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Propagation properties of chirped soliton pulses in optical nonlinear Kerr media
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An investigation is made of the formation of a single soliton, or a pair of solitons, from initially nontrans-
form limited pulses in a nonlinear Kerr medium having anomalous dispersion. A qualitative physical explana-
tion is given for the formation of soliton pairs. Approximate solutions for the amplitudes and the velocities of
the generated solitons are established and corroborated by numerical solutions of the Zakharov-Shabat eigen-
value problem.
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I. INTRODUCTION

The degradation of the soliton content of initially no
transform limited sech-shaped pulses propagating in a n
linear Kerr medium having anomalous dispersion has b
studied in a number of investigations and for many differ
applications. The case of a pulse which initially is se
shaped and has a quadratic phase variation in time, i.e.
concomitant frequency chirp is linear, was investigated
merically by Hmurcik and others@1–4#. The results demon
strated that the amplitude of the asymptotically emerg
solitons decreased monotonously with increasing ch
strength. At a certain chirp, the soliton character was
completely and the asymptotic propagation properties w
that of a linear pulse. In addition, for initially higher-orde
solitons, the characteristic soliton number decreased in s
at certain critical chirp strengths. An important observat
from the present point of view is the fact that the puls
never split into separating subpulses or soliton pairs. A s
cial situation, that has attracted considerable interest@5,6#, is
the case when the initial complex pulse amplitude can
written asA sech11if(t). This implies that the pulse is sec
shaped, but that the phase,f~t!, varies as f(t)
5 f ln@sech(t)# and the associated chirp frequency isvc
5 f tanh(t). The chirp frequency is still linear for smallt, but
the increase, although still monotonous, saturates at fi
values ast→6`. For this particular choice of chirp varia
tion, the corresponding inverse scattering method can be
ried out to give explicitly the properties of the asymptotica
emerging solitons. The result is qualitatively the same a
the previous case, the soliton content is degraded, in
sense that the soliton number decreases in steps, the em
ing soliton pulse has an amplitude that decreases for incr
ing chirp strength and eventually, above a certain ch
threshold, only linear dispersive radiation exist asympto
cally.

In stark contrast to this smooth degradation of the soli
content with increasing chirp strength stands another typ
pulse dynamics@7,8#. At a certain critical chirp strength, th
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smooth degradation is broken by a discontinuous transi
into a qualitatively different behavior where the initial puls
splits into two or more separating soliton pairs. A number
analytical investigations has also been made to explain
features observed in the numerical simulations. An early
fort was made by Lewis@9#, where the semiclassical limit o
the Zakharov-Shabat scattering problem was analyzed
later further important information was obtained by Kau
El-Reedy, and Malomed@10#. Yet, both these works consid
ered simplifying limits of, e.g., rectangular initial amplitude
and/or piecewise constant chirp variations. Several invest
tions @11–15# have relied on direct variational method
which have given good approximate solutions for the deg
dation of the soliton content with increasing chirp streng
however, primarily for linear chirp variations. An interestin
approach based on the invariants of the nonlinear Sc¨-
dinger equation has also been presented@16#, for obtaining
information on the asymptotically emerging soliton/solito
pair. Nevertheless, it is fair to say that in spite of many i
portant results, no clear physical understanding has eme
regarding what properties of the initial amplitude and pha
that determine the character of the asymptotically appea
soliton pulses.

The present paper investigates in some detail the prob
of the soliton content of an initially nontransform limite
sech-shaped pulse. The quantitative analysis is restricte
the case when the initial pulse, in the absence of phase v
tions, corresponds to anN52 soliton. The result indicates
that the properties of asymptotically emerging solitons~if
any! depend crucially on the magnitude, but also on t
form, of the initial chirp. In particular, the splitting of an
initial pulse into separating soliton pulse pairs only occu
for certain classes of initial chirp functions. The analysis
based on a combination of qualitative reasoning, appro
mate analysis using the invariants of the nonlinear Sch¨-
dinger equation, and numerical solutions of the Zakhar
Shabat eigenvalue problem.

II. QUALITATIVE ANALYSIS

We consider the nonlinear evolution of optical pulses
determined by the normalized form of the nonlinear Sch¨-
©2002 The American Physical Society02-1
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dinger equation~NLS! in the case of anomalous dispersio
i.e.,

i
]C

]x
1

1

2

]2C

]t2 1uCu2C50 ~1!

with initial conditions which are sech shaped, but nontra
form limited, i.e., the initial pulse has a nontrivial pha
variation,f~t!,

C~0,t!5A0 sech~t!ei f f~t!. ~2!

The properties of the corresponding initial chirp frequen
vc52 f df/dt, play a decisive role for the subsequent pu
evolution. A qualitative understanding of the physical imp
cations of the frequency chirping can be obtained as follo
The variation of chirp frequency witht implies that different
parts of the pulse are given different local pulse velociti
which consequently tend to disperse and broaden the p
However, counteracting and competing with this evolution
the nonlinear effect which for anomalous dispersion tend
compress and keep the pulse together. The outcome of
competition depends crucially on the properties of the ch
variation. The following qualitatively different forms o
phase variations will be considered in the present paper,

f~t!5t2, ~3a!

f~t!5 ln@sech~t/T!#, ~3b!

f~t!5sech~t/T!. ~3c!

For a phase of the form~3a!, the local chirp frequency
changes linearly and it can be expected that at some poi
the pulse, the chirp will be strong enough to overcome
nonlinear attraction and to break loose part of the pulse
dispersive radiation. For a small chirp parameterf this occurs
only far out in the wings of the pulse and little energy will b
lost in the form of dispersive radiation. However, for increa
ing chirp strength,f, more and more energy will be lost an
the asymptotic soliton will contain less and less energy.
nally for a sufficiently largef, the soliton content is com
pletely destroyed and the total pulse disperses asymptotic
as a linear pulse.

In case~3c! the chirp isvc5 f sech(t/T)tanh(t/T)/T. This
variation is qualitatively different from case~3a! in the sense
that the chirp-induced velocities have extrema around wh
there tend to build up subpulses which move faster or slo
than the central part. Counteracting this separation are: lin
dispersion which tends to broaden the pulses and make t
merge into a single broad pulse and nonlinear effects wh
tend to form single pulses. The latter effect works in t
same direction as the linear dispersion when the subpu
are strongly overlapping, but will oppose the dispers
broadening if the subpulses are sufficiently separated. Th
considerations imply that if the initial chirp is strong enoug
the pulse can be expected to be torn apart into two separa
subpulses, and if these pulses are energetic enough, non
effects will transform them into symmetrically moving an
separating solitons. It is obvious that the widthT of the phase
05660
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variation, which determines the location of the local extre
of the chirp variation, also plays an important role for t
possibility of splitting the pulse into soliton pairs. Clearly fo
large T the extrema of the chirp are moved far out into t
wings of the pulse and soliton pair creation should beco
more difficult.

The qualitative picture above suggests that soliton p
creation requires a nonmonotonous chirp. Yet this is not tr
Consider case~3b! where the chirpvc5 f tanh(t/T)/T is mo-
notonous, but bounded. Even if the chirping rate here s
rates, it seems possible that the combination of linear dis
sion and nonlinear attraction may still manage to tear
parts of the original pulse and to create separating subpu
in the form of solitons. On the other hand, this requires
more delicate interplay between the chirping and the non
earity as compared to the previous cases. It is interestin
note that for T51, the initial condition corresponds t
C(0,t)5A sech11if(t) for which the soliton content can b
obtained exactly in closed form@5,6#. The solution predicts
only regular soliton degradation i.e., for increasing ch
strength, the soliton amplitude, and the soliton number
crease, but no separating soliton pairs appear.

Thus, in view of the above qualitative reasoning, it m
be conjectured that in case~3b!, if the rise time of the chirp
variation is long enough as compared with the pulse wi
(T.Tcrit.1), only regular radiative soliton degradation w
occur, whereas soliton pair creation should occur for sh
rise times (T,Tcrit.1) and sufficiently strong chirping. This
conjecture is confirmed by the numerical simulations ma
in the present paper for the casesT52 andT51/2, respec-
tively, cf. Fig. 1.

On the other hand, even if this explains the features
served for pulses with moderate amplitudes, it cannot be
complete qualitative picture. In situations of high amplitud
the modulational instability will tend to create many solito
embryos on the ‘‘broad’’ pedestal pulse. If, e.g., the chirpi
is linearly varying it will tend to assign a specific~but dif-
ferent! mean velocity to each soliton embryo. If the nonli
earity is strong enough, it can be expected to create
solitons of the soliton embryos. Since the velocities of t
created solitons will increase with distance from the init
pulse center, the result should be a sequence of soliton p
moving out in a fan-shaped pattern in space time, in go
qualitative agreement with the numerical simulation resu
presented by others@7,8#. A more quantitative analysis of th
chirp-induced soliton degradation and splitting will be pr
sented in the next section.

III. QUANTITATIVE ANALYSIS

An approximate analytical approach for determining t
properties of the solitons emerging from initially chirpe
sech-shaped pulse was presented by Ma�mistov @16#. The
main idea of this approach is that if an initialN52 soliton,
i.e., C(0,t)52 sech(t) is transformed, by initial chirping,
into two solitons or a soliton pair, the corresponding amp
tudes (A1 ,A2) and velocities (V1 ,V2), constitute a set of
four unknown quantities. These soliton parameters can
2-2
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determined by using the first four invariants of the NL
equation, which read

I 15E
2`

`

uCu2dt,

I 25E
2`

` S C*
]C

]t
2C

]C*

]t Ddt,

~4!

I 35E
2`

` S U]C

]t U
2

2uCu4Ddt,

I 45E
2`

` S C
]3C*

]t3 13CuCu2
]C*

]t Ddt.

Four independent equations can be obtained by evalua
the invariants for the initial condition and for the asympto
solution consisting of two fundamental solitons, if we n
glect possible overlap effects between the solitons. The c
will not affect the energy of the pulse and henceI 158 for all
chirp strengthsf. The even invariants vanish,I 25I 450,
since the initial condition is even. However, the third inva
ant depends on the chirp strength and is given by,

FIG. 1. Degradation of theN52 soliton for the initial phase
condition given by Eq.~3b! andT52 andT51/2 respectively; nu-
merical solution of the Zakharov-Shabat eigenvalue problem.
05660
g

p

I 352
56

3
1S 8E

0

`

sech2~t!@f8~t!#2dt D f 2. ~5!

The most general form of the fundamental soliton is

C5A sech@A~t2t02Vx!#expF i „Vt2~V22A2!
x

2
1f0…G

~6!

and the corresponding values of the invariants are

I 152A,

I 254iAV,
~7!

I 352AV22
2

3
A3,

I 4522iAV~A22V2!.

Depending on whether the chirp strengthf is smaller or
larger than a critical valuef c , either a two-soliton breather
or two symmetrically diverging solitons, respectively, are o
tained as solutions of the algebraic system. The solutions
@16#

V15V250, A15A252,
A1521A12( f / f c)

2, V151A( f / f c)
221,

A2522A12( f / f c)
2, V252A( f / f c)

221,

~8!

where

f c5
1

A*0
` sech2~t!„f8~t!…2dt

~9!

is the critical chirp strength for which the solution change
character. Expressed in eigenvalues, the result can be wri
in the compact form,

z5j1 ih5 i S 16
1

2
A12~ f / f c!

2D . ~10!

In the case of vanishing chirp,f 50, Eq.~10! yields the exact
eigenvaluesz5 i3/2 andz5 i /2, which is due to the fact that
the initial condition 2 sech(t) is reflectionless and no disper
sive radiation is present.
-

b-

n-
FIG. 2. Soliton degradation for the initial con
dition given by Eq.~13!. Solid line, numerical
solution of the Zakharov-Shabat eigenvalue pro
lem. Dashed line, approximate solution@Eq.
~10!#, Circles, approximate solution@Eq. ~10!
with corrections according to Eqs.~21! and~22!#.
Note the appearance of additional discrete eige
values atf '4.5 and atf '8.0.
2-3
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Inherent in this approximation procedure is the assum
tion that the solution can be accurately described by
solitons and in particular that no~or at least little! energy is
lost as dispersive radiation. Although this scheme gives g
approximations in several important situations@16#, it may
also give rise to totally misleading results if the underlyi
assumption is poorly fulfilled. In the paper by Maı˘mistov and
Sklyarov@16#, a critical chirp was found to exist for the cas
of quadratic phase variation. This result predicts that pu
splitting, with the appearance of two separating solito
should occur for large enough chirp strengths, a nonphys
result for theN52 soliton case@3,4#. Furthermore, if we
calculate the critical chirp strength for case~3b! in Eq. ~3!,
we find a finite value off c for all values ofT. This implies
that, independent of the value ofT, it should be possible to
split the initial pulse into a separating soliton pair, provid
the chirp is strong enough. However, this is not true. Fr
our previous qualitative discussion we expect that pu
splitting should occur only when the chirp width,T, is
smaller than unity and indeed forT51/2 we obtain f c

51/A2(p22)'0.66, which is in qualitative agreement wit
the numerical results shown in Fig. 1. However, forT51, we
obtain f c5)'1.73, whereas the exact analytical soluti
for the Zakharov-Shabat problem@5,6# asserts that no puls
splitting should occur. Similarly forT52, we find that the
critical chirp strength increases tof c52/Ap23'5.32, but
according to Fig. 1, no pulse splitting occurs, as expec
from the qualitative discussion. The physical reason for t
shortcoming of the analytical approach given in Ref.@16# is
that dispersive radiation and/or additional soliton genera
plays an important role in the asymptotic pulse evolution

A further assumption made in Ref.@16# was that the in-
variants corresponding to anN-soliton solution,cs(x,t),
could be rewritten as the sum of the invariants correspond
to each individual soliton,cs

j (x,t), i.e.,

I n„cs~x,t!…5(
j 51

N

I n„cs
j ~x,t!…. ~11!

Although this is evidently a legitimate approach in t
case of separating solitons, there were some doubts rais
Ref. @16# about applying the same procedure to the case
solitons with zero velocity, i.e. nonseparating~and overlap-
ping! solitons. However, the approach can indeed be put o
firm basis by noticing that the soliton contributions to t
invariants can be expressed directly in terms of the eigen
ues,zk , of the scattering problem, as follows, cf. Ref.@17#:

I 152i (
k51

N

zk* 2zk54 (
k51

N

hk ,

I 254 (
k51

N

~zk
2!* 2zk

25216i (
k51

N

jkhk ,

~12!

I 35
8i

3 (
k51

N

~zk
3!* 2zk

3516(
k51

N

jk
2hk2

1

3
hk

3,
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k51

N

~zk
4!* 2zk

45232i (
k51

N

jkhk~jk
22hk

2!.

This has two advantages, first the calculations leading to
~7! are simplified, second and more important, it is clear t
the resulting equations are equally valid for the case w
the asymptotic solution is a breather soliton; no overlap
fects between solitons occur.

We will demonstrate an extension of this approach wh
accounts for dispersive and/or additional soliton generat
In order to be explicit we will consider the two-soliton initia
condition

C~0,t!52 sech~t!exp@ i f sech~t!#. ~13!

The critical chirp strength obtained for this case isf c

5A15/2'2.74, which is in good agreement with the critic
chirp strength found by a full numerical solution of th
Zakharov-Shabat scattering equations. However, it is a
clear from the numerical results that energy is lost from
solitons to dispersive radiation and, in some parameter
gimes, also to additional solitons cf. Fig. 2. In particular, f
increasing chirp strength the discrepancy between nume
results and theoretical predictions increases.

In the present paper, we will generalize the approxim
approach by including also the fifth invariant, which pr
vides additional information about the pulse dynamics a
makes it possible to account for energy loss due to disper
waves and/or the presence of additionally generated solit
Hence, we assume that the asymptotic solution consist
two main solitons and a small additional pulse. We linear
the invariantsI 3 andI 5 in order to find the corrections to th
soliton parameters given in Eq.~8!. In this linearization pro-
cedure the contributions toI 3 and I 5 coming from the small
additional pulse vanish and to lowest order, it only contr
utes to the energy invariant,I 1 . The subsequent results impl
a significant improvement on the results obtained previou
@16#.

The fifth invariant is

I 55E
2`

` S U]2C

]t2 U2

12uCu62S ]uCu2

]t D 2

26U]C

]t U
2

uCu2Ddt, ~14!

and its value, calculated for the initial condition is

I 55
488

5
2

1072

105
f 21

64

315
f 4. ~15!

The value again depends on the amount of chirping. T
contribution to the invariant from the soliton part of the s
lution is given by
2-4
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I 55
32i

5 (
k51

N

~zk
5!* 2zk

5

564(
k51

N

hk~hk
22jk

2!22
4

5
hk

5. ~16!

Assuming the total solution to consist of two diverging so
tons with common amplitude and sign reversed veloci
and an additional pulse, which for simplicity will be taken
a stationary and soliton-shaped pulse, with eigenvaluz
5 im, we obtain

I 3~h,j,m!516S 2j2h2
2

3
h32

1

3
m3D ,

I 5~h,j,m!564S 2h~h22j2!22
8

5
h51

1

5
m5D . ~17!

The correctionsdh and dj are found from the linearized
equations

I k
05I k~h0 ,j0,0!1

]I k

]h
~h0 ,j0,0!dh

1
]I k

]j
~h0 ,j0,0!dj1

]I k

]m
~h0 ,j0,0!dm, ~18!

were I k
0 denotes the value of the invariant corresponding

the initial condition, and (h0 ,j0) denotes the previous solu
tion given in Eq.~10!. From the third invariant we directly
obtain a connection between the corrections in the real
imaginary parts of the eigenvalue, viz.

dj5
h0

22j0
2

2j0h0
dh. ~19!

The fifth invariant makes the system inhomogeneous
determines the value of the correction inh,

dh52
I 5

02I 5~h0 ,j0,0!

128~h0
21j0

2!2 . ~20!

Simplifying the results we obtain for the casef . f c,

dh52
3

7

~ f / f c!
2@11~ f / f c!

2#

@31~ f / f c!
2#2 ,

dj5
52~ f / f c!

2

4A~ f / f c!
221

dh. ~21!

In the complementary case (f , f c) when the asymptotic
soliton corresponds to a breather solution we obtain

dh15
3

28

~ f / f c!
2@11~ f / f c!

2#

~21A12~ f / f c!
2!2A12~ f / f c!

2
,

05660
s

o

d

d

dh252
3

28

~ f / f c!
2@11~ f / f c!

2#

~22A12~ f / f c!
2!2A12~ f / f c!

2
. ~22!

We emphasize that the properties of the additional pulse o
enters explicitly in the first energy invariant from which w
by linearization, obtain that the energy,E, of the additional
pulse is given byE528dh. This implies that our analysis
covers both the case when the additional pulse correspo
to a stationary third soliton and the case of dispersive ra
tion.

The qualitative speculations and the quantitative pred
tions have been compared with the eigenvalues obtained
full numerical solution of the Zakharov-Shabat scatteri
problem. The agreement is found to be very good, excep
the close vicinity off c where the solution changes charac
and for largef where the solution is dominated by dispersi
radiation and the linearization procedure is violated, cf. F
2. In connection with Fig. 2 we emphasize that the numer
results show an unusual feature: The conventional pictur
the effect of chirping on nonlinear pulse evolution is th
increasing chirp strength tends to decrease the numbe
eigenvalues and eventually leads to a purely continu
spectrum. However, in the case considered in Fig. 2,
opposite occurs in the sense that at certain chirp stren
eigenvalues are pulled out of the continuum~one eigenvalue
at f '4.5 and two atf '8.0!. Thus, e.g., atf 59, the eigen-
value problem has four discrete different eigenvalues.

IV. SUMMARY

The soliton content in an initially chirped pulse, propag
ing in a nonlinear Kerr medium, can be found by solving t
corresponding Zakharov-Shabat scattering problem. Alb
linear, this scattering problem can be solved in closed fo
for very few cases and usually resort must be taken to
proximate or numerical techniques. In this paper we fi
discuss qualitatively the effect of an initial chirp of differe
forms on the subsequent development of the pulse. This
cussion gives important physical insight into the expec
pulse dynamics. A detailed quantitative investigation is th
made of the influence of an initial chirp on a two-solito
breather. It is found that, for certain phase functions a
chirp strengths, the pulse is split into separating solito
However, another scenario is also possible where degr
tion of the two soliton breather and formation of dispersi
radiation is observed. An approximate solution scheme ba
on the first four invariants of the nonlinear Schro¨dinger equa-
tion was presented by Maı˘mistov and Sklyarov@16#. In this
method it is assumed that the asymptotic solution consist
only two solitons. The quality of the approximate solutio
depends crucially on the validity of this assumption and
some parameter regimes the accuracy of the solution rap
deteriorates. In order to improve the approximate solution
have included the possibility of a small pulse appearing
ymptotically in addition to the two solitons. Since this ste
increases the number of unknowns, we have also inclu
the next order invariantI 5 in order to obtain a consistent se
of equations. To lowest order in energy, the inclusion of
additional pulse will only affect the first invariant expressin
2-5
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the energy conservation. However, this will change the p
vious values of the soliton parameters, which now must
corrected as compared to the soliton parameters obta
from the four first invariants. In order to calculate the cor
sponding corrections to the speed and amplitudes of the
tons we linearize the invariantsI 3 andI 5 around the previous
P

05660
-
e
ed
-
li-

solution. We have studied in detail the case when the ini
pulse is given byC(0,t)52 sech(t)exp@if sech(t)# and it
was found that the approximate solution is in very go
agreement with a full numerical solution of the Zakharo
Shabat scattering equations for a large range of parame
-
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