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Nonlinear dynamics of periodically focused intense particle beams
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We extend a previous studiR. Pakter and F. B. Rizzato, Phys. Rev. L8#%, 044801(2001) ] and investigate
the nonlinear dynamics of periodically focused intense particle beams. We shoyi) ttre scenario as the
focusing field increases is not the existence of a single threshold above which stable ntatghklorium)
solutions are absent, as believed so far, but the existence of successive regions of stability interrupted by gaps
where periodic solutions are either unstable or simply do not diisthe beam can be focused to tighter radii
using stable matched solutions found for focusing field strengths greater than the previous threshold. A com-
prehensive analysis is carried out as a function of the relevant parameters of the system. Self-consistent
simulations validate the findings. The gaps are of crucial importance because they must be avoided if the goal
is beam confinement with matched solutions; we develop an analytical model to determine the gap structure,
which agrees well with computer simulations.
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[. INTRODUCTION self-consistent simulations. In particular, we consider a high-
current beam in a periodic solenoidal focusing field. First of
The physics of intense beams in periodically focusing sysall the analytical model is developed in order to understand
tems is an active area of theoretical and experimental rethe overall nonlinear dynamics of the system. One particular
search where one looks for external field configurations caresult from the model is the interplay between the various
pable of confining high-current, low-emittance ion or defocusing forces on beam dynamics. It will be seen that
electron beam$1-5]. The area is crucial for the develop- relatively dense beams dominated by space-charge effects
ment of several advanced particle accelerator applicationsxhibit nonlinear features, like tangent bifurcations and the
such as tritium production, spallation neutron sources, heavgorresponding appearance and disappearance of periodic so-
ion fusion, coherent radiation sources, and nuclear wastRitions, which are not observed in the absence of space-
transmutationi6], as well as for applications in basic science.charge effects when the beam becomes dominated by ther-
A key aspect of periodically focused beams is their stabilitymal and rigid rotation effects, and the dynamics becomes
properties. Previous studies based on kinetic thédhand linear. In either of these two cases gaps may be formed as we
on the analysis of the beam envelope-9] revealed that vary the focusing strength within which no matched solution
within a relatively limited range of variation of the focusing can be found. This makes the issue of critical relevance if the
field strength, only one equilibrium solution with the beamgoal is to operate with stable periodic solutions.
radius displaying the same periodicity as the external confin- Then the Poincaremapping technique allied to the
ing field is present; one refers to this solution as the matchefewton-Raphson methdd.1] is employed to precisely lo-
solution. Equilibrium in this case results from the balancecate and determine the existence and stability of matched
between defocusing forces associated with electrostatic, thesolutions in the phase space of the beam envelope model. In
mal, and rigid rotation effects, and focusing forces generateg@articular, we confirm that in space-charge dominated beams
by the confining magnetic field and the self-current effectthe matched solution undergoes a series of direct and inverse
The matched solution was shown to present several transiebifurcations as the parameters of the system are varied. It is
instabilities as the focusing field strength is var{@, and  also shown that, although the matched solution analyzed in
these instabilities were found to be closely related to nonlinprevious work becomes unstable and eventually vanishes as
ear resonances involving the oscillatory behavior of both thehe focusing field strength increases, stability is recovered for
focusing field and the electrostatic perturbations propagatinget larger fields because other stable matched solutions
with the bean[9]. In particular, it was shown that above a emerge in the phase space. It is thus found that the general
certain threshold of the focusing field strength the matchedcenario as one increases the focusing field is not the exis-
solution undergoes a major bifurcation and loses stabilittence of a single threshold above which confinement is im-
[2,9], which creates severe limitations on the practical use opossible, but the existence of regions of stability interrupted
periodic focusing as a confining tool. by gaps where the matched solution either becomes unstable
In this paper we extend a previous investigafi®f], per-  or is completely absent. We investigate the issue and show
forming an analysis of the nonlinear dynamics exhibited bythat the periodicity pattern with which matched solutions can
periodically focused intense particle beams, based on an#&e found is highly sensitive to beam density. The transverse
lytical estimates, on the beam envelope equation, and on fulize of the beam is also analyzed, and it is shown that one
can effectively focus the beam to tighter radii using the
stable matched solutions that are found for focusing
*FAX: +55 51 33167286. Email address: pakter@if.ufrgs.br  strengths greater than the previously established threshold.
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As a final step we supplement the work with a number of 20 ]
self-consistent simulations to validate all the previous find- \\
ings. Here we see that there is a nice agreement betwee
analytical estimates, simulations involving the envelope
equations, and the full self-consistent simulations, a fact thal
suggests the robustness of our results.

The work is organized as follows. In Sec. Il we introduce
the model envelope equation and provide initial estimates or
its bifurcations and regions of stability and on the interplay P Q
between perveance dominated bednss, beams dominated 0
by electrostatic effectd9,10]) and emittance dominated b
beams; in Sec. Il we perform various simulations with the
envelope equation in order to numerically refine the previous
analytical estimates; in Sec. IV we run self-consistent beam
simulations to check on the overall validity of our low-
dimensional model; and in Sec. V we conclude the work.

10

Il. THE LOW-DIMENSIONAL BEAM ENVELOPE MODEL

&

AND INITIAL ANALYTICAL ESTIMATES -20
1 2 3 4 5
A. The envelope equation T
In the paraxial approximation the envelope equation for a b
particle beam in a periodic solenoidal focusing magnetic
field reads, in its dimensionless form, FIG. 1. Contour levels ofHy(py,rp) for oq=180° andK
=3.0.
dzrb+ s K 1 0 @ , ,
—— S)rp,— ———=0.
dsz ST T _ Pp b 1
b H—?+K2(S)§—K|nrb+§g=Ho+Hp, (2)

In Eq. (1), s=2/S=B,ct/S is the dimensionless coordinate
along the beam axisy(S) =Ty, gimensional (S€) Y2 is the nor-  ith
malized beam envelope radius, akeE 29°N,S/ eyi B2m

is the normalized perveance of the beam, wh8ris the 02 r2 1
periodicity length of the magnetic focusing field,c is the Ho= _b+ag_b_ Kinry+ =,
average axial velocity of the beamjs the speed of lighin 2 2 2r,
vacuq e is the unnormalized emittance of the bedxy, is

the number of particles per unit axial length, apdm, and S0
yo=(1—pB2) "2 are, respectively, the charge, mass, and sz_o
relativistic factor of the beam particles. The focusing field is 2
characterized by the normalized focusing strength paramet%rn d
KkA(S) = K,(s+1)=q?B2(s) S¥/4y2Bim?c?, where B,(s) is

the magnetic focusing field on the beam axis. For the sake of
simplicity, we considerx,(s) in the form Kz(s)zog[l
+6cos(2ms)], with oo=[f3k,(s)ds]*? representing the
vacuum phase advance in the smooth-beam approximation . N .
and withpOs 6<1 as the amplitude of the focupsFi)ng field Wwhere the primes d_enot(_a der|yat|ves .W'ﬂl respec to
oscillations. The results to be presented here are independent |f2 the magnetic .f'eld is uniform with=0.0 and«(s)
of the specific form ofic,(s). At this point we note thak 20~ Const, solutions are generated by the autonomous
involves the ratio between two defocusing factors: electro_one-degree-of-freedom Ham"tf)”'&"‘o which IS kn_own to
static forces due to beam density and thermal forces due l%e completely mtegrgble yielding .fegu'?‘r periodic trajecto-
beam emittance. While it becomes suggestive that electrdi®S ONly[11]. These integrable trajectories can be seen in a
static and thermal effects are, respectively, associated witlfV€! PIot 0fHo(py.rp) as in Fig. 1. In this case there is one
large and smalK’s, one purpose of the present paper is to®auilibrium radius given by the solution afgrpo—K/ryg
characterize beam dynamics in these two regimes in mord 1/rgo=0 in the form

detail.

cos 2msrZ,

dH dH

fb=(9—pb=pb' pbz—m, (3

[2K+2(K?+405)Y?22
20'0 '

4

B. Analytical results and estimates o=

Let us first make some remarks on the solutions of Eq.
(1). We start by noticing that Eq1) can be entirely derived The regular periodic trajectories oscillate between maximum
from a “time” dependent one-degree-of-freedom Hamil- and minimum values ofy,, Iy max andry min, respectively,
tonian as follows: from which one can assign a vibrational wave vector mea-
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suring the periodicity of each orhitecall that asis a space- with Ay,=207—ky ande as an yet undetermined quantity
like coordinate we shall use the appropriate “spatial” termi- measuring the rate at whidghincreases with the action. From
nology) in the formk=Kk(ry may. The equilibrium radius is Eqgs.(6) and(7) one findsHy=H(J) in the form
dynamically stable with the wave number of small linear

oscillations of wavelengthh around the equilibrium yielded Ay
by [9] HO(J)=kOJ+[sJ—In(1+sJ)]? (9)
K(r —rpo)=k :2_77 and the task now is to evaluate To do that it suffices to
b.max— 7 b0/ 0T\ compare the first order contributions of an expansion of ex-
pression(8) in terms ofJ with the corresponding expression
=[405+K?=K(4o5+K?)H212, () obtained from a perturbative calculation directly applied to

H, of Eq. (2). To expedite the argument, let us sketch what
we do here. First we write,=r,o+r and expand,, Eq.
“(2), around the equilibrium at,=r, in powers series of

up tor*:

Under the condition of a constart,= o one can also de-
termine the wave number of oscillations far away from equi
librium with 1y nax—, in the form K(ry max—)=K-
=20,. The wave number tends to this value if for oscilla-
tions with large maximal values @f, one discards the terms

1/r, and 1f3 in Eq. (1) but takes into account the effect of Ho~ p_ﬁ sz_ i+ L r3

these “centrifugal” forces atr,~0; one has essentially a o2 02 rgo ngo

harmonic well blocked at,=0 and thus the factor of 2 in

k. . Let us point out here thdt, is larger thark,. This fact, 5 K,

apparently not properly noticed earlier, has relevant conse- + ?go+ rﬁo r (10)

guences to be discussed next. To analyze beam stability in
situations wheres+0 and«(s) is not constant, we resortto  ,qitive constants discarded. Then we introduce new canoni-
nonlinear dynamics techniques. In the present section wgy coordinatesJ, §) according to

first develop an analytical approach to estimate what will be ’

seen later when we move to the appropriate numerical pro-
cedures. Let us then recall from E@Q) that r(J,0)= /k_ocose’ (11)
H=Ho+H,.
pPp(Jd,0)=—+2kyJ siné, (12

H, destroys the integrability of the full Hamiltonian whose

nonlinear integrable part isl,. Analytical calculations in put these expressions inkdy, and arrive at

Hamiltonian systems are more easily done when action-angle

variables @, 0) for the integrable component are employed. Ho~koJ+ aJ¥2sint 6+ BI2 sirg (13)
We shall study the issue now. 00 ’

1. The integrable part H ( 2 )3’2 2 K
Our integrable component has a complicated structure as “ Ko rSo " 2r§0 ’
a function ofr, and we shall work out an approximate rep-
resentation foH, in terms of the appropriate action. In our
procedure we first determine the rotational wave vek{d) B= E i n L
with which an orbit indexed by an actiahoscillates around ko\2rg, 4rg,)

the equilibriumr,y. Then we will obtainHy(J) as
The next step is to find new action-angle variables in order to

J , write Hy of Eq. (13) only in terms of the new action. We
Ho(J)= L—ok(J )dJ’. (6)  reserve the calculations for the Appendix and advance the
N final result:
Our wave vector has the known properties
Ho~kod + uJ?, (14)
kg if ry—rpo(J—0), @
k(J)— 20¢ if rp—%o(J—x), :3_’3_ 15a*

K=Tg " 3%k,

from which we can interpolate an expression of the form Now we are in a position to derive an expressiondoo do

this we expand expressid@f) up to second order terms ih
®) compare the resulting expression with Etd), and conclude
that

AKSJ

k(J)=Kko+ 11a3
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B3 ——————— 77— cated oscillator at =0. No restriction is present far>0
[ ] and the unperturbed dynamics develops at frequengy i
62/ ] a harmonic way. We collect all the information to write
6.1 _ 0
k(J) r(J,0)~AQJ) Co%‘ (J—°) (18
6.0 |- a
3 with — < #< . Note that a® evolves from— 7 to 7, the
59 [ ] argument of the cosine function varies fromr/2 to 7/2,
’ ] which represents the fact that the oscillator can be seen ap-
N R R proximately as blocked at=0. Now let us consideH,
0 20 40 60 80 100 120 whenJ andr, tend to infinity. From expression&) and(9)
J we write Ho~p&/2+ o2r3/2~20,J asr, andJ tend to,

FIG. 2. Analytically and computationally obtained periodicity and conside®=0 wherep,=0, to finally obtain

lengthk(J) versusJ for K=3.0 andoy=180°.

/8
M A=\ 5, 19

SZA—k. (15)

which is slightly different from the pure oscillator case,
Before we proceed we shall anticipate a fraction of the nuwhere A(J) would be given byy2J/20,. At this point we
merical work reserved for the next sections, and test expresshall choose which resonance is to be analyzed. Two of them
sions(8) and(9) here. In Fig. 2 we compare the periodicity are of greater relevance for our purposes since they can af-
length of various orbits as obtained directly from the enve-ect the stability characteristics and even the very existence
lope equation(1), with the corresponding result from the of the central fixed point: the resonance involving the funda-
analytical approach as represented by expreg§ipiWith e~ mental harmonic, responsible for the creation of additional
determined from Eq(15), Fig. 2 reveals excellent agreement matched solutions via tangent bifurcations, and that involv-
between numerics and estimates; the simulation results andg the second harmonic, responsible for period doublings at
the analytical curve are almost completely superposed in the=0. We shall investigate the resonance at the fundamental
figure. It also becomes clear that our wave vector curve inharmonic in this work, since, as mentioned, this resonance
creases monotonically up to saturation, which makes reasoan provide matched solutions with which one can transport
able a representation in terms of a single controlling factothe beam. Wher is small one uses expressioffsl) and
like &. Given the nice accuracy of the analytical approach wg12) in H, and collects only those harmonic terms with ar-
now move on to those cases where perturbation is actlvgumenta 27S:
with 6#0.

1 [23
2. Effect of H, Hp(J—>O)~§50'(2)rbo i cogo—2ms). (20
0

We shall now study the resonant effects produced by the
inclusion ofH, from expression(2) into the theoryH, has

_ WhenJ is large, we select the more significarttterm and
the following structure:

write
S0
__0 2 1 8J
Hp=—5"(rpo+1)* cos 2ms, (16) H (J—>00)~—500<g) co(0/2)cog 27s)
which can be simplified to 1 8J
= —5 (2—>(1+ cosh)cog 2s)
2
g,
Hp= 803l pol COS 2ms+ Torzcos 2rs 17 J
Héaé(g cog 6—27s), (21
0

if one drops the purely temporal term. It is apparent that we

need the appropriate canonical relation to express where we dropped off-resonant terms in the last step again.
=r(6,J). We do not have a formal way to write down the Now we do not know the crossover details from expression
connection so we follow the same informal way leading to(20) to Eg. (21), although the issue lacks importance here.
the expressiong), (9), and(15). If Jis small one is close to The reason is that for small the J¥? term automatically
the central fixed point and expressiofid) and(12) can be  dominates, while fod large it is theJ! term that automati-
safely used. When one considers orbits away from the centraklly prevails. In any case we use the additional canonical
point some further reasoning must be done. One first recallsansformationf—27s— 6 and H—2#wJ—h,. to write a
that if J is large the orbits are approximately those of a trun-final form
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Nes(J,0)=Hy(J)—2mJ

r 2] J
ﬂ —tf—
2 kO 20’0

where we introduce a crossover factbrmodeled by f J
=J¢/(14J%), with €=1/2 chosen this way to refine the al- 9. )_
ready nice agreement with simulations. The model focus on E
resonances of the typ®'~2s; resonances of typed’ -0.3 [
~2n7 with n integer will be analyzed numerically later. :
Matched solutions are resonances at the fundamental ha / ]
monic which manifest themselves as fixed points of the dy- o5 b
namics entailed bi,. Fixed points are defined in the form 5 0 5 10 15 20
0'=J'=0, and from Eq(22) along with the proper canoni-
cal equations this demands

75

cosd, (22

02 |

-0.4 L

05ha=0, O Le=, (23)

d .
gtzmhres(leg&)ed)zo' (24)

The functiongy.. (J) are parametrized by control factors like
K, 8, andoy and their shape depends on those factors. Take
for instance K=0.5, §=0.03, ando(=182.73%1.015 =
and drawg.. as in Fig. 3a). We see that for this particular

.0_e>...‘|....|....|

parametric choice three fixed points coexist since ghe 5 o 5 10 15
curve intersects the horizontal axis twice wigle intersects In(J)

the horizontal axis once; changing, basically shifts the

curves vertically, and so we see that fixed points of cgrye 6 0

appear or disappear in pairs via tangent bifurcations. Nex
consider a case with much smaller perveakee0.01 and a
larger 6=0.1, at 0og=191.16°=1.062 =, as pictured in
panel Fig. 8b). Here the curveg, andg_ are both mono-
tonic and a gap is formed which provides a region where no
fixed point can be found; otherwise, ag is varied, one has

at most one fixed point at a time. Figuréc8 which uses
K=3.0, 6=1.0, andoy=180°= 7, finally represents the in-
termediary situation where one has a nonmonotamic
curve along with the presence of the gap; now one has a
most the simultaneous presence of two fixed points arising
from the solutions ofj, =0. We thus see that, depending on
the parameters, three regimes may be present: honmonotc In(J)

nicity without gaps, gaps without nonmonotonicity, and non- FIG. 3. Curvesg, and g_ superimposed on corresponding
monotonicity with gaps. Nonmonotonicity, which is exclu- g, iations as discu;sed in the text. @ K=0.5, 5=0.03, and
sively associated with curvg, , can be analyzed along the 7o=182.73°: in(b) K=0.01, 5=0.1, andoy=191.16°; in(c) K
following lines. g. tends to -+ when J—0. Now per-  —30 5=1.0, ando,=180°.

veance determines the ascending aspect of the curves and

when itis largeg ., also increases at intermediary valuesiof otherwise. What is needed to see nonlinearity can be thus
under this condition, nonmonotonic features are present beransjated into the following inequalities coming from

cause one must have a minimum somewhere. On thg otthp/(;J’ with H,, defined in expressiof20), and the condi-
hand, when perveance is too small the related ascending bggn 3~ 1/s:

havior and the resulting minimum may not be present. The
transition from one regime to the other is estimated when

o simulations b
| ]

5 10 15 20

2
one realizes that in terms of order of magnitude the unper- S0l bo E _ Ay @

) : LS ) <Ae| —|=6<6.,= . (25
turbed nonlinear frequency increases significantly in that re- Vkole € Uéfbo €

gion whereJ~1/e. If at this point the perturbatives/J
term in g, is already very small, then perveance effectsWhen > 4., we expect linear behavior without any tangent
should be noticeable; perveance effects remain unnoticebifurcations, ands~ ., defines the marginal regime where
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nonlinearity, if present, should be small. In the linear case of 2.0 @ : "

Fig. 3(b), for instance, =0.1, 8,~2.2x10"3, and & . e A\A
> 6&,,, as it should be here; results based on conditk) 1.0 ‘
are also consistent in other situations. The other distinctive

effects seen in the figures are the gaps, and these get more ao.or

and more prominent ag grows. Gaps are intimately con-

nected with the orbital asymmetry aroung. If it were not -1.0
for the asymmetry resulting in expressioh8), the linear , , , .
term inJ would be absent fronh,.s and no gap would be 20 90 180 270 360 450
present—one also sees that the gap size grows linearly with O, (degrees)
5. Needless to say, the existence of gaps is of foremost im- 09976y Lo0ITSS
portance since they must be identified and avoided if one is \ V/ L000 A
interested in the search for matched stable solutions. We fi- 100 o f b
nally note that in purely monotoni@r linea) cases the gap ’ \/ 0999+
is necessarily present. ’
Our final task here is to compare the theoretical findings 10} 099
with proper simulations of the envelope equations and here 0 oydegreesy T o (degreesy

we briefly mention more of the heavier numerical work post-

poned for the next sections. To provide an initial test of our FIG. 4. Stability diagrama vs o, for K=3.0 and §=0.0
findings we launch several initial conditions g=0, inte-  (dashed ling §=2.0x10"2 (thin solid line, and 5=1.0 (thick
grate these conditions forward until their next returnptp  solid line). In (b) and(c) we expand@a) close to bifurcations.

=0, and compute the associated length inteuafrom the

integration we obtain the approximate differential frequencyargument of the cosine function is redly| is always
v=2/(2S) — 2w—which should be compared with curves bounded by+1, and no bifurcations occur in the phase
g.—and the approximate actionJ=(1/27)$p,dr,  space. On the other hand, when the perturbation is turned on
= (1/27) 2 sp2ds—which are then compared with results with 5§+ 0, various bifurcations may mark their presence on
obtained from Eq(24). We superimpose the computed re- the phase space. These bifurcations are analyzed in Fig. 4,
sults on the estimates in Fig. 3. It is then seen that our anavhere we plot the stability indexx as a function of the
lytical model explains well what is going on in these low- vacuum phase advaneg, (in degreesfor a uniform mag-
dimensional simulations. The two branches of thenetic field 5=0.0 (dashed ling a perturbative case with
simulations arise as a result of initial conditions launched to=2.0x 10" 3<1 (thin solid ling, and a nonperturbative case
the left or right hand sides of the equilibriumyf,p,=0).  with §=1.0 (thick solid line. Note that the5=0.0 curve is

We point out that, as might be expected, agreement is bettefenerally not visible because ti#e=2.0x 102 curve is es-

for small §’s. sentially on top of it for most of the values ofy; the only
regions where these two curves can be distinguished are
l1l. SIMULATIONS OF THE ENVELOPE EQUATIONS close to the bifurcations, as discussed next.

In this section, we analyze the results obtained by direct
integration of the beam envelope equatidn. Let us then
introduce the numerical tools of analysis in a more formal First of all we observe that whefi= 0 the first valley of
fashion. We shall look at the phase space and its respectitbe curvea vs oy drops to a position slightly below the
periodic orbits from the optics of Poincapéots and the cor- lower boundaryw= — 1. This is shown in detail in Fig.(#),
responding stability analysis. In the plots we record the paivhere we see that thé=1.0 matched solution clearly
(rp,pp) atinteger values of [11] and evaluate the stability crosses thex=—1 line. This means that at this point the
«a of periodic orbits which appear as fixed points of the phasenatched solution undergoes a period doubling and becomes
space, froma=cosksy,). Kiix is the wave number of small unstable, as noticed in a series of previous works in connec-
linear oscillations around the periodic trajectory, obtainedtion with the strongo,=90° instability; search for stable
with a Newton-Raphson method. For stable orbits whege  solutions traditionally does not go beyond this point. How-
is a real number|a|<1; if « crosses the upper boundary ever, if one continues to increasg, we see that the matched
a=+1 the orbit undergoes an inverse tangent bifurcatiorsolution crosses back over the= — 1 horizontal line, recov-
with a previous unstable fixed point, and if the orbit crossesering stability. The gap of instability for thé= 1.0 matched
the lower boundaryxr=—1 it undergoes a period doubling solution can be estimated from Fig(b} as Aoy~8°. Al-
bifurcation, losing stability. According to analytical estimatesthough not clear from Fig. (4), the §=2.0x 103 matched
obtained in the last section, the presence of bifurcations asolution also undergoes the same sequence of direct followed
typical nonlinear features depends on the values of the peby inverse period doublings, the difference being the size of
veanceK and of the perturbing factof. We initially address  the instability gap, which is much shorteXio;=~0.016°. In
numerically the role ofs. When 6=0.0, one can simply fact, any §#0 would induce the sequence of bifurcations,
evaluate o for the central fixed point in the formn  with smallerd’s, generating linearly shorter instability gaps.
=cosk,), Wherek, is defined in Eq.5). In this case, the The sequence is also displayed in the form of Poinpiuts

A. Period doubling: The strong oy=290° instability
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3.0 4.0 created stable and unstable matched solutions. By further
15 200 increasingo, one eventually meets the conditidry, 4,

S S =ky, where the original fixed point undergoes an inverse

0.0 20,01 . : . . .

ES S tangent bifurcation with the unstable fixed point of the reso-
-1.5 207 ¥ nance, in agreement with what was explained above. At this
39 49 point, indicated by letteb in Fig. 4(c), the original matched

0 10,20 30 "0 solution vanishes. However, one is still left with the stable

5.0

matched solution of the resonance. &g increases further

o5t ¢ the sequence is reproduced: the new stable fixed point under-
< o0l goes a direct followed by inverse period doubling bifurca-
£ tions ata= —1 [op~300° in Fig. 4a)], and an inverse tan-

gent bifurcation atx= +1 with an unstable fixed point of a
yet newer resonance which invades the phase space when the
new resonance conditioro3 =41 is met[ oo~400° in Fig.
4(a)]. One is then left with a newer stable matched solution,
now associated with thek(ry a0 =47 resonance. The
whole process repeats itself roughly every 180°iy for
increasingly larger values of the positive integeindexing
the general resonance conditib(r, ma,) =2n7. Therefore,
excluding some small unstable bands where —1, one
may always find a stable matched solution for the envelope
equation, which persists and can be used to confine intense
FIG. 5. Poincareplots of ther, vs dr,/ds phase spaceK particle beams to tighter radii even if one operates the beam
=3.0 and(@ 6=1.0, 0¢=75.4°;, (b) 6=1.0, 0,=109°; () & much beyondry=180°.
=10, 09=135°%; (d) 6=2.0x10 % 0(,=207°; and(e) 5=1.0, For largers’s, the scenario described above presents some
00=292°. changes. Ifs is large enough to create the gap mentioned
earlier, but not large enough to preclude the presence of tan-
in Figs. 5a) (before period doubling 5(b) (after period dou- gent bifurcations similarly to Fig. (8), one is left without
bling), and %c) (after inverse period doublindor the case stable matched solutions immediately after the tangency.
6=1.0. Only later, after the gap is cleared ag increases, does the
stable point of the resonance make its appearance. Within the
gap, no closed orbit remains in the phase space. In terms of

To analyze the remaining bifurcations that take place iStability diagrams, fo6=1.0 one sees from Fig(d) that the

the phase space, one can make use of the analytical estima?emnt remains absent in wide regions along thg axis

S — o — o
derived earlier in Sec. Il for guidance. As before, we focus arounde,=200" and aroundro=400°). These gaps are to
attention on resonances with the same periodicity of th

é)e avoided if the goal is beam confinement. Now, by further
driver since those can establish additional matched solution%ncreasmgao' the system indeed refrieves its closed orbits
Resonances exist where.(J)=0. If 6 is small one falls

11] and the stable fixed point appears in the phase space, as
into the generic case illustrated by FigaB Resonance ap-

in the points marked by the lettea in Fig. 4(a)—
pears in the phase space wt 180°, atJ— e, with the confinement becomes possible again then. The Poipdare
unstable fixed point a#=0 and the stable point @= . As

of Fig. 5(e) considersry=292° to show how stable typically
) . is the fixed point after its reappearance; no chaotic activity
a matter of fact, the unstable pomt.appears s!lghtly ahead Oc?an be seen in the panel. Therefore, for | one alter-
the stable due to the asymptotic separatign(J— =) . A ange
nates windows of stability inry where a stable matched
—g_(J—»)~0(8)>0. As oy grows, theg.. curves move

solution exists, and forbidden gaftee meaning of “forbid-
upward and the resonance moves toward0, and when den” taken in the context of confinementwhere the

\lfxﬁ)izztr?et(r:]:nturgftact))iﬁ l‘z)%'g:egn;errglgz\s/e?nS'Q]\Slr:revgﬂgsrgﬁatched solution either exists but is unstable, or is simply
J. In terms of staF\)biIit diagramg vs tr){e mechanism is absent. The purely monotonic case exemplified by Fig) 3
' y diag 7o, is similar to the previous one except for the fact that there is

— -3 i i
represented by thé=2.0x 10 curve of Fig. 4. In the .d'a' no tangent bifurcation. We shall not discuss this situation
gram the onset of the resonance is observed as a direct P e

gent bifurcation with the creation of two matched
solutions—one stable witlk<<1 and one unstable with
>1. The bifurcation is indicated by the lettarin Fig. 4(c)
and occurs at 2o=27 (0,=180°) as expected. A figure of merit, if one is interested in beams with the
As o keeps growing, the resonance migrates towgggd  smallest possible transverse dimensions, is the minimum

andk(ry max) approachesg. In Fig. 5d) a Poincarelot for  value attained by the matched and stable beam envelope as it
6=2.0x10"2 and 0,=207° shows the three fixed points oscillates as a function of Analysis is thus in order of the
corresponding to the original matched solution plus the jusminimum oscillatory value of ,, let us call itr} , versus the

B. Beyond period doubling

C. Obtaining tighter radii
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o, (degrees) 0 90 180 270 360 450 540
0, (degrees)
FIG. 6. The minimum oscillatory radius of stable matched so- 20.01
lutionsry as a function ofo, for K=3.0 ands=1.0. )
strength of the focusing magnetic fieteh. The analysis is 15.07
displayed in Fig. 6. We také= 1.0 and compare; of the

original fixed point with that of the stable fixed point of the K 10.0-
K(rp,max) =27 resonance. The most useful ranges in both
cases are the ones preceding the respective period doublings.
Even though stability is recovered, the fixed points become
closely surrounded by an increasing number of high-order

resonancefsuch as in Fig. &), where one sees the third and 0.0 T T !

fourth order resonancewhich may overlap leading to chaos 0 9% 1800 ((1267‘1668)360 450 540

[9]; we shall discuss the issue in more detail in the next 0lCc8

section. It is evident from Fig. 6 thaf; corresponding to FIG. 7. Parameter-space plots obtained @r 6=0.5 and(b)

K(rpmax =27 is appreciably smaller than the one corre- s=1.0. White regions correspond to parameter values for which at
sponding to the original fixed point. To perform a quantita-least one stable matched solution exists, shaded regions to the ex-
tive comparison, we take two points—one corresponding tastence of a single matched solution which is unstable due to a
the original fixed point and one to the resonance stable fixe@eriod doubling bifurcation, and black regions to the gaps where no
point—both preceding the respective period doublifsgsall ~ matched solution is found.

gaps in Fig. § and with the samer such that their stability ) ) . )
characteristics are similar. We take here the poirgs-80°  Matched solution witha|<1 exists. The shaded regions cor-
andoy=292°, both witha = — 0.56[see Fig. 48], the latter ~ "espond to the existence of a single matched solution with
corresponding to the case displayed in Figg)44(c). As @< —1, which is unstable because a period doubling bifur-
one moves from one point to the other, the magnetic fieldc@tion has taken place. The black regions correspond to the
which is proportional taro, increases 3.65 times, wheregs ~ 92Ps where no matched solution is found. It is worth saying
decreases 6.0 times, as seen in Fig).dn other words, the tha;, as will be discussed in detail in Sep. IV, the useful
decrease imy is almost twice the increase in if one uses regions for beam transport are the St"’.‘bw"te) ones pre-

the resonance stable matched solution instead of the origingleoIIngl the corresponding period doublings.

matched solution. In other words, an increase of the mag- ';"Tt dOf aIII, I Ij |_ntesrest|r|1|gfto ?ﬁ:itlhat predictions of éhe
netic field within its own order of magnitude produces amodel developed In Sec. 1 for the= 1 resonance can be

noticeable reduction in the minimum oscillatory radius Oftheextended to qualitatively understand what happens_for

stable matched solution. Presumabhf becomes even higher-order resonances. In particular, the model predicts

smaller as one further increases the magnetic field and mov<|£,[gat gorss\b,'\;?ﬁ Iirc])ﬂ)r/nzr';ﬁf dagtgldzggr?bﬁa\r::iu?g i?r?}slpesrfzbtlg
to stable fixed points of resonanckgry ma,) =2n7 with y 9ap 9

larger values of disappear. That is seen in Fig(ay for the n=2 resonance
' around o=360°. There, the gap is present for perveance

lower thanK ~ 3.3 because the inverse tangent bifurcation of
the stable matched solution of tke= 27 resonance with the

An important issue from the experimental point of view is unstable matched solution of the=47 resonance occurs
to determine in the parameter space the regions of stabilitpefore the onset of the stable matched solution of khe
and of existence of the instability gaps. Therefore in this=4 resonance; i.e., the stable matched solution of a previ-
section we construct and discuss these parameter-space plaiss resonance bifurcates and disappears béforerms of

The plots are obtained by using the Newton-Raphsortincreasing magnetic fieJdthe onset of the stable matched
method to numerically determine the curveskols a func-  solution of the next resonance. According to the model, for
tion of o for which a bifurcation withe= =1 occurs, for a  such low perveance the process is rather linear, as in the case
fixed 8. The results are shown in Fig. 7, fé=0.5 [Fig.  shown in Fig. 8b), where the depressian, is smaller than
7(a)] and 6=1.0[Fig. 7(b)]. The white regions in the figure g,(J—«)—g_(J—), leading to the gap. AK increases,
correspond to parameter values for which at least one stablenlinearity also increases and the depressiom.inalso

D. Parameter-space analysis
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increases. AboveK~3.3 the depression iy, becomes solution persists within the context of the fully self-
larger thang (J—®)—g_(J—x), as in the case of Fig. consistent simulation. Figure(l8, in its turn, shows that
3(a), the gap disappears, and three matched solutions can lenittance is not increasing, which is a fact signaling that
found. That is what happens in the parameter region limitedjood beam quality is preserved.
by the dashed line&vhich representr=+1) in Fig. 7a). In Fig. 8(c) we display the initial/final particle distribution
Another interesting feature that can be understood fronover the ,P,) cross section, and in Fig(@ we display the
the model is that the onset of the additional stable matchedhitial/final distribution over an X,Y) cross section,X
solutions, which are the bifurcations leading to the lines that=x/r, P, =rp,—x(dr/ds), Y=y/r [9]. These panels show

limit the black regions to the right, is essentially independenbgain that the beam does not undergo macroscopic Changes
of the perveanc&. These bifurcations occur when tige  along the focusing channel. The small dispersion is due to
curve shown in Fig. 3 crosses zero. Sinceis a monotoni-  discrete particle effects and it is reduced as more and more
cally increasing function o, the bifurcation always takes particles are used, but the important feature to be noticed
place atJ— o, meaning that the stable matched solution os+ere is that the bulk of the particle distribution remains con-
cillates fromr,=0 to r,—. Because in this case the par- fined within the limits (-1,+1) along all the normalized
ticles of the beam spend most of the time far away from eaclaxesX, Y, andP,, even after this long computer run.
other, space-charge effects introducedkbgire unimportant. Now consider a point right inside one of the gaps, such as
Regarding the overall beam transport stability, Fig. 7for instance, the one with the same valueskofind & as
shows that the perveance and the order of the resomanceahove, but withr,=203°, in Fig. 9; we refer the reader once
play a tricky role. In particular, the size of the instability gap more to Fig. 4. Self-consistent simulations and beam enve-
caused by the period doubling bifurcati¢shaded region  |ope simulations are in total agreement again, as indicated by
tends to increase with ianeaSiﬂ@ and/orn. On the other F|g Qa) However, this very same pane| shows that the
hand, as discussed above for the perveance, the size of thgean radius increases within a short period of time—note
gap where matched solutions are absbleck regiongtends  that this run is only up tes,,..=3. The unbounded radius
to decrease ak and/orn increases. As for the amplitude of growth is a direct result of the fact that within the gaps there
oscillations of the magnetic field, by comparing Figéa)7 s no trapping fixed point which would be able to generate
and 4b) itis clear that increasing tends to increase the size |,qeq orhits and the resulting limits on the oscillations of

of all instability gaps. or ry. The initial/final cross sections now reveal the follow-
ing: a noticeable distortion in thex(P,) space as seen in
IV. FULLY SELF-CONSISTENT SIMULATIONS Fig. 9d), which is in fact related to the, growth as shown

We perform self-consistent simulations using up No in Fig. Ab). For a short run like this the beam preserves the

=2000 macroparticles undergoing Coulomb interaction vigtircular shape of Fig. @). o

static potentials generated by the Green’s function method 1he final analysis of this section is devoted to the matched
[12]. Particles are launched according to a Kapchinskij-S0lution when it comes back from its own period doubling,
Vladimirskij (KV) distribution[1] but their finite number in  Such as, for instance, the poiap=135° of Fig. 10, again
the initial condition acts as the seed for any possible instaith K=3.0, 6=1.0, andsp,,=100. The results are quite
bility to develop. As the beam propagates along the focusin&'m'lar to the ones displayed in Fig. 8, with the noticeable

channel we compute the self-consistently obtained KV bearf*ception of Fig. 1) where it becomes clear that a steady
radius emittance growth is present, as opposed to the corresponding

Fig. 8b). There is a belief that emittance growth under such
N circumstances can be caused by the nearby presence of
= 2<r2> (Q)= i 2 Q. (26) higher-order resonances, as seen in Fig),3vhich can act
' N~V upon discrete aspects of particle distributi®@s As men-
tioned earlier, if one were working with a genuinely continu-
which is /2 times the rms radiuf9], and the(transversg ~ ous and homogeneous KV distribution, emittance would be
emittances constant since in this case the envelope equation and the
associated constant emittance become exact results.
All in all, and considering a series of similar analyses not
— 2 12\ __ "\ 2 — )
65_4‘/<§ W)=Y (=xy. 27 shown here, we can state that the matched solutions created

_ _ Cmano e . here can be used to confine beams as long as one operates
Let us takeK =3.0, 8= 1.0, ando=292" t0 investigate one before the corresponding period doubling. Afterward, the sta-
of the just found stable matched solutions as suggested

. ) . g . ility curve becomes too steep, as can be observed in Fig. 4,
the envelope simulations pictured in Fig. 4. From the ﬂgureand this allows for a close packing of higher-order reso-
the envelope simulations tells us that at this point there is Aances in general, as seen in Fig)5
stable matched solution and we want to check this informa- ’
tion against this more general self-consistent particle simula-

tion with Coulomb interaction. We first compare both radii
r, andr in their final 10 periods, in a run &, ,,= 100. This To summarize, in the present paper we extend previous

is done in Fig. 8a), which indicates that the envelope model work [10] and perform a stability analysis of periodically
is extremely accurate and that in fact the stable matchetbcused intense particle beams based on analytical estimates,

V. FINAL CONCLUSIONS
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FIG. 8. Self-consistent simulations for a matched solution With3.0, §=1.0, oy=292°, ands,,,= 100. In(a) r_andrb Versuss; in
(b) ex and e, versuss; in (¢) initial and final cross sectionsX(Y); and in(d) initial and final cross sectionsX(P,). rp(s=0)=r(s=0)
=0.1673,pp(s=0)=dr/ds(s=0)=0.
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FIG. 9. The same kind of panels as in Fig. 8, but now within a gap. Parameters and initial conditions are the sanag €23t and

Smax= 3-0 now.
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FIG. 10. The same kind of panels as in Fig. 8, but now right after an inverse period doubling. Parameters and initial conditions are the
same except that,=135° andr,(s=0)=r(s=0)=1.157 now.

on the beam envelope equation, and on fully self-consisterthe various defocusing forces on beam dynamics. Dense
simulations. An analytical model is developed in order tobeams dominated by space-charge effects exhibit nonlinear
understand the overall nonlinear dynamics of the systenfeatures, like tangent bifurcations, which are not observed in
One particular result from the model is the interplay betweerthe absence of space-charge effects, when the beam becomes
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dominated by thermal and rigid rotation effects, with thewishes to describe end effects associated with short particle
dynamics becoming linear. Gaps may be formed as we varlunches, corrections to the paraxial approximation will be
the focusing strength, within which no matched solution cameeded.

be found. This makes the issue of critical relevance if the

goal is to operate with stable periodic solutions. We show ACKNOWLEDGMENTS

that matched solutions undergo a series of direct and inverse
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that, although the original matched solution analyzed in presimulations where partially performed with the Cray Super-
vious works becomes unstable and eventually vanishes as tiiemputer of Universidade Federal do Rio Grande do Sul.
focusing field strength increases, stability is recovered for yet

Iarger fields. . APPENDIX
Then the Poincaremapping technique allied to the . o
Newton_Raphson methdid_]_] is emp|oyed to precise|y lo- Suppose one has an actlon-angle represented Hamiltonian

cate and determine the existence and stability of matcheih the form of Eq.(13):

solutions in the phase space of the beam envelope model. All

the results based on analytical calculations and approxima- Ho=KkoJ+ ad*?sin® 6+ pJ? sir’6. (A1)

tions are confirmed here. We also show how can one effec-

tively focus beams to tighter radii using the stable matchedupposel<1 and define a generating functiéif.7, 6) with

solutions found for focusing strengths greater than the previwhich to get rid of the# dependence above. Suppose also

ously established threshold. that F(7,0)=0J+F;+F,+---, F,~O(J"*2/3 Then
The results are finally validated with self-consistent simu-we write

lations. The general conclusion is that the beam model is

good enough apart from emittance growth detected only in

the full simulations. Emittance growth is small in the case of HO( I+ EYK 0) =h(). (A2)

matched solutions, but can become relatively large within the

gaps. To first order
In our investigationx,(s) is a harmonic function of the

distances, but we also found that bifurcations for other IF,

forms of k,(s) have the same qualitative behavior as long as koﬁ"' aJ¥sint9=0

the periodicity condition,(s+ 1) = «,(s) holds. In addition,

our investigation of stability zones in thévs oy parameter =h(J)

space reveals that even for much larger valuek,aduch as

K =100, these stability zones are still present. =koJ+O(T?). (A3)
What we see from the overall investigation is that the

scenario as one increases the focusing field is not the exid© second order

tence of a single threshold above which confinement is im- . 30 JF

possible, as believed so far, but the existence of regions of 2 adry i, o aal

stability interrupted by gaps where the matched solution ei- k0,9_0+ 2 907 Sin6+ B.J° sir' 0 f_o

ther becomes unstable or is completely absent.
As a very final comment we note that the approximation =h(J)

of constant longitudinal momentum is used throughout this

paper. It has been shown in general terms that the approxi- =koJ+ pJ?, (Ad)
mation is accurate in the case of paraxial beams with nonrel- .

ativistic transverse motiof9] investigated here. Further- with

more, in our specific case the additional degree of freedom 2

associated with small longitudinal corrections would have an _ 3_'3 15a (A5)

equally small effect on the very stable and robust type of R 32,
matched phase space detected here—see fggwhere one

observes enhanced stability arising from the complete abas in Eq.(14), and where the subscripdenotes the fluctua-
sence of resonant islands around the matched solution. If ort®nal part of the bracketed expression.

[1] I.M. Kapchinskij and V.V. Vladimirskij, inProceedings of the  [3] R.C. Davidson,Physics of Nonneutral PlasmagAddison-

International Conference on High Energy Accelerators Wesley, Reading, MA, 1990

(CERN, Geneva, 1959p. 274. [4] M. Reiser, Theory and Design of Charged-Particle Beams
[2] I. Hofmann, L.J. Laslett, L. Smith, and |. Haber, Part. Accel. (Wiley and Sons, New York, 1994

13, 145(1983. [5] C. Chen, R. Pakter, and R.C. Davidson, Phys. Rev. [7&t.

056503-13



R. PAKTER AND F. B. RIZZATO PHYSICAL REVIEW EG65 056503

225(1997. [10] R. Pakter and F.B. Rizzato, Phys. Rev. Le8, 044801

[6] See, e.g.Space Charge Dominated Beams and Applications of (2001.
High-Brightness Beamsdited by S.Y. Lee, AIP Conf. Proc. [11] A.J. Lichtenberg and M.A. LiebermaRegular and Stochastic

No. 377 (AIP, Woodbury, NY, 1998 Motion (Springer-Verlag, New York, 1992 R. Pakter, G.
[7] P.M. Lapostolle, IEEE Trans. Nucl. SdlS-18 1101 (1972); Corso, T.S. Caetano, D. Dillenburg, and F.B. Rizzato, Phys.
F.J. Sachereibid. NS-18 1105(1971). Plasmasd, 4099(1994); J. Guckenheimer and P. Holméépn-

[8] C.J. Struckmeier and M. Reiser, Part. Acce4, 227 (1984). linear Oscillations, Dynamical Systems, and Bifurcations of

[9] C. Chen and R.C. Davidson, Phys. Rev. Lét2,,2195(1994); Vector Fields(Springer-Verlag, New York, 1990
Phys. Rev. E49, 5679(1994). [12] R. Pakter and C. Chen, Phys. Rev6E 2789(2000.

056503-14



