examples of th
dependences, obtained by increasing~gray points! and de-
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creasing~black points! the drive’s amplitudegac for the an-
nular LJJ of the lengthL510, with the dissipation constan
a50.1 and four different values of the driving frequencyv,
are shown in Fig. 1. In Fig. 1~a!, corresponding tov50.75,
the average velocity of the fluxon remains zero in the reg
gac,0.38. However, in the interval 0.38,gac,0.6, the av-
erage velocity isdifferent from zero, which means that th
fluxon moves, on average, in one direction. As one see
Fig. 1~a!, the signs of the average velocity are different f
the branches of the characteristicū(gac) corresponding to

FIG. 1. The dependencesū(gac) obtained by sweepinggac up
~black points! and down~gray points! at four different frequencies
of the ac drive:v50.75 ~a!, v51.05 ~b!, v51.12 ~c!, and v
51.20 ~d!. The length of the annular junction isL510, and the
damping coefficient isa50.1.
3-3



f

-

l

GOLDOBIN, MALOMED, AND USTINOV PHYSICAL REVIEW E 65 056613
FIG. 2. The coordinate of the
fluxon’s center as a function o
time for the ac drive’s frequency
v51.05 @which corresponds to
the case shown in Fig. 1~b!# and
different values of the drive’s am
plitude gac: 0.2 ~a!, 0.4 ~b!, 0.5
~c!, and 0.8 ~d!. The rightmost
plot shows the driving ac signa
sin(vt) vs time.
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‘‘sweeping up’’ and ‘‘sweeping down,’’ i.e., increasing an
decreasinggac. Due to the symmetry of the system, the
signs are actually picked up randomly, depending on the
tial conditions and peculiarities of the simulations, such
the waygac was varied.

At the frequencyv51.05, corresponding to Fig. 1~b!, the
fluxon is set into motion in the regiongac.0.1. The average
velocity ū increases withgac, but atgac'0.26 a transition to
a chaoticlike behavior takes place. In the latter case, the
eraging over a long time interval does not produce any d
nite value of the mean velocity. Closer inspection of th
region shows that we are dealing not with true chaos,
rather with a deterministic quasiperiodic regime with a no
zero average velocity. In particular, the fundamental f
quency of the corresponding time series is, effectively,
commensurate with the ac driving frequency in this ca
which is why the average velocity cannot be effectively c
culated using the algorithm described above.

Continuing the consideration of Fig. 1~b!, we notice a
split branch in the interval 0.48,gac,0.54, where the aver
age velocity isū'0.3. Accurate inspection shows that th
averaging during one period yields a point belonging to o
branch, while averaging over the next period produce
point situated on the other branch, and so on. This means
the fundamental frequency of the oscillatory component
the fluxon’s motion ishalf the driving frequency. While gen
eration of higher harmonics is common to all nonlinear s
tems, the appearance of subharmonics is a more specifi
fect, implying the existence of a certain form of paramet
instability. For larger values ofgac, the system enters th
region of chaos, which is shortly interrupted by a determ
istic branch with a nonzero average velocity in the inter
0.75,gac,0.80.

For driving frequencies that are;10% –20% higher than
the Josephson plasma frequency~which is 1 in the notation
adopted above!, one can observe the fluxon’s motion with
nonzero average velocity in a broad range ofgac, see Figs.
1~c! and 1~d!. It is noteworthy that the average velocity ma
attain relatively large values, which become comparable
the Swihart velocity of the junction ([1 in our notation!.
For instance, in Fig. 1~d! ū'0.5 atgac50.5, and reaches th
value'0.7 for larger values ofgac.

It is also interesting to note that the dependenceu(gac)
shown in Fig. 1~d! features an additional step atgac'0.6,
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which suggests that there are two different mechanis
which generate the nonzero average velocity. The additio
step may correspond to switching of the system betw
these two different mechanisms. To visualize the fluxon m
tion, in Fig. 2 we present the law of motion,j(t), of the
fluxon’s center for different values of the ac driving amp
tude and fixed driving frequencyv51.05, which corre-
sponds to the dependenceū(gac) shown in Fig. 1~b!. It is
clearly seen in Fig. 2~a! that, indeed, atgac50.2 a systematic
drift of the fluxon in one direction is superimposed on pe
odic oscillations. In Fig. 2~b!, which corresponds to the qua
siperiodic motion atgac50.4, we see that the fluxon motio
is qualitatively similar to that displayed in Fig. 2, but it
less regular and nonperiodic.

The fluxon’s law of motion for the case which corre
sponds to the generation of the subharmonic atgac50.5 is
shown in Fig. 2~c!. One can easily see that the period of t
oscillatory part of the soliton’s motion in this case is inde
twice the period of the ac drive, as the trajectories lo
slightly different during alternating~even and odd! periods of
the ac drive.

Finally, in Fig. 2~d! one can see the trajectories corr
sponding to the pointgac50.8, which belongs to a narrow
window in Fig. 1~b!, where a deterministic law of motion
becomes stable again. Qualitatively, this plot is similar
that in Fig. 2~a!, but has a higher average velocity.

Results produced by the averaging method~ii ! are dis-
played, forv51.05, in Fig. 3~a!. As is seen from the com
parison of this figure with Fig. 1~b!, details of the pictures
generated by the averaging procedures~i! and~ii ! are some-
what different inside the chaotic regions. Nevertheless, b
methods identify the same regions of the regular motion,
yield the same dependencesū(gac) in the regular cases. In
fact, the consideration of the regular motion with nonze
average velocity, rather than of chaotic regimes, is the m
subject of this work.

Our numerical simulations of the perturbed sG equat
~2! used a finite-difference scheme. Since the ac-driven p
gressive motion of kinks is possible in indefinitely long di
crete lossy lattices@2,3,6,8#, it is necessary to check that th
effects reported above are not artifacts produced by the
cretization of the model. To this end, simulations were r
with the smaller value of the step sizeDx of the finite-
difference scheme. Comparing the results, we have c
3-4
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PROGRESSIVE MOTION OF AN AC-DRIVEN KINK IN . . . PHYSICAL REVIEW E65 056613
cluded that they are almost identical, except for small va
tions in the location of the thresholds at which the syst
switches from one state to the other. For example, Fig. 3~b!

displays the dependenceū(gac) obtained for the same case
in Fig. 1~b!, but with Dx50.005, rather thanDx50.01 used
in Fig. 1~b!. As for the different signs of the average veloci
in some regions of the regular motion in Figs. 1~b! and 3~b!,
this sign is always randomly selected by the initial con
tions, as was explained above.

The numerical results presented above clearly dem
strate that progressive motion of a fluxon can indeed be s
ported, in either direction, by the uniformly distributed
drive ~bias current! in annular uniform weakly damped LJJ
An explanation of this effect will be proposed in the ne
section.

III. ANALYTICAL CONSIDERATION

A. Radiation waves emitted by the ac-driven fluxon

The analysis developed below is based on a basic p
erty of the system under consideration: the fluxon oscillat
under the action of the ac drive emits plasma waves in b
directions, and, due to the annular shape of the junct
these waves interact with the same fluxon after completin
round trip. However, this property does not offer an imm
diate explanation of the possibility that the fluxon will b
able to systematically drift in one direction, if pushed in
tially. Therefore, a detailed analysis is necessary, which
developed below.

FIG. 3. The dependenceū(gac) produced using~a! the alterna-
tive averaging procedure@cf. Fig. 1~b!# and ~b! a smaller spatial
step of the finite-difference integration scheme. The scattered p
in panel~a! are those at which the averaging did not converge, t
they mark regions of the chaotic motion of the ac-driven fluxon
05661
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As is known from earlier works on the perturbation theo
~PT! for the sG equation~see a review@1#!, a kink ~fluxon!
oscillating, without any systematic progressive motion, u
der the action of the ac drive emits radiation, in the low
approximation, to the left and to the right at two wave nu
bers6k, where

k5Av221, ~9!

provided thatv.1, i.e., that the driving frequency exceed
the plasma frequency of the junction. Ifv,1, the emission
takes place in higher orders of PT~at higher harmonics!.

Here, we concentrate on the casev.1. The numerical
results~both those displayed in Fig. 1 and those which a
not shown here! suggest that the strongest effect takes pla
when (v221) is a positive but relatively small parameter.
this case, the application of PT, which needs the drive’s a
plitude gac and the damping coefficienta to be small, pre-
dicts that the oscillating fluxon emits two waves, which, f
from the fluxon, have the following form~neglecting, for the
time being, the action of the dissipation!:

f65A0sin~6k x2vt !. ~10!

The amplitude of the two emitted waves is predicted by
to be @1#

A05gac/k
2, ~11!

which is correct if

k2@gac
2/3 and k2@a. ~12!

In fact, the former inequality does not hold in many cas
when the simulation reveals the progressive motion of
ac-driven fluxon, but this is not a principal limitation: instea
of the expression~11!, one can use more general ones~6.23!
and ~6.18! from Ref. @1#. In such a case, a relation betwee
A0 and the drive’s amplitudegac is more complex than tha
given by Eq.~11!, but there will be no essential change in th
analysis presented below, nor significant changes in the fi
results.

Attenuation of the emitted waves due to the presence
the loss term in Eq.~2! will play a crucially important role
below. To consider the attenuation, it is convenient to us
reference frame (x8,t8) moving at a constant velocityū,
which, as well as in the previous section, is the average
locity of the fluxon~if it moves on average!. In the analysis,
we will treat ū as the smallest parameter, in comparison w
gac, a, and v221[k2, the main objective being to show
that, at a certain threshold value (gac)thr of the ac drive’s
amplitude, the state withū50 becomesunstable, and a sym-
metric pair of new nontrivial states with finite but very sma
average velocities6 ū appears as a result of an instabilit
triggeredpitchfork bifurcation @18# if gac slightly exceeds
g th .

In the moving reference frame, the linearized version
Eq. ~2!, which governs the propagation and attenuation of
radiation waves, becomes

ts
s

3-5
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fx8x82f t8t82f5
a

A12ū2
f t82

av

A12ū2
fx8 , ~13!

wherex85(x2ūt)/A12ū2 and t85(t2ūx)A12ū2. A sta-
tionary shape of the radiation wave in the moving refere
frame is sought for as@cf. Eq. ~10!#

f65A6~x8!sin~6Av8 221x82v8t8!, ~14!

where a slow dependenceA(x8) is produced by the dissipa
tive damping of the wave, andv8 is the driving frequency in
the moving reference frame,

v85
v

A12ū2
. ~15!

In the first approximation, which assumes that both the l
constanta and the average velocityū are small, the substi
tution of Eq.~14! into Eq. ~13! gives rise to an equation

dA6

dx8
57

a

2ugr8
~16ugr8 ū!A6 , ~16!

where the notation for the radiation wave’s group veloc
was introduced,

ugr8 [
dv8

dk8
5Av8 221/v8'k@11ū2/~2k2!#. ~17!

To obtain the final expression in Eq.~17!, it was assumed
that, in accord with what was said above,ū2!k2!1 ~hence
the second term in the square brackets is a small correct!.

A solution to Eq.~16! is obvious:

A6~x8!5A0expF2
a

2ugr8 A12ū2
~16ugr8 ū!Ux8UG . ~18!

In particular, we will need the value of the emitted wave
amplitude after the completion of the round trip, fromx8

50 to x85L85LA12ū2, where the Lorentz contraction i
taken into account. According to Eqs.~18! and~17!, we find

A6~L8!5Ã0S 17
1

2
aLūD , ~19!

where

Ã0[A0expS 2
aL

2ugr8
D

'A0expS 2
aL

2k D S 11
aLū2

4k3 D ~20!

~hereafter, it is implied thatk[Av221 is taken as a positive
square root!. As was said above, the fundamental assump
05661
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in the analysis is that the velocityū is very small. Neverthe-
less, small corrections;ū and ;ū2, which are retained in
Eqs.~19! and ~20!, respectively, will play an important role
below.

B. Dragging the fluxon by the radiation waves
in the circular system

As we are dealing with the circular system, each emit
wave, after having completed its round trip, strikes t
fluxon and exerts some dragging force acting on it. Dragg
a kink by a radiation wave passing through it was analyz
in detail in Ref.@19#. It was found that a nonzero draggin
force appears at the second order in the dragging wa
amplitude, provided thataÞ0. An expression for the drag
ging forces induced by the two wavesf6 can be shown to
take the following form:

Fdrag
6 56~p/4!2akA6

2 ~21!

~this expression assumes that the kink’s mass is normal
to be 1). However, taking the expressions~19! for the am-
plitudesA6 and substituting them into the expression~21!,
one can readily see that the resultant force, produced by
asymmetry between the two waves, would not be accele
ing, butbraking the fluxon’s motion.

A key point for the explanation of the possibility of th
ac-driven progressive motion is to notice that the waves~14!
act on the fluxon in combination with the direct ac drive. T
take all the forces into account, a known perturbative te
nique may be applied@1#: the net wave field is sought for in
the form

f~x,t !5c~x,t !1f0~ t !1f1~x,t !1f2~x,t !, ~22!

wherec(x,t) is the field of the fluxon,f6 are the emitted
waves~10!, and

f0~ t !'2~gac/k
2!sin~vt ! ~23!

is a term representing uniform background oscillations g
erated by the ac drive, as follows from a straightforwa
solution to the linearized equation~2! ~recall that k
[Av221). Then, an effective equation for the fluxon fie
c is obtained by the substitution of the combination~22! into
the underlying perturbed sG equation~2!, expansion of sinf,
and taking into regard the expression~23! for the background
component of the field. The final result~written in the labo-
ratory reference frame! is

c tt2cxx1sinc1ac t

52~12cosc!$Ã0@sin~kx2vt1kL!

1sin~2kx2vt1kL!#2 1
2 aLÃ0ū@sin~kx2vt1kL!

2sin~2kx2vt1kL!#1~gac/k
2!sin~vt !%, ~24!

where the amplitudeÃ0 is defined by Eq.~20!, and the cor-
rections7(1/2)aLū from Eq. ~19! are taken into account
The phase shiftkL appearing on the right-hand side of E
3-6



th
h
o

o

th
to
in

xp
re
r
o
-

o

n
n
w

-
id
a

f
be
he

s-

ed

-

lly
of
al
ld
-

ult
to

the
-

ic

.
ion

in

uld

-
r

PROGRESSIVE MOTION OF AN AC-DRIVEN KINK IN . . . PHYSICAL REVIEW E65 056613
~24! is accumulated by the wave after the completion of
round trip along the ring. Note that the renormalization of t
driving amplitude in the first term on the right-hand side
Eq. ~24! is quite essential in the present case, whenk2[v2

21 is small.
It is straightforward to derive in the lowest~adiabatic!

approximation@1# an equation of motion for the coordinatej
of the fluxon driven by the terms on the right-hand side
Eq. ~24!. In the ‘‘nonrelativistic’ approximation~for small
velocities!, it takes the form

d2j

dt2
1a

dj

dt
5

sp

4
~gac/k

2!sin~vt !1Ã0@sin~vt2kL2kj!

1sin~vt2kL1kj!#2
1

2
aLÃ0ū

3@sin~vt2kL2kj!2sin~vt2kL1kj!#

~25!

@recall thats561 is the fluxon’s polarity, see Eq.~3!#.
The right-hand side~r.h.s.! of Eq. ~25! may be expanded

for small j. Then one concludes that the first term and
following pair of terms on the r.h.s. are essentially similar
each other~in the lowest approximation, they do not conta
j), but, with regard to Eqs.~11! and ~20!, the amplitude in
front of the latter pair of terms,Ã0, differs from the ampli-
tude in front of the first term by the exponential factor e
@2aL/(2k)#, which we assume to be small enough. The
fore, this pair may be neglected, and, keeping a term linea
j which is produced by the expansion of the last pair
terms on the r.h.s. in Eq.~25!, we arrive at a simplified equa
tion of motion for the driven fluxon,

d2j

dt2
1a

dj

dt
5

sp

4 Fgac

k2
sin~vt !

1aLÃ0kū cos~vt2kL!jG . ~26!

We seek a solution to Eq.~26! in a natural form~similar to
that employed in Ref.@19#!,

j~ t !52
spgac

4k2
sin~vt !1j0~ t !, ~27!

where the first term is a response to the ac driving force
the r.h.s. of Eq.~26! ~we neglect a small correction to it from
the friction force on the left-hand side of the equation, a
set 1/v2'1, which is true in the case under consideratio!,
and the termj0(t) takes into account a possibility of a slo
systematic motion~drift! of the fluxon.

In the next approximation, we replace the multiplierj(t)
in the second term on the r.h.s. of Eq.~26! by the first term
from the expression~27!. In order to single out terms con
tributing to the slow drift, we perform averaging in the rap
oscillations. Thus we arrive at an effective evolution equ
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tion for the slow variablej0, in which dj0 /dt may be iden-
tified by the average velocityū of the systematic motion o
the fluxon. Finally, the equation for the slow motion can
cast into the form of a first-order evolution equation for t
average velocity,

dū

dt
52aū2

p2LÃ0g (ac)

32k
~aū!sin~kL!. ~28!

The amplitudeÃ0 in Eq. ~28! can be replaced by the expre
sions~11! and ~20!, which casts the equation into a form

dū

dt
5F ~gac!

2

g thr
2

21Gaū

2
1

2 S pLagac

8k3 D 2

expS 2
aL

2k D sin~kL!ū3, ~29!

where the threshold value of the drive’s amplitude is defin
as

g thr
2 [2

~32/p2!k3

L sin~kL!
expS aL

2k D . ~30!

The equation of motion~29! has a trivial stationary solu
tion ~trivial fixed point, FP! ū50, which, obviously, corre-
sponds to no systematic motion of the fluxon. A crucia
important issue is the stability of this FP. The linearization
Eq. ~29! for ū→0 immediately demonstrates that the trivi
FP isunstableif the drive’s amplitude exceeds the thresho
value given by Eq.~30!. In this case, a transition to a non
trivial regime with anonzero velocityof the progressive mo-
tion ~in other words, a bifurcation! must take place.

An essential feature of the expression~30! is its depen-
dence on the phasekL gained by the emitted wave as a res
of the round trip. In fact, the ac-driven motion is predicted
exist only if g thr

2 .0, or, as it follows from Eq.~30!,

sin~kL!,0. ~31!

In the opposite case, the effect is absent, or, possibly,
threshold amplitude is very large~then the perturbative ap
proach is irrelevant!.

If gac
2 .g thr

2 .0, the existence of two mutually symmetr

nontrivial FPs, with finite velocities6ū, may be expected
One can try to find these velocities close to the bifurcat
point, i.e., for a case 0,gac

2 2g thr
2 !g thr

2 , taking into account
the cubic corrections in Eq.~29!. In fact, in the particular
approximation in which the cubic term, which is present
Eq. ~29!, was derived, a formal result will beū2,0, which,
actually, implies that the bifurcation issubcritical, i.e., it
takes place by a finite jump; in the opposite case, one sho
expect a soft supercritical transition~corresponding to a bi-
furcation of the usual pitchfork type@18#! without a jump.

The bifurcations observed in Fig. 1~a! and, especially, in
Fig. 1~b! look very much like a supercritical pitchfork bifur
cation, while Figs. 1~c! and 1~d!, corresponding to large
3-7
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values of the parameterk2[v221, strongly suggest that
subcritical bifurcation~the one giving rise to a jump! takes
place in these cases. In many other runs of the simulati
not displayed here, we observed a very similar trend, nam
to have a supercritical bifurcation for very small values ofk2

and a transition to a subcritical bifurcation at somew
largerk2. An accurate prediction of the type of the bifurc
tion ~subcritical or supercritical! is a rather difficult issue, as
it demands precise summation of the lowest-order nonlin
corrections at the orderū2, which may originate from many
different terms in the above analysis.

Lastly, we note that the case shown in Fig. 1~a!, with the
driving frequencyv50.75, which is smaller than 1, canno
be directly explained in the framework of the approach
veloped here. However, it seems very plausible that the
sistent motion of the ac-driven fluxon in this case can
explained if one takes into account the fact that the k
oscillating under the action of the driving frequencyv,1
emits radiation at the second-harmonic frequency 2v, pro-
vided that 2v.1 @1#, which is the case in Fig. 1~a!. In ac-
cord with this, the effect seen in Fig. 1~a! is very weak be-
cause it is accounted for by the second order of PT.

IV. COMPARISON OF ANALYTICAL
AND NUMERICAL RESULTS

The main prediction of the analysis presented in the p
vious section is the loss of stability of the zero-avera
velocity state of the fluxon in the ac-driven weakly damp
annular uniform LJJ. As a result, the fluxon must inevitab
perform a transition to a nontrivial state with a nonzero a
erage velocity, which we consider as the cause for the ef
revealed by the simulations. Besides that, the analysis m
in principle, predict the character of the bifurcation—
supercritical or subcritical.

While the comparison of the particular type of the analy
cally predicted bifurcation with results of the simulations is
sophisticated problem, it is much more straightforward~and
more important! to compare the theoretically predicted a
numerically found points of the transition to the progress
motion, i.e., as a matter of fact, dependences of the thres
amplitude of the ac drive on various parameters of the s
tem. A crucially important prediction of the analysis is th
fact that the transition to the nonzero velocity occurs~within
the framework of the perturbation theory! only in those in-
tervals of values of the ring’s lengthL ~if all the other pa-
rameters are fixed! where the condition~30! holds. Another
important and, at the same time, simple prediction is that
threshold value~30! remains finite~neither vanishes nor di
verges! in the limit a→0.

Comparing the analytical and numerical results, we
cused on these two basic features. In Fig. 4, the thres
value of the ac drive’s amplitude, as found from the simu
tions, is plotted versus the lengthL of the annular junction
for fixed valuesv51.12 anda50.1. Salient peculiarities o
the dependence are the existence of two minima at

~Lmin
(1) !num'8.5,~Lmin

(2) !num'20.5. ~32!
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On the other hand, the value of the wave number correspo
ing to v51.12 is k'0.53 @see Eq.~9!#, and Eq.~30! then
predicts minimum values of the threshold at the points wh
sin(kL)521, i.e., at

~Lmin
(1) ! theor5

3p

2k
'8.95,~Lmin

(2) ! theor5
7p

2k
'20.90. ~33!

Comparison of the numerical results~32! with the analytical
predictions~33! demonstrates very good agreement.

Figure 4 also shows thatg thr diverges at some point be
tween the two minima, and in a part of the region betwe
them, where the data are absent in the figure, the effect d
not take place at all~or the threshold is extremely high!. This
feature also agrees well with the theoretical prediction~30!,
which yields divergences at pointsL5pn/k with integern,
and nonexistence of the effect in the intervals where the c
dition ~31! does not hold. However, unlike the minim
points, detailed comparison of the numerically found a
analytically predicted positions of the divergence points
not relevant, as the perturbation theory which was used
derive Eq.~30! clearly breaks down in a vicinity of the di
vergence points.

To verify the analytical prediction for the threshold am
plitude of the ac drive as a function of the dissipative co
stanta, the dependenceg thr(a) is shown in Fig. 5. The first
noteworthy feature of the plot is strong hysteresis. For
comparison with the analytical prediction, the releva
branch is the upper one, which corresponds to ‘‘sweep
up,’’ i.e., gradual increase ofgac, as precisely in this case w
can detect the point at which the zero-average-velocity s
becomes unstable and the fluxon starts its progressive
tion.

As it is evident in Fig. 5, this branch of the dependence
g thr versusa indeed yields a finite value in the limita→0,
as is predicted by Eq.~30!; it should be stressed, though, th
accurate simulations are quite difficult for very smalla, as

FIG. 4. The minimum~threshold! value of the amplitude of the
ac driving field, at which the progressive motion of the fluxon co
mences, vs the length of the annular Josephson junction, as f
from the numerical simulations. The driving frequency and dissi
tive constant arev51.12 anda50.1.
3-8
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relaxation of the dynamical regime to its established form
very slow in this case. A particular value that Eq.~30! yields
for a50 in the case shown in Figs. 4 and 5, i.e.,L510 and
v51.12, is g thr(a50)'0.2, which roughly agrees with
what can be read off from Fig. 5.

V. CONCLUSION

This work presents a novel dynamical effect: systema
drift of a topological soliton in an ac-driven weakly damp
system with periodic boundary conditions. The effect h
been demonstrated in a physically relevant model of a l
Josephson junction in the form of a ring, where fluxons p
the role of kinks, and the ac drive is realized as bias curr
uniformly applied to the junction. Unlike earlier considere
cases of progressive motion of the ac-driven fluxon, in
present case the long junction and the ac driving force
spatially uniform. Numerical simulations reveal that progre

FIG. 5. The threshold value of the amplitude of the ac drivi
field vs the dissipative constanta. The length of the annular Jo
sephson junction and driving frequency areL510 andv51.12.
The upper branch of the plot corresponds to the case in w
simulations start with a quiescent fluxon, and the drive’s amplitu
is gradually increased until the fluxon starts to drift. The low
branch corresponds to the opposite case in which the simula
start with a fluxon moving under the action of a sufficiently stro
drive, and the amplitude is gradually decreased until the flu
ceases to drift.
tt

o
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sive ~on average! motion of the fluxon commences if th
amplitude of the ac drive exceeds a certain threshold va
With the increase of the amplitude, both regular and cha
dynamical regimes are observed. The direction of the p
gressive motion is randomly selected by initial condition
and regular dynamical regimes are characterized by str
hysteresis. The simulations demonstrate the effect in a w
pronounced form in the case in which the driving frequen
exceeds, but is rather close to, the plasma frequency of
junction.

The analytical approach to the problem was based on c
sideration of the interaction between plasma waves emi
by the fluxon oscillating under the action of the ac drive a
the fluxon itself, after the waves complete the round t
along the annular junction and hit the fluxon. In particular
weaker effect, which is observed in the case in which
driving frequency is smaller than the plasma frequency, m
be explained by the emission of the plasma waves at
second harmonic by the oscillating fluxon. The main findi
which the analytical consideration yields is possible insta
ity of the zero-average-velocity state of the fluxon interact
with its own radiation tails. The instability sets in if th
drive’s amplitude exceeds an explicitly found threshold. T
analysis predicts that the effect is only possible if the ph
shift w[kL of the radiation wave, gained after the roun
trip, is such that sinw,0 @see Eq.~31!#, and the threshold
amplitude strongly depends onw, see Eq.~30!. Numerical
results show a similar dependence, and analytically predic
values of the length of the annular junction at which t
threshold has well-pronounced minima are found to be
very good agreement with numerical findings, see Eqs.~32!
and~33!. Additionally, the analysis predicts that the thresho
amplitude remains finite as the dissipative constant is van
ing, which is also confirmed by the numerical results.
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