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Pulse propagation in a coupled resonator optical waveguide to all orders of dispersion
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In studying the propagation of optical pulses beyond the linear dispersion approximation, the conventional
term-by-term Taylor series expansion of the waveguide dispersion relationship fails when applied to the
recently introduced family of coupled resonator optical wavegui@@OWs. We have found the surprising
result that retaining the complete form of the dispersion relationship in the tight-binding approximation does in
fact lead to a closed form analytical solution, clearly highlighting the role of the various phenomenological
factors. Such an analysis is usually not possible in the majority of waveguiding structures and is especially
useful in the design of photonic crystal CROWSs and deep superstructure Bragg gratings.
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[. INTRODUCTION damental carrier of information, in such a waveguide, the
linear dispersion approximation for a CROW is useful in the
A coupled resonator optical waveguid€ROW) [1,2]  limit of sufficiently weak coupling between the high+eso-

comprises a periodic array of isolated structural elementators. The initial analysis was carried out in this lifdi2].
(e_g_' h|ghQ resonators such as defects in photonic Crysta]én view of the critical importance of higher-order dispersion
[3-5l—see Fig. 1 weakly coupled to one another. In direct terms in practical applicationg.g., group velocity disper-
correspondence with the description of electrons in a perision, GVD), we formulate in this paper a description of pulse
odic potential in solid state physics, a CROW is an opticalPropagation using the complete dispersion relationsiep,
waveguiding structure that can be described using the tigHe all orders of dispersignWe begin by stating the problem
binding approximatiorf1]. Experimental demonstrations of in the terminology of CROWs in Sec. II. The following two
the CROW concept and corroboration of the analyticalSections present the main analytical results of this paper, and
model were recently presentf8}7]. Prior to the introduction  although the problem is nonlinear, there are certain general
of the generic CROW family of waveguides, the tight bind- characteristics of the solution, as discussed in Sec. V. The
ing formalism was applied to the description of deep superAppendix serves both as a mathematical aside and a perti-
structure grating$8]. nent discussion of the slowly varying envelope approxima-
We highlight below some of the particularly useful fea- tion in the physical context.
tures of CROWs.
(1) The extensive literature on the properties of defects i
photonic crystald3,9,10 directly leads to both analytical . wavecuiDe MODiigEing_TgNULATION OF PULSE
[11,12 and numerical[13] descriptions of the waveguide
modes; the range of analytical tools in the study of pulse We assume that the structural elements comprising the
propagation is further extended in this paper. periodic waveguide, e.g., defect modes in a photonic crystal
(2) The group velocity in CROWSs can be several ordersor photonic wells in the description of superstructure grat-
of magnitude lower than in bulk materi@f the same refrac-
tive index [1]. This leads to an important class of applica-
tions[14] such as photorefractive holography for all-optical
buffers in packet-switched optical networks5], highly ef-
ficient second harmonic generatipt6], etc. c
(3) CROWSs can be defined as a singler a few
waveguiding ban@) inside the photonic band gap with the
guided modés) well isolated from the continuum of modes OO OO
that lie outside the band gap. This is in contrast with band- -> ® ® &
edge waveguides in photonic crystals, which can also defect
achieve low group velocity, but usually at the cost of poor cavity
confinement of the field to the desired modes.
In describing the propagation of an optical pulse, the fun-

Z —»

FIG. 1. Schematic of an infinitely long 1D CROW with period-
*Electronic address: shayan@caltech.edu; icity R consisting of defect cavities embedded in a 2D photonic
URL: http://www.its.caltech.ediishayan crystal.

1063-651X/2002/66%)/0566016)/$20.00 65 056601-1 ©2002 The American Physical Society



SHAYAN MOOKHERJEA AND AMNON YARIV PHYSICAL REVIEW E 65 056601

ings, are identical and lie along theaxis separated by a translated replica of the boundary condition, iE(z=0
distanceR. The waveguide mode, i.e., the eigenmode of a—z/v), wherev,=dw/dk is the group velocity12].
time-independent Hamiltoniar, (z) at a particular propa- In considering higher-order dispersion terms in the Taylor
gation constantwave numberk is written as a linear com- series expansion of the dispersion relationship, the integral
bination of the individual modeg,(z) of the elements that equation, Eq(5), cannot in general be inverted to obtain the
comprise the structure, c's in closed form. This is clearly evident when, for example,
the exponent involves terms of quadratic or higher polyno-
mial powers ofK. Therefore, rather than work with the suc-

$(2)=2 exﬁ—mkR)? $(z—nR), (1) cessive terms in a Taylor series expansion of the dispersion
¥ relationship, we will work with the full form of Eq(2).
where the summation over runs over the structural ele-  We assume that the dispersion relationship is symmetric
ments and the summation oerefers to the bound states in aboutK=0 [1]. We will also assume thaE(z=0t) is a
each individual element. symmetric  envelope.  Consequently,Cy .« ¢ +k(0)
The dispersion relationship for a CROW around a centrak Ck,—k Pky—k(0) for all K within the first Brillouin zone.
wave numbek, is This is not a critical assumption, and relates to the choice of

cosines rather than sines in Fourier series expansion8Eqg.
ka+K=Q(1—Aa/2)+QK coSKR)=wy+Aw cogKR),
2 IIl. NEUMANN DECOMPOSITION OF THE BOUNDARY

where() is the eigenfrequency of the individual resonators, CONDITION

and bothA« and « are overlap integrals involving the indi-  We introduce changes of variables to highlight the math-
vidual resonator modes and the spatial variation of the diematical structure of Eq5),
electric constanfl]. In this paper, we restrict the range kf
to the first Brillouin zone|K|R< . ©o=KR
The field describing a puls&(z,t) is written as a super- ’
position of waveguide mode#,(z) within the Brillouin
zone, with the corresponding time-evolution propagatass X=Awt,
appropriate for any linear and time-invariant system

h( ) =Cyy+Kk Pry+k(0),

dk
E(Z,t)~J ze'w(k)tckfﬁk(z),
f(X)=2RE(z=0Xx/Aw), (6)

. IR dK
:elwotf /Rﬁexqmwt cogKR) [y +k Pk, +k(2), so that Eq(5) becomes

©)

where the initial expression is merely schematic, and the

limits of integration are explicitly introduced on the second

line of Eq. (3). wheref(x) is a known function, in terms of which we want
The boundary conditions that arise in pulse propagatioio find h(¢). For the overwhelming majority of cases of

problems typically specify a pulse shape at the0 cross practical interest, we can instead find the coefficients in the

section of the waveguide and centered at the optical freexpansion oh(¢) as a Fourier cosine series,

quencywg,

(%)= f " dee*seh(p), %)

&(z=0y)=€l“otE(z=0y), (4) h(¢)=go cnCogng). (8)

so that the coefficients, . ¢ are derived from the equality of

Eq. (3) evaluated ar=0 and Eq.(4), Using the identity{17], [Eq. (9.4-5]

oo

7R dK .
E(z=o,t)=f —exdiAwt cogKR)ICk 4 kb +k(0). X0 = > bJm(X)cogme),
— R2TT 0 0 m=0
(5
This is easily inverted in the limit of a linear dispersion where b — L m=0, 9)
relationship in place of Eq(2)—the integral operator re- mol2im m=1,

duces to the well-known Fourier transform. For example, in
the dispersionless propagation of a pulse in free space, it snd the orthogonality of the cosines over the interval
easily verified that the envelope of E@3) is a time- (—ar,), we can simplify Eq(7) to
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* * It is obvious that the functiorg(t) should have no “dc
f(x)= E (bnc)Jdn(x)= 2 a,Jn(x). (20 value” sinceJ,(z) ~z" near the origin. Referring back to Eq.
n=0 - (6), the function that we expand in the Neumann series is
g(t)=1(t)—£(0).
An important, but technical, point relevant to the validity
of this simpler representation of the Neumann coefficients is
discussed in the Appendix for the particular case of Gaussian

Therefore, if we can expanfidx) [which describes the enve-
lope at thez=0 cross section—see E¢6)] in a Neumann
serieq 18, Chap. I¥, we can find the coefficients,, and by
subsequently using Eq8) and Eg. (6), the coefficients

envelopes,
CpzK -
The envelopes of practical interest are usually analytic 5
(more specifically, the complex signal description of the E(z=01)= exp( t ) (16)
envelope—e.g., the Fourier transform—has no singulayities T2/’

in some circle(of radiusc) around the origin(if it is not

entirg, and a general way of obtaining thg's is with a pulse width indicated byf. In this case, the coeffi-
cients evaluate t621], 11.4.2§

1
a,= o . C,dz f(z)On(2), for O<c’'<c, (11) AT T(n/2) N AoT2
2=
aﬂi”‘”ﬂ T(ruﬁ(?””;_(T) )1]
where
Omin=f 3 (MM Dl( )-Zm-l :
anl2)= 35 5 ,
" 2m=o (n—m)! 12 in terms of the confluent hypergeometric function.
n+1/2 & (n+m)! “2m-2 IV. FIELD DESCRIBING PULSE PROPAGATION
Ozn+1(2)= 2 iz . 12

Returning to the original notation, we have shown that as
a consequence of the dispersion relationdliig. (2)], the

are 'Fhe Neumann polynomid]$8,_ Chap. 1X. ) field describing the propagation of a pulse in a CROW can
Since the temporal envelope is a real function, we can Usgq \yritten as

a simpler representation that does not require integration in
the complex plane, and is readily implementable numeri-

cally. The identity[19, pp. 64—6 . 7R dK k,+k(2)
Y W19, pp b S(z,t)ze‘“’otf —exdiAwt cos(KR)]O—
—mIR2T bry+K(0)
»dt
fo TJv+2n+1(t)Jv+2m+1(t):(4n+2V+2)_15mn % 2nR focdt’
X —[E(z=0t'/A
(13 2 by | Jo 7 (B @)

holds forv>—1 and implies that a real functiog(x) of a
real variablex defined on the interval (®) can be written as —E(0,00]3n(t") | cognKR) + ¢y ¢y (0) 1, (18)

oo

where theb,’s are given by Eq(9), and the integral can be
900= 3 3, 20:1(%) ns are given by Eq(9) g

evaluated for a specific case as in Eg6)—(17). It is as-
sumed in this analysis that the waveguide modes are known,
ie., ¢k0+,<(z) is given by Eq(1) and¢k0+K(0) evaluates to
a known number. As discussed in REE2], the assumption

(2v+2+4n)

<dt
X fo Tg(t)‘lv+2n+l(t) ’ v>—1. (14)

The derivation of this representatidfor the special case
=0) is known as the Webb-Kapteyn theory of the Neumann [¢kO+K(O)]_1%1— > #(R)2 cog(ko+K)R]~1,
series. !

Adding the series that results from E@.4) using v=0 (19)
andv=1, and assuming that the terms can be rearranged, we

can write the coefficienta,, that appear in Eq(10) as is usually well justified, so that to the leading order,
[¢k0+|<(0)] 1=1 and Eq.(18) can be simplified further.

0 n=0 There is one extraneous degree of freedom in E&8),
' ' physically representing an overall scale factor and repre-
(15 sented by, , which can be accounted for by Parseval's re-

lationship,

an=

»dt
nf —9g(t)Jy(t), n=1.
ot
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FIG. 2. Temporal evolution of a Gaussian envelope at specific FIG. 3. Temporal evolution of a Gaussian envelope at specific
distances inside a CROW, showing the effects of dispersive propadistances inside a CROW, showing the effects of dispersive propa-
gation, withAw=2. At greater depths, the peak of the envelopegation, withAw=3.
arrives at a later time, and suffers distortion.

show the temporal envelope as would be observed at the
o B , [™RdK[2 ) ) specified distance into the CROW. For example, the first
f_mdt|€(z—0,t)| _f_W,RE R €kl by ek (0] waveform along the “Distance” axis is the temporal Gauss-
(20) ian envelope as would be measured by a detector observing
the time evolution of the field &=0. Since no distance has

The integral overK in Eq. (18) can be carried out by been traversed inside the dispersive CROW, this is an undis-

writing the exponential in the form of Eq9), and using Eq. torted wave form. The temporal envelope observed at loca-

(19). We define the coefficients tions inside the CROW shows the accumulated effects of
dispersion with increasing distance. Note that the crest of the
1 Gaussian reaches farther distances at a later time, in accor-

ﬁcko' n=0 dance with the concept of group velocity in the case of linear

dispersion. Of course, there is no exact single velocity pa-
n (=dt’ ) ) rameter when we analyze dispersion to all orders; neverthe-
i_”Jo t—,[E(O,t )—E(0,0]Jp(Awt’), n=1. less, the effects of dispersion are appreciable only after a
21) certain distance has been propagated. We will now examine

the dependence of this distance dw.
Using Egs.(19) and (1), the integral oveKK in Eq. (18) The differences between the two cases can be explained

may be simplified. A few pages of straightforward algebraby examining the argument of the Bessel functions in Eg.

based on the orthogonality of the cosines leads to the expre§22). SinceJy(7)~ 7™ nearr=0, a smaller value foA w at
sion a fixedt involves fewer terms in the summation ovarthat

have a significant contribution t6(z,t). The “fit” to the
o o undistorted envelope is consequently worse, and the effects
Sz,H)=€e"> byl (Awt) D B of distortion become apparent over a shorter distance of
m=0 n=0 propagation.

Bn=

1 Physically, increasind\ w implies that the range of fre-
X{ =g i=mEn kRS 17— (+m=+n),R] guencies that comprise the waveguiding band is larger, in
4 [ accordance with Eq(2). Therefore, a Gaussian pulse of a
22) given temporal width can be better approximated by the lin-
ear part of the dispersion relationship in the case of Fig. 3
describing the forward propagation of a pulse in a CROWthan Fig. 2, which leads to lesser distortion from the

We have used the symbol+” in Eq. (22) as a compact Wings” of the dispersion relationship.
notation for the sum over both choices of sign. Another feature visible in Figs. 2 and 3 relates to the slope

of the linear part of the dispersion relationship, which in the

dispersionless approximation is the group veloeify Based

on the form of Eq.(2), this slope is larger for the case de-
We will assume thaE(z=0,) is a Gaussian pulse defined picted in Fig. 3. We know that in a dispersionless medium,

by Eg.(16), with an appropriate shift of the temporal origin the envelope is invariant in the frante-z/v,, and increas-

of coordinates so that the envelope is well contained in théng v, lowers the quantitg/v 4 (which has the dimensions of

regiont e (0,%), which appears in Eq21). Figures 2 and 3 time) at a giverz. In describing the evolution of the temporal

V. DISCUSSION
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peak of the envelope, this explains why the envelope appearsase,f(x) is related(by a linear transformatiorto the enve-

to have propagated further in the case of Fig. 2 than in Fig. 3ope of the pulse at the=0 cross section of the CROW, and
While these are physically intuitive explanations for theit is entirely reasonable to assume that

phenomena observed in Figs. 2 and 3, it is important to re- (1) [5f(x)dx exits and is absolutely convergent. In our

alize that the dispersion relationship is nonlinear, and conanaysis, the most important class of functions that represent

cepts such as thg group velocity and peak of the temporg,;|se envelopes are Gaussido$ real argumentsand we
envelope lose their meaning when the pulse has propagate y assume that

imitations discussed in the Append: preclude conderation, (2) (X)) has @ continuos differential coefiient for al
of arbitrarily sh n;i)_osmve values ofx’ <x, where x refers to the particular
y short pulses and the consequences of the sa : ,

pling theoremd12] are not particularly illuminating in de- vglue O.fx ghoger) on the left-hand .S'de of H44). Watsons
riving general conclusions for this nonlinear problem either.thlrd criterion is in the form of an integral equation,
Even when these simplified physical arguments fail, 26) (3) For allt<x,
provides a clear framework for analyzing pulse propagation
in CROWSs with a large family of pulses, of arbitrary shape,
within the general limitations discussed in this paper. <dp

Finally, in studies of pulse propagation in CROWSs limited 2f'(1)= f —J(w)[f(v+t)+f(v—1)]. (A1)
to the case of linear dispersiph6], it was convenient to take oV
the (tempora) Fourier transform of the field(z,t) to ex-

press it in *frequency space” as(z,(1), defined by We do not need to rigorously analyze this condition, and

will appeal instead to physical arguments. We assume that
the envelopes we considgsuch as taking the form of Eq.
(16)] are sufficiently well behaved so that, using the defini-
tion of a derivative,

?:(z,mzf dte gz, t). (23

The Fourier transform of the Bessel functidg(t) is singu-
lar atQ) = =1 (and is usually defined withif{}|<1 [20, pp.
2-69)), which further highlights the slowly varying approxi-

mation discussed in the Appendix: the frequency-space con- £/ (t)= Elim ft+v) -V +f(t)_f(t_v) (A2)
tent of the left-hand side of Eq22) should be contained 2,0 ’
within |Q|=<1. Analyses in which the Fourier transform was
taken with respect ta [15] are not similarly affected.
and sincef(t) is odd,
VI. CONCLUSION
In this paper, we have derived the field describing pulse
propagation in coupled resonator optical waveguides , . o+t +f(v—-1)
(CROWS. For this particular class of waveguides, it is pos- 2t'(t) = “mo : (A3)

sible to describe linear pulse propagation beyond the linear
dispersion approximation. This further lends to the impor-
tance of this family of waveguides, since they can be de-
signed, e.g., in photonic crystals, in the light of a detailed . .~ . ) i .
analytical theory of pulse propagation. We have discusse atisfying Eq.(Al) is to stipulatef (t+v)~f(t—v), and in

the most prominent dispersive effects of the propagation of'€. Iimit of equality of. t_he last relationship, the former is
Gaussianppulsés ISPersiv propagat satisfied exactlyand trivially). In the context of Eq(16),

broader Gaussian envelopes, with largjeare “better” rep-

resented by the Webb-Kapteyn-Neumann series. This is eas-
ACKNOWLEDGMENTS ily verified numerically.
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It is now evident that one simple way of approximately

APPENDIX: WATSON’'S CRITERION AND GAUSSIAN »
ENVELOPES fo dt f(t)Jg(tx)=

As discussed by Watsofil8, pp. 533-53F there are
three criterion that need to be satisfied by an odd function
f(x) in order for the expansion E@14) to be valid. In our where (x) is a function that takes nonzero values only on

P(x), if x<1,
0, otherwise,

(A4)

056601-5



SHAYAN MOOKHERJEA AND AMNON YARIV

the interval 6<x<1. Using Eq.(16) for f(t),

> T %% 1
fo dte‘tz’TzJO(tx)=—\/; e—T2X2’8|0(—8 )~

as X—oo,

PHYSICAL REVIEW E 65 056601

and Eq.(A4) is clearly not satisfied for any value @f Nev-
ertheless, Gaussian envelodesid others with a property
similar to Eq.(A5)] are practically of considerable interest.
In this context, the approach we have taken in the previous
paragraph circumvents the assumptions underlying(&4)

and Bateman’s subsequent conclusions.
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