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Classical description of electron structure near a positive ion
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A single positive ion is imbedded in an electron gas with overall charge neutrality. A classical statistical
mechanics is considered using an electron-ion Coulomb potential regularized at distances within the de Broglie
length. The electron charge density and electric field distribution at the ion are studied as a function of
ion-electron coupling using molecular dynamics simulation and theoretical models. Agreement between theory
and simulation is quite good in general, although differences are observed for very strong ion-electron coupling
due to the enhanced importance of close electron-ion configurations.
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I. INTRODUCTION

Systems comprised of charged particles are of fundam
tal interest for many fields of physics and chemistry. F
fully ionized systems the dominant effects of electrons of
can be captured through their screening of the ion-ion in
action potential. This is essentially a Born-Oppenheimer
proximation that is at the core of many approaches in sta
tical mechanics and condensed matter. Typically the mo
of ions is semiclassical due to their mass and many tool
classical statistical mechanics are available to study t
structure and dynamics. For example, a hydrogen plasm
modeled in this way by a classical one-component plasm
ions ~OCP! interacting via an electron screened ion-ion p
tential. During the past 30 years significant progress has b
made in the field of classical plasma physics to underst
the properties of such ionic plasmas@1#. An important role in
these studies has been played by molecular dynamics~MD!
simulation, both to provide benchmarks for approximate t
oretical methods and to explore the parameter space be
available theories. More recently, attention has focused
improved descriptions of electron-ion plasmas by includ
the structure and dynamics for the electrons as well as
ions. A number of methods are available to describe
structural features of electrons, such as density functio
quantum Monte Carlo, and Car-Parrinello simulations. Ty
cally, these have been developed for low temperatures
treat well the quantum effects that dominate below the e
tron Fermi temperature. Their application at higher tempe
tures and extensions to time dependent properties are s
what more phenomenological. At higher temperatures, i
tempting to apply semiclassical methods for both the e
trons and ions. This is sensible for systems that have a c
sical limit ~e.g., jellium, the quantum OCP for electrons!.
However, the electron-ion plasma does not have a sim
classical limit at the microscopic level due to the unbound
attractive electron-ion Coulomb interaction. The thermod
namic stability of the system requires some quantum feat
for the short distance interaction of opposite sign charg
For this and other reasons described below, the approa
used for classical plasmas do not extend in a straightforw
1063-651X/2002/65~5!/056406~11!/$20.00 65 0564
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way to systems of electrons and positive ions~e.g., hydro-
gen!. In particular the most powerful approach, MD,
strictly an implementation of classical mechanics and its u
ity for electron-ion systems is limited in principle.

Nevertheless, it is known that some properties of inh
ently quantum systems have classical or near classical li
for appropriate state conditions. For example, the equatio
state of a classical hydrogen plasma approaches that o
Debye-Hückel theory, independent of Planck’s constant,
sufficiently low density and high temperature@2#. This sug-
gests that semiclassical methods may be appropriate to
plore electron structure and dynamics in some limited
main of state conditions. One approach is to postulat
classical mechanics with the most important quantum effe
represented through modifications of the interparticle pot
tials. These effects can be discovered by calculation of
two particle Slater sums, which become Boltzmann factor
terms of the classical pair potential whenever a classical li
exists, but otherwise they define modifications of the p
potential due to indelible quantum effects@3–5#. Typically,
the classical Coulomb potential is modified in this way
distances shorter than the de Broglie wavelength to rem
the singularity. Other methods not tied to the equilibriu
state are available to define regularized potentials~e.g., wave
packet MD @6#!, but qualitatively all are similar. The basi
assumption is that a many-body Hamiltonian construc
with these potentials defines a classical system of elect
and ions whose properties ‘‘resemble’’ the underlying qua
tum system in some portions of phase space. Alternativel
can be viewed as a model classical system of particles w
both attractive and repulsive interactions whose proper
are of interest to discover for purely academic reasons.

In this context, most interest to date has focused on M
simulation of a classical representation of dense hydro
@7–9#, or related equal mass ‘‘electron-positron’’ mode
@10#. The objective here is somewhat different. A much si
pler system consisting of a single positive ion embedded
fluid of electrons~jellium! with overall charge neutrality is
considered. This is a well-studied model for the case o
proton in jellium for conditions of strong electron dege
eracy. The work here focuses on nondegenerate electrons
©2002 The American Physical Society06-1
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impurities of higher charge numberZ to force strong
electron-ion coupling. The applicability of MD and certa
standard theoretical methods of classical plasma physic
explored for calculating the electron charge distribution n
the ion and the distribution of electric fields at the ion.
discussion of related dynamical properties~e.g., field auto-
correlation function, stopping power, diffusion! will be pre-
sented elsewhere. Partial results of this study have bee
ported in Refs.@11–13#. For this simple impurity system
there are only three dimensionless parameters: the ch
number of the ionZ, the electron-electron coupling consta
G, and the de Broglie wavelength relative to the interelect
distanced ~defined more precisely in the following section!.
The electron-ion coupling is measured by the value of
regularized ion-electron potential at the origin,s5ZG/d. In
the following section it is shown that the application of sem
classical methods requiress.1 and d,1. Molecular dy-
namics results are reported here for two density tempera
conditions, n52.531022 cm23, T57.93105 K and n
53.231018 cm23, T57.93103 K. In both cases the
electron-electron coupling is weak,G50.1 and 0.5, respec
tively. However, the electron-ion coupling can be stron
with s50.25Z and s52.5Z, respectively. Specifically the
valuess52, 5, 7.5, and 10 are studied using charge numb
in the rangeZ<40. The weak electron coupling was chos
to minimize any complications regarding the many-bo
physics for the electrons, which comprise a classical sys
in the absence of the impurity ion for these conditions. Th
the classical methods are being tested solely with respe
their ability to describe the electron-ion interaction.

There are two distinct issues in the application of class
methods to electron-ion systems. First is the accuracy of
model classical system in representing the actual quan
system of interest. Second is the accuracy of existing cla
cal methods to describe the model classical system. The
issue is considered here only qualitatively in the followi
section in discussing the parameter space considered
stead, attention is focused on the second issue regardin
statistical mechanics of the model classical system. A di
translation of standard methods to this system is subjec
question because the dominant configurations now incl
short distances, which are irrelevant for the more usual
pulsive interactions at short range. The closest analog
system of charged hard spheres with both positive and n
tive charges representing electrolytes@5#. The short range
attraction necessitates changes in implementation of the
simulations and limitations on the range of validity for ce
tain theoretical approximations. The theoretical models c
sidered here are based on the hypernetted chain approx
tion ~HNC! integral equation for the electron-electron a
electron-ion charge densities. Properties of the electron e
tric field at the ion~covariance and microfield distribution!
are obtained from approximations that are determined fr
these charge densities. The microfield distribution and
nearest neighbor approximation are calculated from MD,
Baranger-Moser~BM! approximation@14#, and its extension
to strong coupling APEX@15#.

The context of the calculations presented here is discu
in the following section to clarify the relevance for real sy
05640
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tems and to distinguish the components that are less prac
explorations of extreme conditions for the classical mod
Also in this section the MD simulation method and theor
ical models are discussed briefly, emphasizing any point
concern associated with the attractive potential. In Sec.
the electron charge density results are presented and
cussed. The electric field covariance and electron microfi
are considered in Sec. IV. Finally, a number of conclusio
are drawn in the last section.

II. THEORY AND SIMULATION

The system considered in this paper consists ofNe elec-
trons with charge2e, an infinitely massive positive ion with
chargeZe placed at the origin, and a rigid uniform positiv
background for overall charge neutrality. The uniform de
sity of the background is therefore related to the elect
densityne5Ne /V by

n5ne2
Z

V
5neS 12

Z

Ne
D , ~1!

whereV is the volume. The electron-electron and electro
background interactions are taken to be Coulomb while
electron-ion interactions occur via a regularized Coulo
potentialV(r ). The Hamiltonian is

H5(
i 51

Ne pi
2

2me
1(

iÞ j

Ne e2

ur i2r j u
1(

i

Ne

Ze2V~r i !

2(
i

Ne E
V

dr
1

ur i2r u
ne21U0 . ~2!

Here pi is the momentum of thei th electron andme is the
electron mass. Also,U0 is independent of the electron coo
dinates and represents the background self-energy cont
tions. This can be set equal to zero without loss of genera
The regularized electron-ion potential is chosen to be

V~r !52
Ze2

r
~12e2r /d!, ~3!

whered5(2p\2/mekBT)1/2 is the electron thermal de Bro
glie wavelength. For values ofr @d the potential becomes
Coulomb, while for r !d the Coulomb singularity is re-
moved andV(r )→2Ze2/d1(Ze2/2d2)r . This is the sim-
plest phenomenological form representing the short ra
effects of the uncertainty principle@16,17#.

It is useful at this point to introduce dimensionless qua
tities. The length scale is chosen to be the average elect
electron distancer 0, defined in terms of the electron densi
ne by 4pner 0

3/351. The dimensionless electron-electron a
ion-electron potentials become

Vee* ~r * !5bVee~r !5
G

r *
,

6-2
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CLASSICAL DESCRIPTION OF ELECTRON STRUCTURE . . . PHYSICAL REVIEW E 65 056406
V* ~r * !5bV~r !52
ZG

r *
~12e2r* /d* !, ~4!

where r * 5r /r 0 , d* 5d/r 0, and G5bVee(r 0) is the usual
electron coupling constant. In all of the following it is un
derstood that dimensionless variables are used and the a
isk will be deleted for simplicity of notation.

The above describes the classical system to be stud
Since the electron-ion potential is bounded from below
supports a stable equilibrium state whose properties hav
intrinsic interest of their own. As discussed in the Introdu
tion, the motivation for this system is an attempt to capt
the most relevant features of an analogous quantum sys
Accordingly, the regularization of the Coulomb potential
associated with the fact that an electron of thermal velo
cannot be localized at the ion in a volume smaller than'd3

due to the uncertainty principle@16,17#. More sophisticated
forms obtained systemmatically from the two particle Sla
sum are available@3–5#, but the forms are qualitatively th
same and the detailed differences are not important for
purposes here. To enforce this correlation with the quan
system further, it is useful to consider temperature and d
sity conditions, for which classical trajectories might provi
an approximate representation of the quantum dynam
This cannot be made precise since there is no formal lim
which a classical Hamiltonian can be obtained from
quantum Hamiltonian due to the electron-ion interactio
Nevertheless, several qualitative limits can be identifi
First, the localization of the electrons, characterized by th
thermal de Broglie wavelength should be small compared
the average electron separation, i.e.,d,1. Furthermore,
most trajectories for the electron-ion interaction should oc
for electron-ion distances that are large compared to the
Broglie wavelength. This can be quantified by requiring th
the apse for 90° scattering should be larger than the de
glie wavelength. The former is known as the Landau len
and its size relative to the de Broglie wavelength iss
5ZG/d. This is also the maximum value of the electron-i
interaction in the reduced units assumed above,

uV~0!u5
ZG

d
5s. ~5!

The classical conditions.1 has two interesting and perhap
counterintuitive consequences. First, it implies that
strong electron-ion coupling is ‘‘more classical.’’ Also, sinc
the Landau length is inversely proportional to the tempe
ture, and the thermal de Broglie wavelength is inversely p
portional to the square root of the temperature,s.1 occurs
at lower temperatures. Together withd this also implies
lower densities. Figure 1 shows the density tempera
plane illustrating two points withs52.5Z and 0.25Z. Figure
1 also provides a schematic of the current domains of exp
mental studies, mainly spectroscopic.

The existence of finite populations for ions of givenZ
depends on the temperature and density. If the ion is o
partially ionized, the bound electrons should be treated qu
tum mechanically for an effective charge distribution at ve
05640
ter-

d.
it
an
-
e
m.

y

r

e
m
n-

s.
n
e
.
.
ir
to

r
de
t
o-
h

e

-
-

re

ri-

ly
n-

short distances, while the residual electrons interact with
resulting reduced nuclear charge via the regularized pote
~3!. For large net ionic charge, higher temperatures a
higher densities are required. At fixedd,1, Fig. 1 shows
this implies more weakly coupled electrons~e.g., n51025,
T54.63107 corresponds tod50.4 andG51.431022). The
reason for the lower temperatures and densities selecte
the initial studies here is that MD simulation is more efficie
at higherG. The price for this is that states supported by t
classical model for largerZ values no longer have real quan
tum counterparts~equilibrium populations! at the lowest
temperatures considered. Thus, the strongest coupling c
studied below are purely an exploration of the statistical m
chanics for the classical model system under extreme co
tions. Then,T,Z domain for physical relevance depends
the experiment and in some cases is larger than that d
mined from average equilibrium ionization values~e.g.,
spectroscopic studies of trace populations and nonequ
rium states in stopping power experiments!. The study here
essentially defines the limits on the parameter space for
plication of classical statistical mechanics for the attract
potential in Eq.~3!. Application of these methods to highZ
radiators under realistic inertial confinement fusion con
tions will be given elsewhere.

A. MD simulation

A primary motivation for associating the classical Ham
tonian ~2! with the underlying quantum system is to allo
application of molecular dynamics simulation. In principl
MD accounts for all correlations and many-body effects
both static and dynamic properties of classical systems. G
erally, it has been exceptionally useful for providing th
benchmarks for testing theoretical methods. Primary c
straints and limitations follow from the finite system siz
~particle number!, which is determined in part by the forc
range, and the time interval required for accurate statist
However, new difficulties are encountered for the attract
ion-electron force considered here whenuF(0)u5s/2d be-
comes large. Then electron trapping by the ion in metasta

FIG. 1. Temperature-density plane showing state conditi
studied here~solid circles!. Also shown in gray scale is the labora
tory plasma spectroscopy domain.
6-3
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BERNARD TALIN, ANNETTE CALISTI, AND JAMES DUFTY PHYSICAL REVIEW E65 056406
states with large lifetimes can occur, requiring very lo
simulation times to obtain good statistics for properties, s
as electric fields. To allow the most efficient MD simulation
periodic boundary conditions are used and the potentia
screened at distances of the order of the system size.
screening is always much larger than the correlation len
so the results are essentially the same as would be obta
with an Ewald sum to correct for small finite system size.
many respects MD numerical simulation can be regarde
an experiment. Similar features such as noise, dependenc
apparatus performances, etc., common for experiments m
be taken into account for MD as well. In principle, MD re
sults always can be improved, but there are practical lim
tions. Simulation results can be taken as reliable data
vided a careful protocol has been followed. As alrea
mentioned, standard MD techniques have been used h
but for unusual conditions. In addition to their own mutu
interaction, the electrons are submitted to a finite spheric
symmetric attractive force due to an ion of variable char
Thus, equations of motions for particles are solved in a fix
nonuniform external field that tends to concentrate the e
trons about the ion. Several points have to be controlled c
fully. First, the accretion of the electrons around the ion h
to be compensated by a large number of particles in
simulation volume in order to minimize the depletion th
might result at large distances, particularly in the case
largeZ. Second, the size of the simulation volume has to
large enough to ensure that the numerical model is a rele
representation for the long range Coulomb potential, and
minimize interaction with other ions duplicated through t
periodic boundary conditions. Third, equilibrium conditio
have to be reached in the presence of the attractive ce
force. These equilibrium conditions are fulfilled provided
careful setup for the particles in the simulation volume
carried out before sampling the system. Practically, tim
representing several crossing times of an average elec
over the simulation volume are considered. During this tim
fluctuations in the total energy of the system must be ne
gible. Limitations related to strong electron-ion attraction a
imposed for this protocol. For small de Broglie waveleng
an electron with a low kinetic energy can stay trapped in
attractive central potential for times comparable to the sim
lation time. Such events are interpreted as a failure of
simulation model, and do not occur for the results repor
below. Nevertheless, the charge density structure near
ion, represented by the density correlation function at sm
r , shows generally a noticeable noise representative o
more difficult sampling in this domain. Finally, it should b
mentioned that when compared to an OCP simulation car
out for N particles, the present simulations of the cha
structure around an impurity require a factor ofN times
longer to reach an equivalent level of statistical sampling

B. Theory

The structural properties of interest are the elect
charge distribution and electron electric fields~forces! at the
ion. For the theoretical predictions, approximations known
be successful for same sign charges are tested for thei
05640
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plicability to an attractive potential. There is noa priori as-
surance that this is the case, since the physical states sam
are quite different. For repulsive potentials close configu
tions are suppressed, while here they become strongly
hanced. As will be seen below, even the mathematical pr
erties of some models are changed dramatically by
difference. The approximations considered are such that
properties can be calculated once the ion-electron
electron-electron equilibrium pair distribution function
gie(r ) andgee(r ) are known. These are determined from t
HNC @18#, specialized to this case of a single ion in th
electron gas. In this casegee(r )[11hee(r ) is the same as
that for a classical jellium and is determined from t
coupled pair of HNC equations~recall that dimensionless
units are used!

hee~r !5cee~r !1
3

4pE dr 8cee~ ur2r 8u!hee~r 8!, ~6!

11hee~r !5exp@2Vee~r !1hee~r !2cee~r !#. ~7!

The first of these is the Ornstein-Zernicke equation defin
the direct correlation functioncee(r ), while the second equa
tion defines the HNC approximation. The ion-electron dis
bution gie(r )[11hie(r ) is determined from a similar pai
of equations

hie~r !5cie~r !1
3

4pE dr 8cee~ ur2r 8u!hie~r 8!, ~8!

11hie~r !5exp@2V~r !1hie~r !2cie~r !#. ~9!

These results can be obtained from the HNC equations f
binary mixture in the limit of low concentration for one o
the species. The pair of Eqs.~6! and~7! are autonomous and
can be solved for bothgee(r ) and cee(r ). With the latter
known, Eqs.~8! and~9! can be solved forgie(r ). A new code
has been written to solve these equations following the g
eral scheme of Rogers@5#, and tested for the jellium withou
the impurity ion and with a negative ion~repulsive interac-
tion! over a wide range of values forG including very strong
coupling. In contrast, the parameter space for solutions
Eqs. ~8! and ~9! with the positive ion considered here
restricted to approximatelys<7.5. Beyond this value un
physical solutions are obtained, but it is not clear if this is
limitation of the HNC approximation or its numerical imple
mentation here.

A related useful property for analysis is the probabil
density for the position of the electron nearest the ion~near-
est neighbor distribution!. This is calculated from the prob
ability to find an electron at positionr , times the probability
to find none of the other particles any closer

gnn~r !5gie~r !F12
3

4pNe
E

0

r

dr8gie~r 8!GNe21

→gie~r !expF2
3

4pE0

r

dr8gie~r 8!G . ~10!
6-4
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This is not an exact result, since the probabilities for ea
electron are treated as independent. For the attractive po
tial considered here, the electron density at such short
tances is strongly enhanced and additional correlations m
be expected to be required for this distribution.

The electron electric field at the ion, due to all electro
is obtained from the total regularized potential~8!

E52“0V~$r i0%!5(
i 51

N

e~r i0!, ~11!

wherer i05r i2r0 is the position of thei th electron relative
to the ion, and

V~$r i0%!5(
i 51

N

V~r i0!, e~r i0!5
r̂ i0

r i0
2 F12S 11

r i0

d De2r i0 /dG .
~12!

The potential energy in the classical Gibbs ensemble is
lated to this potential bybU($r i0%)5ZGV($r i0%). This al-
lows the~dimensionless! covariance of the electric field to b
written in the form

C* 5
r 0

4

e2
^E•E&52

1

ZG
^“0•E&

5
3

4pZGE drgie~r !“•e~r !. ~13!

Thus, the field covariance is completely determined from
electron charge density. A closely related quantity is the r
mean square electron-ion force.

The probability density for electric field magnitudes~mi-
crofield distribution! is defined by

P~e!54pe2^d~e2E!&5
e2

2p2E dle2 i l•e^e2 i l•E&

[
e2

2p2E dle2 i l•eeG(l). ~14!

The second equality defines the generating functionG(l). In
general, it is not fully determined from the charge dens
gie(r ). Instead, it has a formal representation as a serie
correlations among the electrons and ion of all orders@19#

G~l!5 (
l 51

N E dr1•••dr l gl ~r1•••r l !f~l,r1!•••f~l,r1!

~15!

f„l,r )5ei l•e(r )21. ~16!

Here,gl (r1•••r l ) is a cluster function representing the co
relations amongl electrons and the ion. In particula
g1(r1)53gie(r )/4p. At weak electron coupling it is ex
pected that the series can be truncated atl 51, leading to the
Baranger-Moser~BM! approximation@14#
05640
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P~e!5
e2

2p2E dle2 i l•eexpS 3

4pE drgie~r !f~l,r ! D .

~17!

Consequently, in this approximation the microfield distrib
tion is determined from the electron charge density alone
is easily verified that the covariance of the microfield dist
bution calculated from the BM approximation differs fro
the exact result~13!

CBM5
3

4pE drgie~r !e~r !•e~r !. ~18!

To account for multielectron correlations it is necessary
include higher order terms in the series of Eq.~15!. An im-
provement on the BM microfield distribution is given by th
APEX approximation@15#. This approximation can be ob
tained by defining a functionf* (l,r ) in terms of a ‘‘renor-
malized field’’ e* (r ) @20#

f* ~l,r !5ei l•e* (r )21. ~19!

It is straightforward to expressf(l,r ) in terms off* (l,r )
and the ratio of field magnitudesR(r )5e(r )/e* (r ),

11f5~11f* !R. ~20!

Substitution off as a function off* into the series~15!
gives an equivalent series rearranged as a functional po
series inf* . Truncation of this series atl 51 gives

GAPEX5
3

4pE drgie~r !R~r !f* ~l,r !. ~21!

The microfield distribution in this approximation is known a
APEX and, like the Baranger-Moser approximation is spe
fied entirely in terms of the electron charge density. The c
responding covariance is

CAPEX5
3

4pE drgie~r !e~r !•e* ~r !. ~22!

The unspecified fielde* (r ) is now chosen such that the re
sult ~22! is exact,CAPEX5C. It is anticipated that this en
forcement of the exact covariance improves the overall
crofield distribution as well. There are many ways in whi
this choice can be made, as discussed more completely
low.

The distribution of microfields due to the nearest electr
can be obtained from the nearest neighbor distribution~8!.
The magnitude of the electric fielde(r ) is inverted to find
r (e) and the associated nearest neighbor probability distr
tion is defined by

Pnn~e!5
dr~e!

de
4pr 2~e!gnn~r @e#!. ~23!

Corrections to this approximation are discussed in@21#.
In summary, the theoretical tools to be tested are the H

integral equation for the charge density, the field covaria
6-5
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BERNARD TALIN, ANNETTE CALISTI, AND JAMES DUFTY PHYSICAL REVIEW E65 056406
derived from the charge density, and approximate model
the microfield distribution function expressed in terms of t
charge density.

III. CHARGE DENSITY

The quantitygie(r )5ne(r )/ne is the number density fo
electrons at a distancer from the ion, relative to its uniform
value for Z50. Since the potential is attractive this is e
pected to be an increasing function ofr asr→0, and should
approach unity asr→`. Also, gie(0) should be finite due to
the regularization of the Coulomb potential. To have an
timate of its dependence on the parametersZ, G, andd first
eliminatecie(r ) between Eqs.~8! and ~9! to get the single
equivalent equation

ln@11hie~r !#52V~r !1
3

4pE dr 8cee~ ur2r 8u!hie~r 8!.

~24!

Interestingly, this nonlinear equation forhie(r ) is the same as
that for the stationary solution to the nonlinear Vlasov eq
tion. The only difference is thatcee(r ) is replaced in the
latter by its weak coupling limit2GVee(r ). Thus the HNC
equations forhie(r ) have the same ‘‘physics’’ as the Vlaso
equation, except with a renormalized electron-electron
tential Vee(r )→2cee(r )/G. In fact, the weak electron
electron coupling is a good approximation for the conditio
considered here so effectively we are studying ion-elect
coupling via the Vlasov equation@it appears the pair of Eqs
~6! and~7! are a better representation for numerical purpo
since the former is nonlocal but linear, while the latter
nonlinear but local#. Now consider the further limit of
weakly coupled ion-electron interactions,s!1, so that
hie(r )!1. The linear approximation to Eq.~24! for weak
coupling becomes

hie~r !52V~r !2
3G

4pE dr 8ur2r 8u21hie~r 8! ~25!

FIG. 2. Comparison of the nonlinear Debye-Hu¨ckel form for
gie(r ) with HNC for the high temperature case atZ51, 4, 8, 20,
and 30.r is the dimensionless distance used all along the text.
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with the solution

gie~r !'11
ZG

@12~d/l!2#

1

r
~e2r /l2e2r /d!

'expS Z̄G

@12~d/l̄ !2#

1

r
~e2r /l̄2e2r /d!D . ~26!

The first line of Eq.~26! is the expected linear Debye-Hu¨ckel
result for this regularized Coulomb potential, showing exp
nential screening forr .l51/A3G. Thead hocexponentia-
tion on the second line is called thenonlinearDebye-Hückel
approximation, and is an attempt to extend the linear form
stronger coupling. In addition the charge number and scre
ing length have been replaced byZ̄ and l̄ to account for
possible form-preserving changes due to strong coupl
While there is no basis for Eq.~26! in theory, it is found to
provide a useful quantitative reference description.

Figure 2 shows a fit of the nonlinear Debye-Hu¨ckel form
to the solution to the HNC equation for the high density, hi

FIG. 3. Comparison of the nonlinear Debye-Hu¨ckel form for
gie(r ) with MD at s510 (G50.1, d50.4, Z540 andG50.5, d
50.2, Z54).

FIG. 4. Comparison ofgie(r ) from MD with that from HNC for
Z58, 20, and 30. Also shown is the nearest neighbor result
Z520.
6-6
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CLASSICAL DESCRIPTION OF ELECTRON STRUCTURE . . . PHYSICAL REVIEW E 65 056406
temperature case in Fig. 1, forZ51, 4, 8, 20, and 30. The
corresponding fit for the low density, low temperature cas
Z51 and 3 is equally good. Comparisons at larger value
Z in each case could not be made since only unphys
solutions to the HNC equations could be obtained at th
strong coupling values,s.7.5. However, it appears that th
nonlinear Debye-Hu¨ckel form continues to be a good repr
sentation of the charge density as deduced from a fitting
the MD results. This is illustrated in Fig. 3 forZ540 at high
temperature andZ54 at low temperature, both ats510.

The accuracy of the HNC calculations is tested in Figs
and 5. The agreement is quite good in all cases. Also sh
on these figures is the corresponding nearest neighbor d
bution for the casesZ51, 3, and 20. Discrepancies in th
nearest neighbor distribution are expected even when
HNC gie(r ) is accurate since the result~10! entails addi-
tional approximations beyond HNC@22#. These results
illustrate the domain for which a single electron domina
the charge structure. The dominance of the nearest neig
is characteristic of the conditions for all the discrepanc
between the theory and MD simulation results observed
this work. It appears that generally the theoretical ma
body approximations extend to attractive potentials, exc

FIG. 5. Comparison ofgie(r ) from MD with that from HNC for
Z51 and 3. Also shown are the nearest neighbor densities.

FIG. 6. Nearest neighbor trajectory plane projections fors52
ands57.5.
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when a single perturber gives the dominant contribution. F
ure 6 illustrates the qualitative differences between nea
neighbor trajectories fors52 and s57.5. In the former
case the domain of nearest neighbor trajectories is larger
many different particles become the nearest neighbor o
the observation time. In contrast, at strong coupling the ne
est neighbor lifetime is longer and the trajectory is mu
closer to the ion. Nevertheless, even for the strong coup
cases studied the lifetime of the nearest neighbor is sm
compared to the simulation time, as required by the proto

IV. ELECTRIC MICROFIELDS

For a first analysis of electron electric fields at the ion it
instructive to compare the evaluation of the covariance fr
the exact representation~13! usinggie(r ) from MD simula-
tion and from HNC, as a measure of the importance of sh
range structure. Figures 7 and 8 show the dimensionless
varianceC* as a function ofZ for the high density, high
temperature and low density, low temperature cases, res
tively. Also shown is the BM approximation form~18! cal-
culated withgie(r ) from HNC, and the solid lines are a fit o

FIG. 7. CovarianceC* as a function ofZ for the high tempera-
ture case; the solid lines are a quadratic fit to the data.

FIG. 8. Same as Fig. 7 for the low temperature case.
6-7



t
C

er
r d
io
ng
y

e

io

e
n

he
, t

st
cts
for

nt
is

15

rest
ri-
the
urs,
eld
en-

the
fea-
ive
the
is

ys,
ed

d
i

,
is
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the data to a quadratic form inZ. In both cases it is seen tha
the exact form~13! yields the same results using either HN
or MD, as expected from the good agreement forgie(r ). In
the low temperature case HNC does not converge forZ.3
so only the MD result is shown forZ54. The trends are the
same in the two cases, with increased covariance at largZ,
as expected from the enhanced charge density at smalle
tances from the ion. The Baranger-Moser approximat
shows significant deviation from the exact form, indicati
that the microfield distribution in this approximation ma
show similar differences from the MD results.

The microfield distributions from MD and APEX ar
compared in Fig. 9 for the high temperature case atZ58, 20,
and 30 corresponding to the coupling values ofs52, 5, and
7.5. It is seen that APEX gives a quite good approximat
even at the strongest coupling values~the caseZ540, not
shown for clarity of the figure, shows a similar good agre
ment between APEX and MD!. The same results are show
in Figs. 10–12, including the BM approximation and t
corresponding nearest neighbor distributions. In all cases

FIG. 9. Comparison of microfield distributions from MD an
APEX for the high temperature case. A dimensionless microfield
units of e/r 0

2 is used.

FIG. 10. Comparison of microfield distributions from MD, BM
and APEX forZ58, for the high temperature case. Also shown
the nearest neighbor microfield distribution from MD.
05640
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microfield distribution differs significantly from the neare
neighbor distribution, showing that collective electron effe
dominate. The nearest neighbor distribution vanishes
fields greater than the largest single particle field,ue(0)u
.s/2d. Also, in all cases APEX is a significant improveme
upon BM although the latter is qualitatively correct. This
expected from the behavior of the covariance in Fig. 7.

Now consider the low temperature case. Figures 13–
show a comparison of MD, APEX, and BM forZ51, 3, and
4 corresponding to the coupling values ofs52.5, 7.5, and
10. In contrast to the high temperature case, the nea
neighbor distribution becomes more similar to the full dist
bution as the coupling strength is increased. This shows
increasing dominance of the nearest neighbor. As this occ
there is a qualitative change in the shape of the microfi
distribution with the appearance of a shoulder and broad
ing around the most probable value. Interestingly,
Baranger-Moser approximation shows these general new
tures, and APEX provides corrections for a good quantitat
representation except at the strongest coupling case. In
latter, the MD result for the nearest neighbor distribution
almost indistinguishable from that for the full distribution.

The APEX calculation has been performed in two wa
corresponding to two different choices for the renormaliz

n
FIG. 11. Same as Fig. 10 forZ520.

FIG. 12. Same as Fig. 10 forZ530.
6-8
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CLASSICAL DESCRIPTION OF ELECTRON STRUCTURE . . . PHYSICAL REVIEW E 65 056406
field e* . In general, this effective single particle field is ch
sen to represent the average effects of correlations thro
some adjustable parameters that are chosen to impos
correct covariance through Eq.~22!. To suggest some poss
bilities, consider the field derived from the potential of me
force

e* ~r !5 ln gie~r !

'¹
Z̄

Z

1

@12~d/l̄ !2#

1

r
~e2r /l̄2e2r /d!,

where the second line follows using the nonlinear Deb
approximation. This effective field has two effects due
correlations, a long range screening through the parametl̄,
and an overall intensity change through the effective cha
numberZ̄. For same sign perturbers the the correlations
long range and the standard method is to varyl̄ with Z̄5Z
introduced and adjusted to enforce the correct covariance
the case of the attractive force here the effective charge n
ber Z̄ is used to require the correct covariance, withl̄ con-

FIG. 13. Comparison of microfield distributions from MD, BM
and APEX forZ51, for the low temperature case. Also shown
the nearest neighbor microfield distribution from MD and BM.

FIG. 14. Same as Fig. 13 forZ53.
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stant and of the order of the system size. This appear
represent better the short range correlations, particularl
stronger electron-ion coupling. Ass increases, the secon
method becomes more accurate and the first tends to
The figures presented here for APEX are based on adjus
Z̄.

V. DISCUSSION

The objective here has been to explore in detail the ap
cation of MD and selected many-body methods to desc
the electron charge density and electric fields in the vicin
of a positive ion. A model classical system has been po
lated based on a regularized Coulomb potential at short
tances. Attention has been focused on the applicability
MD and the theory at strong electron-ion coupling, to e
plore the qualitative differences arising from a strongly
tractive potential.

One measure of the coupling between the electrons
the ion is the value of the potential at the ion,s5ZG/d.
Another is the corresponding value for the force,s/2d. The
studies here were limited tos<10. At the highest values the
charge density increases by two orders of magnitude nea
ion, and the HNC integral equations fail to yield physica
meaningful solutions. MD simulation continues to be effe
tive at these strong coupling values, but further incre
leads to difficulties discussed above~e.g., the persistence of
trapped electron near the ion!. Such conditions are likely to
be only of academic interest for the model classical syst
with no corresponding quantum counterpart. Fors<5 the
solutions obtained from HNC agree well with those fro
MD. This may be surprising at first since the HNC equatio
were originally obtained for repulsive potentials, whose s
lutions are qualitatively different from those presented he
One possible explanation for its applicability here is t
close relationship of the HNC equations to the nonlinear V
sov equation for weakly coupled electrons. The Vlasov eq
tion has a clear physical meaning as a mean field limit, e
for strong electron-ion coupling. For the conditions cons
ered here the HNC equations are practically equivalent to
Vlasov equation. Interestingly, the form of the solution o

FIG. 15. Same as Fig. 13 forZ54.
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tained for weak electron-ion coupling persists at strong c
pling by simple exponentiation and renormalization of t
charge number and screening length~the nonlinear Debye-
Hückel form!. This representation is found to fit the MD
results as well at the strongest coupling values, for which
solution to the HNC equations could be obtained. This s
gests that other means to solve the equation may be m
appropriate for strong coupling, such as variational meth
based on the nonlinear Debye-Hu¨ckel form.

The electric field of the electrons at the ion is finite sin
it is derived from the regularized Coulomb potential. Con
quently, a single electron can contribute no more thans/2d.
In contrast to fields around an ion of the same sign cha
the largest fields in this case are due to collective many-b
effects. Since the electric field is largest for close configu
tions, and these are enhanced by the attractive potential
sampling in MD simulation requires more care than in t
same sign case. An average value for the field can be defi
as the root mean square of the covariance,ē[AC* . Figures
7 and 8 show that this average value increases withZ due to
the increased accumulation of charge at short distances.
BM covariance~18! differs from the exact result~13! by
terms depending on the correlation of two electrons in
presence of the ion. For a repulsive potential these corr
tions affect the screening at distances of the order of
Debye length. Here, these additional correlations occur
marily at short distances and behave as an additional scr
ing of the ionic charge. This is deduced from the fact th
enforcement of the exact covariance in APEX is improved
the renormalized fielde* (r ) is defined in terms of an effec
tive ion charge rather than an effective screening length.

The microfield distributions calculated in this way fro
APEX are in very good agreement with those from M
simulation for all charge numbers in the high temperat
case. This includes the extreme coupling ofs510 at Z
540. The BM approximation is qualitatively correct but on
semiquantitative. Again, it is somewhat surprising that th
approximations derived for repulsive potentials are so g
for these physically opposite conditions. For increasingZ the
peak shifts and broadens to emphasize higher field value
characteristic of this high temperature case is a qualitativ
different nearest neighbor distribution, which misses mos
the distribution above the peak value. This indicates that
closest electron, with the largest single electron field,
dominated by the collective coherent fields of many p
ticles. This effect actually increases at stronger couplings

In contrast, the microfield distributions for the lower tem
perature case have an opposite trend. As the electron
coupling increases the nearest neighbor distribution beco
closer to that of the full distribution. In Figs. 14 and 15 t
two distributions can be distinguished only at the largest fi
values. In addition, the shape of the full distribution becom
distorted in the direction of the nearest neighbor form. T
entails a shift of the peak, as required by the covariance,
also a tendency to enhance the distribution for field val
below the maximum of the nearest neighbor distribution. T
BM and APEX approximations reproduce these trends,
they no longer provide quantitative accuracy at strong c
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plings. This difference between the high and low temperat
cases cannot be explained in terms of the coupling param
s. Instead, it is more likely that the maximum force para
eters/2d represents the difference. The two examples of F
3 have the same value ofs510, buts/2d for the low tem-
perature case is twice that of the high temperature case.
is probably the reason for nearest neighbor dominance in
case, with increasing lifetime for each nearest neighbor
the maximum force increases. These effects are even m
evident for dynamical properties. Elsewhere it will be show
that the electric field time correlation function is well a
proximated by the single particle dynamics of the near
neighbor electron in the low temperature case.

VI. CONCLUSION

Both MD and current theoretical methods developed
repulsive potentials have been shown to apply as well for
attractive classical electron-ion system. The accuracy
these methods extends even to strong attraction where
tron densities increase by several orders of magnitude. Th
results justify application of these methods to more pract
conditions of experimental interest. These include the lowZ
ions produced at low temperatures by short pulse lasers,
the high Z ions for diagnostics in hot, dense laser fusi
plasmas.

The primary results of this study can be summarized
follows.

~1! The electron charge density and electron electric fie
at the ion can be studied efficiently and accurately by M
simulation, even at strong electron-ion coupling, except
conditions where close electron-ion configurations begin
become important. The latter occurs primarily for the lo
temperature case (G50.5,d50.2). In this domain, change
in the implementation of APEX are required for the m
crofield distribution.

~2! The HNC solution is reasonably well approximated
the nonlinear Debye distribution, with an effective char
number and screening length.

~3! MD is effective for simulation of the charge densi
and electron electric fields as well, although the lifetime
electrons close to the ion increases for stronger couplin
Such short range single electron dynamics leads to la
electric fields and requires better statistics to ascertain t
relative contribution to ensemble averages. Discrepancies
tween the MD results and theory for the charge densitie
short distances increase at strong coupling differences.
thermore, the HNC integral equations fail to converge
s.7.5. Similarly, both BM and APEX show qualitative a
well as quantitative differences from the MD results whe
ever the nearest neighbor field becomes important.
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