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Discrete solitons in nonlinear zigzag optical waveguide arrays with tailored diffraction properties
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We show that the discrete diffraction properties of a nonlinear optical zigzag waveguide array can be
significantly modified, by exploiting the topological arrangement of the lattice itself. This introduces extended
interactiongbeyond nearest neighbgrsvhich, in turn, affect the lattice dispersion relation within the Brillouin
zone. As a result of this band alteration, we demonstrate that altogether different families of discrete soliton
solutions are possible, which are stable over a wide range of parameters. In the regime where instabilities
occur, all scenarios are considered in detail. By appropriately engineering the geometrical configuration of the
array we find both standing and traveling diffraction-free beams. Our method opens opportunities for diffrac-
tion management that can be employed to generate low-power spatial discrete optical solitons.
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[. INTRODUCTION can be obtained by exploiting the spatial dispersion proper-
ties of the lattice. Thus, unlike bulk solitons, both bright and
Discrete solitons in nonlinear lattices are, by nature, selfdark DS can be observed in the same nonlinear material ir-
localized modes that owe their existence to the interplay berespective of the type of the Kerr nonlinearigelf-focusing
tween coupling and nonlinear effects. In the last few yearspr defocusing[18—-20. What makes this possible is the fact
the study of discrete soliton€DS) has been a subject of that the diffraction behavior of the array can be essentially
intense investigation in several branches of scigsee, for inverted For example, darkbright) DS can be observed in
example, the review papers of R¢tL]). Among the known self-focusing(defocusing arrays, provided that their “mo-
discrete nonlinear differential equations describing such sysmentum” is located at the end of the Brillouin zone. In ad-
tems, the discrete nonlinear Sctimger equationDNLS)  dition, the array diffraction can be minimized at the inflec-
plays a prominent role. In particular, discrete solitons of thetion point of the dispersion curve, thus allowing, to lowest
DNLS-type have been suggested in many diverse areas ofder, diffraction-free propagatiofil8]. At this point, it is
physics such as, for example, in biologd, nonlinear optics  perhaps important to note that in arrays with linear topology
[3], in molecular crystal§4], atomic chaing5], as well asin  (i.e., with all the waveguides lying in the same plgnihe
dilute Bose-Einstein condensafds. dispersion behavior of the lattice remains always the same.
In optics, nonlinear waveguide arraj3] provide an ex- This in turn does not allow any flexibility in terms of shaping
cellent environment for the generation and the experimentghe discrete diffraction properties of the array. Thus, the
observation 7] of discrete solitons. In this case, spatial DS question naturally arises as to whether one eagineer
are possible as a result of the balance between discrete difiese properties by utilizing novel geometrical configurations
fraction (arising from linear coupling effectand waveguide in a two-dimensional environment.
nonlinearity. So far, several aspects concerning the behavior In this paper we show that the discrete diffraction proper-
of optical discrete solitons have been investigdi@e12].  ties of a nonlinear optical waveguide array can be signifi-
These include, for example, DS dynam[d4] and interac- cantly modified, by exploiting the topological arrangement
tions [8,9], as well modulational instabilitie$13]. Other of the lattice itself. This introduces extended interactires
types of self-trapped states, e.g., optical vortices, have alsgond nearest neighbarthat, in turn, affect the lattice disper-
been considerefl4]. sion relation within the Brillouin zone. For demonstration
In a recent study, it was also shown that DS in two-purposes, we apply our method in a zigzag array that can
dimensional networks of nonlinear waveguide arrays can bexhibit, in addition, strong second-order couplings. As a re-
used to realizeintelligent functional operationssuch as sult of this band alteration, we demonstrate that completely
blocking, routing, logic functions, time gating, efd.5]. In  different families of discrete soliton solutions are possible in
particular, this class of solitons can be all optically navigatedsuch arrays which are stable over a wide range of param-
anywhere in the nonlinear lattice. In this case, the arraeters. These include staggered ¢ut of phasgbright DS in
branches behave like “soliton wires” that guide a DS alongself-focusing media as well as dark staggered DS in defocus-
preassigned patj&6]. Even more importantly, discrete soli- ing systems. In the regime where instabilities occur, all sce-
tons can be routed at array intersections using vectomarios are considered in detail. More specifically, we find
incoherent interactions with other DS. In essence, these irthat in a certain parameter space, in phase bright soliians
tersections act like discrete solitewitching junctiong17]. self-focusing arrayscan exhibit bistable behavior whereas
Another issue that has lately received considerable atterbright staggered DS can disintegrate as a result of oscillatory
tion is that ofdiffraction managemernin waveguide arrays instabilities. In addition, we show that for certain configura-
[18—20 and diffraction managed discrete spatial solitonstions, discrete diffraction effect@p to third order can be
[21]. In this respect, different families of discrete solitons eliminated. Our method opens up opportunities for diffrac-
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FIG. 1. A zigzag array of coupled optical waveguides.

tion management that can be employed to generate low-
power discrete spatial solitons.

II. PHYSICAL MODEL

Figure 1 depicts an array of optical waveguides in a zig- % 50 60 70 80 90 100 110
zag arrangement. In this arra, is the distance between 6 (deg)
“nearest” neighbors and is the angle between the lines
connecting thenth element of the array with its neighbors
(n*1). Because of this new topological configuration, it is
also essential that one also considers linear coupling effec{ﬁat V2= U2+ W2
between thenth site and its second-order neighbors+2).

From Fig. 1, these latter elements are separated by a diStanFéaspectively By employing the transformations
. n

D,=2Dsin(#/2). As we will see, when§=180°, the _ . e - :
second-order interactions are extremely weak and as a reslﬂqeG ;ngle(;(v?/{ilrgg Zg%zér%;gzl]lg};sgfofg%fngg?_' (1), we obtain
the physical problem is reduced to that of a DN8th only '
nearest-neighbor couplingsHowever, by decreasing the du

value of 6, second-order coupling effects start to become i—”+A1un+ al,un+]|unl?u,=0, 3)
significant and thus they have to be included in the theoret- d¢

ical model. In this case, the underlying physical problem is ) ) )
described by the following nonlinear discrete differential Where the operators; , (j=1,2) are defined by the relations

FIG. 2. The variation ofr as a function o for a zigzag optical
waveguide array.

The coupling coefficientsg;, (j=1,2)
are then found from Eq(2) by replacingR with D, D,

equation[3]: AjUp=Upp1+tUyo1—2Uy, ApUp=Uy 2+ U= 2Up. Uy iS
the dimensionless field amplitudé,is a normalized propa-

dE, gation distance with respect to the coupling lengh
147 TBEnt Ca(BEnratEno1)+CaBniat Enz) =1/c,, G=+2c,/kqn, is a characteristic electric field am-

plitude, ande signifies the relative strength between the first
kon i i ie.
N %|En|2En=01 D and the second neighbor couplings, i.e.,
CY:C2/C1:Ko(WDzlp)/Ko(WD/p) (4)
where is the propagation constant of each waveguide, and
c,, C, are, respectively, the first- and second-order coupling-or demonstration, let us assume theg=1.5 um, n,
coefficients.E,, represents the modal field amplitude at site=1.5, A=2X10"3, p=5.3 um, D=15.9 um so thatD,
n, kg=2m/\g, N, is the nonlinear Kerr coefficient of the =31.8sin@2) (in um), V=2.1, U=1.561, andW/=1.405.
material andz is the propagation distance along the array. InFor this set of values Fig. 2 depicts the variationcofs a
the particular case where the waveguides are of the stefunction of # as it can be obtained from E).
index-type, the coupling constant between two such sites The conserved quantities of E@) are the total power in

(separated by distand®) is given by[22] the array
V2A U? Ko(WR/
c=—— 0(2 o) 2) P=2 [u,l?, )
P Ve KE(W)

where p is the radius of the waveguide cord=(n, &S Well as the Hamiltonian

—ng)/n. is the waveguide index difference, anyf

= kopncy2A is the dimensionles¥ number involved in the H= [ u—uy o2+ alu,—u, 2~ E|Un|4 ©®)
eigenvalue problem describing the fundamental mbég, 2

of the waveguide, e.gl) J1(U)/Jo(U)=W K;(W)/Ky(W).

In this last equation, U=p(kinZ—pB?)¥2, W=p(g? from where one can obtain the equations of mofigg. (3)]
—k3n2)¥2, where K (x) and J;(x) are Bessel functions of viaiu,=aH/Ju¥ .

orderl andn., ng are the core and cladding refractive indi- It is important to note that Ed3) can also be analyzed by
ces, respectively. The propagation constgntan then be considering the transformatian= ¢,exp(gn), whereq rep-
determined from the eigenvalue problem by keeping in mindesents a phase shift among successive discrete sites and, in
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essence, translates the spatial carrier wave number within the
Brillouin zone. In this new representation E@®) takes the
form

[ ¢n+(¢n+1eiq+ (bnfle_iq_ 2¢,) + a(¢n+2e2iq

+¢n72e72iq_2¢n)+|¢n|2¢nzo- (7)
If we define a normalized coordinafe=s/D, wheresis the
actual transverse skew coordinate along the zigzag path, -3
then, in the so-called continuous approximation, &g.be- 4l
comes -2n - 0 n 2n
q
i 1 om 9m FIG. 3. The linear part of the dispersion relation far
ip,+2 ———[cosq+ a2“"cos =
bet2 2 (2m)![ q Zl]ﬁgzm 0,1/4,1.

Ill. DISPERSION RELATION AND MODULATION
INSTABILITY

oo

1
+2i >, m[sinm— @22 1sin 2q]

m=0

&2m+ l¢
0—,§2m+1

To obtain the dispersion relation of this zigzag nonlinear
—2(1+a)p+|p|?¢p=0, (8) lattice we use the “plane wave” solution,=Ag (kzFan,
where the wave numbédr satisfies
where¢,=d¢ld{, etc. For broad enough beams, Eg).can
be approximated by keeping only the first terms of the Taylor k=2 cosq+2a cos (+A%2—2(1+a), (15
series. In this case, if we employ the gauge transformation,
¢=yexg2if(cos@)+acos(2)—1-a)], and retain up to and agairy represents the phase shift among successive sites
fourth-order diffraction effects, then this latter equation takesand plays the role of “particle momentum.” The shiftfaly
the form 2(1+ )] linear part of the dispersion relation, 2(aps
+acos 23)), is depicted in Fig. 3 for three different values of
a, namely,a=0,1/4,1. Note that the first Brillouin zone is
defined in the domain- w<q=<. First, we would like to
discuss the properties of this linear dispersion curve. To be-
gin with, let us examine the behavior of the dispersion rela-
tion at the DNLS limit, i.e., wherw=0. Whenq lies in the
vg=2(sing+2a sin 2q), (10) range— w/2<q< /2 the curvature of the dispersion relation
is negativd k”(q)<0], and, as a result, the effective diffrac-
tion of the array is “anomalous.” On the other hand, when
dy=cosq+4acos A, (1)  m/2<|q|<m the curvature is positivék”(q)>0], and the
effective dispersion of the array is now “normal.” In this
case @=0) the dispersion curve attains a maximumagat
12 =0, and, as a matter of fact, the bright soliton solutions of
the DNLS reside at this point with eigenvalues that lie above
this curve(in the band gap Each member of this family of
bright solitons is characterized by the separation distance be-
tween the eigenvalue of the solution and the edge of the
band. Furthermore, these solutions have altogether different
properties depending on their position inside the band gap.
In Eq. (10) v4 stands for the wave’s spatial group velocity, When the eigenvalue is relatively close to the edge of the
andd;, (j=2,3,4) represent the second-, third-, and fourth-2and, the bright soliton solutions are brdadcupying many
order diffraction effects in the array, respectively. Finally, lattice sites, they possess a narrow spatial frequency spec-
one may also notice that E¢9) is in fact identical to the rum, and, as a result, the long wavelength approximation of
following integro-differential equation: the dispersion relation is valid. In this regime the dispersion
relation can be described within the parabolic approximation
and thus Eq.(3) is equivalent to a continuous nonlinear
. 1 , , Schralinger equatiodEq. (9) with d;=d,=0]. The soliton
! ¢£+;j f {codq+k’)+acog2(q+k’)]; solutions with wave numbers positioned very deep inside the
band gap represent highly nonlinear “defect” states occupy-
X ¢(7,0)eX ENdpdk’ —2(1+a)d+|p|2¢=0. (14)  ing, in essence, 1-3 lattice sites. We can also notice that at

(W +vge) +datpetidaiae+dapaet+|929=0, (9)

where

1
d3=§(sinq+8a sin 2q),

1
d4=1—2(cosq+ 16a cos ). (13
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the edge of the zone, i.e., whep= 7, the dispersion curve between the wave numb&r and the spatial frequend® of
reaches a minimum. Here, since the dispersion is normal, the perturbations. A close inspection of Efi6), reveals the
out of phase dark soliton solutioristaggeref exist inside  regions where modulational instability exigte., where the
the band gap as a result of this band minim{@0]. The plane wave is stable or unstable as a functiom @nd «).
form of these dark soliton solutions can be easily obtained, iMore specifically, at the base of the Brillouin zowes 0, the

we follow procedures similar with those already outlined incontinuous wave solution is unstable for all valuesxofOn

this section for bright solitons. the other hand, the stability of the plane wave solution at the

However, as clearly seen in Fig. 3, the properties of theedge of the Brillouin zoneq= =) depends om; it is stable
dispersion diagram within the Brillouin zone can be drasti-whena<1/4 and unstable otherwise. These results are in full
cally altered for appreciable values of the second-orderagreement with the conclusions previously drawn from the
coupling strengthw. A close inspection of the dispersion dia- linear dispersion diagram. Our results, i.e., Etf), are in
gram can provide valuable hints concerning the possiblelose agreement with those recently obtained in connection
types of soliton solutions and their properties. More specifiwith nonlinear polymer chaing3].
cally, at the base of the Brillouin zone, i.e., wher 0, we
notice that as the value af increases, the dispersion curve IV. SOLITON SOLUTIONS AND THEIR STABILITY
becomes narrowe(the absolute value of the second deriva- ) ) ) N
tive of the dispersion relation increases linearly with this, We will now examine the existence and stability of the
in turn, leads to broader bright soliton solutions compared t&olitary wave solutions that we have already described quali-
those with smaller values af for the same poweP. On the ~ tatively in the preceding section. It is by now well estab-
other hand, at the edge of the zomgs , the dispersion lished that, fo_r broad enough _beams, this system is approxi-
relation exhibits a very different behavior depending on thenately described by a continuous nonlinear Sd.the_zr
value of @. In particular, fore’s located inside the region EQuation[Eq. (9) whend; andd, are negligiblg, which is
[0,1/4) thesecond derivative of the dispersion curké(m), known to exhibit soliton solgtlons. However, in genefialr
is always positive and, therefore, the lattice dispersion is nofloderately or strongly confined statethe solutions of the
mal. In the caser=1/4 the second-order dispersion is zerodiscrete Eq(3) can only be obtained numerically. To do so,
and the first nonzero contribution comes from the fourth-€t US assume that the solution of Eg) is having the form,
order dispersion that happens to be positive. Whens ~ Un=vn€Xp((ui+an)), wherev,, is the real amplitude of the
above 1/4, the value df’() becomes negative, and as we nth Slte,,L.L is the .e|ger'1value, and the phase d!fferenge be-
will show a completely different family of bright staggered tWeen adjacent sitesj, is equal to 0 orm. Equation(3) is
solitons in self-focusing arrays existShis latter class of NOW reduced to the following system of nonlinear algebraic
solutions has no counterpart whatsoever in standard arrafduations:
with only first-order couplings described by the DNLS. As
the value ofa increases above 1/4 the dispersion curve be- —uv,=(vps1tvn_1)—2v,+ a(vn+2+vn_2—2vn)+vﬁ
comes narrower and, thus, the bright soliton solutions be-
come broader. =0, 17)

Our previous conclusions can be further substantiated b
considering the modulational instability of the plane wave
Foluton of 0. i respec o mal peruations. %  conesporcing o the: signs. respectey i Ed17,

’ . . >~ be treated separately in the rest of this section.
closely related to the presence of bright soliton solutions.
More specifically, if the plane wave solution is unstable, it o
may then tend then to disintegrate into a sequence of bright A. At the base of the Brillouin zone: g=0
solitons, i.e., loosely speaking the presence of modulational In the particular case where the phase difference between
instability can be considered as a precursor to bright solitormdjacent waveguides is zero, two different types of soliton
formation. Perturbing the amplitude and the phase of th&olutions exist; those centered on a single site and those that
solution asu,=(A+B,)exdi(k{+qn+¢,) ], whereB,, and  are centered between two sites. Apart from that, these two
the differencesy, ., — ¢, are assumed to be small and by solutions have a similar forrtbrightlike or darklike as ex-
applying the transformationB(,, )= (B, y)e' KO we pected from the DNLS equation. As a matter of fact, for a
obtain the following equation: fixed value ofP, the energy(Hamiltonian of the in-phase

bright soliton solution centered on site is always less than the
energy of the solution centered between two sites, and, there-

Which will be solved numerically using a Newton'’s iteration
scheme. The two cases of particular interest, ge0, ,

[K+2 sing sinQ+2a sin 2q sin 2Q]? fore, the latter one is always transversely unstable. Conse-
Q quently, we will restrict ourselves to the study of on site
=8| cosq sir’ = + a cos 2 sian} bright discrete soliton solutior{®4].
2 The family of the in-phase bright solitons of E®) with

2 cosq sin29 +2a cos Ay sifQ— A?

X
2

of Eg. (17). In Fig. 4 the power associated with these solu-
tions, P, is depicted as a function of the eigenvaluefor

(16)  three different values of. Whena=0, theP(u) diagram

} g=0 are found numerically by solving the nonlinear system
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15 ‘ - - ' mum values ofu, are stable, whereas the one in between is
unstable.

We will now formally explore the linear stability of these
in-phase bright soliton solutions by using E). By per-
turbing the exact solution,=v,e'*¢, in a fashionu,=[v,
+(Up+W,y)er i+ (U,—W,)e "A]el#¢ we obtain the fol-
lowing coupled eigenvalue problem:

LiWha=AU,, LUy=AW,, (18

where L;W,=— uW,+ AW, + aA,W,+v2W, and L,U,
=—uUy+ AU+ aA,U,+302U,. When all the eigenval-
% P ’ 5 P 10 ues of the perturbation lie on the real axis the solution is
® stable, whereas, if an eigenvalue pair acquires a nonzero
FIG. 4. PowerP vs u diagram of bright soliton solutions when IMaginary part the solution becomes unstable. The continu-
q=0, anda=0,1/4,1. ous spectrum can be found by linearizing Etg), and sub-
stituing ¢, = (U +Wy)exppan), dy=(Un—W,)expipah),
corresponds to the standard DNLS model. In this regimei.e.,
approximate expressions fé?(w) can be obtained in the
case of either weakly or strongly localized solutions, that is, A=*[u+2(1-cosp,)+2a(l—cosD,)],
in the continuous or the anticontinuous limit. More specifi-
cally, for relatively small values oP, the behavior of the We will show that the results stemming from the solution of
P(u) can be approximately described within the so-calledthe previous eigenvalue problem are in agreement with the
nonlinear Schrdinger limit. In this case, using E@5), the  previous analysis. To demonstrate this connection, we will
P(n) curve can be approximately described B9  describe how the eigenvalues of E@8) change as a func-
~4\(1+4a)u. On the other hand, for large values Bf  tion of u, whena is above the instability threshold. When
most of the power is confined in one waveguide, and, thereis close to zero, the amplitude of the solution becomes very
fore, P~u+2(1+ ). The regions where these two ap- small, and, consequently, the discrete Bj.is in the vicin-
proximations are valid can be easily seen in Fig. 4. ity of the continuous NLS limit. In this case it is well known
As a result of the long-range interactions, these solutionshat two pairs of eigenvalues are located at the origin, corre-
have interesting stability properties. A similar situation wassponding to the eve(with zero nodesand an oddwith one
encountered in Ref25] in nonlinear lattices with ~% inter-  node eigenfunction. The firsteven mode is related to the
actions. More specifically, whem is less than 0.26, the invariance of the model to a phase shift, i.e., as it is proved
powerP is always monotonically increasing wiila. On the by Noether’s theorem, to the conservation of the pojzey.
other hand, for values ofv greater than 0.26, a region (5)], whereas the secon@dd mode is related the transla-
(mq,m5) exists in whichP is monotonically decreasing with tional invariancgthe conservation of the momentum in the
., whereas, for all other subsequent valuesugfP is in-  continuous approximation of E@3), i.e., of the NLS equa-
creasing. TheP(u) curves are associated with the stability tion]. As the value ofu increases the eigenvalues associated
of the soliton solutions through the Vakhitov-Kolokolov cri- with the translational eigenmode bifurcate from the origin to
terion[26] that has been shown to be also applicable in thehe real axis and approach the edge of the continuous spec-
DNLS equation[27]. According to this criterion, instability trum. This bifurcation is related with the loss of the mobility
will be developed only whe@P/du<0, i.e., inside the re- of the discrete soliton solutions as they become more local-
gion (u1,u,) Whena=0.26. From a different perspective, ized on the nonlinear lattice. The other pair of eigenvalues
Fig. 4 can be interpreted aswgP) diagram. As it is known remains at the origin as long &ds an increasing function of
from elementary bifurcation theory, the stability properties ofx. When the slope of th®(u«) diagram becomes negative
a system can change only when a bifurcation takes placéhis pair of eigenvalues bifurcates from the origin to the
When a=<0.26, P(u) is monotonically increasing, i.e., no imaginary axis, and, as a result, the soliton solution turns
bifurcation occurs. We also know that the small amplitudeunstable. As long as the slope B{w) is negative, the ei-
solutions are stable since they are governed by the contingenvalues remain on the imaginary axis. However, when the
ous NLS equation and, as a result, the whole curve is stabl#alue of the slope is close to zero again, the eigenvalues
In the other extreme, the stability of the strongly localizedreturn to the origin. This scenario is demonstrated in Fig. 5
modes can also be proved analytically since, effectively, Eqfor =1 andq=0 whenuy=1.2,1.7,2.2. The left column of
(3) reduces to a dynamical system with a few degrees oFig. 5 depicts the associated eigenvalue diagram, whereas
freedom (see, for example, Ref28]). When «=0.26 we the right one shows the corresponding evolution of the inten-
know that the upper and lower branches are stable, so, waty of the discrete soliton. Figs(& and %b) were obtained
expect(since the stable and unstable manifold alterndlat  atug=1.2, where the soliton is stable since all the eigenval-
the second branch will be unstable. In the range where #es lie on the real axis. On the other hand, the solution illus-
given value ofP corresponds to three different valuesof  trated in Figs. &) and 5d) for ug=1.7 is unstable, and
two of these wave numbers, i.e., the minimum and the maxiexhibits bistability. In this case a pair of eigenvalues is
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FIG. 5. Eigenvalue diagrams of in-phase bright soliton solutiaps@) whena=1, and forug=1.2, 1.7, 2.2 shown ifa), (c), (e) and
the corresponding intensity evolution depictedlm, (d), (f), respectively.

purely imaginary and is responsible for instabilities. This in-in Sec. Il we anticipate bright staggered soliton solutions to
stability ceases to exist at higher amplitudese Figs. &) exist whena>1/4.Again, we identify two different types of
and 5f) whereuy=2.2], since all the eigenvalues are located staggered bright solitonga) a symmetric mode, anb) an
on the real axis. antisymmetric mode. Figure 6 depicts both a narrow and a
broad, symmetric and antisymmetric discrete soliton solu-
tion.

In this section we will explore the properties of staggered Between these two possible staggered solutions, the en-
soliton solutions, i.e.q= 7. As per our previous discussion ergy of the symmetric mode is always greater than the cor-

B. At the edge of the Brillouin zone: q=
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FIG. 6. (a), (b) symmetric andc), (d) antisymmetric bright staggered soliton solutions. Figyes(c) correspond to highly localized
solutions while(b) and (d) to relatively broad states.

responding value for the antisymmetric moffer a fixed imaginary componentfFig. 7(e)] giving rise to an oscilla-
value of P and appreciable values af). As a result, the tory type of instability[see also Fig. f)].

symmetric mode happens to be transversely unstable. To Following the arguments of Sec. lll, we have also found
study the stability properties of the antisymmetric solution,numerically staggered dark soliton solutions in the region
we will numerically solve the eigenvalue probldq. (18)] o< 1/4. Theproperties of these solutions happen to be very
where the linear operators are in this cds@V,=—uW,  similar to those of the DNLS equation, i.e., wher: 0, (see
—A W+ @AW, +0iW,  and  LoUy=—uU,—A U, Refs.[20,29). As the value ofa increases inside the region
+aA,U,+3v3U,. Again, the continuous spectrum can be[0,1/4), thewidth of the dispersion curve becomes broader,
determined by linearizing the eigenvalue problem, and  and, as a result, the soliton solutions become narrower for
*[p—2(1-cosp,) +2a(1—cos D,)]. Our numerical inves-  the same power levels. In Fig. 8 we present the form of the
tigation shows that above a certain threshold of the maxicentered on a sitgrigs. §a) and 8b)] and centered between
mum amplitude these solutions are stable. Figuae depicts  two sites[Figs. §c) and &d)] dark soliton solutions when

the properties of the eigenvalue diagram associated with g = [Figs. §a) and §c)] anda=0.2[Figs. 8b) and &d)].
stable solution wher=1.4 and the peak amplitude is 5. In

this case we see a pair of eigenvglues located at th_e.origin V. DIFERACTION MANAGEMENT

and another located on the real axis between the origin and

the continuous spectrum. As a result the solution is stable as In a recent study, it has been demonstrated that the dis-
also demonstrated by its intensity evolution, Figb)7 By  crete diffraction properties of a linear array can be altered as
decreasing the amplitude, the gap between the continuowsfunction of the input phase differengeamong successive
spectrum and the latter pair of discrete eigenvalues is rewaveguide$18]. In particular, it was experimentally verified
duced as shown in Fig.(@) (for a peak amplitude equal to that forq= /2, the optical beam in a linear array can propa-
4). This solution is again stable, as demonstrated in Figgate almost undistorted, since, to leading order, the discrete
7(d). Finally, when the amplitude is reduced below a certaindiffraction is zero[i.e., from Eq.(11) d,=0 whenq= 7/2
threshold, the eigenvalue pair collides with the continuousand a«=0]. Furthermore, diffractionless propagation was
spectrum and bifurcate into four eigenvalues with nonzeralso observed by eliminating, on average, the third-order dif-
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fraction using an alternating configuratitelongz) of wave-  curves are increasing functions af However, it is impor-
guide arrays. tant to point out that the group velocity displayed in Fig. 9 is
In this section we will study how diffraction management related to the skew coordinasghat connects linearly all the
can be implemented in the zigzag arrays proposed here. Asonsecutive sites of the array zigzag path. On the other hand,
previously noted the presence of second-order couplingghe actual propagation distance alongtteordinatewhich
(when a#0) can substantially modifyl, sinced,=cosq s parallel to the line that connects a waveguide with its
+4acos2. The condition d,=0 in fact corresponds second neighboyss related tos via x=ssin(@/2) and, as a
to the inflection points of the dlsperS|on CUNEig. 3.  result, the group velocity o is reduced by a factor sifi).
From Eg.(11) the inflection pointsy, whered,=0, can be |t is interesting to note that, while in the first branesolid
found, as a function ofx, and are given by caq,:[—l curve the normalized group velocity is always greater than
+1+128x%]/16a. In Fig. 9, the group velocityas given 2, in the second brandidashed curvediffraction-free beam
by Eg. (10)] that is associated with diffractionless beam propagation is possible even for small valuesvgt Actu-
propagation is displayed as a function®fAs we can see, ally, whena=1/4 andq= = diffractionless propagation of a
for values of a<1/4 diffractionless propagation can be standing beantsincev,=0) can be achieved. In this par-
achieved for only one value of, while, for «>1/4 two ticular case, botll, andd; are zero and the first nonzero
inflection points exist, each one corresponding to a differencontribution comes from the fourth-order diffraction term. To
group velocity. Note that the case studied in R&B] corre-  verify this result, a beam of the fornu=secli0.35n
sponds toa=0 on the upper branch of our Fig. 9. Batl —no)/+/2]explgn) was launched in such a linear array. Fig-
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FIG. 8. Dark soliton solutionga), (b) centered on a site ar(d), (d) centered between two sites f@), (c) «=0 and(b), (d) «=0.2.

ure 10 depicts the intensity profile of this beam at the inputortion of the beam. Finally, in cade) the peak intensity is
(solid curve and at{=100 when(a) «=0, q=0 (dotted approximately 80% of the input, and any distortion in the
curve (b) =0, q=n/2 (dashed dotte and (c) a=1/4, beam profile is due to fourth- and higher-order diffraction
g= 7 (dashed For cas€a) the peak intensity of the beam at terms.

the output is at least six times less than the one at the input, The spatial dispersion or diffraction that a beam is expe-
mainly as a result of second-order diffraction. In the secondiencing during propagation in the bulk depends only on the
case(b), the initial phase tiltq= /2 is responsible for the refractive index of the material. In discrete systems, how-
elimination of the second-order diffraction effects and theever, diffraction results from the coupling between the ele-
output peak intensity is reduced by 30%. In this case, the
third-order diffraction is responsible for the asymmetric dis-

10

FIG. 10. The inputsolid line) and the output intensity profiles
of a beam after a propagation distarnize 100 when(a) «=0 and
g=0 (dotted ling, (b) =0, q= /2 (dashed-dotted lineand(c)
a=1/4, g= = (dashed ling

FIG. 9. Group velocity at the zero diffraction points. Far
above 1/4 two different group velocity branches are allowed.
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3 du, )
ld—§+A1Un+aAzUn—|Un| u,=0. (19
a4t i
=0 When =0, Eq.(19) reduces to the defocusing DNLS.
sl j This equation is known to support in-phase dark soliton so-
N lutions at the base of the Brillouin zong+0), as well as
© out-of-phase(staggerej bright solitons at the edge of the
2r i Brillouin zone (=) [13,20. The nonlinear dispersion re-
g=n .-~ lation of Eq.(19) is given by
1 ///// 4
7 k=2 cosq+2a cos—A?>—2(1+a). (20)
% 02 04 06 08 1

Evidently, the linear part of Eq20) remains the same as in
the self-focusing caséig. 3). Therefore, at the base of the
FIG. 11. The leading diffraction term, of the waveguide array  Brillouin zone (=0) one expects in-phase dark soliton so-
as a function ofx for q=0 and . lutions to exist. In addition, Fig. 3 demonstrates that as the
value of« increases, the dispersion curve becomes narrower
ments of the lattice. Consequently, different geometrical arand, as a result, the dark soliton solutions that can be accom-
rangements will have, in general, different diffraction modatedatq=0) have to be broader for bigger valuesaof
properties. As Eq(11) indicated, the diffraction can be tuned At the edge of the Brillouin zone the sign of the second-order
by adjusting the relative coupling strength As a result, diffraction termd, of the array changes when=1/4. Fol-
solitons with specific peak intensities are possible, by approlowing the same arguments we used in Sec. Ill, we anticipate
priately engineering the relative coupling coefficientThe  that for values ofa less than 1/4 staggered bright soliton
diffraction of the zigzag array,, is depicted in Fig. 11 as a solutions should exist. This fact becomes apparent if one
function of @ in the regimes where bright solitons can be considers Eq(9) whenqg= = and the nonlinearity is of the
supported. The two curves shown in the figure correspond tdefocusing type, i.e.,
the caseg=0 and w. For these values af the odd order
diffraction terms, which are responsible for the asymmetric 1
deformation of a soliton as well as for acceleration/ iy +(4a—1)ype+ T5(16a—1)¢us—|4*4=0. (21)
deceleration effects, are zero. In both cases, the diffraction is
an increasing function ok. For in-phase solitond, attains
its minimum value ¢,=1) atq=0. However, for staggered
solitons Q= ), the leading diffraction terrd, is zero when
a=1/4. Thus, staggered discrete solitons can exist even i
media with relatively small values of nonlinearity.

For broad enough solutiori& which case the fourth-order

dispersion can be neglecielg. (21) reduces to the standard
onlinear Schrdinger equation with bright soliton solutions
or «<1/4 and dark solitons forw>1/4. Of course in the

discrete limit these solutions are of the staggered type since

g= . It is also noteworthy pointing out that E21) exhib-

its a bright solitary wave solution even in the presence of

Our formalism can also be used to obtain discrete solitor];Ourth order diffraction effects. This solution is given E30]

solutions in arrays with defocusing nonlinearity. In this case

VI. DEFOCUSING NONLINEARITY

the optical field dynamics are described by y=Asech(pé)e'?, (22
11 PR ' N 1.5f
1 3 " 1
0.5 A 0.5
550 == 0
-05 -0.5
= =
-1.5}° ) ) ) . -1.5¢° , . .
5 10 15 20 15 20 25

n

(@)

n

FIG. 12. A staggered dark soliton at the edge of the Brillouin z@e&entered on a site ar{th) centered between two sites.
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where  A%2=(18/5)(1-4a)?%/(16a—1), p?=(3/5)(1
—4a)/(16a—1), and v=—(48/25)(1-4a)?/(16a—1).
This solution exists in the range 1&&<1/4. Notice that
all the parameters of this solution are fixed for a given value

of «. Finally, whena>1/4 a new type of staggered dark : ; ; ; ; .

. . . A the discrete diffraction properties of nonlinear waveguide ar-
soliton is found to exist at the edge of the Brillouin zone rays. As an example, we considered zigzag arrays that can
(q=m). Figure 12 depicts a typical example of such a solu-y6yide considerable extended interactions. We demonstrated
tion. Again, two different types of dark solitons can be ob-that completely different families of discrete soliton solu-
tained; one centered on a sftéig. 12a)] and one centered tions are possible, which are possible over a wide range of
between two consecutive sit¢Big. 12b)]. We emphasize parameters. Our method opens up opportunities for diffrac-
that this family of solutions does not exist in standard arraysion management that can be employed to generate low

in systems with appreciable second order coupling effects as,
for example, in the zigzag arrays proposed here.

VII. CONCLUSIONS

In this paper we presented a method to efficiently manage

(as described by the DNLS equatjoiihey are only possible

power spatial discrete soliton states.
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