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Propagation properties of chirped soliton pulses in optical nonlinear Kerr media

M. Desaix
School of Engineering, University College of Bsy&E 501 90 Boig Sweden

L. Helczynski, D. Anderson, and M. Lisak
Department of Electromagnetics, Chalmers University of Technology, SE 412t6b6depy Sweden
(Received 9 October 2001; published 15 April 2p02

An investigation is made of the formation of a single soliton, or a pair of solitons, from initially nontrans-
form limited pulses in a nonlinear Kerr medium having anomalous dispersion. A qualitative physical explana-
tion is given for the formation of soliton pairs. Approximate solutions for the amplitudes and the velocities of
the generated solitons are established and corroborated by numerical solutions of the Zakharov-Shabat eigen-
value problem.
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[. INTRODUCTION smooth degradation is broken by a discontinuous transition
into a qualitatively different behavior where the initial pulse
The degradation of the soliton content of initially non- splits into two or more separating soliton pairs. A number of
transform limited sech-shaped pulses propagating in a norgnalytical investigations has also been made to explain the
linear Kerr medium having anomalous dispersion has beefgatures observed in the numerical simulations. An early ef-
studied in a number of investigations and for many differenfort was made by Lewi§9], where the semiclassical limit of
applications. The case of a pulse which initially is sechthe Zakharov-Shabat scattering problem was analyzed and
shaped and has a quadratic phase variation in time, i.e., thater further important information was obtained by Kaup,
concomitant frequency chirp is linear, was investigated nuEIl-Reedy, and MalomeflL0]. Yet, both these works consid-
merically by Hmurcik and otherfgl—4]. The results demon- ered simplifying limits of, e.g., rectangular initial amplitudes
strated that the amplitude of the asymptotically emergingand/or piecewise constant chirp variations. Several investiga-
solitons decreased monotonously with increasing chirgions [11-15 have relied on direct variational methods,
strength. At a certain chirp, the soliton character was lostvhich have given good approximate solutions for the degra-
completely and the asymptotic propagation properties wergation of the soliton content with increasing chirp strength,
that of a linear pulse. In addition, for initially higher-order however, primarily for linear chirp variations. An interesting
solitons, the characteristic soliton number decreased in stegproach based on the invariants of the nonlinear Schro
at certain critical chirp strengths. An important observationdinger equation has also been presertl, for obtaining
from the present point of view is the fact that the pulsesinformation on the asymptotically emerging soliton/soliton
never split into separating subpulses or soliton pairs. A spepair. Nevertheless, it is fair to say that in spite of many im-
cial situation, that has attracted considerable intdf§f, is  portant results, no clear physical understanding has emerged
the case when the initial complex pulse amplitude can bé&egarding what properties of the initial amplitude and phase
written asA sech*(). This implies that the pulse is sech that determine the character of the asymptotically appearing
shaped, but that the phaseg(n), varies as ¢(r)  Soliton pulses.
=f In[sech§)] and the associated chirp frequency dg The present paper investigates in some detail the problem
= f tanh(). The chirp frequency is still linear for smat/ but ~ of the soliton content of an initially nontransform limited
the increase, although still monotonous, saturates at finitéech-shaped pulse. The quantitative analysis is restricted to
values asr— =+ . For this particular choice of chirp varia- the case when the initial pulse, in the absence of phase varia-
tion, the corresponding inverse scattering method can be cafions, corresponds to aN=2 soliton. The result indicates
ried out to give explicitly the properties of the asymptotically that the properties of asymptotically emerging solitdifs
emerging solitons. The result is qualitatively the same as i@ny) depend crucially on the magnitude, but also on the
the previous case, the soliton content is degraded, in th®rm, of the initial chirp. In particular, the splitting of an
sense that the soliton number decreases in steps, the emetigjtial pulse into separating soliton pulse pairs only occurs
ing soliton pulse has an amplitude that decreases for increafar certain classes of initial chirp functions. The analysis is
ing chirp strength and eventually, above a certain chirg?ased on a combination of qualitative reasoning, approxi-
threshold, only linear dispersive radiation exist asymptoti-mate analysis using the invariants of the nonlinear Schro
cally. dinger equation, and numerical solutions of the Zakharov-
In stark contrast to this smooth degradation of the solitonShabat eigenvalue problem.
content with increasing chirp strength stands another type of
pulse dynamic$7,8]. At a certain critical chirp strength, the Il. QUALITATIVE ANALYSIS
We consider the nonlinear evolution of optical pulses as
*Email address: Mats.Desaix@hb.se determined by the normalized form of the nonlinear Sehro
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dinger equatior(NLS) in the case of anomalous dispersion, variation, which determines the location of the local extrema

ie., of the chirp variation, also plays an important role for the
) possibility of splitting the pulse into soliton pairs. Clearly for
i ﬂJr E g +[W|2w =0 (1) large T the extrema of the chirp are moved far out into the
X 2 dr wings of the pulse and soliton pair creation should become
more difficult.

with initial conditions which are sech shaped, but nontrans-
form limited, i.e., the initial pulse has a nontrivial phase
variation, ¢(7),

The qualitative picture above suggests that soliton pair
creation requires a nonmonotonous chirp. Yet this is not true.
Consider cas€3b) where the chirpo.=f tanh@T)/T is mo-
W(0,7)=A, seclir)el ¢, 2) notonous, but bounded. Even if the chirping rate here satu-
rates, it seems possible that the combination of linear disper-
The properties of the corresponding initial chirp frequency,sion and nonlinear attraction may still manage to tear off
w.=—fde/dr, play a decisive role for the subsequent pulseparts of the original pulse and to create separating subpulses
evolution. A qualitative understanding of the physical impli- in the form of solitons. On the other hand, this requires a
cations of the frequency chirping can be obtained as followsmore delicate interplay between the chirping and the nonlin-
The variation of chirp frequency withimplies that different ~ earity as compared to the previous cases. It is interesting to
parts of the pulse are given different local pulse velocitieshote that for T=1, the initial condition corresponds to
which consequently tend to disperse and broaden the puls®¥ (0,7)=A sec*"(7) for which the soliton content can be
However, counteracting and competing with this evolution isobtained exactly in closed forib,6]. The solution predicts
the nonlinear effect which for anomalous dispersion tends t@nly regular soliton degradation i.e., for increasing chirp
compress and keep the pulse together. The outcome of thirength, the soliton amplitude, and the soliton number de-
competition depends crucially on the properties of the chirgcrease, but no separating soliton pairs appear.
variation. The following qualitatively different forms of  Thus, in view of the above qualitative reasoning, it may
phase variations will be considered in the present paper, be conjectured that in cag8b), if the rise time of the chirp
variation is long enough as compared with the pulse width

P(1)=1, (Ba  (T>T.w=1), only regular radiative soliton degradation will
occur, whereas soliton pair creation should occur for short

¢(7)=In[secti7/T)], (Bb)  rise times T<T.=1) and sufficiently strong chirping. This
conjecture is confirmed by the numerical simulations made

¢(7)=secti7/T). (30 in the present paper for the cases 2 andT=1/2, respec-
tively, cf. Fig. 1.

For a phase of the fornt3a), the local chirp frequency  On the other hand, even if this explains the features ob-
changes linearly and it can be expected that at some point iferved for pulses with moderate amplitudes, it cannot be the
the pulse, the chirp will be strong enough to overcome thgomplete qualitative picture. In situations of high amplitudes,
nonlinear attraction and to break loose part of the pulse age modulational instability will tend to create many soliton
diSperSiVe radiation. For a small Chirp pal’amétki‘lis OCcurs embryos on the “broad” pedesta' pu|se_ |f7 e.g., the Chirping
only far out in the wings of the pulse and little energy will be g linearly varying it will tend to assign a specifibut dif-
lost in the form of dispersive radiation. However, for increas—ferem) mean velocity to each soliton embryo. If the nonlin-
ing chirp strengthf, more and more energy will be lost and earity is strong enough, it can be expected to create true
the asymptotic soliton will contain less and less energy. Fisplitons of the soliton embryos. Since the velocities of the
nally for a sufficiently largef, the soliton content is com-  created solitons will increase with distance from the initial
pletely destroyed and the total pulse disperses asymptoticalfy,ise center, the result should be a sequence of soliton pairs
as a linear pulse. moving out in a fan-shaped pattern in space time, in good
In case(30) the chirp iso=f sech¢/T)tanh@T)/T. This  qualitative agreement with the numerical simulation results
variation is qualitatively different from cas@a) in the sense  presented by othefd,8]. A more quantitative analysis of the

that the chirp-induced velocities have extrema around whiclghirp-induced soliton degradation and splitting will be pre-
there tend to build up subpulses which move faster or slowegented in the next section.

than the central part. Counteracting this separation are: linear
dispersion which tends to broaden the pulses and make them
merge into a single broad pulse and nonlinear effects which
tend to form single pulses. The latter effect works in the
same direction as the linear dispersion when the subpulses An approximate analytical approach for determining the
are strongly overlapping, but will oppose the dispersiveproperties of the solitons emerging from initially chirped
broadening if the subpulses are sufficiently separated. Thesech-shaped pulse was presented byinMistov [16]. The
considerations imply that if the initial chirp is strong enough, main idea of this approach is that if an initil=2 soliton,

the pulse can be expected to be torn apart into two separatings., W (0,7) =2 sechf) is transformed, by initial chirping,
subpulses, and if these pulses are energetic enough, nonlingato two solitons or a soliton pair, the corresponding ampli-
effects will transform them into symmetrically moving and tudes @,,A,) and velocities ¥;,V,), constitute a set of
separating solitons. It is obvious that the widtof the phase four unknown quantities. These soliton parameters can be

Ill. QUANTITATIVE ANALYSIS

056602-2



PROPAGATION PROPERTIES OF CHIRPED SOLITON. .. PHYSICAL REVIEW6E 056602

5 T=2 15 T=1/2 56 s
' ‘ ‘ ' lyg=— 5+ 8f secR(7)[¢'(7)]%dr|f2. (5)
0
The most general form of the fundamental soliton is
X
' ] T ] W=AsechiA(t— ro—Vx)]exp{i(Vr—(Vz—Az)er¢0)}
(6)
} and the corresponding values of the invariants are
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FIG. 1. Degradation of th& =2 soliton for the initial phase l4=—2IAV(AT=V7).

condition given by Eq(3b) andT=2 andT=1/2 respectively; nu-

merical solution of the Zakharov-Shabat eigenvalue problem. Depending on whether the chirp strengthis smaller or

larger than a critical valué., either a two-soliton breather
or two symmetrically diverging solitons, respectively, are ob-

determined by using the first four invariants of the NLS tained as solutions of the algebraic system. The solutions are

equation, which read [16]
|1=J |2, Vi=V,=0, Ai=A,=2,
o Ap=2+\1-(f/f.)? Vi=+(flfy) -1,
v R A,=2—\1—(flf.)? V,=—(flf)?—1,
= *__
I, fx(qf a4 &T)dT, (8)
(4  where
= [|ow|?
|3=f 1wt an, 1
—w\| 0T fo= = ; > 9
VIo sech(7)(¢' (7))’dr
A o> . . . : :
|4=f L\ — +3V|P|? dr. is the critical chirp strength for which the solution changes
- ar ar character. Expressed in eigenvalues, the result can be written

in the compact form,
Four independent equations can be obtained by evaluating
the invariants for the initial condition and for the asymptotic
solution consisting of two fundamental solitons, if we ne-
glect possible overlap effects between the solitons. The chirp
will not affect the energy of the pulse and herge 8 for all In the case of vanishing chirp=0, Eq.(10) yields the exact
chirp strengthsf. The even invariants vanisH,=1,=0, eigenvalueg=i3/2 and{=i/2, which is due to the fact that
since the initial condition is even. However, the third invari- the initial condition 2 sech is reflectionless and no disper-
ant depends on the chirp strength and is given by, sive radiation is present.

1
2

V1= (fIfo)?]. (10)

(=¢+ing=i|lx

FIG. 2. Soliton degradation for the initial con-
dition given by Eq.(13). Solid line, numerical
solution of the Zakharov-Shabat eigenvalue prob-
lem. Dashed line, approximate solutidrq.
(10)], Circles, approximate solutiofEq. (10)
with corrections according to Eq1) and(22)].
Note the appearance of additional discrete eigen-
values atf~4.5 and atf ~8.0.
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Inherent in this approximation procedure is the assump- N N
tion that the solution can be accurately described by two 1,=4 >, ({H*—0t=—32 2, & E2—nd).
solitons and in particular that n@r at least littl¢ energy is k=1 k=1
lost as dispersive radiation. Although this scheme gives good

approximations in several important situatid$], it may  Thjs has two advantages, first the calculations leading to Eq.
also give rise to totally misleading results if the underlying (7) are simplified, second and more important, it is clear that
assumption is poorly fulfilled. In the paper by Meistov and  the resulting equations are equally valid for the case when
Sklyarov[16], a critical chirp was found to exist for the case the asymptotic solution is a breather soliton; no overlap ef-
of quadratic phase variation. This result predicts that puls@acts between solitons occur.

splitting, with the appearance of two separating solitons, e will demonstrate an extension of this approach which
should occur for large enough chirp strengths, a nonphysicg{ccounts for dispersive and/or additional soliton generation.

result for theN=2 soliton cas¢3,4]. Furthermore, if we |n order to be explicit we will consider the two-soliton initial
calculate the critical chirp strength for ca&b) in Eq. (3),  condition

we find a finite value of ; for all values ofT. This implies

that, independent of the value @f it should be possible to ]

split the initial pulse into a separating soliton pair, provided W (0,7)=2 seclir)exflif sechir)]. (13
the chirp is strong enough. However, this is not true. From

our previous qualitative discussion we expect that pulserne critical chirp strength obtained for this case fis

splitting should occur only when the chirp widifl, is  _ 7552 74, which is in good agreement with the critical
smaller_than unity and indeed fof=1/2 we obtainfc  chiry strength found by a full numerical solution of the
=1/y2(7—2)~0.66, which is in qualitative agreement with zaxharoy-Shabat scattering equations. However, it is also
the numerical results shown in Fig. 1. However,Ter 1, we  clear from the numerical results that energy is lost from the
obtain f.=v3~1.73, whereas the exact analytical solutiongg|itons to dispersive radiation and, in some parameter re-
for the Zakharov-Shabat problef6,6] asserts that no pulse gimes, also to additional solitons cf. Fig. 2. In particular, for
splitting should occur. Similarly foff=2, we find that the jncreasing chirp strength the discrepancy between numerical
critical chirp strength increases fQ=2/Jm—3~5.32, but  results and theoretical predictions increases.
according to Fig. 1, no pulse splitting occurs, as expected |n the present paper, we will generalize the approximate
from the qualitative discussion. The phySical reason for thi%pproach by inc|uding also the fifth invariant, which pro-
shortcoming of the analytical approach given in Ré6] is  vides additional information about the pulse dynamics and
that dispersive radiation and/or additional soliton generatiommakes it possible to account for energy loss due to dispersive
plays an important role in the asymptotic pulse evolution. waves and/or the presence of additionally generated solitons.
A further assumption made in Rdfl6] was that the in-  Hence, we assume that the asymptotic solution consists of

variants corresponding to aN-soliton solution, ¢;5(x,7),  two main solitons and a small additional pulse. We linearize
could be rewritten as the sum of the invariants correspondingne invariantd ; andl s in order to find the corrections to the
to each individual solitong(x,7), i.e., soliton parameters given in E(B). In this linearization pro-

cedure the contributions tig andls coming from the small

N , additional pulse vanish and to lowest order, it only contrib-
In(s(X,7))= '21 In(PL(X,7)). (11)  utes to the energy invariant,. The subsequent results imply
= a significant improvement on the results obtained previously

16.

Although this is evidently a legitimate approach in the[ The fifth invariant is

case of separating solitons, there were some doubts raised in
Ref.[16] about applying the same procedure to the case of
solitons with zero velocity, i.e. nonseparatitend overlap- (" 92
ping) solitons. However, the approach can indeed be put on a 5T f

firm basis by noticing that the soliton contributions to the

\P2+21P6 bl
Frd I e

invariants can be expressed directly in terms of the eigenval- oW |2 )
ues,{,, of the scattering problem, as follows, cf. REE7]: —6 o7 [W|%]d, (14
N N
11=2i >, G—4=42 and its value, calculated for the initial condition is
= k=1
488 1072 64
N N
lg=—— ——f2+ ——f4, 1
=4 2 ((D*—LE=—16 2, &, ° 5 105 315 9
k=1 k=1
(12) . -
gi N N 1 The value again depends on the amount of chirping. The
Loz — 3% _ 316 2~ p3 contribution to the invariant from the soliton part of the so-
573 21 (&)™~ &k gl S 3 7k lution is given by
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AN S8 (L1197
= & 0k 28 (2 1= (M) 1= (117

(22

N We emphasize that the properties of the additional pulse only

= 6421 Ml M= 0%~ 5 - (16)  enters explicitly in the first energy invariant from which we,

- by linearization, obtain that the enerdy, of the additional

Assumina the total solution to consist of two diveraing soli- pulse is given bye=—867%. This |mpI|_es that our analysis
SSuming SOt SIS VETgINg SOl | overs both the case when the additional pulse corresponds

tons with common amplitude and sign reversed velocitie . ; . . . .
and an additional pulse, which for simplicity will be taken as 0 a stationary third soliton and the case of dispersive radia-

a stationary and soliton-shaped pulse, with eigenvalue

i, we obtain The qualitative speculations and the quantitative predic-

tions have been compared with the eigenvalues obtained by a
2 1 full numerical solution of the Zakharov-Shabat scattering
|3(7;,§,,u):16( 282n— = n°— —M3>, problem. The agreement is found to be very good, except in
3 3 the close vicinity off . where the solution changes character
and for largef where the solution is dominated by dispersive
radiation and the linearization procedure is violated, cf. Fig.
s(m.6:0)= 64( 2n(n’ = €)°~ 5 U 5’“5) L 2. In connection with Fig. 2 we F;mphasize that the numericgal
results show an unusual feature: The conventional picture of
The correctionssn and &¢ are found from the linearized the effect of chirping on nonlinear pulse evolution is that
equations increasing chirp strength tends to decrease the number of
eigenvalues and eventually leads to a purely continuous
0 aly spectrum. However, in the case considered in Fig. 2, the
1= 1k(70,€0,0) + %(ﬂofoﬁ)&) opposite occurs in the sense that at certain chirp strengths
eigenvalues are pulled out of the continugome eigenvalue
Al aly at f~4.5 and two atf~8.0). Thus, e.g., af =9, the eigen-
+ (9_5(’70’50’0) o6+ @( 70,60,0) 64, (18 value problem has four discrete different eigenvalues.

were | denotes the value of the invariant corresponding to IV. SUMMARY
the initial condition, and f,,£,) denotes the previous solu-
tion given in Eqg.(10). From the third invariant we directly
obtain a connection between the corrections in the real an
imaginary parts of the eigenvalue, viz.

The soliton content in an initially chirped pulse, propagat-
ié]g in a nonlinear Kerr medium, can be found by solving the
corresponding Zakharov-Shabat scattering problem. Albeit
linear, this scattering problem can be solved in closed form

2 42 for very few cases and usually resort must be taken to ap-
70~ &0 5. (19) proximate or numerical techniques. In this paper we first
2&0m0 discuss qualitatively the effect of an initial chirp of different

forms on the subsequent development of the pulse. This dis-
The fifth invariant makes the system inhomogeneous andyssion gives important physical insight into the expected

s¢=

determines the value of the correctionsjn pulse dynamics. A detailed quantitative investigation is then

0 made of the influence of an initial chirp on a two-soliton

15— 15(70,£0,0) breather. It is found that, for certain phase functions and

on="- 128 ,702+ 502)2 ' (20 chirp strengths, the pulse is split into separating solitons.
However, another scenario is also possible where degrada-

Simplifying the results we obtain for the caée f., tion of the two soliton breather and formation of dispersive
radiation is observed. An approximate solution scheme based

3 (flfo) 1+ (f/f)2] on the first four invariants of the nonlinear ScHirger equa-

tion was presented by Maistov and Sklyaroy16]. In this
method it is assumed that the asymptotic solution consists of
only two solitons. The quality of the approximate solution
Sem 5—(f/f)? 5 (21 depends crucially on the validity of this assumption and in
4\/m G some parameter regimes the accuracy of the solutlon_rap|dly
deteriorates. In order to improve the approximate solution we

In the complementary casef<f,) when the asymptotic have included the possibility of a small pulse appearing as-

soliton corresponds to a breather solution we obtain _ymptotically in addition to the two solitons. Since this step
increases the number of unknowns, we have also included

T T T3 ()2 E

3 (F1£)2[ 1+ (F/£.)?] the next order invarianits in order to obtain a consistent set
Sm ==z c > ¢ > of equations. To lowest order in energy, the inclusion of the
28 (2+1—(f1f)H)?1—(f/f,) additional pulse will only affect the first invariant expressing

056602-5



M. DESAIX, L. HELCZYNSKI, D. ANDERSON, AND M. LISAK PHYSICAL REVIEW EG65 056602

the energy conservation. However, this will change the presolution. We have studied in detail the case when the initial
vious values of the soliton parameters, which now must bgulse is given by¥(0,7)=2 sech@exdif sech)] and it
corrected as compared to the soliton parameters obtaineglas found that the approximate solution is in very good
from the four first invariants. In order to calculate the corre-agreement with a full numerical solution of the Zakharov-
sponding corrections to the speed and amplitudes of the solshabat scattering equations for a large range of parameters.
tons we linearize the invariantg andl ;5 around the previous

[1] L. V. Hmurcik and D. J. Kaup, J. Opt. Soc. Ané9, 597 [11] D. Anderson, M. Lisak, and T. Reichel, J. Opt. Soc. Am5,B

(1979. 207 (1988.
[2] H. E. Lassen, F. Mengel, B. Tromborg, N. C. Albertsen, and P[12] M. Desaix, D. Anderson, and M. Lisak, Phys. Re\6& 2253
L. Christiansen, Opt. Lettl0, 34 (1985. (1999.
[3] C. Desem and P. L. Chu, Opt. Lettl, 248(1986. [13] D. J. Kaup and B. A. Malomed, Physica &, 319(1995.
[4] K. J. Blow and D. Wood, Opt. CommuB8, 349 (1986. [14] M. Desaix, D. Anderson, M. Lisak, and M. L. Quiroga-
[5] F. A. Grinbaum, Inverse Probs, 287 (1989. Teixeiro, Phys. Lett. 212 332 (1996.
[6] A. Tovbis and S. Venakides, Physical26 150 (2000. [15] M. Jaworski, Phys. Rev. 6, 6142(1997.
[7]J. C. Bronski, Physma 7, 376(1996. [16] A. I. Maimistov and Yu. M. Sklyarov, Kvant. ElektroiMos-
[8] Jared C. Bronski and J. Nathan Kutz, Phys. LetR, 325 cow) 14, 796 (1987 [Sov. J. Quantum Electrori7, 500
(1999. ( d )
. 1987].
[9] Z. V. Lewis, Phys. Lett. A112 99 (1985. )
[10] D. J. Kaup, J. E-Reedy, and B. Malomed, Phys. ReB(E [17] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. [z, 118

1635 (1994, (1971 [Sov. Phys. JETR4, 62 (1972].

056602-6



