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Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties

Nikos K. Efremidis and Demetrios N. Christodoulides
Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015

~Received 18 January 2002; published 2 May 2002!

We show that the discrete diffraction properties of a nonlinear optical zigzag waveguide array can be
significantly modified, by exploiting the topological arrangement of the lattice itself. This introduces extended
interactions~beyond nearest neighbors!, which, in turn, affect the lattice dispersion relation within the Brillouin
zone. As a result of this band alteration, we demonstrate that altogether different families of discrete soliton
solutions are possible, which are stable over a wide range of parameters. In the regime where instabilities
occur, all scenarios are considered in detail. By appropriately engineering the geometrical configuration of the
array we find both standing and traveling diffraction-free beams. Our method opens opportunities for diffrac-
tion management that can be employed to generate low-power spatial discrete optical solitons.
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I. INTRODUCTION

Discrete solitons in nonlinear lattices are, by nature, s
localized modes that owe their existence to the interplay
tween coupling and nonlinear effects. In the last few yea
the study of discrete solitons~DS! has been a subject o
intense investigation in several branches of science~see, for
example, the review papers of Ref.@1#!. Among the known
discrete nonlinear differential equations describing such s
tems, the discrete nonlinear Schro¨dinger equation~DNLS!
plays a prominent role. In particular, discrete solitons of
DNLS-type have been suggested in many diverse area
physics such as, for example, in biology@2#, nonlinear optics
@3#, in molecular crystals@4#, atomic chains@5#, as well as in
dilute Bose-Einstein condensates@6#.

In optics, nonlinear waveguide arrays@3# provide an ex-
cellent environment for the generation and the experime
observation@7# of discrete solitons. In this case, spatial D
are possible as a result of the balance between discrete
fraction ~arising from linear coupling effects! and waveguide
nonlinearity. So far, several aspects concerning the beha
of optical discrete solitons have been investigated@8–12#.
These include, for example, DS dynamics@11# and interac-
tions @8,9#, as well modulational instabilities@13#. Other
types of self-trapped states, e.g., optical vortices, have
been considered@14#.

In a recent study, it was also shown that DS in tw
dimensional networks of nonlinear waveguide arrays can
used to realizeintelligent functional operationssuch as
blocking, routing, logic functions, time gating, etc.@15#. In
particular, this class of solitons can be all optically naviga
anywhere in the nonlinear lattice. In this case, the ar
branches behave like ‘‘soliton wires’’ that guide a DS alo
preassigned paths@16#. Even more importantly, discrete sol
tons can be routed at array intersections using vec
incoherent interactions with other DS. In essence, these
tersections act like discrete solitonswitching junctions@17#.

Another issue that has lately received considerable at
tion is that ofdiffraction managementin waveguide arrays
@18–20# and diffraction managed discrete spatial solito
@21#. In this respect, different families of discrete solito
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can be obtained by exploiting the spatial dispersion prop
ties of the lattice. Thus, unlike bulk solitons, both bright a
dark DS can be observed in the same nonlinear materia
respective of the type of the Kerr nonlinearity~self-focusing
or defocusing! @18–20#. What makes this possible is the fa
that the diffraction behavior of the array can be essentia
inverted. For example, dark~bright! DS can be observed in
self-focusing~defocusing! arrays, provided that their ‘‘mo-
mentum’’ is located at the end of the Brillouin zone. In a
dition, the array diffraction can be minimized at the infle
tion point of the dispersion curve, thus allowing, to lowe
order, diffraction-free propagation@18#. At this point, it is
perhaps important to note that in arrays with linear topolo
~i.e., with all the waveguides lying in the same plane!, the
dispersion behavior of the lattice remains always the sa
This in turn does not allow any flexibility in terms of shapin
the discrete diffraction properties of the array. Thus,
question naturally arises as to whether one canengineer
these properties by utilizing novel geometrical configuratio
in a two-dimensional environment.

In this paper we show that the discrete diffraction prop
ties of a nonlinear optical waveguide array can be sign
cantly modified, by exploiting the topological arrangeme
of the lattice itself. This introduces extended interactions~be-
yond nearest neighbors! that, in turn, affect the lattice disper
sion relation within the Brillouin zone. For demonstratio
purposes, we apply our method in a zigzag array that
exhibit, in addition, strong second-order couplings. As a
sult of this band alteration, we demonstrate that comple
different families of discrete soliton solutions are possible
such arrays which are stable over a wide range of par
eters. These include staggered (p out of phase! bright DS in
self-focusing media as well as dark staggered DS in defoc
ing systems. In the regime where instabilities occur, all s
narios are considered in detail. More specifically, we fi
that in a certain parameter space, in phase bright solitons~in
self-focusing arrays! can exhibit bistable behavior wherea
bright staggered DS can disintegrate as a result of oscilla
instabilities. In addition, we show that for certain configur
tions, discrete diffraction effects~up to third order! can be
eliminated. Our method opens up opportunities for diffra
©2002 The American Physical Society07-1
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tion management that can be employed to generate
power discrete spatial solitons.

II. PHYSICAL MODEL

Figure 1 depicts an array of optical waveguides in a z
zag arrangement. In this array,D is the distance betwee
‘‘nearest’’ neighbors andu is the angle between the line
connecting thenth element of the array with its neighbo
(n61). Because of this new topological configuration, it
also essential that one also considers linear coupling eff
between thenth site and its second-order neighbors (n62).
From Fig. 1, these latter elements are separated by a dist
D252D sin(u/2). As we will see, whenu5180°, the
second-order interactions are extremely weak and as a r
the physical problem is reduced to that of a DNLS~with only
nearest-neighbor couplings!. However, by decreasing th
value of u, second-order coupling effects start to beco
significant and thus they have to be included in the theo
ical model. In this case, the underlying physical problem
described by the following nonlinear discrete different
equation@3#:

i
dEn

dz
1bEn1c1~En111En21!1c2~En121En22!

1
k0n2

2
uEnu2En50, ~1!

whereb is the propagation constant of each waveguide,
c1 , c2 are, respectively, the first- and second-order coup
coefficients.En represents the modal field amplitude at s
n, k052p/l0 , n2 is the nonlinear Kerr coefficient of th
material andz is the propagation distance along the array.
the particular case where the waveguides are of the s
index-type, the coupling constant between two such s
~separated by distanceR) is given by@22#

c5
A2D

r

U2

V3

K0~WR/r!

K1
2~W!

, ~2!

where r is the radius of the waveguide core,D5(nc
2ns)/nc is the waveguide index difference, andV
5k0rncA2D is the dimensionlessV number involved in the
eigenvalue problem describing the fundamental modeLP01
of the waveguide, e.g.,U J1(U)/J0(U)5W K1(W)/K0(W).
In this last equation, U5r(k0

2nc
22b2)1/2, W5r(b2

2k0
2ns

2)1/2, whereKl(x) and Jl(x) are Bessel functions o
order l andnc , ns are the core and cladding refractive ind
ces, respectively. The propagation constantb can then be
determined from the eigenvalue problem by keeping in m

FIG. 1. A zigzag array of coupled optical waveguides.
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that V25U21W2. The coupling coefficients,cj , ( j 51,2)
are then found from Eq.~2! by replacingR with D, D2,
respectively. By employing the transformations,En
5Gunexp$i@bz012(11a)#z%, z5z/z0, in Eq. ~1!, we obtain
the following dimensionless form of Eq.~2!:

i
dun

dz
1D1un1aD2un1uunu2un50, ~3!

where the operatorsD j , ( j 51,2) are defined by the relation
D1un5un111un2122un , D2un5un121un2222un . un is
the dimensionless field amplitude,z is a normalized propa-
gation distance with respect to the coupling lengthz0

51/c1 , G5A2c1 /k0n2 is a characteristic electric field am
plitude, anda signifies the relative strength between the fi
and the second neighbor couplings, i.e.,

a5c2 /c15K0~WD2 /r!/K0~WD/r!. ~4!

For demonstration, let us assume thatl051.5 mm, nc
51.5, D5231023, r55.3 mm, D515.9 mm so thatD2
531.8 sin(u/2) ~in mm), V52.1, U51.561, andW51.405.
For this set of values Fig. 2 depicts the variation ofa as a
function of u as it can be obtained from Eq.~4!.

The conserved quantities of Eq.~3! are the total power in
the array

P5( uunu2, ~5!

as well as the Hamiltonian

H5( F uun2un21u21auun2un22u22
1

2
uunu4G ~6!

from where one can obtain the equations of motion@Eq. ~3!#

via i u̇n5]H/]un* .
It is important to note that Eq.~3! can also be analyzed b

considering the transformationun5fnexp(iqn), whereq rep-
resents a phase shift among successive discrete sites an

FIG. 2. The variation ofa as a function ofu for a zigzag optical
waveguide array.
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DISCRETE SOLITONS IN NONLINEAR ZIGZAG . . . PHYSICAL REVIEW E65 056607
essence, translates the spatial carrier wave number within
Brillouin zone. In this new representation Eq.~3! takes the
form

i ḟn1~fn11eiq1fn21e2 iq22fn!1a~fn12e2iq

1fn22e22iq22fn!1ufnu2fn50. ~7!

If we define a normalized coordinatej5s/D, wheres is the
actual transverse skew coordinate along the zigzag p
then, in the so-called continuous approximation, Eq.~7! be-
comes

ifz12 (
m50

`
1

~2m!!
@cosq1a22mcos 2q#

]2mf

]j2m

12i (
m50

`
1

~2m11!!
@sinq1a22m11sin 2q#

]2m11f

]j2m11

22~11a!f1ufu2f50, ~8!

wherefz5]f/]z, etc. For broad enough beams, Eq.~8! can
be approximated by keeping only the first terms of the Tay
series. In this case, if we employ the gauge transformat
f5cexp@2iz(cos(q)1acos(2q)212a)#, and retain up to
fourth-order diffraction effects, then this latter equation tak
the form

i ~cz1vgcj!1d2c2j1 id3c3j1d4c4j1ucu2c50, ~9!

where

vg52~sinq12a sin 2q!, ~10!

d25cosq14a cos 2q, ~11!

d35
1

3
~sinq18a sin 2q!, ~12!

d45
1

12
~cosq116a cos 2q!. ~13!

In Eq. ~10! vg stands for the wave’s spatial group velocit
anddj , ( j 52,3,4) represent the second-, third-, and four
order diffraction effects in the array, respectively. Final
one may also notice that Eq.~3! is in fact identical to the
following integro-differential equation:

ifz1
1

pE E $cos~q1k8!1a cos@2~q1k8!#%

3f~h,z!eik8(j2h)dhdk822~11a!f1ufu2f50. ~14!
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III. DISPERSION RELATION AND MODULATION
INSTABILITY

To obtain the dispersion relation of this zigzag nonline
lattice we use the ‘‘plane wave’’ solutionun5Aei (kz1qn),
where the wave numberk satisfies

k52 cosq12a cos 2q1A222~11a!, ~15!

and againq represents the phase shift among successive
and plays the role of ‘‘particle momentum.’’ The shifted@by
2(11a)# linear part of the dispersion relation, 2(cosq
1a cos 2q), is depicted in Fig. 3 for three different values
a, namely,a50,1/4,1. Note that the first Brillouin zone i
defined in the domain2p<q<p. First, we would like to
discuss the properties of this linear dispersion curve. To
gin with, let us examine the behavior of the dispersion re
tion at the DNLS limit, i.e., whena50. Whenq lies in the
range2p/2,q,p/2 the curvature of the dispersion relatio
is negative@k9(q),0#, and, as a result, the effective diffrac
tion of the array is ‘‘anomalous.’’ On the other hand, wh
p/2,uqu<p the curvature is positive@k9(q).0#, and the
effective dispersion of the array is now ‘‘normal.’’ In thi
case (a50) the dispersion curve attains a maximum atq
50, and, as a matter of fact, the bright soliton solutions
the DNLS reside at this point with eigenvalues that lie abo
this curve~in the band gap!. Each member of this family of
bright solitons is characterized by the separation distance
tween the eigenvalue of the solution and the edge of
band. Furthermore, these solutions have altogether diffe
properties depending on their position inside the band g
When the eigenvalue is relatively close to the edge of
band, the bright soliton solutions are broad~occupying many
lattice sites!, they possess a narrow spatial frequency sp
trum, and, as a result, the long wavelength approximation
the dispersion relation is valid. In this regime the dispers
relation can be described within the parabolic approximat
and thus Eq.~3! is equivalent to a continuous nonlinea
Schrödinger equation@Eq. ~9! with d35d450#. The soliton
solutions with wave numbers positioned very deep inside
band gap represent highly nonlinear ‘‘defect’’ states occu
ing, in essence, 1–3 lattice sites. We can also notice tha

FIG. 3. The linear part of the dispersion relation fora
50,1/4,1.
7-3
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NIKOS K. EFREMIDIS AND DEMETRIOS N. CHRISTODOULIDES PHYSICAL REVIEW E65 056607
the edge of the zone, i.e., whenq5p, the dispersion curve
reaches a minimum. Here, since the dispersion is normap
out of phase dark soliton solutions~staggered! exist inside
the band gap as a result of this band minimum@20#. The
form of these dark soliton solutions can be easily obtained
we follow procedures similar with those already outlined
this section for bright solitons.

However, as clearly seen in Fig. 3, the properties of
dispersion diagram within the Brillouin zone can be dras
cally altered for appreciable values of the second-ord
coupling strengtha. A close inspection of the dispersion dia
gram can provide valuable hints concerning the poss
types of soliton solutions and their properties. More spec
cally, at the base of the Brillouin zone, i.e., whenq50, we
notice that as the value ofa increases, the dispersion curv
becomes narrower~the absolute value of the second deriv
tive of the dispersion relation increases linearly witha); this,
in turn, leads to broader bright soliton solutions compared
those with smaller values ofa for the same powerP. On the
other hand, at the edge of the zone,q5p, the dispersion
relation exhibits a very different behavior depending on
value of a. In particular, fora ’s located inside the region
@0,1/4) thesecond derivative of the dispersion curve,k9(p),
is always positive and, therefore, the lattice dispersion is n
mal. In the casea51/4 the second-order dispersion is ze
and the first nonzero contribution comes from the four
order dispersion that happens to be positive. Whena is
above 1/4, the value ofk9(p) becomes negative, and as w
will show a completely different family of bright staggere
solitons in self-focusing arrays exists. This latter class of
solutions has no counterpart whatsoever in standard ar
with only first-order couplings described by the DNLS. A
the value ofa increases above 1/4 the dispersion curve
comes narrower and, thus, the bright soliton solutions
come broader.

Our previous conclusions can be further substantiated
considering the modulational instability of the plane wa
solution of Eq.~3! with respect to small perturbations. As
is well known, the existence of modulational instability
closely related to the presence of bright soliton solutio
More specifically, if the plane wave solution is unstable
may then tend then to disintegrate into a sequence of br
solitons, i.e., loosely speaking the presence of modulatio
instability can be considered as a precursor to bright sol
formation. Perturbing the amplitude and the phase of
solution asun5(A1Bn)exp@ i (kz1qn1cn)#, whereBn and
the differencescn112cn are assumed to be small and b
applying the transformation (Bn ,cn)[(B,c)ei (Kz1Qn) we
obtain the following equation:

@K12 sinq sinQ12a sin 2q sin 2Q#2

58Fcosq sin2
Q

2
1a cos 2q sin2QG

3F2 cosq sin2
Q

2
12a cos 2q sin2Q2A2G ,

~16!
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between the wave numberK and the spatial frequencyQ of
the perturbations. A close inspection of Eq.~16!, reveals the
regions where modulational instability exists~i.e., where the
plane wave is stable or unstable as a function ofq and a).
More specifically, at the base of the Brillouin zone,q50, the
continuous wave solution is unstable for all values ofa. On
the other hand, the stability of the plane wave solution at
edge of the Brillouin zone (q5p) depends ona; it is stable
whena<1/4 and unstable otherwise. These results are in
agreement with the conclusions previously drawn from
linear dispersion diagram. Our results, i.e., Eq.~16!, are in
close agreement with those recently obtained in connec
with nonlinear polymer chains@23#.

IV. SOLITON SOLUTIONS AND THEIR STABILITY

We will now examine the existence and stability of th
solitary wave solutions that we have already described qu
tatively in the preceding section. It is by now well esta
lished that, for broad enough beams, this system is appr
mately described by a continuous nonlinear Schro¨dinger
Equation@Eq. ~9! whend3 andd4 are negligible#, which is
known to exhibit soliton solutions. However, in general~for
moderately or strongly confined states!, the solutions of the
discrete Eq.~3! can only be obtained numerically. To do s
let us assume that the solution of Eq.~3! is having the form,
un5vn exp(i(mz1qn)), wherevn is the real amplitude of the
nth site, m is the eigenvalue, and the phase difference
tween adjacent sites,q, is equal to 0 orp. Equation~3! is
now reduced to the following system of nonlinear algebr
equations:

2mvn6~vn111vn21!22vn1a~vn121vn2222vn!1vn
3

50, ~17!

which will be solved numerically using a Newton’s iteratio
scheme. The two cases of particular interest, i.e.,q50, p,
corresponding to the6 signs, respectively, in Eq.~17!, will
be treated separately in the rest of this section.

A. At the base of the Brillouin zone: qÄ0

In the particular case where the phase difference betw
adjacent waveguides is zero, two different types of soli
solutions exist; those centered on a single site and those
are centered between two sites. Apart from that, these
solutions have a similar form~brightlike or darklike! as ex-
pected from the DNLS equation. As a matter of fact, for
fixed value ofP, the energy~Hamiltonian! of the in-phase
bright soliton solution centered on site is always less than
energy of the solution centered between two sites, and, th
fore, the latter one is always transversely unstable. Con
quently, we will restrict ourselves to the study of on s
bright discrete soliton solutions@24#.

The family of the in-phase bright solitons of Eq.~3! with
q50 are found numerically by solving the nonlinear syste
of Eq. ~17!. In Fig. 4 the power associated with these so
tions, P, is depicted as a function of the eigenvaluem for
three different values ofa. Whena50, theP(m) diagram
7-4
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corresponds to the standard DNLS model. In this regim
approximate expressions forP(m) can be obtained in the
case of either weakly or strongly localized solutions, that
in the continuous or the anticontinuous limit. More spec
cally, for relatively small values ofP, the behavior of the
P(m) can be approximately described within the so-cal
nonlinear Schro¨dinger limit. In this case, using Eq.~5!, the
P(m) curve can be approximately described byP
'4A(114a)m. On the other hand, for large values ofP,
most of the power is confined in one waveguide, and, the
fore, P'm12(11a). The regions where these two a
proximations are valid can be easily seen in Fig. 4.

As a result of the long-range interactions, these soluti
have interesting stability properties. A similar situation w
encountered in Ref.@25# in nonlinear lattices withr 2s inter-
actions. More specifically, whena is less than 0.26, the
powerP is always monotonically increasing withm. On the
other hand, for values ofa greater than 0.26, a regio
(m1 ,m2) exists in whichP is monotonically decreasing with
m, whereas, for all other subsequent values ofm, P is in-
creasing. TheP(m) curves are associated with the stabil
of the soliton solutions through the Vakhitov-Kolokolov cr
terion @26# that has been shown to be also applicable in
DNLS equation@27#. According to this criterion, instability
will be developed only when]P/]m,0, i.e., inside the re-
gion (m1 ,m2) when a*0.26. From a different perspective
Fig. 4 can be interpreted as am(P) diagram. As it is known
from elementary bifurcation theory, the stability properties
a system can change only when a bifurcation takes pl
When a&0.26, P(m) is monotonically increasing, i.e., n
bifurcation occurs. We also know that the small amplitu
solutions are stable since they are governed by the con
ous NLS equation and, as a result, the whole curve is sta
In the other extreme, the stability of the strongly localiz
modes can also be proved analytically since, effectively,
~3! reduces to a dynamical system with a few degrees
freedom ~see, for example, Ref.@28#!. When a*0.26 we
know that the upper and lower branches are stable, so
expect~since the stable and unstable manifold alternate!, that
the second branch will be unstable. In the range wher
given value ofP corresponds to three different values ofm,
two of these wave numbers, i.e., the minimum and the m

FIG. 4. PowerP vs m diagram of bright soliton solutions whe
q50, anda50,1/4,1.
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unstable.

We will now formally explore the linear stability of thes
in-phase bright soliton solutions by using Eq.~3!. By per-
turbing the exact solutionun5vneimz, in a fashionun5@vn
1(Un1Wn)eiLz1(Un2Wn)e2 iLz#eimz, we obtain the fol-
lowing coupled eigenvalue problem:

L1Wn5LUn , L2Un5LWn , ~18!

where L1Wn52mWn1D1Wn1aD2Wn1vn
2Wn and L2Un

52mUn1D1Un1aD2Un13vn
2Un . When all the eigenval-

ues of the perturbation lie on the real axis the solution
stable, whereas, if an eigenvalue pair acquires a non
imaginary part the solution becomes unstable. The cont
ous spectrum can be found by linearizing Eq.~18!, and sub-
stituing cn5(Un1Wn)exp(ipan), dn5(Un2Wn)exp(ipan),
i.e.,

L56@m12~12cospa!12a~12cos 2pa!#,

We will show that the results stemming from the solution
the previous eigenvalue problem are in agreement with
previous analysis. To demonstrate this connection, we
describe how the eigenvalues of Eq.~18! change as a func
tion of m, whena is above the instability threshold. Whenm
is close to zero, the amplitude of the solution becomes v
small, and, consequently, the discrete Eq.~3! is in the vicin-
ity of the continuous NLS limit. In this case it is well know
that two pairs of eigenvalues are located at the origin, co
sponding to the even~with zero nodes! and an odd~with one
node! eigenfunction. The first~even! mode is related to the
invariance of the model to a phase shift, i.e., as it is prov
by Noether’s theorem, to the conservation of the power@Eq.
~5!#, whereas the second~odd! mode is related the transla
tional invariance@the conservation of the momentum in th
continuous approximation of Eq.~3!, i.e., of the NLS equa-
tion#. As the value ofm increases the eigenvalues associa
with the translational eigenmode bifurcate from the origin
the real axis and approach the edge of the continuous s
trum. This bifurcation is related with the loss of the mobili
of the discrete soliton solutions as they become more lo
ized on the nonlinear lattice. The other pair of eigenvalu
remains at the origin as long asP is an increasing function o
m. When the slope of theP(m) diagram becomes negativ
this pair of eigenvalues bifurcates from the origin to t
imaginary axis, and, as a result, the soliton solution tu
unstable. As long as the slope ofP(m) is negative, the ei-
genvalues remain on the imaginary axis. However, when
value of the slope is close to zero again, the eigenval
return to the origin. This scenario is demonstrated in Fig
for a51 andq50 whenu051.2,1.7,2.2. The left column o
Fig. 5 depicts the associated eigenvalue diagram, whe
the right one shows the corresponding evolution of the int
sity of the discrete soliton. Figs. 5~a! and 5~b! were obtained
at u051.2, where the soliton is stable since all the eigenv
ues lie on the real axis. On the other hand, the solution ill
trated in Figs. 5~c! and 5~d! for u051.7 is unstable, and
exhibits bistability. In this case a pair of eigenvalues
7-5
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FIG. 5. Eigenvalue diagrams of in-phase bright soliton solutions (q50) whena51, and foru051.2, 1.7, 2.2 shown in~a!, ~c!, ~e! and
the corresponding intensity evolution depicted in~b!, ~d!, ~f!, respectively.
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purely imaginary and is responsible for instabilities. This
stability ceases to exist at higher amplitudes@see Figs. 5~e!
and 5~f! whereu052.2#, since all the eigenvalues are locat
on the real axis.

B. At the edge of the Brillouin zone: qÄp

In this section we will explore the properties of stagger
soliton solutions, i.e.,q5p. As per our previous discussio
05660
-

d

in Sec. III we anticipate bright staggered soliton solutions
exist whena.1/4.Again, we identify two different types of
staggered bright solitons:~a! a symmetric mode, and~b! an
antisymmetric mode. Figure 6 depicts both a narrow an
broad, symmetric and antisymmetric discrete soliton so
tion.

Between these two possible staggered solutions, the
ergy of the symmetric mode is always greater than the c
7-6
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FIG. 6. ~a!, ~b! symmetric and~c!, ~d! antisymmetric bright staggered soliton solutions. Figures~a!, ~c! correspond to highly localized
solutions while~b! and ~d! to relatively broad states.
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dif-
responding value for the antisymmetric mode~for a fixed
value of P and appreciable values ofa). As a result, the
symmetric mode happens to be transversely unstable
study the stability properties of the antisymmetric solutio
we will numerically solve the eigenvalue problem@Eq. ~18!#
where the linear operators are in this caseL1Wn52mWn

2D1Wn1aD2Wn1vn
2Wn and L2Un52mUn2D1Un

1aD2Un13vn
2Un . Again, the continuous spectrum can

determined by linearizing the eigenvalue problem, andL5
6@m22(12cospa)12a(12cos 2pa)#. Our numerical inves-
tigation shows that above a certain threshold of the ma
mum amplitude these solutions are stable. Figure 7~a! depicts
the properties of the eigenvalue diagram associated wi
stable solution whena51.4 and the peak amplitude is 5. I
this case we see a pair of eigenvalues located at the o
and another located on the real axis between the origin
the continuous spectrum. As a result the solution is stabl
also demonstrated by its intensity evolution, Fig. 7~b!. By
decreasing the amplitude, the gap between the continu
spectrum and the latter pair of discrete eigenvalues is
duced as shown in Fig. 7~c! ~for a peak amplitude equal t
4). This solution is again stable, as demonstrated in F
7~d!. Finally, when the amplitude is reduced below a cert
threshold, the eigenvalue pair collides with the continuo
spectrum and bifurcate into four eigenvalues with nonz
05660
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i-

a

in
nd
as

us
e-

g.
n
s
o

imaginary components@Fig. 7~e!# giving rise to an oscilla-
tory type of instability@see also Fig. 7~f!#.

Following the arguments of Sec. III, we have also fou
numerically staggered dark soliton solutions in the reg
a,1/4. Theproperties of these solutions happen to be v
similar to those of the DNLS equation, i.e., whena50, ~see
Refs.@20,29#!. As the value ofa increases inside the regio
@0,1/4), thewidth of the dispersion curve becomes broad
and, as a result, the soliton solutions become narrower
the same power levels. In Fig. 8 we present the form of
centered on a site@Figs. 8~a! and 8~b!# and centered betwee
two sites@Figs. 8~c! and 8~d!# dark soliton solutions when
a50 @Figs. 8~a! and 8~c!# anda50.2 @Figs. 8~b! and 8~d!#.

V. DIFFRACTION MANAGEMENT

In a recent study, it has been demonstrated that the
crete diffraction properties of a linear array can be altered
a function of the input phase differenceq among successive
waveguides@18#. In particular, it was experimentally verifie
that forq5p/2, the optical beam in a linear array can prop
gate almost undistorted, since, to leading order, the disc
diffraction is zero@i.e., from Eq.~11! d250 whenq5p/2
and a50#. Furthermore, diffractionless propagation w
also observed by eliminating, on average, the third-order
7-7
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FIG. 7. ~a!, ~c!, ~e! the eigen-
value diagram and, in~b!, ~d!, ~f!,
the corresponding propagatio
plots whena51.4 and the peak
amplitude of the solution is 5, 4
and 3.9, respectively.
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fraction using an alternating configuration~alongz) of wave-
guide arrays.

In this section we will study how diffraction manageme
can be implemented in the zigzag arrays proposed here
previously noted the presence of second-order coupl
~when aÞ0) can substantially modifyd2 since d25cosq
14a cos 2q. The condition d250 in fact corresponds
to the inflection points of the dispersion curve~Fig. 3!.
From Eq.~11! the inflection pointsq̂, whered250, can be
found, as a function ofa, and are given by cosq̂5@21
6A11128a2#/16a. In Fig. 9, the group velocity@as given
by Eq. ~10!# that is associated with diffractionless bea
propagation is displayed as a function ofa. As we can see
for values of a,1/4 diffractionless propagation can b
achieved for only one value ofq, while, for a.1/4 two
inflection points exist, each one corresponding to a differ
group velocity. Note that the case studied in Ref.@18# corre-
sponds toa50 on the upper branch of our Fig. 9. Bothvg
05660
As
s

t

curves are increasing functions ofa. However, it is impor-
tant to point out that the group velocity displayed in Fig. 9
related to the skew coordinates that connects linearly all the
consecutive sites of the array zigzag path. On the other h
the actual propagation distance along thex coordinate~which
is parallel to the line that connects a waveguide with
second neighbors! is related tos via x5s sin(u/2) and, as a
result, the group velocityvgx is reduced by a factor sin(u/2).
It is interesting to note that, while in the first branch~solid
curve! the normalized group velocity is always greater th
2, in the second branch~dashed curve! diffraction-free beam
propagation is possible even for small values ofvg . Actu-
ally, whena51/4 andq5p diffractionless propagation of a
standing beam~sincevg50) can be achieved. In this pa
ticular case, bothd2 and d3 are zero and the first nonzer
contribution comes from the fourth-order diffraction term. T
verify this result, a beam of the formu5sech@0.35(n
2n0)/A2#exp(iqn) was launched in such a linear array. Fi
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FIG. 8. Dark soliton solutions~a!, ~b! centered on a site and~c!, ~d! centered between two sites for~a!, ~c! a50 and~b!, ~d! a50.2.
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le-
ure 10 depicts the intensity profile of this beam at the in
~solid curve! and atz5100 when~a! a50, q50 ~dotted
curve! ~b! a50, q5p/2 ~dashed dotted!, and ~c! a51/4,
q5p ~dashed!. For case~a! the peak intensity of the beam a
the output is at least six times less than the one at the in
mainly as a result of second-order diffraction. In the seco
case~b!, the initial phase tiltq5p/2 is responsible for the
elimination of the second-order diffraction effects and t
output peak intensity is reduced by 30%. In this case,
third-order diffraction is responsible for the asymmetric d

FIG. 9. Group velocity at the zero diffraction points. Fora
above 1/4 two different group velocity branches are allowed.
05660
t

ut,
d

e
-

tortion of the beam. Finally, in case~c! the peak intensity is
approximately 80% of the input, and any distortion in t
beam profile is due to fourth- and higher-order diffracti
terms.

The spatial dispersion or diffraction that a beam is ex
riencing during propagation in the bulk depends only on
refractive index of the material. In discrete systems, ho
ever, diffraction results from the coupling between the e

FIG. 10. The input~solid line! and the output intensity profiles
of a beam after a propagation distancez5100 when~a! a50 and
q50 ~dotted line!, ~b! a50, q5p/2 ~dashed-dotted line!, and~c!
a51/4, q5p ~dashed line!.
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ments of the lattice. Consequently, different geometrical
rangements will have, in general, different diffractio
properties. As Eq.~11! indicated, the diffraction can be tune
by adjusting the relative coupling strengtha. As a result,
solitons with specific peak intensities are possible, by app
priately engineering the relative coupling coefficienta. The
diffraction of the zigzag array,d2, is depicted in Fig. 11 as a
function of a in the regimes where bright solitons can
supported. The two curves shown in the figure correspon
the casesq50 andp. For these values ofq the odd order
diffraction terms, which are responsible for the asymme
deformation of a soliton as well as for acceleratio
deceleration effects, are zero. In both cases, the diffractio
an increasing function ofa. For in-phase solitonsd2 attains
its minimum value (d251) atq50. However, for staggered
solitons (q5p), the leading diffraction termd2 is zero when
a51/4. Thus, staggered discrete solitons can exist eve
media with relatively small values of nonlinearity.

VI. DEFOCUSING NONLINEARITY

Our formalism can also be used to obtain discrete sol
solutions in arrays with defocusing nonlinearity. In this ca
the optical field dynamics are described by

FIG. 11. The leading diffraction termd2 of the waveguide array
as a function ofa for q50 andp.
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dz
1D1un1aD2un2uunu2un50. ~19!

When a50, Eq. ~19! reduces to the defocusing DNLS
This equation is known to support in-phase dark soliton
lutions at the base of the Brillouin zone (q50), as well as
out-of-phase~staggered! bright solitons at the edge of th
Brillouin zone (q5p) @13,20#. The nonlinear dispersion re
lation of Eq.~19! is given by

k52 cosq12a cos 2q2A222~11a!. ~20!

Evidently, the linear part of Eq.~20! remains the same as i
the self-focusing case~Fig. 3!. Therefore, at the base of th
Brillouin zone (q50) one expects in-phase dark soliton s
lutions to exist. In addition, Fig. 3 demonstrates that as
value ofa increases, the dispersion curve becomes narro
and, as a result, the dark soliton solutions that can be acc
modated~at q50) have to be broader for bigger values ofa.
At the edge of the Brillouin zone the sign of the second-or
diffraction termd2 of the array changes whena51/4. Fol-
lowing the same arguments we used in Sec. III, we anticip
that for values ofa less than 1/4 staggered bright solito
solutions should exist. This fact becomes apparent if
considers Eq.~9! when q5p and the nonlinearity is of the
defocusing type, i.e.,

icz1~4a21!c2j1
1

12
~16a21!c4j2ucu2c50. ~21!

For broad enough solutions~in which case the fourth-orde
dispersion can be neglected! Eq. ~21! reduces to the standar
nonlinear Schro¨dinger equation with bright soliton solution
for a,1/4 and dark solitons fora.1/4. Of course in the
discrete limit these solutions are of the staggered type s
q5p. It is also noteworthy pointing out that Eq.~21! exhib-
its a bright solitary wave solution even in the presence
fourth order diffraction effects. This solution is given by@30#

c5Asech2~pj!einz, ~22!
FIG. 12. A staggered dark soliton at the edge of the Brillouin zone~a! centered on a site and~b! centered between two sites.
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where A25(18/5)(124a)2/(16a21), p25(3/5)(1
24a)/(16a21), and n52(48/25)(124a)2/(16a21).
This solution exists in the range 1/16,a,1/4. Notice that
all the parameters of this solution are fixed for a given va
of a. Finally, whena.1/4 a new type of staggered da
soliton is found to exist at the edge of the Brillouin zo
(q5p). Figure 12 depicts a typical example of such a so
tion. Again, two different types of dark solitons can be o
tained; one centered on a site@Fig. 12~a!# and one centered
between two consecutive sites@Fig. 12~b!#. We emphasize
that this family of solutions does not exist in standard arr
~as described by the DNLS equation!. They are only possible
,
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n
r-

an

an

p
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in systems with appreciable second order coupling effects
for example, in the zigzag arrays proposed here.

VII. CONCLUSIONS

In this paper we presented a method to efficiently man
the discrete diffraction properties of nonlinear waveguide
rays. As an example, we considered zigzag arrays that
provide considerable extended interactions. We demonstr
that completely different families of discrete soliton sol
tions are possible, which are possible over a wide range
parameters. Our method opens up opportunities for diffr
tion management that can be employed to generate
power spatial discrete soliton states.
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