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The Boltzmann equation corresponding to a general “multiterm” representation of the phase space distri-
bution functionf(r,c,t) for charged particles in a gas in an electric field was reformulated entirely in terms of
spherical tensorsf'm some time ago, and numerous applications, including extension to time varying and
crossed electric and magnetic fields, have followed. However, these applications have, by and large, been
limited to the hydrodynamic conditions that prevail in swarm experiments and the full potential of the tensor
formalism has thus never been realized. This paper resumes the discussion in the context of the more general
nonhydrodynamic situation. Geometries for which a simple Legendre polynomial expansion suffices to repre-
sentf are discussed briefly, but the emphasis is upon cylindrical geometry, where such simplification does not
arise. In particular, we consider an axisymmetric cylindrical column of weakly ionized plasma, and derive an
infinite hierarchy of integrodifferential equations for the expansion coefficients of the phase space distribution
function, valid for both electrons and ions, and for all types of binary interaction with neutral gas molecules.
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I. INTRODUCTION ments determine transport coefficients, which are unfolded
using this hydrodynamic kinetic theory formalism to yield

The Boltzmann equation corresponding to the phase spaden-molecule interaction potentials or electron-molecule im-
distribution functionf(r,c,t) of each charged particle com- pact cross sectior{$]. This procedure is generally indepen-

ponent of a weakly ionized gas can be written as dent of the type of geometry, since all space dependence is
accounted for byi(r,t), which in turn can be found by solv-
(d+c-V+a-dg.+J)f=0. (1)  ing a diffusion equation. It is at this level that geometry

appears, in the form of appropriate initial and boundary con-

Herea=qE/m is the force per unit mass acting on a particle ditions for the diffusion equation, corresponding to the ex-
of chargeq, massm due to an electric field. The operator periment at hand. Put another way, hydrodynamic kinetic
Jacts in velocity space and accounts for the rate of change @heory generallybut not alwayg7]) has nothing to do with
f due to various types of collisions between charged particlegeometry or experimental arrangemeet se
and neutral gas molecules. It is a scalar operator and it is also This contrasts with the modern day demands for a rigor-
linear, as long as the degree of ionization is sufficiently lowpus nonhydrodynamickinetic theory for low-temperature
so that collisions between charged particles are negligibleplasmas, where, although kinetic equations of the same
There have been many methods advanced for the solution @hathematicalform as in the swarm case apply for each
Eq. (1) over the years, and a review of the literature to thecharged specie@s long as the degree of ionization is not too
mid 1980s was given by Robson and N¢$§ In Ref.[1],  high, as already notedthe focus is often on the need to
Eq. (1) was reformulated in a very general way, entirely in ynderstand the behavior in the neighborhood of sources and
terms of spherical tensoff,, wherel=0,1,2,3... andm  boundaries, and otherwise on geometry in general. Large
=-—1,...,l, with attention being focused upon collisions gradients may prevail, fields may vary in space and time, and
that do not conserve particle number, and their effect upoimydrodynamic kinetic theory may consequently not be of
measured transport coefficients. Numerous applications, tmuch use. Configuration space and velocity coordinates must
both ions and electrons, including extension to crossed elebe treated on an equal footing: geometry and kinetic theory
tric and magnetic field$2], have followed, and the recent are thus intertwined, a fact that was well known to neutron
review by Whiteet al. [3] summarizes the literature to the transport theorists a long time aff§]. The extensive analysis
present time. Note that explicit expressions Jpiincluding  that has been carried out in recent times for electrons in
simplified forms corresponding to limiting cases of very light low-temperature plasmas in planar geomdi®y, using a
or very heavy charged particles, are widely known—see, fosimple Legendre polynomial representation of the distribu-
example, Refs[4,5], but are not needed for the presenttion function, does not carry over to other geometries in a
study. straightforward way. Higher order tensor spherical harmon-

The analysis presented in Rgt] had swarm experiments ics representation of the velocity distribution appears un-
[4] specifically in mind, and consequently was slanted to-avoidable, and spherical notation appears to offer advantages
wards the hydrodynamic regimewhere the macroscopic over the equivalent Cartesian representatit@—17 (see
space-time dependence ofr,c,t) is assumed to be pro- notes on tensors in the Appendli¥ortunately, most of the
jected onto a lower level through a linear functional depen-ard work has already been done in Réfl, and the present
dence upon the number densityr,t) [5]. Swarm experi- paper resumes the discussion at this point and deals in par-
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ticular with cylindrical geometry. The aim is to develop a and in any case they are well known, e.g., the approximate
general framework for solving the Boltzmann equation, validdifferential-finite difference form favored for light ions and
for both ions and electrons and all important types of binaryelectrons[4,5,9. The reduced matrix element$|- - -[/")
charged particle—neutral molecule collisions, and yieldingwere calculated in Refl] and are shown below

equations that can ultimately be solved using an appropriate

numerical technique, for example, finite differences, Galer- | RIS <|||(9[1]”|,>

kin method, etc. The emphasis in the present paper is on a ¢

derivation of the hierarchy of equations, and applications |, ; c [1+1 [1+1 10 -1

will be reported in later papers. 21+1 21+1 | 4dc c
The discussion proceeds from the general form of the

multiterm representation of the phase space distribution in | -1 CA / I </ I i+ 1+2

spherical harmonicg’! in Sec. II, and circumstances are 2l+1 2l+1{oc ¢

considered where this reduces to a simple Legendre polyno- otherwise 0 0.

mial expansion. In Sec. Ill, we specialize to cylindrical ge-

ometry, and give the hierarchy of equations corresponding tEimits for the summations are normally not shown, it being

the axially symmetric case. A further reduction of the num_implicitly understood that they run over all values of the

ber and complexity of equations in the hierarchy results . . :
when axial fiellods ar>1/d grac(jqients can be neglected. y indices for which the summand is nonzero. In E8) the

“selection rules” are thus

Il. THE BASIC FORMALISM
I"=1%1,

A. General representation of the Boltzmann equation

in the spherical harmonic basis m=m-pu, p=0, *1.

The starting point for most modern-day solutions of Bolt-
zmann’s equ_atlon is the now fz_im|_llar _decomp_osm_on of the}'he gradient tensor operat@“l) and field vectoa® com-
charged particle phase space distribution function in terms o . . A . ©

. L : ) .~ “ponents are defined in RéfL] for Cartesian coordinates and
spherical harmonics in velocity spa¢iese are defined in

; . . Iso in EqQ.(31) below for cylindrical polar coordinates.
the Appendix according to“the phase" convent_lon of Fano and We could go on to include a magnetic field as Ness has
Racah[13]), the so-called “multiterm” expansion,

done[2] by adding an appropriate term to the left-hand side
o of Eq. (3) (essentially the matrix elements of the angular
f(r,ect)y=>, > fOcr,c,t)Yll(o), (2) momentum operator of quantum mechapidsut for the
=0 m=-I present the interest is only in electric fields.
In practice both the infinite summatidg) and the hierar-
which in turn is used to decompose the Boltzmann equatioahy (3) are truncated at some finite vallyg,,, with the “two
(1). Truncation of the infinite summation &t corre-  term” approximation corresponding tg,=1. Further de-
sponds to the I+ 1-term approx'imat.ion,“ or in neutron composition of the coefficientéﬁ')(r,c,t) in speed space by
transport parlance, theP; ~approximation”[8]. After sub-  some standard methdd.g., finite difference, polynomial ex-

stitution of Eg.(2) into Eg. (1), multiplication by Y{)(c) ~ pansion, etg, and of course appropriate representation in
EYL'J(G)*, and integration over all directiorss of velocity time and spatial coordinates, is hecessary to effect a solution.

LT ; .« We emphasize that equatio®) [and the “multiterm” ex-
space, the following infinite hierarchy of coupled integrodif- . ) ! L
f:rential equations%‘or the expansior): coeffic?efﬁ& res%lts pansion(2) from which they derivgare quite independent of

. any such considerations, and can be used as the launching
Eget?eRaﬁg[nlg]]’ tﬁgz. Ejzwzéctt:g:] noor:that we araot now takinge point for any study of charged particles, be it hydrodynamic

or nonhydrodynamic, in whatever geometry desired.

[ ’ I’
af D+ > (1'm" Luim)(I|c)|I >GEL11)f§nr) B. Some quantities of physical interest
I'm’ w
The main quantities of physical interest are the number
n U el i a2 a(l)f('j):_\] £y, densityp, mean energy, mean velocity, and energy flux.
|'§M ( wltmy(Hllacne) poom (fm) If velocity space averaging is denoted by the angular brack-
3) ets(---), then in spherical tensor notation these are as fol-

lows.
Number density:

where 1=0,1,2...,0; m=—1I,...,|. Values of the

Clebsch-Gordan coefficientsl’m’ 1u|Im) are given by o

Condon and Shortlej14] and are of a particularly simple n=f f(r,c,t)dc= \/477f fgo)(r,c,t)czdc. (4)
0

form. We have assumed that the collision operalds a
linear, scalar operator in velocity space, with spherical com-
ponents], . The explicit form of the latter is not needed here, Mean energy:
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1 171 3p+1
6:<§mC2>:ﬁf Emczf(r,c,t)dc p2
of |+ APl ca,+a,| det+p S fiip
1 * 1 p=+1
=_\4 f fO(r,c,t)=mdc*dc. 5
nﬁ 0o ? (rets © ==J(f) (1=012...0), (10
Mean velocity: where the coefficients are defined by,(+)=(l+1)/(2I

+3) andA{ ) =1/(21-1).

1
) _yn(y_ = (1)
vm’=(Crn’) nf cm f(r.ct)de 2. Spherical geometry

1 [a7 (= Consider a plasma confined in a spherical container for
ﬁ\/?f fM(r,c,t)cde.
0

(6)  which any fields and gradients are directed in the radial di-
rectionr=a only. This forms an axis of rotational symmetry
and therefore similar considerations apply as in the case of
plane geometry. In particular, the distribution function can be

Mean energy flux:

1 1 represented by a Legendre polynomial expansion in terms of
'ﬁ):<§nmcchnl)> = J EmCZC%)f(F,C,t)dC f,(r,c,t) similar to Eq.(9). Upon substitution of this into the
Boltzmann equatioril) the following hierarchy results:
= \/4—7TJ fﬁj)(r,c,t)lmciadc. 7) 3p+1
3 Jo 2 [+
afi+ > AP|c| o+ 2

In the above the spherical components are defined as in Eq. vl pty 7! P

(A7) of the Appendix fom=0,% 1. The corresponding Car-

tesian components could, if desired, be found by inverting I+ 3p+1

these equations.

This concludes the general discussion. The specialization ta| detp——(—/ |fiep=—A(f)

to particular geometry now follows.
(1=0,1,2 ... ). (11
C. When can a simple Legendre polynomial expansion
be used? Note the symmetry with respect to interchange @dr on
the left-hand side in this case. A similar result was obtained
previously by Sigenegegt al. [15]. In both cases described
If there is only one preferred directioa in a physical —above, the number of equations and unknowns correspond-
system, then there is only one way in which we can form adng to truncation at =1, is Simply | -+ 1.
tensor of ranK from it, and that is through a spherical har-
monic. Thus for any arbitrary tensé) associated with such Ill. CYLINDRICAL GEOMETRY
a system, we must have

1. Plane parallel geometry

A. Axial symmetry and tensor structure

fO=F yD(a), (8) Let r=(p,¢,z) andc=(c,6.,¢.) denote cylindrical co-
ordinates in configuration space and spherical coordinates in
where F, is scalar coefficient. This is the case for planarvelocity space, respectively. To make matters as simple as
systems, for example, wheeedefines the direction of field Possible, we assume rotational symmetry about the axis of
and gradient normal to the electrodes, taken to beztlods  the cylinder, with no azimuthal field or gradients. However,
for simplicity. After substituting in Eq(2) and using the this doesnotmean that the distribution of velocities also has

addition theorem for spherical harmoni@ss), we obtain the  this property, as was already pointed out in Réfl, since

familiar Legendre polynomial expansion any radial field or gradient provides a preferred direcfdn
velocity space, in a plane perpendicular to the cylinder’s
* axis, along which charged particles flow preferentially. In
f=2> fi(z,c,t)P|(cosy), (9)  this case, the phase space distribution function must have the
1=0 form
where coy=a-c¢ and f;=[(2|+1)/4=]F,. Although we f(r,e,)=F(p,zC, 0c,0c— @:1), (12)

could generate the equations fg¢z,c,t) by substituting Eq.

(8) into the general representati@8), the usual procedure where the dependence upon ttiéerenceof the azimuthal
(and the simplest onas to substitute the expansidf) di-  angles reflects the requirement for invariance ofshapeof
rectly into the Boltzmann equatiail), and to equate coeffi- the velocity distribution with respect to rotations about the
cients of Legendre polynomials. Either way we arrive at theaxis of the cylinder. This has the immediate consequence that
familiar chain of equations, the tensor expansion coefficients must have the property
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fO=N,,F e ™, 13 187 (=
m Im™1I,m ( ) Up:ﬁ?f FlvledC. (20)
where the factor 0
;o\ 12 Axial energy flux:
Ny = (— 1)) (— 1)(mIm)2 _Am(+mp)
m (21+2)(1—|ml)! Am (= 1
-=_”J Frozmcde (21)
has been extracted merely for convenience. The distribution Jz 3Jo P2 '

function follows from Eqgs(2) and (13),
Radial energy flux:

o |

f=> > Fim(p.zct)P|M(cosf)eMee=®) (14 _ 8T,J'oo

1
=0 m=—1 =3 Flylzmc5dc. (22

0
where P|m|(cos¢9c) is an associated Legendre functi(see

Appendix, andf clearly has the functional dependence pre-To this list we add the following second rank tensor, whose

scribed by Eq.(12). When Eq.(13) is substituted into the physical meaning is the traceless part of the momentum flux:
general hierarchy3), it is found that the equations are in-

variant under the transformation— —m provided that c?
II=nm{ cc——=1).

Fl,fm:FI,m- (15 3
This very important result is simply a consequence of theTh‘? connecFion with the spherica! components of the distri-
symmetry of the distribution function in thg —c, plane in  bution function may be found using Eq@9) and (50) of
directions normal to the radial vectgy, i.e., Eq.(14) can Ref. [1.6]. The nonzero components are then expressible in
depend upon only thenagnitudeof ¢.— ¢. This, together ~CcYlindrical components as follows:
with properties of spherical harmonifsee Eq.(Al) of the

Appendix|, leads directly to Eq(15). It means thait is nec- przamfw[lezyz— F,glctdc,
essary to calculate F, (and hence $)) with only non- 0
negative values of m0,1,2 ... | in the axisymmetric case
Note that from now orF, ,, will be considered the quantities o
; : ’ : ; II,,=2am| F,,cdc
of primary importance, and the hierarchi®) will be ex- 2z o 20 '
pressed in terms of these quantities accordingly. In general,
they are functions of speed, time, radial and axial coordi- (23
nates, i.e., "
,=I,,=6am| F,;c*dc,
Fim=Fim(p.z;C30), (16) prm DR Jo i
although we shall not always make this dependence explicit. M =—T..—T
P zz pp
B. The quantities of physical interest wherea=4m/15.
1. Moments All these integral quantities are in general functions of

z, p, andt. One evaluates the integrals over speeddter

The moments of physical interest follow from Ed4)— solving the hierarchy of equations below foF,

(7), (13), and(A8).

=F ,Z;C;1).
Number density: P )
" 2. Balance equations
_ 2
”_47’J0 Foocdc. 17 Before proceeding to the hierarchy of equations for the
F| m, itis interesting to write down the balance equations for
Mean energy: the above moments. These have an existence independent of
the Boltzmann equation and are very useful in serving to
1 o 1, provide an integral consistency check for any tensor repre-
€= Aam o Foozmeidc. (18 sentation. Thus quite generally we have the following equa-
tions[17].
Mean axial velocity: (i) The equation of continuity:
147 (= 3 1
UZ:ﬁ ?fo Flyoc dc. (19) r?tn-l- ;(9P(pnvp)+c72(nvz)=—Rcon. (24)
Mean radial velocity: (i) The energy balance equation:
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1 . .
di(ne)+ ;ﬁp(Pan)'i'(gz(ng)_nqvp Ep_nqu E,

(29

€
coll -

(i) Radial momentum balance equation:

2
(ne)—nqgE,+|d, +

2 I1,
o’?t(nmvp)+§8 H +T+(3’H

- Rp,CO“ : (26)

(iv) Axial momentum balance equation:

2
d(nmu,) + = ﬁz(ns) nqE,+ a+ I1,,+d,11,,

- Rz,coII : (27

PHYSICAL REVIEW &5 056410

(i) Rate of loss of momentum:

Reon= f mcJ(f)dc= Rp,CO||i)+ Rz,colliv

where the radial and axial components are given by

8 (=
Rp,collz?fo mcng(Fl,l)dC-

A (=
Rz,collz?fo mc3J1(F1,0)dc, (30)

respectively.

C. The hierarchy of equations forF

As mentioned previously, Eq§3) apply to any geometry.
The gradient tensor and field terms can be found from Table

In these equations the terms on the right-hand side represehof Ref. [1], and for the special case of cylindrical coordi-
the rate of loss of particle number, energy, radial and axiahates p,¢,z) are

components of momentum, respectively.
p p Yy “ GELH) ai})
3. Collision loss terms 0 —1; ~'a;
We now express the right-hand side of each of the above 1 e '’ i+ Ea ) 'a_Pe—np
balance equations in terms of the spherical components of J2 p? J2
the distribution function and the corresponding spherical o .
components of the collision operator. -1 e —ig + Ea —' el (32)
: : . p ¢ ’
(i) Rate of particle loss: J2 J2
wherea,=qE,/m anda,=qE,/m denote axial and radial

Rw”:J J(f)dc=4wJOmJo(F0,&c2dc. (28)

(i) Rate of loss of energy:

. 1 =1,
C0,|=J§mc23(f)dc=4wf0 5mctg(Fodc. (29

1 NI ! !
ALt 2 1 (1 maolim) (1) aF ot
I m
m—1 _Nirmsa
<|9,~ }F,,m S s

+azZ i~

— (1 m10 ) (1 A1 YRyt

%In

(I'm+12—2/Im){1|[cH]1")

_N
\/—w Nim

E ”““u m-+ 11 Im) (a1 Yy gy = —
1’

field terms, respectively. Even though there is axial symme-
try in configuration space, it is essential to retain the azi-
muthal derivativesd, when dealing with the distribution
function, as explained in Sec. IllA. The general spherical
harmonic representation of Boltzmann’s equation is con-
verted into one appropriate for cylindrical geometry by sub-
stitution of Egs.(13) and(31) into Eq. (3):

_z N7 m-— l(l/m_lljulm)<|||0[1]|||l>

o Nim

m+1
(9 +T F|r m+1

— L m= 12 im) (VY

(1=0,12...%°; m=0,12...]).

J(Fim)

(32
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If the expansion and hierarchy are truncated at,.x,  the radial directiorp. We cannot také, ,, as simply propor-
there resultdN= 3 (I,naxt2)(Imaxt 1) equations and the same tional to a spherical harmonic with as its argument, since
number of unknowns. The above can be written in a far moreyll directions arenot equivalent with respect to rotations
concise form after substituting for the reduced matrix ele-about the radial direction. In other words, a Legendre poly-
ments and Clebsch-Gordan coefficients, nomial representation dfin velocity space does not suffice.

The only simplification we can make is through the observa-

|+ 3p+1 tion that the distribution of velocitie€l4) must be invariant
E A(PO) 2 F under a reflection through the-y plane, i.e.,f does not
atF'vm“Lp:il m | GOz 8z| dctp c I+p,m change under the transformatiof.— 7— 6, or simply
cosf.— —cosh,. The properties of the Legendre functions
[see Eq(A2) of the Appendi} then lead to the result
' 2| of 5, +q Y Fn=(— 1) F (34
p=*x1,9==*=1
or, in other words,
3p+1
2 | +m=even. (35
t+a,| detp c Fl+p,m+q:_Jl(FI,m)

If one omits thez-dependent terms in the general hierar-
chy (33), we find that the resulting chain of equations sepa-
rates into two subsystems, couplifig, for which |+ m is
even or odd, respectively. The conditigd5) tells us then
that we need only consider the former, as the latter are iden-

(1=0,1,2...,2; m=0,12...]), (33

where the coefficients are defined below:

+0) [+m+1 (-0 [—m tically zero. We have then
im0 Am o
m-+
AL (+m+2)(l+m+1) o 1 F it N c(ap+ (m+q)
2(21+3) ¢ Tim=0 2(21+3)’ p=+1lg==1 p
oo (1#D01+2) 3p2+1
o' "S53y ¢
2(2|+3) +a‘p ac+p c Fl+p,m+q
_ (—m—l)(l—m) o 1
(= +) = (=)= =—J3,(F )
Aim' 22I-1)  * Sim0T3p-1) nohm
-1 (1=0,1,2...00; m=0,1,2...; I+m=even, (36
-1
Alg" "=~ 2(21-1)° which is a hierarchy of equations for the quantities
Fo0,F11,F22,F20, ... ,from which all quantities of physi-

It is clear that field and gradient terms step thimdex by  cal interest can be found directly from Sec. IlIB. For ex-
+1. However, while the axial field and gradient leave the ample, the first two members of the hierarchy are
index unchanged, the radial field and gradient each step the
mindex by=1. Itis implicit in these equations that any term C a, 2 _
F.m for which m>1 should be set to zero, and that any 3 ;ap(pFl'l)Jr?&C(C F12) =~ Jo(Foo
coefficient withm<0 should be related to its counterpart (37)
with positivem through Eq.(15).

By multiplying the (,m)=(0,0) member of the hierarchy and
in succession by # and 4rimc® and integrating over all
speedsc, we obtain the equations of continuity and energy aF 1t l[ca Foota,d |:00]Jr 6l
balance(24) and (25), respectively. If the I;m)=(1,1) and
(1,0) members are multiplied by B3)mc and (4w/3)mc,

dFoot

9,(p*F22)

respectively, and integrated over all speedthe radial and 3

axial momentum balance equatiof26) and (27) are re- C(C Fo2) |~ Ca F2°+ C(C F20
gained. Such consistency considerations are important for

establishing the integrity of the hierarchy. =—J1(F1 9. (38

After appropriate moments of these equations are taken with
respect to speed, there follow the equations of continuity,

Suppose now there is neither axial field nor axial gradientenergy, andradia) momentum balance, as shown in Sec.
with the field and any spatial dependence being entirely inll B (axial terms vanish

D. Radial field and gradient only
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The next two members of the hierarchy, corresponding tdeen reported over the last decade, but these have mostly

=2, m=0 andl =2, m=2, are, respectively, been limited to the two-term approximation, obtained by
truncation of the hierarchy of equatiori83) taking F,
c =0 for =2 and for all correspondingn. In recent studies of
;&p(me) plasma kinetics[18] the further simplification to time-
independent states and axial uniformity has made for a sta-
tionary, one spatial dimension problem. The calculations
were carried out with a view to model the radially dependent
electron properties in the plasma column of cylindrical dc
and glow discharges. The two-term treatment was recently ex-
tended[19] to include two spatial dimensions, with axial as

cpd (F_31> well as radial space dependence, and in this way a study of

p

2
3

12
hFz ot =

c a, ,
7 ;%(F’Fs,ﬁJr g(c Fs1

Fl,l
+ Capﬁc T) :l = _‘]Z(FZ,O) (39)

15 1
(9»[':2‘2"_ 7 - ﬂ

axial relaxation processes in a dc plasma column, with radial

space-charge confinement of electrons was made possible.
Fi1 Furthermore, we note that a very recent multiterm treatment
—” using Cartesian tensors and Mathemafit2], dealing with

the special case of radial fields and gradients only, has been

=—J,(F,,). (40) developed to study the effect of increasing the order of ap-

' proximation on the electron kinetics in specific cylindrical
Lower-order equations are obviously coupled to higher equahollow cathodes. A hierarchy of Cartesian tensor equations to
tions in bothl andm indices and truncation to finite size is rank 5 was generated with the help of Mathematica, which
required to effect a solution. In thel 5.+ 1 term approxi- has been checked up to rank 3 to be fully equivalent to the

C a
Eﬁp(PSFs,a)JF C—Z(C4F3,3)

LEE!

Cpap< S| +eade

L
6

a
p
+ F&C(C4F3,1)

mation” we setF, =0, m=0,1,2 ... |, for all [>1,. truncated [,,,,=3) hierarchy (37)—(42). In contrast, the
Thus, for example, fot,,.=3, one has all the above equa- spherical tensor-based hierarchigS) and (36) are com-
tions and the final two pletely specified in a straightforward way &l orders, and

are thus in a form suitable for immediate coding for compu-

1| ¢ 5 ) Foo tational purposes.
(3"(':3’1—3 Eﬁp(p F2'2)+C apﬁc ?
1 ) Foo IV. CONCLUDING REMARKS
+ —|cd,Fogtcia,d.| — | |=—J3(F39), . . .
10|~ 20 Pre e2 3(Faa) This paper started with a very general, infinite hierarchy
41 of integrodifferential equation@), representing Boltzmann’s
(42) equation for any charged species in a weakly ionized plasma,
1 . . obtained by decomposition of the corresponding phase space
2.2 2.2) | _ distribution function in velocity directions, using spherical
+ —| cp?a,| —==| +c? —=| |=—J33(F32), , ; :
IFas 10 cp ‘9”( p? ¢ P&C( 2 H 3(Fs9 harmonics and spherical tensor notati@ti6]. As in Ref.[1]

(42)  the goal has been to lay the foundations for future numerical
calculations, by deriving the simplest possible set of equa-
making a total of six equations in six unknowns. In generaltions, involving the maximum number of independent vari-
for truncation atl =| ., there are eitheN=2(l .+ 1) (mnax ables consistent with the geometry at hand, and to do this in
+3) or N=3(lnaxt2)? such gquantities and equations, de- the most transparent and general way possible. Unlike analy-
pending upon whethdy,,, is odd or even, respectively. sis of the hydrodynamic regime, where spatial and temporal
In this scheme, the values of are automatically limited dependence is projected onto a different leuasing, for
once an upper bound is placed upomand there is no need example, a density gradient expansjém, the present paper
for any further truncation condition. However, for practical treats configuration and velocity space on an equal footing,
purposes, and based upon the experience for electrons and is therefore suitable faronhydrodynamisituations.
crossed electric and magnetic fie[@s3], separate truncation First of all we briefly considered two relatively simple
in m may prove to be worthwhile. This would reduce the cases, corresponding to plane parallel and spherical geom-
number of equations and the corresponding time required tetry, respectively, where a Legendre polynomial expansion
effect a numerical solution. However, we have reached thsuffices to represent the distribution function, with a corre-
end of what can be done analytically, and there are no morsponding simplified hierarchy of equations for the expansion
symmetries to be exploited. That is, no further reduction iscoefficients. Then we moved on to the more interesting case
possible, and nothing further can be said without specificaef an axisymmetric, cylindrical column of plasma, and de-
tion of the plasma configuration, including initial and bound-rived the corresponding hierarchy of equatid88) for the
ary conditions, and an appropriate method of numerical sceomponents of the distribution function, from which all
lution of the equations. quantities of physical interest may be derived. When there is
Special cases of both hierarchy equation syst@@fisand  neither axial field nor axial gradient a significantly simplified
(36) related to the cylindrical plasma geometry have alreadyhierarchy(36) results.
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These spherical tensor-based equations are very general, In summary, this paper both complements and generalizes
and can be solved with standard forms of the collision opthe multiterm, hydrodynamic formulation for swarms given
erators J;, incorporating all types of binary charged in Ref.[1]. Just as the latter work laid the foundation for
particle—gas molecule interactiof$—6], once further repre- many subsequent numerical calculations of transport coeffi-
sentations in Configuration and Spe@]j energy space are cients for both ions and electron swarl(mee the review by
made, and the temporal dependence dealt with accordinglyVhite et al. [3]), it is hoped that the present paper will be
Any desired numerical technique can be used in this respe elpful for future applications to low-temperature plasmas.
For example, for electrons, for which tlde can be consid-
erably simplified[4,5,9], a finite difference representation in ACKNOWLEDGMENTS

speed space, similar to the one that has met with great suc- .
: The support of the Alexander von Humboldt Foundation
ess for plan eometf®,20], could be employed. Sonine . ) . : .
cess for panar g 9,20}, cou ploy n is gratefully acknowledged, as is helpful discussion with Pro-

polynomial decomposition in speed spa@eading to an .
overall representation in terms of Burnett functions in veloc-fessor K. Suchy, Dr. K. Kumar, and Dr. R. D. White.

ity space is another option for both electrons and id24].

Quantities of physical interest can then be obtained as inte- APPENDIX
?{%i(gg)the solutions of these equations according to Egs. 1. Notes on the use of irreducible spherical tensors

We have highlighted the practical advantages that these It is generally accepted that the equations of physics take
spherical tensor-based equations offer over existing Cartéheir simplest form when expressed as relations between ir-
sian counterparts, which have so far only been generated fégducible tensorial sets, and that such representation is very
relatively low orders with the aid of Mathematica and for the useful for exploitation of any symmetries that might prevail.
specific case of axial homogeneity. In contrast, the hierarlf one follows this prescription, one expects to obtain equa-
chies(33) and (36) are ready for immediate coding to any tions that involve the minimum possible number of indepen-
desired order in numerical applications. A reformulation indent quantities required to describe the system, thus enhanc-
terms of Cartesian tensors with only two indid@®] could  ing both the transparency of the theory for purposes of
also be an interesting alternative. physical insight, and the economy of subsequent computa-

Looking to the future, one sees the need for a multiterntional effort. The standard reference on the subject is the
representation of theonlinear Boltzmann equation, which treatise by Fano and Racgtg]. While Cartesian irreducible
arises in cases where the degree of ionization is such th&gnsors are still sometimes used in kinetic thefit¢,12,
Coulomb collisions between charged particles can no longethey appear unwieldy when dealing with quantities of even
be neglected. There are two important general consideratiorgoderately high rank, and spherical tensidfsseem to offer
here. greater advantages. This is because there are only two indi-

(i) First, from the point of view of the mathematical re- cesl=0,1,2,3... andm=—1, ... | to contend with, what-
formulation, we emphasize that since the symmetries in veever the ranlt, whereas with Cartesian tensors the number of
locity and configuration space are unaltered, the completadices usually increases with the rank. In addition, transfor-
left-hand side of the kinetic equation, plus the linear chargemations under rotations of the coordinate frame are most
particle—neutral collision term on the right-hand side, asconcisely expressed in the spherical format. Note, however,
shown in the present paper, remain intact—it is the sphericahat it is also possible to formulate Cartesian tensors in such
harmonic representation of the new nonlinear collision terms way that only two indices appe2], and a representation
on the right-hand side that requires attention. In performingf the Boltzmann’s equation in this basis may also be pos-
the corresponding tensor analysis we might expect to agaisible. It is to be emphasized that the difference between the
usefully draw on the results of Kumpt6], who has given an two types of tensorial formulations is one of practicality and
exact representation of the nonlinear Boltzmann elastic coleconomy, rather than of principle.
lision operator in the Burnett function basis, using the Talmi  Spherical tensors were originally a product of atomic and
transformation. An alternative approach, without the Talminuclear physics, and found their way into the kinetic theory
transformation, and using a representation of the velocityf gases in the mid 1960s, in a series of papers by Kumar
distribution function in terms of generalized tensor Hermite[16,27], who discussed the connection between spherical and
polynomials, has been given by Suda]. Cartesian tensors. However, he confined the applications to

(i) Second, a note of warning must be given when itnear equilibrium situations and to the Chapman-Enskog
comes to approximating the charge-charge Boltzmann collimethod of solution of the Boltzmann equation in particular.
sion operator by a Fokker-Planck operator. If the velocitySince that time irreducible spherical tensors have become an
distribution is nearly isotropic, making the two-term approxi- integral part of the kinetic theory of charged particles in gas-
mation reasonable, use of the Fokker-Planck operator seenepus media far from equilibrium. The theory of electron
perfectly in order. Such cases have been treated recenttyansport in the hydrodynamic regime, for so long confined
[24,25. However, when the distribution function is aniso- by the limitations of representation of the velocity distribu-
tropic, necessitating the use of multiterm analysis, there is &#on function by only the first two terms of a spherical har-
question mark over the accuracy of the Fokker-Planck operamonic expansiorf4], has in particular blossomed with the
tor, as it neglects contributions from higHeterms[26]. Dis-  aid of irreducible tensorial set theory, to the point where
cussion of both these points is left to a future paper. nowadays the coupling and recoupling of fields and gradients
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in multiterm analysis of the Boltzmann equation is carried (AENANG (4[]
out as a matter of course in computation of hydrodynamic (o +Omy I =m2m (Ilm1I2m2|Im)fmi O, » (A3)
transport coefficientgl—3]. 12
where the sum is over all allowed values of théndices and
2. Tensor notation and identities (Iymyl,m,|Im) is a Clebsch-Gordan or Wigner coefficient,

The tensor formalism and convention followed here is sef¥hich vanishes unlessi=m; +m, andl+1,=1=[1,~1|.
out in detail by Fano and Rac@h3], in the papers by Kumar These coefficients have orthogonality properties that are out-
[16,17), and in the key referendd], and only essential defi- lined in many textbooks on angular momentum theory as

nitions will be given here. A contrastandard tengf} of ~ Well as in Refs[1] and[16], and are tabulated for lower
orders by Condon and Shortl¢¥4].

rankl is a set of 2+ 1 objects (n=—1, ... ), which trans- Wh herical h g £ th
form under rotations of the coordinate frame like a spherical en two spherical harmonics of the same argument are
harmonic coupled, the result is another spherical harmonic,
—Im\ v YUI(n), YU ()i = or(14,1,, DY), A4
YU(9,¢)=i(— 1)m+impz 2L |m|>-) [YEIO, VI = ol DYm (D), (A4
47(1+|m))! where
[ml '
X P™(cosg)e'™, [ 21+ 1)(21,+ 1)) 2
- , , o(lg,lp,)=il1"l2" (1,01,0|10).
where the associated Legendre functions are defined by 4m(21+1)
(—1) g+ Iml In deriving Eq.(9) we used the addition theorem for spheri-
P|™(cos) = ——(sin o) ——(1-cog0). cal harmonics,
d cosg' *Iml
|
I 4 - -
It can be seen from these definitions that Pi(ryr2)=5; erl > YO YW,  (A5)
m=—I
YU (0,0=(-1)"](6,0 (A1) . .
The standard spherical components of an arbitrary vextor
and are represented by
P|M(~cosh)=(—1)"""P|"(cosh A2 4 .
( )=(=1) i ) (A2) a%): ?aYH](a), m=0,+1 (AB)

are identities that have been used in obtaining Et®. and
(25), respectively. Normally we abbreviate the angular de-and are related to Cartesian components by
pendence by writing = (6, ¢) and denote the spherical har-

A L— _;
monic accordingly byYL'ﬂ(r). The corresponding standard as 18z,
tensor is simply the complex conjugate, and is denoted by 1
(1) — — =+
ay|= *iayta,), A7
fE’rll):fL!]]* +1 \/E( X y) ( )

We can have tensaperators for example, the gradient op- hjle for cylindrical coordinates
eratorGEf') defined by equatio31) and Table | of Ref[1].
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