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Dielectric structures with bound modes for microcavity lasers
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Cavity modes of dielectric microspheres and vertical cavity surface emitting lasers, in spite of the@, high
are never exactly bound, but have a finite width due to leakage at the borders. We propose types of micro-
structures that sustain three-dimensionally bound modes of the radiation field when dissipation is neglected.
Unlike photonic crystals, the photonic systems that we consider here rely on periodicity in only one or two
dimensions. In particular, we discuss a cavity composed of two crossed vertical layers combined with a
periodic structure of horizontal layers. The layers have an anisotropic dielectric tensor, which could be obtained
by making air holes in the vertical and horizontal directions within isotropic material. We calculate cavity
resonance frequencies and spontaneous emission rates. The simplicity of this laser geometry allows an ana-
lytical study of light propagation and amplification in three dimensions.
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[. INTRODUCTION photonic crystals and disordered structures, where localized
modes occur. These systems are periodic in one or two di-
Vertical cavity surface emitting lasef¥CSELS are ex-  rections only. There is no three-dimensional band gap and
amples of very small lasefd,2]. These microstructures can Spontaneous emission is possible at the same frequencies as
have narrow cavity resonances as a result of the localizin§1e bound states. Because the modes are small and lossless,
effect of the cylindrical waveguide in combination with the Systems with such a design may prove useful in future semi-
Bragg reflection in the stacked disks. The long lifetime ofconductor microlasers with strong coupling and low thresh-
photons created from the recombination of electron-holedld. The geometry of the structures is simple, but the layers
pairs in the central layer makes the stimulated emission effimust satisfy specific requirements. In Sec. Il we specify the
cient. At present, the efficiency of VCSELSs is mainly limited class of systems, composed of anisotropic dielectric material,
by leakage at the borders. There is loss of radiation througihere bound states occur. The layers must have a principal
spontaneous emission which exits from the side. Also, th@Xis of lower dielectric constant in the vertical direction for
light in the cavity mode decays because evanescent wavéle vertical layers, and in the horizontal layers for the hori-
are not reflected in the vertical direction. The reflection conzontal layers. This can be achieved by drilling air holes in
ditions of the interior guided wave and the outer evanescerigotropic material of high dielectric constant. An even more
wave do not match, which gi\/es rise to losses at the bound‘avorable situation would occur when the air holes would be
ary and determines the width of the cavity resonances. Exadilled with material with a negative dynamical dielectric con-
bound modes do not occur in VCSELSs. When the coupling tétant. Sections Il and IV provide two examples of a wave-
the lasing mode is enhanced by making the systamd  guide and a cavity which, in a thin layer approximation, are
thereby the mode volumemaller, the evanescent fields be- analytically solvable. We then show how the bound solutions
come more important and the lifetime of the mode decreased\ise in the cavity. The partial spontaneous emission rates in
This kind of incompatibility between small mode volume the different types of radiative and guided modes are calcu-
and high finesse occurs in whispering gallery modes of milated in Sec. V.
crosphere$3—6] too, also because of losses at the boundary.
Exact bound states for the radiative field can occur in  |I. STRUCTURES THAT SUPPORT BOUND STATES
spatially infinite dielectric structures, for example in photo-
nic crystals. When such a crystal has a point defect, it is
possible to create a bound state at a frequency inside a three- The bound states arise in structures with specific polariza-
dimensional photonic band g4f@,8]. In the absence of dis- tion properties. The dielectric tensor of the class of these
sipation, the state has an infinite lifetime while propagatingsolvable configurations is given by
solutions do not exist at the frequency of the bound mode. R . . .
Anderson localization in a disordered structure provides an- e(r)=[1+zzU(x)+zzV(y)+(1—-zz2)W(2)]e;. (1)
other means to create bound states of light11]. A two-
level atom coupled to a localized field mode would make aHere the functions) (x), V(y), andW(z) describe structures
perfect realization of the Jaynes-Cummings mddeél. of layers normal to the, y, andz directions. The background
In this paper we consider a class of systems, other thamedium, in which the functions), V, and W are zero, is
isotropic, given by the dielectric constasy. For aire;~1,
but we have in mind a background made of dielectric mate-

A. Required form of the dielectric tensor

*Electronic address: PMV@nat.VU.nl rial ande;>1. In this paper, we consider rea} and real
"Electronic address: Allaart@nat.vu.nl functionsU, V, andW, so that the entire system is lossless.
*Electronic address: Lenstra@nat.VU.nl The case with lossy layers and an active gain medium is
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studied elsewherel3]. The structures shown in Figs. 1 and 2 real or purely imaginary. It follows from Ed8) that at least
are examples that will be discussed in Secs. Il and IV. one of these wave vector components must be real.

The optical properties of dielectric structures, like sponta- Bound states in structures described with a dielectric ten-
neous emission, amplification, and loss, can be calculatesor of the form of Eq(1) are found when Eq$5)—(7) allow
from a complete set of modes of the electromagnetic fieldsimultaneously localized solutions férg, andh. This will
These field modes are the orthogonal solutions of Maxwell'de the case for specific choices of the functibhd/, andW.
equation for a stationary electric field of frequeneyin a It follows from standard wave mechanics that a localized

medium with relative dielectric function(r): solution in a potential of finite extent is found if the potential
o o is attractive and allows a negative eigenvakje k7, or k’
VXVXE=(w/c)?e(r)E. 2 above the potential minimum. For an extended structure, lo-

calized solutions occur when the potential is periodic in two
When the dielectric tensor is of the form given in E@),  half spaces. In that case, the corresponding eigenvdiye
two types of solution can be discerned: those withihiéeld k7, or k? is positive and one needs a discrete solution inside
in thexy plane, hereafter called treetype modes, and those a band gap. Structures with bound states can be designed by
with the E field in thexy plane, hereafter called thetype.  combining these localizing effects. Because at least one of
This nomenclature is adopted in view of the stack of parallethe eigenvaluek?, kf,, or k§ must be positive, periodicity in
layers in Fig. 2. Thep-type solutions are insensitive to the at least one dimension is needed.
functionsU andV in Eq. (1); they are therefore not localized  The effective potentialW(z) in Eq. (7) is multiplied by
in thex or y direction. Thes-type modes can be expressed asthe eigenvaluek?, so that a localized solution fdu(z) is
2 q found if W(z)<—1 in some finite region. This implies that
E(r)= i(iﬁ_%_ F()g(y)h(2), the structure described by must have a negative dielectric
VR K2 dz constant for the relevant frequency domain. The effective
potentials in Eqs(5) and (6) have a prefactok®—k2=k2
R=|k2—k§||k§|81/k2, (3) +k§. A localized solution forf (or g) can be found in this
case, when this prefactor and the potential are both positive
in terms of the scalar functiorf§x), g(y), andh(z). HereR  or both negative. For the casg-+ k§>0 the solution can
is a normalization constant arg ,k are eigenvalues in dif- only be localized in either the& or they direction, not in
ferential equations for the functiorisg, andh. This can be  both. In case+ k§<0, solutions can in principle be local-
proven by direct substitution in Maxwell’s equation. As only ized in one or two directions with a finite structure.
the second term of Eq3) survives, whenvV XV X is ap- From these considerations we conclude that the following
plied, one finds immediately structures will sustain bound state@) Periodic vertical
structures in one direction, so thidtor V is periodic in two
oo 1 (.. _d\d half spaces, combined with a horizontal structure with nega-
VXVXE= VR V2=V 5T 09Wh(@). 4 ive dielectric constant, so thi¥(z)< — 1 in a finite region.
(2) Periodic horizontal structures combined with low index
The substitution of Eqg1) and(4) in Eq. (2) gives separate Vertical structures, so tha(x)<—1/2 and V(y) < —1/2.

scalar equations for the functiofigx), g(y), andh(2): (This is the type of structure that we consider in the follow-
ing sections. (3) A two-dimensional(2D) periodic structure
d? 5 5 with periodicity in one of the two vertical directions and also
— — 0 =kzf(x)+ (K= k) U(x)f(x), (®) in the horizontal direction(4) All three functionsU, V, and
dx W periodic. Then one obtains a solvable model for a 3D
2 photonic crystal.

d
——a(y)=kig(y) +(K*=K)V(y)g(y),  (6)
dy B. Normalization of the modes

2 The full vector solutions given in Eq3) in terms of the
— —h(2)=K2h(2) +K2W(2)h(x). (7)  scalar wave function§ g, andh must be normalized with the
dz standard normalization condition

The three eigenvalues are related by J d3FI§E,(F)e(F)I§g(F)= SR —K). 9)

KZ+ ki +Kk2=k?=(wlc)%;. (8)

The dielectric tensog appears in this expression, because it
dh i £ ol d the total field _is the vector fieldyzE that is an eigensolution of a Hermit-
andh are superpositions of plane waves and the total neld 13, operatof14,15. This expression is strictly speaking only

a supAerposAmon AOf eight plane waves with the wave VeCtoralid when all three components of the wave vector belong
k=*xk,tyky=zk;. The polarization vector of each plane to continuous parts of the eigenvalue spectra. When discrete
wave is proportional tkxXkxz. In the case of a lossless solutions occur, we will replace the individual components of
medium, considered here, the componeqtk, .k, must be  the 3D ¢ function with a Kronecke®. The required normal-

In the regions wher#J, V, andW are zero, the functions g,
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ization of Eqg.(9) can be obtained with the following choice
of normalization for the scalar wave functiof)gg, andh in

Egs. (5)—(7): / \

| ax] ay 11,00 f, (0T ()55, (1)

X[1+U(x)+V(y)]
= 8(ky—ky) (ky—ky), (10) o
_ kX kXz\ =
| azon@nrw@i-ak-k). @y X
K

If we assume that), V, andW are nonzero in a finite region
only, the density of states is independent of the components
ky.Ky .k, of the wave vector of an incident plane wave. In
that case, the effect of the potentials on the normalization of
extended wave functions is negligible and the normalizations

can be written as /\

Jm dx 5,00y (%)= 5(k; Ky,

FIG. 1. A waveguide of crossed planes of anisotropic material
with a principal axis in the direction. For any incident plane wave
dv o, =Sk —k.). with wave vectork the vectorszxk andkxkxz are eigenpolar-
Jloo y gky(y)gky(y) ( Y y) izations of reflection and transmission. This is illustrated here for
) o ) . the case thak lies in thexz plane.
The respective normalizations for localized wave functions

are V(y)=6(d—2|y|)x/d. (14)

J dx|ka(x)|2[1+ ux)]=1, Here 0(x) is the step function. The effective susceptibility
o is given by y=(e,—&;)d/e;. The functionsU and V de-
P scribe dielectric layers with thicknesisalong the verticay z
j dY|9ky(Y)|2[1+V(Y)]= 1, andxz planes andV(z)=0. Inside these layers the dielectric
N tensor ise = (1—z2)&, + zze,. If the layers are characterized
% o ) by a dielectric constant higher than the background, one has
f_xdxf_wdy|ka(x)gky(y)| [1+U)+V(Y)]=1, €,>¢, and theny is positive; if the structures have a lower
dielectric constant, thea,<e, and y is negative.
in case eithek, or k, or both are discrete eigenvalues. We  The propagating and guided waves in this structure follow
will also consider systems that are periodic everywhere offom Egs.(5)—(7). It is clear that Eq(7) for the behavior in
periodic in a half space for the coordinate, so thatV(z)  the z direction allows a simple plane wave solutiti(z)
extends over an infinite region. The density of states is con=€xp(k;2). Because the effective potentidlgx) andV(y)
stant in the quasimomentumfor an incoming Bloch state. in this equation are even functions, one can consider solu-
In this case the wave functiortgp,z) in one energy band tions that are either even or oddxrandy. If k, is real, the

must be normalized according to even and odd solutions, in the thin layer approximation
o [16,17, are
f_ dzh(p’,2h(p,2)[1+W(2)]=48(p'—p). (12 £ (x) = VL/mcos k| X| + ¢),
The normalization of Bloch states is explained in more detail f7(x) = y1/msink,x. (15

in Appendix A. Properties of the-type modes that are
needed for the calculation of spontaneous emission rates
Section V are discussed in Appendix B.

The even solutions are characterized by a phase #hift
'Phe value follows from the condition th&{x) is continuous
and differentiable at the borders of the layers. In the limit of
small layer thickness, the phase shift calculated from(gQ.
is given by

One example of interest is the system of two crossed ver-
tical planes depicted in Fig. 1. This configuration is de-
scribed with Eq(1) and the choice

Ill. WAVEGUIDE OF CROSSED LAYERS

tangy,=klk,, r=k2di2+(k*—k2)x/2.  (16)

Localized solutions follow from the requirement thet is
U(x)=6(d—2|x|)x/d, (13)  imaginary. For a thin layer, one localized solution wif
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=ik exists, whenk is positive and given by Eq16). The tal layers. Bragg reflection in these horizontal layers can sup-

corresponding normalized wave function is press the propagation in ttedirection. By leaving out the
central layer, the periodicity is interrupted a0, which
f(x) = Vil 1+ xx|exp — «|x]), (17)  results in wave functions that are localized in the region
around the defect. The fully bound states will arise as com-
k=[V1+(k®—k%)xd—1]/d. (18)  binations of the localized solutions f6¢x), g(y), andh(z).

. For these modes, botk, andk, are imaginary and, is a
The even, the odd, and the bound solutions form a completgjscrete but real solution inside a band gap.
set for the eigenvalue equati¢d). The normalization of the  The horizontal layers in the structure of Fig. 2 have width
continuum solutions is given by EL0). b and their spacing, center to center, is given by the param-
Combinations of the localized and propagating solutionsetera. The functiondJ, V, andW in Eq. (1) that describe the

for f(x) andg(y) give field modes that are propagating in system are given by Eqél3) and(14), and
three dimensions, in two dimensions, or in one dimension. In

the following we will call these different types 3D, 2D, and
1D modes. For each of these types, the range of valuks of
for a fixed wave numbek will generally be different. The

allowed value fork, for the 3D modes is +60(b—2z])(a—¢)/b. (23)

K2=Kk2— K2— K2<K2. (19) This function is plotted in Fig. 3. With the effective suscep-
z o tibility £=(e,—e,)b/eq, the dielectric tensor inside the
When y>0, only one of the two function§(x) or g(y) can  horizontal layers ig = zze,+ (1—zz),. For the cavity with
be localized, becaudé—kZ=kZ+kZ must be positive. The bound states the central layer is absent ane0. We will
region of allowed values fdk, of the 2D modes is therefore also discuss the periodic case, in the presence of a central
also given by Eq(19). layer whena=£. In this paper we consider layers that are
When y<0, the functiondJ andV in Egs.(5) and(6) are  infinite in extension and number. The bound states decay
negative. Only wheny<—d/2 can this result in localized exponentially in all spatial directions, and are therefore good
solutions. Then botti(x) andg(y) need to be localized at approximations to a physical realization of finite size. The
the same time. This demonstrates that the crossed planes cg@iftular shape of the horizontal planes in Fig. 2 is therefore
act as a waveguide for sonseype modes. In the thin layer also not essential. The entire structure, with the required an-
limit, the 1D modes are determined by the wave functiongsotropy, can be created when the vertical layers are formed

g(y)=f(y) and Eq.(17) and the wave vector components by Vertical air holes(of subwavelength diameferand the
are horizontal layers are formed by horizontal air holes in xhe

andy directions.

W(z)=|:2_m 6(b—2|z—lal|)¢/b

ky=ky=ik=2i/(2|x|—d), (20
k§= K2+ 2k2= K2+ 8/(2] x| — d)2. 21) A. Band structure for the propagating modes
Before we discuss the cagse=0 in Eq. (23), we first
The behavior in the overlap regiorfehere both|x|<d/2  study Eq.(7) for h(z) with a fully periodic potentiaW(z).
and|y|<d/2) can be neglected only for thin layeid<|y|.
For the existence of 1D modes, this implies tlyaand the
dielectric constang, must be negative. On the other hand, if
€, IS not negative, it is important that the structure in the
overlap region must also be described with the faith
which is e=(1—2z)e,+22(2s,— ;). One finds that the
component of this tensore2—e,=(2x/d+1)e; must be
negative. Strictly speaking, the waveguide is perfect only
when material with a negative dielectric constant is used.

For x in the interval between-d/2 and 0, localized so-
lutions for f(x) or g(y) are not possible. Whex lies in the
interval between-d and —d/2 there exist 1D modes but no
2D modes. Whery< —d there exist both 1D and 2D modes.
The spectral region for the 2D modes is given by

kZ=k?—KZ—ki=k?+4/(| x| —d)2. (22)

IV. A CAVITY AND ITS BOUND STATES
FIG. 2. Proposed structure for a cavity with exact bound modes.

We will now consider the system depicted in Fig. 2. ThisThe dielectric tensor that characterizes the layers has a specific
system basically consists of the waveguide of Fig. 1 disanisotropy given by Eq(l). The corresponding dielectric constant
cussed in Sec. lll, supplemented with a structure of horizonmust be lower than that of the background.
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This situation, realized whea= ¢, is interesting because it FIG. 4. Band structure of thetype modes. The eigenvallgis
describes the behavior of electromagnetic fields away fronplotted as a function of the quasimomentynfor the first three
the central region. The Bloch solutions of the periodic one-Brillouin zones, as given by Eq29) for é=—3a/16. Discrete so-
dimensional system, which we shall denotethyp,z), are lutions inside the band gaps are represented as the paintk),
defined by the requirement that the states obtain a phas# which the first two are indicated. Hedg,=Imp, .

factor e'? upon translation over one peria We have for

integerl, From EQ.(26), one can obtain the standard form of a disper-
sion relation with the wave vectdt,, expressed as a func-

— nqilpa
hn(p.z+l1a)=e"hn(p.2). (24 tion of the band indexn and the Bloch momentum. This
ives
Here the discrete index=1,2, . . . is theband number and g .
is the quasimomentum. The quasimomentoiis a periodic kzn(p)a=2mint(n/2) — (—)"arccogcosg,cospa) — ¢, .
variable modulay=2=/a and one may chooggto be in the (29

first Brillouin zone[ —q/2,q/2]. A few relevant properties for . . N
the normalization of Bloch waves are discussed in Appendi%;]he re_:syltmg parf1d St(;quturE 65 plo(t;jtetil] n F'g‘. 4. Fofr wdd
A. In the regionb/2<z<a—Db/2 between two layers, the € minimum 1S found forp=4, an € maximum fop

Bloch waves can be written as a sum of two plane waves:_ g/2; for evenn the minimum is ap=g/2 and the maxi-

ha(p,2) = c e+ c,e k22, with coefficientsc, andc,. For mum is atp=0. It follows that the energy bands f&, are

thin layers, the requirement that the wave function is con—the intervals

tinuous atz=0 andz=a, in combination with the Bloch (n—1)m<k,asnm—2¢, if £>0,
condition (24), leads to the form
(n—1)7+2|¢,|<kasnm if £<0. (30

hn(p,2)= , Hence the width of the band gaps i$¢#2|/a. The expres-
V2mR,(p)sinkza sions (29) and (30) are not explicit, however, because the

x[€e'Pasink,z+ sink,(a—2z)], (25)  Phase¢, depends ork, through Eq.(27).

with normalization constarR,(p). The behavior oh,(p,z) B. The discrete cavity modes

for the other values of is determined with Eq(24). The WhenW(z) is given by Eq.(23) with =0, the period-
relationship between the quasimomentpand the wave city is interrupted atz=0. We shall now describe how to
vectork, now derives from the behavior at the layers. At the gptain the propagating and localized solutions e 0.

position of the layers the derivative bf,(p,z) makes a step \Wheny< —d/2, the localized solution fof(x) andg(y) can

of — &kZh,(p,0). This gives the well known relatiofi8] be combined with a localized solution bfz) in Eq. (3) to
give a fully bound state.
cospa=cogk,a-+ ¢,)/Cosep,. (26) Although W(z) is not periodic fora# ¢, the stationary

states can be expressed in the Bloch solutions of the case
Here the phase, is the phase shift of a single layer, defined o= £. In fact, a solution with an eigenvalleg in the energy
by band can always be written as a superpositigi(p,z)

=c4.h,(p,2z) +c,h,(—p,z) of the two Bloch waves with

@ang,=£&k,j2, —ml2<d,<ml2. (27 positive and negative quasimomentum in the regierb/2.

This obviously can also be done for the regisa—b/2, but
The normalization ofh,(p,z) is determined by Eq(12).  with different coefficients; andc,. Because at=0 there is
With Egs. (26) and (27), the normalization constant in Eq. no layer, the values of the coefficients are determined by the
(29 is found to be condition that the solution is continuous and differentiable at
z=0. The band structure of the periodic lattice thus remains
intact. Because the potentMl(z) is even, one can consider

1
tka modes that are even and odd functiong.oFhe even modes

Ra(p)=1+ tank,a k,a

tandg,. (28
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are fixed by the conditiond/dz)h; (p,0)=0, which gives h,(2)

c,=c}=e"'%/\2 with W) /\
_ - - \
tang=tang¢,sink,a/sinpa. N \/\V/\ /\ /\V/\v’"v"
The odd modes are fixed by the conditidry (p,0)=0, V \/ V V zfa —
which givesc,;= —c,= 1/y/2. The even and odd propagating o o

solutions can be seen as a superposition of two scattering
solutions by the lattice defect a&=0 in a further periodic
system that have incoming Bloch waves from the left and 4\ / \ /\
from the right side ofz=0. The mode density therefore is 0 AL/ |
the same as the mode density for the Bloch states of the W"‘ \Q/-Z \1/ O\y 2\}/ 4 \5é/a N
periodic case. The solutiorts; (p,z) andh; (p,z) are also
normalized with Eq(12).

Bound modes occur for values kf inside the band gaps.

/ N

FIG. 5. Spatial wave functions,(z) of the bound states along

These modes are characterized by an imadinar uasimtrlez direction, as given by Eq33). From bottom to top: the first
y 9 y qu: Qo staten=1,2, for ¢{&=—3a/16. Kinks occur at the positions of

mentum of the formp,=i\,+nm/a. Heren=123 ... is planes, and not at=0
the number that counts the energy band gaps. The fact that ’ '

the quasimomentum is complex implies that Eg4) be- ] ) )
comes lies only slightly abovebelow) the energy bands. The dis-

crete eigenvaluea, and the corresponding valués, are

ha(z+a)=(—)"e *%h,(2) indicated by the dots in Fig. 4. A few localized wave func-
tions are plotted in Fig. 5.

The fully bound states are obtained from the localized
solutions forf(x), g(y)=f(y), andh,(z) as given by Egs.

7) and (33), with the wave vector componenks Kk, ,K;,

iven by Eq.(20) and a discrete solution of E¢32). Sub-
stitution of these functions in the general vector solution
given by Eq.(3) gives the explicit expression

for z=h/2. Hence, the bound modes are localized in zhe
direction near the lattice defect a0 and decay exponen-
tially with decay constank,. For thin layers, the presence
or absence of the central layer has no effect on solutions th
are odd functions ok Therefore, only localized solutions
that are even functions inoccur. The two boundary condi-
tions are obtained by substitution p=i\+nw/a in the
eigenvalue equatiof26) and taking €lh/dz)(0)=0 for the

solution given by Eq.25). This gives the following two L. K Xl |
equations foip andk, : En(r)= me <=l cosk,a)' @
(—)"e *@=cosk,a o "
oy - XX Yy
=(—)"coshha—tand¢,sink,a. (31 X M+m cogk,|z|—1(z)a]
By elimination of \, the relation betweek, and k for the 215
discrete solutions inside theh band gap is found to be +KTZ|Zsir'[kZ|z|—l(z)a]
k,|z '

tan(n7T—k,a)=2 tang,. (32

When Egs.(24) and (31) are substituted in Eq(25), the

. . . 2D 2 _ 2
corresponding localized wave function becomes The intensity at the cavity center i&,(0)=8/(4y

—d?)R,. For the moderate numerical valugs- —3d/4, &
B 1 ) =-—3a/l6, d=a, an effective mode volume of approxi-
hn(2)= \/?(COSkzna) cosky|z|=1(2)al. (33 mately 9.7 cubic optical wavelengths is found. The cavity
n must have at least 10 layers to sustain a bound state of this

Herel(z)=int(|z|/a) is the number of layers between posi- SIZ€- s _

tion zand 0, andk,, is thenth solution of Eq(32). The wave The frequency of a bound state=cke; = is obtained

function decays exponentially in both the positive and negaffom Eq. (21) with a solutionk,, of Eq. (32). Usually, one

tive z directions. The normalization constant in Eg3) is ~ Wants to fix the physical dimensiomsb,d of the microcav-

given by ity, so that the lowest order bound state=(1) is resonant
with a given frequency. These cavity resonances might be

1 1 difficult to excite, because they are extremely narrow. It fol-

sirPk,,a N k,atank,a a. (34) lows from Egs.(21) and(32) that the optimal choice of the

lattice spacinga for n=1 is

R,=

To second order in¢ Egs. (27) and (32) give A\,

=(nm¢)?2a3, k,,=nm/(a+&). For positive(negative &, B 5 5
the top (bottom of the energy bands lies d,=nm(a _ moarctaf§ vk + 2« ],
— &)/a®. The propagation vectds, , of a localized mode thus VK2 + 22
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; /
» polarization 1 | s polarization ' We denote with = 12°u?67%i (26, + 1)* the spontane-
3 ous emission rate in the background medium in Gaussian
[ . units[14]. The summation is over the polarization tymep

2 and the eight possibilities of parifeven, odd irx,y,z), for
which the indices are suppressed. When the emission into a
localized mode is calculated, for instance one that is bound
# in the x direction, the integral ovek, is replaced by the
_/ discrete sum and the modes with imagin&gy=i « are sub-
stituted. We now calculate the partial emission rates for a
| | | | kao dipole located at the origin, with dipole moments in #end
3 o . 0 . o 3 in the x directions. From these, the emission rate of a dipole
with arbitrary orientation can be determined.
FIG. 6. Mode structure fog = —3a/4, {= —3a/16. The eigen- The required electric field amplitudes at the cavity center
valuek, is plotted as a function of the wave numliderOn the left  5re calculated in Appendix C. We assume here thhés in
side, solutions op-type polarization; on the right side, tlstype. the interval between-d and —d/2, which is physically the
Dark and light shaded regions are 3D modes and 2D modes, respegiast interesting case. Then there are three-dimensional ra-
tively. Horizontal and curved lines are 2D modes localized inzhe diative modeglabeledxyz as listed in Fig. § modes local-

direction only, and 1D modes localized in two of the three direc-. . . - . .
tions, respectively. Isolated points are bound states. The Iigh'tzed in the vertical directiony), modes guided by the two

shaded regions are absent wher —d. Lines and points above }[/ertlt:.?l plan(;a_s t?’ and boun(tj stat.e(@?[. gor_an a}[thom W'tht.a |
k,=k are absent wheg> —d/2. ransition ipole  moment oriente in e vertical

direction u=2z, the partial emission rates are

with k=s}2w/c. If |¢| is small, thena= /k so that a full

2 2 2 2 2 2
wavelength fits between the middle two layers|df is big, Tyyz_ EJkdkzk Ky VKA kK= 1) ,
the layer to layer distance approactses /2K, . Fog  2Jo k3 k2422 K2
The eigenvalue spectrum is plotted in Fig. 6. The effect of
localization in thez direction is seen as lines inside the band Iy=0,
gaps fork,. In this figure we adoptedy=—3a/4, &= 2
I, 24k

—3a/16, which could correspond to the situationagf=4, _r__ """ 5
g,=1 for cavity sizesd=a=4b. The bound states are Phg  (4x%—d?)K3k,
clearly shown as isolated points. The different mode types

and their degree of localization are tabulated in Fig. 8 inThe partial emission rates for an atom with dipole moment in

(kl)! FOZO (36)

Appendix B. the directionu=X are
2 2
V. SPONTANEOUS EMISSION Doz _ ifkd kzﬁ 1+ AT
Ihg  4kJo k2 k2—k2
The rich variety of the field modes in the cavity discussed ‘ z
in the previous section will show up in the angular depen- ( /k2+K2—k§—K)2
dence of spontaneous emission from an emitter placed inside X 5 > P
the structure. For instance, the fraction of light emitted along k®+2k"—k;
the z axis is predominantly given by emission in taenode 9 )
that is localized in thex andy directions. In this section we F_xy: 3_77 2 Kzn 4x
calculate the partial spontaneous emission rates for a dipole Fhy 2k 5 kR, k2_k§n
placed at the origin of the cavity, into the different types of
radiation modeglisted in Fig. 8 in Appendix B This pro- ><(\/k2+ k2= K2, — K)?

vides information about the spatial directions of the emitted

radiation below the lasing threshold. The total rate of spon-

taneous emissiofil9-27 is the sum of these contributions I 3 rk ' 3.
and differs from the free-space emission rate. Xyz_

k?+ 212 K2,

/ xy

- 1, p ) ~ = AL, 2 )
Consider emission into field modes propagating in three Ty 4kJo ’ Ihg 2k 7§ R,
dimensions. If the dipole moment js= w4, oriented in di-

rection u, the emission rate according to Fermi's golden rule E = Lklp(kl),
is given by Ppg  (4x?—d?)K®
nyz 377281 Jm Jx FO 672 kin
= dk, | dk _—= O(k—Kkp). 3
rbg k2 2 0 X 0 y Fbg 4X2—d2 ; kﬁRn ( n) ( 7)
> dep 5(k—|IZ|)|,&- Eg(ﬁ)lz. (35) Primed symbols refer to contributions pftype modes. The
0 k,-dependent functions,p,p’ in these equations are
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sinpa o(k,) e ' ! '

= — _— r
7 sink,a’ P=17 &k, /tank,a’ ?d?pgfe
! ! ! ﬂ—j
,_C (k)S(p")/R(p")
P a@i(ktank,a) |

andR,, R(p), andS(p’) are given by Eqgs(34), (28), and
(C4). The expression for'(k,) is the same asr(k,) but
with the dependence @ on k, given by Eqs(26) and (B4)
instead. The wave vector of a 1D mode is given oy
=k*+8/(2]x| —d)? as in Eq.(21) and« is a function ofk,
given by Eq.(16). The spontaneous emission rdtg van-
ishes ifk, lies inside a band gap. The total emission rates for

az andx dipole given by the sum of the expressions in Egs.
(36) and (37) are plotted as a function d&f in Fig. 7 for a
specific example of the most interesting case0. Forl,
there is a concentration of the odd wave functib(s) at the
bottom of the band gaps. This gives the narrow peaks in the FIG. 7. Partial emission rates. On the left, the emission rates for
left curves of Fig. 7. Spontaneous emission turns out to be vertical dipole; on the right, emission rates for a horizontal dipole.
predominantly in the same direction as the dipole momentThe curves fod", have band gaps. The value bf, is zero below
We attribute this unusual behavior to the evanescent natuttbe frequency corresponding to the first bound state. Jlpeaks
of the field modes. for bound states are indicated by the vertical lines. The dashed and
Because the bound modes of our model are exact, thg@otted curves are the background and free-space emission rates. The
give the §-function contribution in Eq.(37). In practice, curves are obtained with Eqe36) and (37) for the cases;=4,
there will be a finite fractiond of light emitted into a fully ~ &2=1, d=a=4b, so thaty=—3a/4, {=—3a/16.
bound mode at resonance. The width of the cavity reso-
nances, which is zero in our case, is determined by dissipghe emitter, instead of orthogonal to it. The bound states have
tion of light inside the layers and possible deviations froma small mode voluméof the order of a few cubic wave-
the model in the overlap regions of the layers. The calculalengths, so that the coupling to an emitter placed in the
tion of the linewidth of the bound states, the spontaneou§enter of the mode can be strong when the cavity dimensions
emission facto3, and the laser threshold for a system with are chosen optimally for the specific transition frequency.
an active layer are discussed[it3]. Photons emitted from the central region are likely to end up
in the bound state and the noise from the random emission in
other modes will then be relatively small. To demonstrate the
existence of bound states in a dielectric system as proposed
We identified a class of dielectric structures that are threehere, one might envisage the case of microwaves with a
dimensional cavities for the optical field. In the absence ofcentimeter-sized model. Microscopic realizations of the pro-
dissipation these cavities have exact bound states. The strugesed structures may be promising for future cavity QED
tures generally consist of several layers with anisotropic diexperimentg§23,24.
electric tensors, placed at right angles with respect to each
other._ Lopalization in th_e _three dimensions is qbtaineq as a ACKNOWLEDGMENTS
combination of waveguiding and Bragg reflection. This re-
quires periodic structures in at least one dimension. The sim- This work is part of the research program of the Stichting
plest realization, shown in Fig. 2, consists of two layers thavoor Fundamenteel Onderzoek der MatéRF©M), which is
are placed at right angles and a stack of layers in the thirdinancially supported by the Nederlandse Organisatie voor
direction, which resembles a VCSEL. The Bragg reflectorsNVetenschappelijk Onderzo¢lWO).
localize the waves in the vertical direction inside the crossed
Waveguide, but also localize the evanescent waves. This re- A\ppeNDIX A: NORMALIZATION OF BLOCH STATES
sults in the bound states of our system.
Because the cavity resonances in our structures are deter- We here consider the general case of a one-dimensional
mined only by loss and not by leakage, the linewidths mayperiodic potentiaM/(z) with perioda. The stationary solu-
be quite narrow. We expressed the resonance frequencies tdns of the scalar equatiofv) can be simultaneous eigen-
the bound modes in terms of the cavity dimensianb,d states of the translation operation over the lattice peaod
and the dielectric constants ,e, that characterize the lay- The Bloch states, which we shall denote by(p,z), are
ers. We evaluated spontaneous emission into the other moddefined by the requirement that the states obtain a phase
of the radiation field. Due to the “evanescent-wave” naturefactor ' upon translation. We therefore have
of most cavity modes, spontaneous emission occurs pre- _
dominantly in the direction parallel to the dipole moment of W(z+a)=W(z), hy(p,z+a)=¢€P?h,(p,z).

AN

b 2m 0 b 2 3r

VI. CONCLUSIONS
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The Bloch momenturp is a periodic variable modulo period sponding unprimed quantities in the main text that refer to
2/a. Because the Bloch waves are also periodic in the spas-type modes. Since the polarization lies in theplane, the
tial coordinatez modulo the lattice period, when multiplied  p-polarized modes are decoupled from the crossed vertical
by e 'P? there exist two different Fourier expansions. Inplanes. The transverse behavior is essentially freely propa-
order to get a convenient normalization, we must considegating. The normalized solutions 6f(x) andg’(y) that are
the Fourier expansions of the derivative of the Bloch stateseven and odd in the coordinates are therefore given by

We write ) /7 (x) = 1/mcosk,x,
%dizhnm,z):,;w e'PiC,(z—1a) f700 =100 = msinkyy,
) 9" (y)= Vl/mcosk,y,
:eipzlzz_oc elazc (p+1q). 9’ (y)=g"(y)=Jmsinky. (B2)

Note that the coefficients in these expansions in waves Witﬁy substi_tution of the f(_)rn(Bl) in Maxwell’s equation(2) .
one obtains the following wave equation for the function

period | are expressed in terms of continuous functiops h'(2):

andc,, for energy banch. The functionc,(z) is called the

Wannier function and is the Fourier transforma{p,): 2

—d—h’(z)=kzh’(z)+k2W(z)h’(z) (B3)
dz ‘ '

The solutionsh’(z), the dispersion relation, the energy
bands, and the discrete solutions kgrare given by the same
expressions as Eq&25), (26), (29), (30), and(32) but with

a ® o the angleg, replaced by, . This phase shift fop-polarized
fo dzhy(p.2)[1+W(2)]= fﬁmdz (2 modes is defined by

tang,=¢ek?2k,, —ml2<¢,<ml2. (B4)

~ 1 (= )
Cn(2)= a B d pzelpzzcn( p2).

The Bloch and Wannier waves are normalized with

a(> 5 1
=gq) _.9pPLa(P) =

q In the first energy band, labeled with=1, the dispersion

. relation (26) does not aIIo;N for a real solution dxfzzin the
* o =5, " range|p’|a<arccos(t- ék“a/2), whené>0 and éka<4.
f_mdz (P, 2)Nn(p.2)L 14+ W(2)]= Oy S(p" —P). In this| rar|1gekZ is imaginary. Ifék?a>4, the entire first band
(Al)  has imaginaryk,. Although these Bloch states are locally

. o . . . constructed from evanescent waves, they have a propagating
This nqrmallzatlon for' the Bloch states is consistent with thecharacter, becausg’ is real and belongs to a continuous
S-function normalization given in Eq12). band of eigenvalues.

For the potentiaW(z) given in Eq.(23), the Wannier

funci b hcitl lculated in th " Although Eg.(B3) has the form of a Schdinger equa-
wave function can be explicitly caicu'ated in the momen umtion, the normalization of Bloch wavés,(p,z) and Wannier
representation. For smdi| this wave function is given by

functionsc; (z) must also be given by the normalization con-

) éla P,K,n(P5) dition Eq. (A1) of a Helmholz equation, in order to obtain
Cn(P2) = . the correct normalization of E@9) for the field modes. The
P o Ra(p) PE—KZ(Py) ®

normalization constan®,(p) in Eq. (25 of the continuum

The momentunp, is not restricted to one Brillouin zone, but modes(for both«=0, a=¢) are generally given by

ranges from— to +oo, é
Rn( p) =1+ tankza — @ tan¢z+ a, (BS)
APPENDIX B: THE p-TYPE MODE FUNCTIONS
. We complete our anglysis of the cavity modes by discuss- R,=| — 1 + 1 a+ 2§ . (B6)
ing the p-type polarization modes. These are needed for the sirtk,;a  Kznatanks,a tartk,,a
calculation of the spontaneous emission rates in Sec. IV. The
p-type modes are of the form These expressions reduce to E&8) and (34) only when
tang,= &k,/2.
-, o1 - Al , , The different mode types are listed in Fig. 8. Generally,
E'(r)= R (kyx=kay) T'(x)g" (y)"(2), the degeneracy of the modes is related to the number of
directions in which a mode is spatially extended, by deg
R =(K2—k3)e;. (B1) =249m The modes with imaginari, but realp are an ex-

ception. These modes are extended along togs inside the
The primes on all these symbols only refer to the fact that wecavity but do not propagate in the exterior region where there
are dealing here witp-type modes, in contrast to the corre- are no more layers. In this region outside the cavity, which is
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1 The extended and localized wave functioh&), g(y),
poljidx |k, ky k. p |dm|dg)<—d <-d/2 2—d/2 >0 f’'(x), andg’(y) are given in Eqs(15), (17), and(B2). At
s |zyz|re re re re| 3 | 8| / i v Y the origin,
s |yz|imre re re| 2 |4 v Vv 1 K2 d 2 1 Kk2x2

i fr200)== —"—, |=ff] (0)==—,
s |xzireimre re| 2 |4 Vv Vv X 7Tk)2<+K2 dx * 7Tk)2<+K2
s |zy|re re re im| 2 |4 v v NV q 5 k2
s |y |imrereim/ 12} v f,ZXZ(O)ZO, (— X) (0)—
s | x |reimre im| 1|2 v v
s| z |{imimre ref 1|2 f2(0)= K deO_ < Cc2
v ooV ()—m, ax ()—m- (C2
s 0 |imimre im| 0 |1 v v
p |zyz|re re re re| 3 8| Y AR, The expressions forg, (0) (dgk /dy)?(0), _2(0)
. 5 |4 (dg /dy)?(0), anng(O) (dg/dy)? (0) are the same but
P ryzjre e mm e 4 4 Y W|thf ky replaced byg,k, . According to Eqs(25) and(33),
p|xy|re re re im 2 |4| / v v Vv the behavior of the Wave functiorts of the extended and
o localized modes at=0 are given by
p|lzyire re imim| 2 |4 v v NV
iff f mode for the different i Is of th h.2(0)= o (k) tank,a
FIG. 8. Different types of mode for the different intervals of the K, (0)= 7R(p) 2 tang, T tank,a’

effective 2D susceptibilityy=(e,—&4)d/e;. The first and second

columns contain the polarizatios or p type) and the indexXdirec- )
tions of propagation Columns four and five contain the number of il (0)=0
dimensions in which the mode is propagating and the degeneracy. dz K (0) ’
The last column indicates which types occur in the intervals

(—90,—d), which requires material with a negative dielectric con- d 2 Z(k )k2

stant,[ —d,—d/2), [—d/2,0], and (Ox) for x. The p-type modes hIZZ(o)zoy ’_ (0 )——,

with imaginaryk, exist for é£>0. z R(p)

not treated in this paper, solutions with imaginday must h2(0):£ ih 2(0):0 3
decay exponentially. This implies that there exists only one R, \dz '

solution forh(z) instead of two.
with Egs. (27), (28), and (34). The function a(k,)
=sinpalsink,a is introduced for compact notation For
h’2 (O) the same expression holds as fbf (O) with
We here give the expressions of the electric field compoa(k ), R(p), and ¢, replaced byo'(k,), R(p ), and ¢,
nents inz andx at the origin for all mode types. The spon- given by Eqs(B4), (B5), and(B6). It follows that a vertical
taneous emission rate is given by E85). The intensities of  dipole couples only te-type modes with even or bourf@x)
the s- and p-type modes in the andx directions are found andg(y), and with oddh(z). A horizontal dipole couples to

APPENDIX C: CALCULATION OF EMISSION RATES

from Egs.(3) and(B1) as both thes- and p-type modes. At least one of the two wave
functionsf(x) or g(y) and alsoh(z) must be either even or
| 2| d 2 localized.
F2 Ek(f)|2 A fi, (X)gk Y| gzM.(2 The calculation of the partial emission rates given by Eq.
L[k (35 for a 3D mode and analogous equations for the other
o modes starts by substitution of Eq€1), (C2), and (C3).
|z- E&(r)|2=o, The integration ovek, andk, can be performed explicitly
using cylindrical coordinates. The third integral over the qua-
1 K2 1 d P simomentump can be transformed into an integral over the
IX-Ep(r)|2=— — —f, (X) energy bandg&,, using the relations
€1 2 |k2 k2| dx *x
gi (V)hE(2) die_otke) - dle o'k
y : dp R(p)" dp’ S(p")’
1 K 1
IX-E. (r)|2— (x)g (y)h’ﬁ(z). (C1) N
k L K- k2 2 S(p')=1+ anka ka tang, . (C9
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These relations can be verified with E486) and (28). The
results of the integrations are given by E(36) and(37).

If xy<—d there exist more 2D and 1D modes, as is indi-

PHYSICAL REVIEW & 056604

cated in Fig. 8. For this case one finds additional emission

rates, for a dipolgr=2,

l_‘XZ

r 3 (= K
oXxz_Tyz_ T A - R R
r r ksszdkz|1+)(l<| Kt =k,

and for a dipolex =X,

Ty, 3jwdk K k2 Kk2+3k%—k2

T3l 21+ xk] K2—k2 K2+ 2k2— K2
X\/k2+K2—kzzp,

226_772 K K2, K2+3k?—k2,

I 71+ xx|R 2, K2 K2+ 2k2— K2,

Ly, Sjwdk K3 k2 k24 kK2

Tl 2 xal 12 kot 2i2— 12"
&26_772 K3 N
I k3 T 1+ xx|Ry k2 — k2 K2+ 2k2— K2,

Here, one must substitute far the expressions for the 2D
modes and 1D modes given in Eq48) and (20), respec-
tively. The lower boundary value in the integration owker
and the summation ovek,,, follows from Eq. (22) ask,

= Jk*+4/(|x|—d)?. Band gaps must be excluded from the
integration.

These expressions are also valid for the 2D and 1D modes
that occur fory>0, provided that the intervak,,~] for the
integration ofk, and the summation of the discrete solutions
Kk, is replaced by the intervalD k].
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