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Dielectric structures with bound modes for microcavity lasers

P. M. Visser,* K. Allaart,† and D. Lenstra‡
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~Received 21 November 2001; published 29 April 2002!

Cavity modes of dielectric microspheres and vertical cavity surface emitting lasers, in spite of their highQ,
are never exactly bound, but have a finite width due to leakage at the borders. We propose types of micro-
structures that sustain three-dimensionally bound modes of the radiation field when dissipation is neglected.
Unlike photonic crystals, the photonic systems that we consider here rely on periodicity in only one or two
dimensions. In particular, we discuss a cavity composed of two crossed vertical layers combined with a
periodic structure of horizontal layers. The layers have an anisotropic dielectric tensor, which could be obtained
by making air holes in the vertical and horizontal directions within isotropic material. We calculate cavity
resonance frequencies and spontaneous emission rates. The simplicity of this laser geometry allows an ana-
lytical study of light propagation and amplification in three dimensions.
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I. INTRODUCTION

Vertical cavity surface emitting lasers~VCSELs! are ex-
amples of very small lasers@1,2#. These microstructures ca
have narrow cavity resonances as a result of the localiz
effect of the cylindrical waveguide in combination with th
Bragg reflection in the stacked disks. The long lifetime
photons created from the recombination of electron-h
pairs in the central layer makes the stimulated emission
cient. At present, the efficiency of VCSELs is mainly limite
by leakage at the borders. There is loss of radiation thro
spontaneous emission which exits from the side. Also,
light in the cavity mode decays because evanescent w
are not reflected in the vertical direction. The reflection co
ditions of the interior guided wave and the outer evanesc
wave do not match, which gives rise to losses at the bou
ary and determines the width of the cavity resonances. E
bound modes do not occur in VCSELs. When the coupling
the lasing mode is enhanced by making the system~and
thereby the mode volume! smaller, the evanescent fields b
come more important and the lifetime of the mode decrea
This kind of incompatibility between small mode volum
and high finesse occurs in whispering gallery modes of
crospheres@3–6# too, also because of losses at the bound

Exact bound states for the radiative field can occur
spatially infinite dielectric structures, for example in phot
nic crystals. When such a crystal has a point defect, i
possible to create a bound state at a frequency inside a th
dimensional photonic band gap@7,8#. In the absence of dis
sipation, the state has an infinite lifetime while propagat
solutions do not exist at the frequency of the bound mo
Anderson localization in a disordered structure provides
other means to create bound states of light@9–11#. A two-
level atom coupled to a localized field mode would make
perfect realization of the Jaynes-Cummings model@12#.

In this paper we consider a class of systems, other t
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photonic crystals and disordered structures, where local
modes occur. These systems are periodic in one or two
rections only. There is no three-dimensional band gap
spontaneous emission is possible at the same frequenci
the bound states. Because the modes are small and los
systems with such a design may prove useful in future se
conductor microlasers with strong coupling and low thre
old. The geometry of the structures is simple, but the lay
must satisfy specific requirements. In Sec. II we specify
class of systems, composed of anisotropic dielectric mate
where bound states occur. The layers must have a princ
axis of lower dielectric constant in the vertical direction f
the vertical layers, and in the horizontal layers for the ho
zontal layers. This can be achieved by drilling air holes
isotropic material of high dielectric constant. An even mo
favorable situation would occur when the air holes would
filled with material with a negative dynamical dielectric co
stant. Sections III and IV provide two examples of a wav
guide and a cavity which, in a thin layer approximation, a
analytically solvable. We then show how the bound solutio
arise in the cavity. The partial spontaneous emission rate
the different types of radiative and guided modes are ca
lated in Sec. V.

II. STRUCTURES THAT SUPPORT BOUND STATES

A. Required form of the dielectric tensor

The bound states arise in structures with specific polar
tion properties. The dielectric tensor of the class of the
solvable configurations is given by

«~rW !5@11 ẑẑU~x!1 ẑẑV~y!1~12 ẑẑ!W~z!#«1 . ~1!

Here the functionsU(x), V(y), andW(z) describe structures
of layers normal to thex, y, andz directions. The background
medium, in which the functionsU, V, and W are zero, is
isotropic, given by the dielectric constant«1. For air«1'1,
but we have in mind a background made of dielectric ma
rial and «1.1. In this paper, we consider real«1 and real
functionsU, V, andW, so that the entire system is lossles
The case with lossy layers and an active gain medium
©2002 The American Physical Society04-1
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studied elsewhere@13#. The structures shown in Figs. 1 and
are examples that will be discussed in Secs. III and IV.

The optical properties of dielectric structures, like spon
neous emission, amplification, and loss, can be calcula
from a complete set of modes of the electromagnetic fie
These field modes are the orthogonal solutions of Maxwe
equation for a stationary electric field of frequencyv in a
medium with relative dielectric function«(rW):

¹W 3¹W 3EW 5~v/c!2«~rW !EW . ~2!

When the dielectric tensor is of the form given in Eq.~1!,
two types of solution can be discerned: those with theHW field
in the xy plane, hereafter called thes-type modes, and thos
with the EW field in thexy plane, hereafter called thep type.
This nomenclature is adopted in view of the stack of para
layers in Fig. 2. Thep-type solutions are insensitive to th
functionsU andV in Eq. ~1!; they are therefore not localize
in thex or y direction. Thes-type modes can be expressed

EW ~rW !5
1

AR S kz
2

k2
¹W 2 ẑ

d

dzD f ~x!g~y!h~z!,

R5uk22kz
2uukz

2u«1 /k2, ~3!

in terms of the scalar functionsf (x), g(y), andh(z). HereR
is a normalization constant andkz ,k are eigenvalues in dif-
ferential equations for the functionsf, g, andh. This can be
proven by direct substitution in Maxwell’s equation. As on
the second term of Eq.~3! survives, when¹W 3¹W 3 is ap-
plied, one finds immediately

¹W 3¹W 3EW 5
1

AR S ¹W 2ẑ2¹W
d

dzD d

dz
f ~x!g~y!h~z!. ~4!

The substitution of Eqs.~1! and~4! in Eq. ~2! gives separate
scalar equations for the functionsf (x), g(y), andh(z):

2
d2

dx2
f ~x!5kx

2f ~x!1~k22kz
2!U~x! f ~x!, ~5!

2
d2

dy2
g~y!5ky

2g~y!1~k22kz
2!V~y!g~y!, ~6!

2
d2

dz2
h~z!5kz

2h~z!1kz
2W~z!h~x!. ~7!

The three eigenvalues are related by

kx
21ky

21kz
25k25~v/c!2«1 . ~8!

In the regions whereU, V, andW are zero, the functionsf, g,
andh are superpositions of plane waves and the total fiel
a superposition of eight plane waves with the wave vec
kW56 x̂kx6 ŷky6 ẑkz . The polarization vector of each plan
wave is proportional tokW3kW3 ẑ. In the case of a lossles
medium, considered here, the componentskx ,ky ,kz must be
05660
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real or purely imaginary. It follows from Eq.~8! that at least
one of these wave vector components must be real.

Bound states in structures described with a dielectric t
sor of the form of Eq.~1! are found when Eqs.~5!–~7! allow
simultaneously localized solutions forf, g, andh. This will
be the case for specific choices of the functionsU, V, andW.
It follows from standard wave mechanics that a localiz
solution in a potential of finite extent is found if the potenti
is attractive and allows a negative eigenvaluekx

2 , ky
2 , or kz

2

above the potential minimum. For an extended structure,
calized solutions occur when the potential is periodic in t
half spaces. In that case, the corresponding eigenvaluekx

2 ,
ky

2 , or kz
2 is positive and one needs a discrete solution ins

a band gap. Structures with bound states can be designe
combining these localizing effects. Because at least one
the eigenvalueskx

2 , ky
2 , or kz

2 must be positive, periodicity in
at least one dimension is needed.

The effective potentialW(z) in Eq. ~7! is multiplied by
the eigenvaluekz

2 , so that a localized solution forh(z) is
found if W(z),21 in some finite region. This implies tha
the structure described byW must have a negative dielectri
constant for the relevant frequency domain. The effect
potentials in Eqs.~5! and ~6! have a prefactork22kz

25kx
2

1ky
2 . A localized solution forf ~or g) can be found in this

case, when this prefactor and the potential are both pos
or both negative. For the casekx

21ky
2.0 the solution can

only be localized in either thex or the y direction, not in
both. In casekx

21ky
2,0, solutions can in principle be local

ized in one or two directions with a finite structure.
From these considerations we conclude that the follow

structures will sustain bound states:~1! Periodic vertical
structures in one direction, so thatU or V is periodic in two
half spaces, combined with a horizontal structure with ne
tive dielectric constant, so thatW(z),21 in a finite region.
~2! Periodic horizontal structures combined with low ind
vertical structures, so thatU(x),21/2 and V(y),21/2.
~This is the type of structure that we consider in the follo
ing sections.! ~3! A two-dimensional~2D! periodic structure
with periodicity in one of the two vertical directions and als
in the horizontal direction.~4! All three functionsU, V, and
W periodic. Then one obtains a solvable model for a
photonic crystal.

B. Normalization of the modes

The full vector solutions given in Eq.~3! in terms of the
scalar wave functionsf, g, andh must be normalized with the
standard normalization condition

E d3rWEW kW8
* ~rW !«~rW !EW kW~rW !5d3~kW82kW !. ~9!

The dielectric tensor« appears in this expression, because
is the vector fieldA«EW that is an eigensolution of a Hermit
ian operator@14,15#. This expression is strictly speaking on
valid when all three components of the wave vector belo
to continuous parts of the eigenvalue spectra. When disc
solutions occur, we will replace the individual components
the 3Dd function with a Kroneckerd. The required normal-
4-2
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ization of Eq.~9! can be obtained with the following choic
of normalization for the scalar wave functionsf, g, andh in
Eqs.~5!–~7!:

E
2`

`

dxE
2`

`

dy fk
x8

* ~x! f kx
~x!gk

y8
* ~y!gky

~y!

3@11U~x!1V~y!#

5d~kx82kx!d~ky82ky!, ~10!

E
2`

`

dz hk
z8

* ~z!hkz
~z!@11W~z!#5d~kz82kz!. ~11!

If we assume thatU, V, andW are nonzero in a finite region
only, the density of states is independent of the compon
kx ,ky ,kz of the wave vector of an incident plane wave.
that case, the effect of the potentials on the normalization
extended wave functions is negligible and the normalizati
can be written as

E
2`

`

dx fk
x8

* ~x! f kx
~x!5d~kx82kx!,

E
2`

`

dy gk
y8

* ~y!gky
~y!5d~ky82ky!.

The respective normalizations for localized wave functio
are

E
2`

`

dxu f kx
~x!u2@11U~x!#51,

E
2`

`

dyugky
~y!u2@11V~y!#51,

E
2`

`

dxE
2`

`

dyu f kx
~x!gky

~y!u2@11U~x!1V~y!#51,

in case eitherkx or ky or both are discrete eigenvalues. W
will also consider systems that are periodic everywhere
periodic in a half space for thez coordinate, so thatW(z)
extends over an infinite region. The density of states is c
stant in the quasimomentump for an incoming Bloch state
In this case the wave functionsh(p,z) in one energy band
must be normalized according to

E
2`

`

dz h* ~p8,z!h~p,z!@11W~z!#5d~p82p!. ~12!

The normalization of Bloch states is explained in more de
in Appendix A. Properties of thep-type modes that are
needed for the calculation of spontaneous emission rate
Section V are discussed in Appendix B.

III. WAVEGUIDE OF CROSSED LAYERS

One example of interest is the system of two crossed
tical planes depicted in Fig. 1. This configuration is d
scribed with Eq.~1! and the choice

U~x!5u~d22uxu!x/d, ~13!
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V~y!5u~d22uyu!x/d. ~14!

Hereu(x) is the step function. The effective susceptibilityx
is given by x5(«22«1)d/«1. The functionsU and V de-
scribe dielectric layers with thicknessd along the verticalyz
andxz planes andW(z)50. Inside these layers the dielectr
tensor is«5(12 ẑẑ)«11 ẑẑ«2. If the layers are characterize
by a dielectric constant higher than the background, one
«2.«1 and thenx is positive; if the structures have a lowe
dielectric constant, then«2,«1 andx is negative.

The propagating and guided waves in this structure foll
from Eqs.~5!–~7!. It is clear that Eq.~7! for the behavior in
the z direction allows a simple plane wave solutionh(z)
5exp(ikzz). Because the effective potentialsU(x) andV(y)
in this equation are even functions, one can consider s
tions that are either even or odd inx andy. If kx is real, the
even and odd solutions, in the thin layer approximati
@16,17#, are

f 1~x!5A1/pcos~kxuxu1fx!,

f 2~x!5A1/psinkxx. ~15!

The even solutions are characterized by a phase shiftfx .
The value follows from the condition thatf (x) is continuous
and differentiable at the borders of the layers. In the limit
small layer thickness, the phase shift calculated from Eq.~5!
is given by

tanfx5k/kx , k5kx
2d/21~k22kz

2!x/2. ~16!

Localized solutions follow from the requirement thatkx is
imaginary. For a thin layer, one localized solution withkx

FIG. 1. A waveguide of crossed planes of anisotropic mate
with a principal axis in thez direction. For any incident plane wav

with wave vectorkW the vectorsẑ3kW and kW3kW3 ẑ are eigenpolar-
izations of reflection and transmission. This is illustrated here

the case thatkW lies in thexz plane.
4-3
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5ik exists, whenk is positive and given by Eq.~16!. The
corresponding normalized wave function is

f ~x!5Ak/u11xkuexp~2kuxu!, ~17!

k5@A11~k22kz
2!xd21#/d. ~18!

The even, the odd, and the bound solutions form a comp
set for the eigenvalue equation~5!. The normalization of the
continuum solutions is given by Eq.~10!.

Combinations of the localized and propagating solutio
for f (x) and g(y) give field modes that are propagating
three dimensions, in two dimensions, or in one dimension
the following we will call these different types 3D, 2D, an
1D modes. For each of these types, the range of values okz
for a fixed wave numberk will generally be different. The
allowed value forkz for the 3D modes is

kz
25k22kx

22ky
2<k2. ~19!

Whenx.0, only one of the two functionsf (x) or g(y) can
be localized, becausek22kz

25kx
21ky

2 must be positive. The
region of allowed values forkz of the 2D modes is therefor
also given by Eq.~19!.

Whenx,0, the functionsU andV in Eqs.~5! and~6! are
negative. Only whenx,2d/2 can this result in localized
solutions. Then bothf (x) and g(y) need to be localized a
the same time. This demonstrates that the crossed plane
act as a waveguide for somes-type modes. In the thin laye
limit, the 1D modes are determined by the wave functio
g(y)5 f (y) and Eq.~17! and the wave vector componen
are

kx5ky5 ik52i /~2uxu2d!, ~20!

kz
25k212k25k218/~2uxu2d!2. ~21!

The behavior in the overlap regions~where bothuxu,d/2
and uyu,d/2) can be neglected only for thin layers:d!uxu.
For the existence of 1D modes, this implies thatx and the
dielectric constant«2 must be negative. On the other hand,
«2 is not negative, it is important that the structure in t
overlap region must also be described with the form~1!,
which is «5(12 ẑẑ)«11 ẑẑ(2«22«1). One finds that thez
component of this tensor 2«22«15(2x/d11)«1 must be
negative. Strictly speaking, the waveguide is perfect o
when material with a negative dielectric constant is used

For x in the interval between2d/2 and 0, localized so-
lutions for f (x) or g(y) are not possible. Whenx lies in the
interval between2d and2d/2 there exist 1D modes but n
2D modes. Whenx,2d there exist both 1D and 2D mode
The spectral region for the 2D modes is given by

kz
25k22kx

22ky
2>k214/~ uxu2d!2. ~22!

IV. A CAVITY AND ITS BOUND STATES

We will now consider the system depicted in Fig. 2. Th
system basically consists of the waveguide of Fig. 1 d
cussed in Sec. III, supplemented with a structure of horiz
05660
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tal layers. Bragg reflection in these horizontal layers can s
press the propagation in thez direction. By leaving out the
central layer, the periodicity is interrupted atz50, which
results in wave functions that are localized in the reg
around the defect. The fully bound states will arise as co
binations of the localized solutions forf (x), g(y), andh(z).
For these modes, bothkx and ky are imaginary andkz is a
discrete but real solution inside a band gap.

The horizontal layers in the structure of Fig. 2 have wid
b and their spacing, center to center, is given by the par
etera. The functionsU, V, andW in Eq. ~1! that describe the
system are given by Eqs.~13! and ~14!, and

W~z!5 (
l 52`

`

u~b22uz2 lau!j/b

1u~b22uzu!~a2j!/b. ~23!

This function is plotted in Fig. 3. With the effective susce
tibility j5(«22«1)b/«1, the dielectric tensor inside th
horizontal layers is«5 ẑẑ«11(12 ẑẑ)«2. For the cavity with
bound states the central layer is absent anda50. We will
also discuss the periodic case, in the presence of a ce
layer whena5j. In this paper we consider layers that a
infinite in extension and number. The bound states de
exponentially in all spatial directions, and are therefore go
approximations to a physical realization of finite size. T
circular shape of the horizontal planes in Fig. 2 is theref
also not essential. The entire structure, with the required
isotropy, can be created when the vertical layers are form
by vertical air holes~of subwavelength diameter!, and the
horizontal layers are formed by horizontal air holes in thex
andy directions.

A. Band structure for the propagating modes

Before we discuss the casea50 in Eq. ~23!, we first
study Eq.~7! for h(z) with a fully periodic potentialW(z).

FIG. 2. Proposed structure for a cavity with exact bound mod
The dielectric tensor that characterizes the layers has a spe
anisotropy given by Eq.~1!. The corresponding dielectric consta
must be lower than that of the background.
4-4
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This situation, realized whena5j, is interesting because
describes the behavior of electromagnetic fields away fr
the central region. The Bloch solutions of the periodic on
dimensional system, which we shall denote byhn(p,z), are
defined by the requirement that the states obtain a ph
factor eipa upon translation over one perioda. We have for
integerl,

hn~p,z1 la !5eilpahn~p,z!. ~24!

Here the discrete indexn51,2, . . . is theband number andp
is the quasimomentum. The quasimomentump is a periodic
variable moduloq52p/a and one may choosep to be in the
first Brillouin zone@2q/2,q/2#. A few relevant properties for
the normalization of Bloch waves are discussed in Appen
A. In the regionb/2<z<a2b/2 between two layers, the
Bloch waves can be written as a sum of two plane wav
hn(p,z)5c1eikzz1c2e2 ikzz, with coefficientsc1 andc2. For
thin layers, the requirement that the wave function is c
tinuous atz50 and z5a, in combination with the Bloch
condition ~24!, leads to the form

hn~p,z!5
1

A2pRn~p!sinkza

3@eipasinkzz1sinkz~a2z!#, ~25!

with normalization constantRn(p). The behavior ofhn(p,z)
for the other values ofz is determined with Eq.~24!. The
relationship between the quasimomentump and the wave
vectorkz now derives from the behavior at the layers. At t
position of the layers the derivative ofhn(p,z) makes a step
of 2jkz

2hn(p,0). This gives the well known relation@18#

cospa5cos~kza1fz!/cosfz . ~26!

Here the phasefz is the phase shift of a single layer, define
by

tanfz5jkz/2, 2p/2,fz,p/2. ~27!

The normalization ofhn(p,z) is determined by Eq.~12!.
With Eqs. ~26! and ~27!, the normalization constant in Eq
~25! is found to be

Rn~p!511S 1

tankza
1

1

kza
D tanfz . ~28!

FIG. 3. The functionW(z), plotted here fora50, acts as an
effective potential for the wave functionh(z). It is periodic in the
half spaces left and right fromz50 with perioda. The absence of
a layer atz50 creates localized waves.
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From Eq.~26!, one can obtain the standard form of a disp
sion relation with the wave vectorkz , expressed as a func
tion of the band indexn and the Bloch momentump. This
gives

kzn~p!a52p int~n/2!2~2 !narccos~cosfzcospa!2fz .

~29!

The resulting band structure is plotted in Fig. 4. For oddn
the minimum is found forp50, and the maximum forp
5q/2; for evenn the minimum is atp5q/2 and the maxi-
mum is atp50. It follows that the energy bands forkz are
the intervals

~n21!p<kza<np22fz if j.0,

~n21!p12ufzu<kza<np if j,0. ~30!

Hence the width of the band gaps is 2ufzu/a. The expres-
sions ~29! and ~30! are not explicit, however, because th
phasefz depends onkz through Eq.~27!.

B. The discrete cavity modes

WhenW(z) is given by Eq.~23! with a50, the period-
icity is interrupted atz50. We shall now describe how to
obtain the propagating and localized solutions fora50.
Whenx,2d/2, the localized solution forf (x) andg(y) can
be combined with a localized solution ofh(z) in Eq. ~3! to
give a fully bound state.

Although W(z) is not periodic foraÞj, the stationary
states can be expressed in the Bloch solutions of the
a5j. In fact, a solution with an eigenvaluekz in the energy
band can always be written as a superpositionhn

1(p,z)
5c1hn(p,z)1c2hn(2p,z) of the two Bloch waves with
positive and negative quasimomentum in the regionz>b/2.
This obviously can also be done for the regionz<2b/2, but
with different coefficientsc1 andc2. Because atz50 there is
no layer, the values of the coefficients are determined by
condition that the solution is continuous and differentiable
z50. The band structure of the periodic lattice thus rema
intact. Because the potentialW(z) is even, one can conside
modes that are even and odd functions ofz. The even modes

FIG. 4. Band structure of thes-type modes. The eigenvaluekz is
plotted as a function of the quasimomentump for the first three
Brillouin zones, as given by Eq.~29! for j523a/16. Discrete so-
lutions inside the band gaps are represented as the points (ln ,kzn),
of which the first two are indicated. Hereln5Impn .
4-5
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are fixed by the condition (d/dz)hn
1(p,0)50, which gives

c15c2* 5e2 if/A2 with

tanf5tanfzsinkza/sinpa.

The odd modes are fixed by the conditionhn
2(p,0)50,

which givesc152c251/A2. The even and odd propagatin
solutions can be seen as a superposition of two scatte
solutions by the lattice defect atz50 in a further periodic
system that have incoming Bloch waves from the left a
from the right side ofz50. The mode density therefore
the same as the mode density for the Bloch states of
periodic case. The solutionshn

1(p,z) and hn
2(p,z) are also

normalized with Eq.~12!.
Bound modes occur for values ofkz inside the band gaps

These modes are characterized by an imaginary quas
mentum of the formpn5 iln1np/a. Heren51,2,3, . . . is
the number that counts the energy band gaps. The fact
the quasimomentum is complex implies that Eq.~24! be-
comes

hn~z1a!5~2 !ne2lnahn~z!

for z>b/2. Hence, the bound modes are localized in thz
direction near the lattice defect atz50 and decay exponen
tially with decay constantln . For thin layers, the presenc
or absence of the central layer has no effect on solutions
are odd functions ofz. Therefore, only localized solution
that are even functions inz occur. The two boundary condi
tions are obtained by substitution ofp5 il1np/a in the
eigenvalue equation~26! and taking (dh/dz)(0)50 for the
solution given by Eq.~25!. This gives the following two
equations forp andkz :

~2 !ne2la5coskza

5~2 !ncoshla2tanfzsinkza. ~31!

By elimination of l, the relation betweenkz and k for the
discrete solutions inside thenth band gap is found to be

tan~np2kza!52 tanfz . ~32!

When Eqs.~24! and ~31! are substituted in Eq.~25!, the
corresponding localized wave function becomes

hn~z!5
1

ARn

~coskzna! l (z)coskzn@ uzu2 l ~z!a#. ~33!

Here l (z)5 int(uzu/a) is the number of layers between pos
tion z and 0, andkzn is thenth solution of Eq.~32!. The wave
function decays exponentially in both the positive and ne
tive z directions. The normalization constant in Eq.~33! is
given by

Rn5S 1

sin2kzna
2

1

kzna tankzna
D a. ~34!

To second order inj, Eqs. ~27! and ~32! give ln
5(npj)2/2a3, kzn5np/(a1j). For positive~negative! j,
the top ~bottom! of the energy bands lies atkz5np(a
2j)/a2. The propagation vectorkzn of a localized mode thus
05660
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lies only slightly above~below! the energy bands. The dis
crete eigenvaluesln and the corresponding valueskzn are
indicated by the dots in Fig. 4. A few localized wave fun
tions are plotted in Fig. 5.

The fully bound states are obtained from the localiz
solutions forf (x), g(y)5 f (y), andhn(z) as given by Eqs.
~17! and ~33!, with the wave vector componentskx ,ky ,kzn
given by Eq.~20! and a discrete solution of Eq.~32!. Sub-
stitution of these functions in the general vector soluti
given by Eq.~3! gives the explicit expression

EW n~rW !5
k

Au112xkuRn

e2kuxu2kuyu~coskza! l (z)

3F S x̂x

uxu
1

ŷy

uyu D cos@kzuzu2 l ~z!a#

1
2k ẑz

kzuzu
sin@kzuzu2 l ~z!a#G .

The intensity at the cavity center isEW n
2(0W )58/(4x2

2d2)Rn . For the moderate numerical valuesx523d/4, j
523a/16, d5a, an effective mode volume of approx
mately 9.7 cubic optical wavelengths is found. The cav
must have at least 10 layers to sustain a bound state of
size.

The frequency of a bound statev5ck«1
21/2 is obtained

from Eq. ~21! with a solutionkzn of Eq. ~32!. Usually, one
wants to fix the physical dimensionsa,b,d of the microcav-
ity, so that the lowest order bound state (n51) is resonant
with a given frequencyv. These cavity resonances might b
difficult to excite, because they are extremely narrow. It f
lows from Eqs.~21! and ~32! that the optimal choice of the
lattice spacinga for n51 is

a5
p2arctan@jAk212k2#

Ak212k2
,

FIG. 5. Spatial wave functionshn(z) of the bound states along
the z direction, as given by Eq.~33!. From bottom to top: the first
two statesn51,2, for j523a/16. Kinks occur at the positions o
the planes, and not atz50.
4-6
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DIELECTRIC STRUCTURES WITH BOUND MODES FOR . . . PHYSICAL REVIEW E65 056604
with k5«1
1/2v/c. If uju is small, thena5p/k so that a full

wavelength fits between the middle two layers. Ifuju is big,
the layer to layer distance approachesa5p/2kz .

The eigenvalue spectrum is plotted in Fig. 6. The effec
localization in thez direction is seen as lines inside the ba
gaps for kz . In this figure we adoptedx523a/4, j5
23a/16, which could correspond to the situation of«154,
«251 for cavity sizesd5a54b. The bound states ar
clearly shown as isolated points. The different mode ty
and their degree of localization are tabulated in Fig. 8
Appendix B.

V. SPONTANEOUS EMISSION

The rich variety of the field modes in the cavity discuss
in the previous section will show up in the angular depe
dence of spontaneous emission from an emitter placed in
the structure. For instance, the fraction of light emitted alo
the z axis is predominantly given by emission in thes mode
that is localized in thex andy directions. In this section we
calculate the partial spontaneous emission rates for a di
placed at the origin of the cavity, into the different types
radiation modes~listed in Fig. 8 in Appendix B!. This pro-
vides information about the spatial directions of the emit
radiation below the lasing threshold. The total rate of sp
taneous emission@19–22# is the sum of these contribution
and differs from the free-space emission rate.

Consider emission into field modes propagating in th
dimensions. If the dipole moment ismW 5mm̂, oriented in di-
rectionm̂, the emission rate according to Fermi’s golden ru
is given by

Gxyz

Gbg
5

3p2«1

k2 ( E
0

`

dkxE
0

`

dky

3E
0

`

dp d~k2ukW u!um̂•EW kW~0W !u2. ~35!

FIG. 6. Mode structure forx523a/4, j523a/16. The eigen-
valuekz is plotted as a function of the wave numberk. On the left
side, solutions ofp-type polarization; on the right side, thes type.
Dark and light shaded regions are 3D modes and 2D modes, res
tively. Horizontal and curved lines are 2D modes localized in thz
direction only, and 1D modes localized in two of the three dire
tions, respectively. Isolated points are bound states. The l
shaded regions are absent whenx.2d. Lines and points above
kz5k are absent whenx.2d/2.
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We denote withGbg512k3m2«1
5/2/\(2«111)2 the spontane-

ous emission rate in the background medium in Gauss
units @14#. The summation is over the polarization typess,p
and the eight possibilities of parity~even, odd inx,y,z), for
which the indices are suppressed. When the emission in
localized mode is calculated, for instance one that is bo
in the x direction, the integral overkx is replaced by the
discrete sum and the modes with imaginarykx5 ik are sub-
stituted. We now calculate the partial emission rates fo
dipole located at the origin, with dipole moments in thez and
in the x directions. From these, the emission rate of a dip
with arbitrary orientation can be determined.

The required electric field amplitudes at the cavity cen
are calculated in Appendix C. We assume here thatx lies in
the interval between2d and2d/2, which is physically the
most interesting case. Then there are three-dimensiona
diative modes~labeledxyz, as listed in Fig. 8!, modes local-
ized in the vertical direction (xy), modes guided by the two
vertical planes (z), and bound states~0!. For an atom with a
transition dipole moment oriented in the vertic
direction m̂5 ẑ, the partial emission rates are

Gxyz

Gbg
5

3

2E0

k

dkz

k22kz
2

k3

~Ak21k22kz
22k!2

k212k22kz
2

s,

Gxy50,

Gz

Gbg
5

24pk2

~4x22d2!k3k1

s~k1!, G050. ~36!

The partial emission rates for an atom with dipole momen
the directionm̂5 x̂ are

Gxyz

Gbg
5

3

4kE0

k

dkz

kz
2

k2 S 11
4k2

k22kz
2D

3
~Ak21k22kz

22k!2

k212k22kz
2

r,

Gxy

Gbg
5

3p

2k (
n

kzn
2

k2Rn
S 11

4k2

k22kzn
2 D

3
~Ak21k22kzn

2 2k!2

k212k22kzn
2

,

Gxyz8

Gbg
5

3

4kE0

k

dkzr8,
Gxy8

Gbg
5

3p

2k (
n

1

Rn8
,

Gz

Gbg
5

6pk1

~4x22d2!k3
r~k1!,

G0

Gbg
5

6p2

4x22d2 (
n

kzn
2

kn
4Rn

d~k2kn!. ~37!

Primed symbols refer to contributions ofp-type modes. The
kz-dependent functionss,r,r8 in these equations are

ec-

-
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s5
sinpa

sinkza
, r5

s~kz!

11jkz /tankza
,

r85
s8~kz!S~p8!/R~p8!

11jk2/~kztankza!
,

andRn , R(p), andS(p8) are given by Eqs.~34!, ~28!, and
~C4!. The expression fors8(kz) is the same ass(kz) but
with the dependence ofp on kz given by Eqs.~26! and~B4!
instead. The wave vector of a 1D mode is given byk1

5Ak218/(2uxu2d)2 as in Eq.~21! andk is a function ofkz
given by Eq.~16!. The spontaneous emission rateGz van-
ishes ifkz lies inside a band gap. The total emission rates
a ẑ andx̂ dipole given by the sum of the expressions in E
~36! and ~37! are plotted as a function ofk in Fig. 7 for a
specific example of the most interesting casex,0. For Gz
there is a concentration of the odd wave functionsh(z) at the
bottom of the band gaps. This gives the narrow peaks in
left curves of Fig. 7. Spontaneous emission turns out to
predominantly in the same direction as the dipole mome
We attribute this unusual behavior to the evanescent na
of the field modes.

Because the bound modes of our model are exact,
give the d-function contribution in Eq.~37!. In practice,
there will be a finite fractionb of light emitted into a fully
bound mode at resonance. The width of the cavity re
nances, which is zero in our case, is determined by diss
tion of light inside the layers and possible deviations fro
the model in the overlap regions of the layers. The calcu
tion of the linewidth of the bound states, the spontane
emission factorb, and the laser threshold for a system w
an active layer are discussed in@13#.

VI. CONCLUSIONS

We identified a class of dielectric structures that are thr
dimensional cavities for the optical field. In the absence
dissipation these cavities have exact bound states. The s
tures generally consist of several layers with anisotropic
electric tensors, placed at right angles with respect to e
other. Localization in the three dimensions is obtained a
combination of waveguiding and Bragg reflection. This
quires periodic structures in at least one dimension. The s
plest realization, shown in Fig. 2, consists of two layers t
are placed at right angles and a stack of layers in the t
direction, which resembles a VCSEL. The Bragg reflect
localize the waves in the vertical direction inside the cros
waveguide, but also localize the evanescent waves. This
sults in the bound states of our system.

Because the cavity resonances in our structures are d
mined only by loss and not by leakage, the linewidths m
be quite narrow. We expressed the resonance frequenci
the bound modes in terms of the cavity dimensionsa,b,d
and the dielectric constants«1 ,«2 that characterize the lay
ers. We evaluated spontaneous emission into the other m
of the radiation field. Due to the ‘‘evanescent-wave’’ natu
of most cavity modes, spontaneous emission occurs
dominantly in the direction parallel to the dipole moment
05660
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the emitter, instead of orthogonal to it. The bound states h
a small mode volume~of the order of a few cubic wave
lengths!, so that the coupling to an emitter placed in t
center of the mode can be strong when the cavity dimens
are chosen optimally for the specific transition frequen
Photons emitted from the central region are likely to end
in the bound state and the noise from the random emissio
other modes will then be relatively small. To demonstrate
existence of bound states in a dielectric system as propo
here, one might envisage the case of microwaves wit
centimeter-sized model. Microscopic realizations of the p
posed structures may be promising for future cavity QE
experiments@23,24#.
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APPENDIX A: NORMALIZATION OF BLOCH STATES

We here consider the general case of a one-dimensi
periodic potentialW(z) with period a. The stationary solu-
tions of the scalar equation~7! can be simultaneous eigen
states of the translation operation over the lattice perioda.
The Bloch states, which we shall denote byhn(p,z), are
defined by the requirement that the states obtain a ph
factor eipa upon translation. We therefore have

W~z1a!5W~z!, hn~p,z1a!5eipahn~p,z!.

FIG. 7. Partial emission rates. On the left, the emission rates
a vertical dipole; on the right, emission rates for a horizontal dipo
The curves forGz have band gaps. The value ofGxy is zero below
the frequency corresponding to the first bound state. Thed peaks
for bound states are indicated by the vertical lines. The dashed
dotted curves are the background and free-space emission rates
curves are obtained with Eqs.~36! and ~37! for the case«154,
«251, d5a54b, so thatx523a/4, j523a/16.
4-8



d
p

In
de
te

i

th

m

t

s
th
Th

w
e-

to

tical
pa-

on

y

ly
ating
s

n-
n

lly,
r of
eg

ere
is

DIELECTRIC STRUCTURES WITH BOUND MODES FOR . . . PHYSICAL REVIEW E65 056604
The Bloch momentump is a periodic variable modulo perio
2p/a. Because the Bloch waves are also periodic in the s
tial coordinatez modulo the lattice perioda, when multiplied
by e2 ipz, there exist two different Fourier expansions.
order to get a convenient normalization, we must consi
the Fourier expansions of the derivative of the Bloch sta
We write

2 i

kz

d

dz
hn~p,z!5 (

l 52`

`

eilpac̃n~z2 la !

5eipz (
l 52`

`

eilqzcn~p1 lq !.

Note that the coefficients in these expansions in waves w
period l are expressed in terms of continuous functionsc̃n

and cn for energy bandn. The functionc̃n(z) is called the
Wannier function and is the Fourier transform ofcn(pz):

c̃n~z!5
1

qE2`

`

dpze
ipzzcn~pz!.

The Bloch and Wannier waves are normalized with

E
0

a

dzuhn~p,z!u2@11W~z!#5E
2`

`

dz c̃n
2~z!

5
a

qE2`

`

dpzcn
2~pz!5

1

q
,

E
2`

`

dz hn8
* ~p8,z!hn~p,z!@11W~z!#5dn8nd~p82p!.

~A1!

This normalization for the Bloch states is consistent with
d-function normalization given in Eq.~12!.

For the potentialW(z) given in Eq. ~23!, the Wannier
wave function can be explicitly calculated in the momentu
representation. For smallb, this wave function is given by

cn~pz!5
j/a

A2pRn~pz!

pzkzn~pz!

pz
22kzn

2 ~pz!
.

The momentumpz is not restricted to one Brillouin zone, bu
ranges from2` to 1`.

APPENDIX B: THE p-TYPE MODE FUNCTIONS

We complete our analysis of the cavity modes by discu
ing thep-type polarization modes. These are needed for
calculation of the spontaneous emission rates in Sec. IV.
p-type modes are of the form

EW 8~rW !5
1

AR8
~kyx̂2kxŷ! f 8~x!g8~y!h8~z!,

R85~k22kz
2!«1 . ~B1!

The primes on all these symbols only refer to the fact that
are dealing here withp-type modes, in contrast to the corr
05660
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sponding unprimed quantities in the main text that refer
s-type modes. Since the polarization lies in thexy plane, the
p-polarized modes are decoupled from the crossed ver
planes. The transverse behavior is essentially freely pro
gating. The normalized solutions off 8(x) andg8(y) that are
even and odd in the coordinates are therefore given by

f 81~x!5A1/pcoskxx,

f 82~x!5 f 2~x!5A1/psinkyy,

g81~y!5A1/pcoskyy,

g82~y!5g2~y!5A1/psinkyy. ~B2!

By substitution of the form~B1! in Maxwell’s equation~2!
one obtains the following wave equation for the functi
h8(z):

2
d2

dz2
h8~z!5kz

2h8~z!1k2W~z!h8~z!. ~B3!

The solutionsh8(z), the dispersion relation, the energ
bands, and the discrete solutions forkz are given by the same
expressions as Eqs.~25!, ~26!, ~29!, ~30!, and ~32! but with
the anglefz replaced byfz8 . This phase shift forp-polarized
modes is defined by

tanfz85jk2/2kz , 2p/2,fz8,p/2. ~B4!

In the first energy band, labeled withn51, the dispersion
relation ~26! does not allow for a real solution ofkz in the
rangeup8ua<arccos(12jk2a/2), whenj.0 andjk2a<4.
In this rangekz is imaginary. Ifjk2a.4, the entire first band
has imaginarykz . Although these Bloch states are local
constructed from evanescent waves, they have a propag
character, becausep8 is real and belongs to a continuou
band of eigenvalues.

Although Eq.~B3! has the form of a Schro¨dinger equa-
tion, the normalization of Bloch waveshn8(p,z) and Wannier
functionscn8(z) must also be given by the normalization co
dition Eq. ~A1! of a Helmholz equation, in order to obtai
the correct normalization of Eq.~9! for the field modes. The
normalization constantRn(p) in Eq. ~25! of the continuum
modes~for both a50, a5j) are generally given by

Rn~p!511S 1

tankza
2

1

kza
D tanfz1

j

a
, ~B5!

Rn5S 1

sin2kzna
1

1

kzna tankzna
D a1

2j

tan2kzna
. ~B6!

These expressions reduce to Eqs.~28! and ~34! only when
tanfz5jkz/2.

The different mode types are listed in Fig. 8. Genera
the degeneracy of the modes is related to the numbe
directions in which a mode is spatially extended, by d
52dim. The modes with imaginarykz but realp are an ex-
ception. These modes are extended along thez axis inside the
cavity but do not propagate in the exterior region where th
are no more layers. In this region outside the cavity, which
4-9
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not treated in this paper, solutions with imaginarykz must
decay exponentially. This implies that there exists only o
solution forh(z) instead of two.

APPENDIX C: CALCULATION OF EMISSION RATES

We here give the expressions of the electric field com
nents inẑ and x̂ at the origin for all mode types. The spon
taneous emission rate is given by Eq.~35!. The intensities of
the s- andp-type modes in thez andx directions are found
from Eqs.~3! and ~B1! as

uẑ•EW kW~rW !u25
1

«1

uk22kz
2u

ukzu2k2
f kx

2 ~x!gky

2 ~y!U d

dz
hkz

~z!U2

,

uẑ•EW kW
8~rW !u250,

ux̂•EW kW~rW !u25
1

«1

kz
2

k2

1

uk22kz
2u

S d

dx
f kx

~x! D 2

3gky

2 ~y!hkz

2 ~z!,

ux̂•EW kW
8~rW !u25

1

«1

ky
2

k22kz
2

f 8kx

2 ~x!g8ky

2 ~y!h8kz

2 ~z!. ~C1!

FIG. 8. Different types of mode for the different intervals of th
effective 2D susceptibilityx5(«22«1)d/«1. The first and second
columns contain the polarization (s or p type! and the index~direc-
tions of propagation!. Columns four and five contain the number
dimensions in which the mode is propagating and the degene
The last column indicates which types occur in the interv
(2`,2d), which requires material with a negative dielectric co
stant,@2d,2d/2), @2d/2,0#, and (0,̀ ) for x. The p-type modes
with imaginarykz exist for j.0.
05660
e

-

The extended and localized wave functionsf (x), g(y),
f 8(x), andg8(y) are given in Eqs.~15!, ~17!, and ~B2!. At
the origin,

f kx

12~0!5
1

p

kx
2

kx
21k2

, S d

dx
f kx

1 D 2

~0!5
1

p

kx
2k2

kx
21k2

,

f kx

22~0!50, S d

dx
f kx

2 D 2

~0!5
kx

2

p
,

f 2~0!5
k

u11xku
, S d

dx
f D 2

~0!5
k3

u11xku
. ~C2!

The expressions forgky

12(0), (dgky

1 /dy)2(0), gky

22(0),

(dgky

2 /dy)2(0), andg2(0), (dg/dy)2(0) are the same, bu

with f ,kx replaced byg,ky . According to Eqs.~25! and~33!,
the behavior of the wave functionsh of the extended and
localized modes atz50 are given by

hkz

12~0!5
s2~kz!

pR~p!

tankza

2 tanfz1tankza
,

S d

dz
hkz

1 D 2

~0!50,

hkz

22~0!50, U d

dz
hkz

2U2

~0!5
s2~kz!kz

2

pR~p!
,

h2~0!5
2

Rn
, S d

dz
hD 2

~0!50, ~C3!

with Eqs. ~27!, ~28!, and ~34!. The function s(kz)
5sinpa/sinkza is introduced for compact notation. Fo
h8kz

2 (0), the same expression holds as forhkz

12(0), with

s(kz), R(p), and fz replaced bys8(kz), R(p8), and fz8
given by Eqs.~B4!, ~B5!, and~B6!. It follows that a vertical
dipole couples only tos-type modes with even or boundf (x)
andg(y), and with oddh(z). A horizontal dipole couples to
both thes- andp-type modes. At least one of the two wav
functions f (x) or g(y) and alsoh(z) must be either even o
localized.

The calculation of the partial emission rates given by E
~35! for a 3D mode and analogous equations for the ot
modes starts by substitution of Eqs.~C1!, ~C2!, and ~C3!.
The integration overkx and ky can be performed explicitly
using cylindrical coordinates. The third integral over the qu
simomentump can be transformed into an integral over t
energy bandskz , using the relations

dkz

dp
5

s~kz!

R~p!
,

dkz

dp8
5

s8~kz!

S~p8!
,

S~p8!511S 1

tankza
2

1

kza
D tanfz8 . ~C4!

cy.
s
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These relations can be verified with Eqs.~26! and ~28!. The
results of the integrations are given by Eqs.~36! and ~37!.

If x,2d there exist more 2D and 1D modes, as is in
cated in Fig. 8. For this case one finds additional emiss
rates, for a dipolem̂5 ẑ,

Gxz

G
5

Gyz

G
5

3

k3Ek2

`

dkz

k

u11xku
Ak21k22kz

2s,

and for a dipolem̂5 x̂,

Gxz

G
5

3

k3Ek2

`

dkz

k

u11xku
kz

2

kz
22k2

k213k22kz
2

k212k22kz
2

3Ak21k22kz
2r,

Gx

G
5

6p

k3 (
n

k

u11xkuRn

knz
2

knz
2 2k2

k213k22kzn
2

k212k22kzn
2

3Ak21k22kzn
2 ,
rd

m

.

v.

k,

05660
-
n

Gyz

G
5

3

k3Ek2

`

dkz

k3

u11xku
kz

2

kz
22k2

Ak21k22kz
2

k212k22kz
2

r,

Gy

G
5

6p

k3 (
n

k3

u11xkuRn

kzn
2

kzn
2 2k2

Ak21k22kzn
2

k212k22kzn
2

.

Here, one must substitute fork the expressions for the 2D
modes and 1D modes given in Eqs.~18! and ~20!, respec-
tively. The lower boundary value in the integration overkz
and the summation overkzn follows from Eq. ~22! as k2

5Ak214/(uxu2d)2. Band gaps must be excluded from th
integration.

These expressions are also valid for the 2D and 1D mo
that occur forx.0, provided that the interval@k2 ,`# for the
integration ofkz and the summation of the discrete solutio
kzn is replaced by the interval@0,k#.
s
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