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Classical description of electron structure near a positive ion
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A single positive ion is imbedded in an electron gas with overall charge neutrality. A classical statistical
mechanics is considered using an electron-ion Coulomb potential regularized at distances within the de Broglie
length. The electron charge density and electric field distribution at the ion are studied as a function of
ion-electron coupling using molecular dynamics simulation and theoretical models. Agreement between theory
and simulation is quite good in general, although differences are observed for very strong ion-electron coupling
due to the enhanced importance of close electron-ion configurations.
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[. INTRODUCTION way to systems of electrons and positive idesg., hydro-
gen. In particular the most powerful approach, MD, is

Systems comprised of charged particles are of fundamerstrictly an implementation of classical mechanics and its util-
tal interest for many fields of physics and chemistry. Fority for electron-ion systems is limited in principle.
fully ionized systems the dominant effects of electrons often Nevertheless, it is known that some properties of inher-
can be captured through their screening of the ion-ion interently quantum systems have classical or near classical limits
action potential. This is essentially a Born-Oppenheimer apfor appropriate state conditions. For example, the equation of
proximation that is at the core of many approaches in statisstate of a classical hydrogen plasma approaches that of the
tical mechanics and condensed matter. Typically the motioebye-Hickel theory, independent of Planck’s constant, for
of ions is semiclassical due to their mass and many tools dagufficiently low density and high temperaturg]. This sug-
classical statistical mechanics are available to study theigests that semiclassical methods may be appropriate to ex-
structure and dynamics. For example, a hydrogen plasma jdore electron structure and dynamics in some limited do-
modeled in this way by a classical one-component plasma ahain of state conditions. One approach is to postulate a
ions (OCP interacting via an electron screened ion-ion po-classical mechanics with the most important quantum effects
tential. During the past 30 years significant progress has beaepresented through modifications of the interparticle poten-
made in the field of classical plasma physics to understantals. These effects can be discovered by calculation of the
the properties of such ionic plasmidg. An important role in  two particle Slater sums, which become Boltzmann factors in
these studies has been played by molecular dynatM&s)  terms of the classical pair potential whenever a classical limit
simulation, both to provide benchmarks for approximate theexists, but otherwise they define modifications of the pair
oretical methods and to explore the parameter space beyomdtential due to indelible quantum effedt3—5]. Typically,
available theories. More recently, attention has focused othe classical Coulomb potential is modified in this way at
improved descriptions of electron-ion plasmas by includingdistances shorter than the de Broglie wavelength to remove
the structure and dynamics for the electrons as well as thtéhe singularity. Other methods not tied to the equilibrium
ions. A number of methods are available to describe thetate are available to define regularized potentalg., wave
structural features of electrons, such as density functionapacket MD[6]), but qualitatively all are similar. The basic
guantum Monte Carlo, and Car-Parrinello simulations. Typi-assumption is that a many-body Hamiltonian constructed
cally, these have been developed for low temperatures andith these potentials defines a classical system of electrons
treat well the quantum effects that dominate below the elecand ions whose properties “resemble” the underlying quan-
tron Fermi temperature. Their application at higher temperatum system in some portions of phase space. Alternatively, it
tures and extensions to time dependent properties are somean be viewed as a model classical system of particles with
what more phenomenological. At higher temperatures, it idoth attractive and repulsive interactions whose properties
tempting to apply semiclassical methods for both the elecare of interest to discover for purely academic reasons.
trons and ions. This is sensible for systems that have a clas- In this context, most interest to date has focused on MD
sical limit (e.g., jellium, the quantum OCP for electrdns simulation of a classical representation of dense hydrogen
However, the electron-ion plasma does not have a simplg7—9|, or related equal mass “electron-positron” models
classical limit at the microscopic level due to the unbounded10]. The objective here is somewhat different. A much sim-
attractive electron-ion Coulomb interaction. The thermody-pler system consisting of a single positive ion embedded in a
namic stability of the system requires some quantum featureffuid of electrons(jellium) with overall charge neutrality is
for the short distance interaction of opposite sign chargesconsidered. This is a well-studied model for the case of a
For this and other reasons described below, the approachesoton in jellium for conditions of strong electron degen-
used for classical plasmas do not extend in a straightforwardracy. The work here focuses on nondegenerate electrons and
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impurities of higher charge numbeZ to force strong tems and to distinguish the components that are less practical
electron-ion coupling. The applicability of MD and certain explorations of extreme conditions for the classical model.
standard theoretical methods of classical plasma physics &lso in this section the MD simulation method and theoret-
explored for calculating the electron charge distribution neaical models are discussed briefly, emphasizing any points of
the ion and the distribution of electric fields at the ion. A concern associated with the attractive potential. In Sec. Ill,
discussion of related dynamical propertiesg., field auto- the electron charge density results are presented and dis-
correlation function, stopping power, diffusipwill be pre-  cussed. The electric field covariance and electron microfield
sented elsewhere. Partial results of this study have been rare considered in Sec. IV. Finally, a number of conclusions
ported in Refs[11-13. For this simple impurity system are drawn in the last section.

there are only three dimensionless parameters: the charge

number of the iorZ, the electron-electron coupling constant Il. THEORY AND SIMULATION

I', and the de Broglie wavelength relative to the interelectron

distances (defined more precisely in the following section ~ The system considered in this paper consistdlgklec-

The electron-ion coupling is measured by the value of thdérons with charge-e, an infinitely massive positive ion with
regularized ion-electron potential at the origin=ZTI'/8. In  chargeZe placed at the origin, and a rigid uniform positive
the following section it is shown that the application of semi-background for overall charge neutrality. The uniform den-
classical methods requiras>1 and §<1. Molecular dy- sity of the background is therefore related to the electron
namics results are reported here for two density temperatui@ensityns=N¢/ by

conditions, N=2.5x 107 cm 3, T=7.9x10° K and n

=3.2x10"® cm™3, T=7.9x10® K. In both cases the z z
electron-electron coupling is weak=0.1 and 0.5, respec- nN=nNe— ﬁzne( -8/ @)
tively. However, the electron-ion coupling can be strong, ¢

with ¢=0.2% and o=2.%Z, respectively. Specifically the
valueso=2, 5, 7.5, and 10 are studied using charge number;

where() is the volume. The electron-electron and electron-
. , Background interactions are taken to be Coulomb while the
in the rangeZ=<40. The weak electron coupling was chosen

S S ; electron-ion interactions occur via a regularized Coulomb
to minimize any complications regarding the many-body otentialV(r). The Hamiltonian is
physics for the electrons, which comprise a classical systerﬁ '
in the absence of the impurity ion for these conditions. Thus Ne 2 N, No
the classical methods are being tested solely with respect to H:E Pi +E e +2 ZeV(r)
their ability to describe the electron-ion interaction. S12me F -l 5 '

There are two distinct issues in the application of classical N
methods to electron-ion systems. First is the accuracy of the ] 1
- 2 drm ne’+ Up.
i Q i

2

@

model classical system in representing the actual quantum
system of interest. Second is the accuracy of existing classi-
cal methods to describe the model classical system. The f'rﬂere b, is the momentum of théth electron andn, is the

issue is considered here only qualitatively in the following electron mass. AlsdJ, is independent of the electron coor-

section In d!scu_ssmg the parameter space con3|dere_:d. ! inates and represents the background self-energy contribu-
stead, attention is focused on the second issue regarding t

statistical mechanics of the model classical system. A dire Jons. This can be set equal to zero without loss of generality.

translation of standard methods to this system is subject tohe regularized electron-ion potential is chosen to be
question because the dominant configurations now include
short distances, which are irrelevant for the more usual re- - ze? —r/s

h : : V(r)=-—(1-e"9, ()
pulsive interactions at short range. The closest analog is a r
system of charged hard spheres with both positive and nega-
tive charges representing electrolytes. The short range where §=(27#%2/m.kgT)Y? is the electron thermal de Bro-
attraction necessitates changes in implementation of the Miglie wavelength. For values af> 6 the potential becomes
simulations and limitations on the range of validity for cer- Coulomb, while forr<¢ the Coulomb singularity is re-
tain theoretical approximations. The theoretical models conmoved andV(r)— —Ze?/ 6+ (Z€?/26%)r. This is the sim-
sidered here are based on the hypernetted chain approximgtest phenomenological form representing the short range
tion (HNC) integral equation for the electron-electron andeffects of the uncertainty principle6,17.
electron-ion charge densities. Properties of the electron elec- |t is useful at this point to introduce dimensionless quan-
tric field at the ion(covariance and microfield distributipn tities. The length scale is chosen to be the average electron-
are obtained from approximations that are determined fronglectron distance,, defined in terms of the electron density

these charge densities. The microfield distribution and it by 47merg/3:1_ The dimensionless electron-electron and
nearest neighbor approximation are calculated from MD, thgon-electron potentials become

Baranger-Mose(BM) approximatior[14], and its extension

to strong coupling APEX15]. I
The context of the calculations presented here is discussed VE(1*)=BVed1) = —,

in the following section to clarify the relevance for real sys- ee r*
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zr o 10°
V*(r*)=BV(Ir)=—r—*(l—efr 7, 4
10"
wherer* =r/ry, 6*=68Irg, andI'=BV.(r,) is the usual o
electron coupling constant. In all of the following it is un- T ..
derstood that dimensionless variables are used and the aster- 2 107
isk will be deleted for simplicity of notation. g
The above describes the classical system to be studied. E 40
Since the electron-ion potential is bounded from below, it F
supports a stable equilibrium state whose properties have an
intrinsic interest of their own. As discussed in the Introduc- 104
tion, the motivation for this system is an attempt to capture ” T —
the most relevant features of an analogous quantum system. 10 10 10
Accordingly, the regularization of the Coulomb potential is Density (cm™®)
associated with the fact that an electron of thermal velocity
cannot be |Ocal|zed at the |On |n a Volume Sma”er thm?’ FIG. 1. Tempera’[ure-density plane Sh0W|ng state conditions

due to the uncertainty principleL6,17. More sophisticated studied herésolid circles. Also shown in gray scale is the labora-
forms obtained systemmatically from the two particle Slater©Y Plasma spectroscopy domain.

sum are availabl€3—5], but the forms are qualitatively the ) ) ] ) ]
same and the detailed differences are not important for théhort_dlstances, while the residual _electrons interact with the
purposes here. To enforce this correlation with the quanturf€SUlting reduced nuclear charge via the regularized potential
system further, it is useful to consider temperature and derf3)- For large net ionic charge, higher temperatures and
sity conditions, for which classical trajectories might provide higher densities are required. At fixef<1, Fig. 1 shogvs

an approximate representation of the quantum dynamicdhis implies more weakly coupled electrofesg., n=10%,

. O ! T 7 — _ -2
This cannot be made precise since there is no formal limit inl =4.6x 10 corresponds t@=0.4 andl'=1.4x10"%). The
which a classical Hamiltonian can be obtained from the'€ason for the lower temperatures and densities selected for

quantum Hamiltonian due to the electron-ion interaction.the initial studies here is that MD simulation is more efficient

Nevertheless, several qualitative limits can be identified@t higherT". The price for this is that states supported by the
First, the localization of the electrons, characterized by theiflassical model for largez values no longer have real quan-
thermal de Broglie wavelength should be small compared téum counterparts(equilibrium populations at the lowest

the average electron separation, i.651. Furthermore, temperatures considered. Thus, the strongest coupling cases
most trajectories for the electron-ion interaction should occugtudied below are purely an exploration of the statistical me-
for electron-ion distances that are large compared to the d%hanlcs for the classm_al model system under extreme condi-
Broglie wavelength. This can be quantified by requiring thatlions. Then,T,Z domain for physical relevance depends on
the apse for 90° scattering should be larger than the de Brdh® experiment and in some cases is larger than that deter-
glie wavelength. The former is known as the Landau lengtinined from average equilibrium ionization valuge.g.,
and its size relative to the de Broglie wavelengthds SPEctroscopic studles of trace popglatlons and nonequilib-
— 7T/ 8. This is also the maximum value of the electron-ion UM states in stopping power experimentshe study here

interaction in the reduced units assumed above essentially defines the limits on the parameter space for ap-
plication of classical statistical mechanics for the attractive

7T potential in Eq.(3). Application of these methods to high
|V(0)|=?=(r. (5) radiators under realistic inertial confinement fusion condi-
tions will be given elsewhere.

The classical conditioo>>1 has two interesting and perhaps
counterintuitive consequences. First, it implies that the
strong electron-ion coupling is “more classical.” Also, since A primary motivation for associating the classical Hamil-
the Landau length is inversely proportional to the temperatonian (2) with the underlying quantum system is to allow
ture, and the thermal de Broglie wavelength is inversely proapplication of molecular dynamics simulation. In principle,
portional to the square root of the temperature; 1 occurs  MD accounts for all correlations and many-body effects for
at lower temperatures. Together wiih this also implies both static and dynamic properties of classical systems. Gen-
lower densities. Figure 1 shows the density temperaturerally, it has been exceptionally useful for providing the
plane illustrating two points witlr=2.5Z and 0.25Z. Figure benchmarks for testing theoretical methods. Primary con-
1 also provides a schematic of the current domains of experstraints and limitations follow from the finite system size
mental studies, mainly spectroscopic. (particle number, which is determined in part by the force
The existence of finite populations for ions of givén range, and the time interval required for accurate statistics.
depends on the temperature and density. If the ion is onljHowever, new difficulties are encountered for the attractive
partially ionized, the bound electrons should be treated quarien-electron force considered here whgt(0)|= /25 be-
tum mechanically for an effective charge distribution at verycomes large. Then electron trapping by the ion in metastable

A. MD simulation

056406-3



BERNARD TALIN, ANNETTE CALISTI, AND JAMES DUFTY PHYSICAL REVIEW E65 056406

states with large lifetimes can occur, requiring very longplicability to an attractive potential. There is @opriori as-
simulation times to obtain good statistics for properties, suclsurance that this is the case, since the physical states sampled
as electric fields. To allow the most efficient MD simulations, are quite different. For repulsive potentials close configura-
periodic boundary conditions are used and the potential i§ons are suppressed, while here they become strongly en-
screened at distances of the order of the system size. Thitanced. As will be seen below, even the mathematical prop-
screening is always much larger than the correlation lengtterties of some models are changed dramatically by this
so the results are essentially the same as would be obtainééfference. The approximations considered are such that the
with an Ewald sum to correct for small finite system size. InProperties can be calculated once the ion-electron and
many respects MD numerical simulation can be regarded Llectron-electron equilibrium pair dlstrlbut|qn functions
an experiment. Similar features such as noise, dependence gig(1) andgee(r)_ar_e known. _These are detgrmmeq frqm the
apparatus performances, etc., common for experiments mu C [18], speC|aI|'zed to this case of a §|ngle ion in the
be taken into account for MD as well. In principle, MD re- electron gas. In 'Fh's qas;ee(r)zlfhee(r) IS _the same as
. ; . . _that for a classical jellium and is determined from the

sults always can be improved, but there are practical I'm'taf:oupled pair of HNC equationgecall that dimensionless
tions. Simulation results can be taken as reliable data pro- .

) units are used
vided a careful protocol has been followed. As already
mentioned, standard MD techniques have been used here, 3
but for unusual conditions. In addition to their own mutual Ned(r) =Cee(r) + EJ driced|[r=r"Dhedr’),  (6)
interaction, the electrons are submitted to a finite spherically
symmetric attractive force due to an ion of variable charge.
Thus, equations of motions for particles are solved in a fixed

nonuniform external field that tends to concentrate the elec- ' . . . . .
trons about the ion. Several points have to be controlled car(:1:he first of these is the Ornstein-Zernicke equation defining

fully. First, the accretion of the electrons around the ion ha it:)en%Lefgecsoiazl?:'ﬁgf;nctf;;ﬁ(art)ic’)x\/h#ﬁ;?gns_ggggoﬁq dL:;it-ri-
to be compensated by a large number of particles in th pp ’

simulation volume in order to minimize the depletion that ution gi?(r):1+hi9(r) is determined from a similar pair
might result at large distances, particularly in the case OPf equations

largeZ. Second, the size of the simulation volume has to be 3

large enoug_h to ensure that the numerical model is a relevant hie(r) = Cio(r) + _f dr' e |r—r'"|hie(r), @®)
representation for the long range Coulomb potential, and to 4

minimize interaction with other ions duplicated through the

periodic boundary conditions. Third, equilibrium conditions 1+hie(r)=exd —V(r)+hje(r)—cie(r)]. 9
have to be reached in the presence of the attractive central

force. These equilibrium conditions are fulfilled provided aThese results can be obtained from the HNC equations for a
careful setup for the particles in the simulation volume isbinary mixture in the limit of low concentration for one of
carried out before sampling the system. Practically, timeshe species. The pair of Eq®) and(7) are autonomous and
representing several crossing times of an average electraan be solved for botly.«(r) and c.(r). With the latter
over the simulation volume are considered. During this timeknown, Egs(8) and(9) can be solved fog;s(r). A new code
fluctuations in the total energy of the system must be neglihas been written to solve these equations following the gen-
gible. Limitations related to strong electron-ion attraction areeral scheme of Rogef$§], and tested for the jellium without
imposed for this protocol. For small de Broglie wavelength,the impurity ion and with a negative iomepulsive interac-

an electron with a low kinetic energy can stay trapped in theion) over a wide range of values fér including very strong
attractive central potential for times comparable to the simucoupling. In contrast, the parameter space for solutions to
lation time. Such events are interpreted as a failure of theqs. (8) and (9) with the positive ion considered here is
simulation model, and do not occur for the results reportedestricted to approximately<7.5. Beyond this value un-
below. Nevertheless, the charge density structure near thshysical solutions are obtained, but it is not clear if this is a
ion, represented by the density correlation function at smallimitation of the HNC approximation or its numerical imple-
r, shows generally a noticeable noise representative of mentation here.

more difficult sampling in this domain. Finally, it should be A related useful property for analysis is the probability
mentioned that when compared to an OCP simulation carriedensity for the position of the electron nearest the (ioear-

out for N particles, the present simulations of the chargeest neighbor distribution This is calculated from the prob-
structure around an impurity require a factor Nftimes  ability to find an electron at position times the probability
longer to reach an equivalent level of statistical sampling. to find none of the other particles any closer

14+ hedr)=exgd —Vedr) +hedr)—cedr)]. (7)

; Ne—1

B. Theory 3 , ,
Gnn(r) =gie(r) l_FNe odr Gie(r")

The structural properties of interest are the electron
charge distribution and electron electric fieldisrces at the
ion. For the theoretical predictions, approximations known to —gi(rexd - ierr’g- . (10)
be successful for same sign charges are tested for their ap- ¢ 4m)o ¢
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This is not an exact result, since the probabilities for each €2 _ 3
electron are treated as independent. For the attractive poten- P(e)= —Zj d)\e""fexp<—f drgie(r)qS()\,r)).
tial considered here, the electron density at such short dis- 2m 4
tances is strongly enhanced and additional correlations might 17
be expected to be required for this distribution.

The electron electric field at the ion, due to all electrons
is obtained from the total regularized potenti@l

Consequently, in this approximation the microfield distribu-
tion is determined from the electron charge density alone. It
is easily verified that the covariance of the microfield distri-

N bution calculated from the BM approximation differs from
E=—VoV({rih =2, erio), (1  the exact resultl3)
i=1
3
BM__—_ . .
wherer;o=r,—r is the position of théth electron relative C _47Tf drgie(r)e(r)-&(r). (18)

to the ion, and
To account for multielectron correlations it is necessary to
include higher order terms in the series of Ebp). An im-
eriol‘s}. provement on the BM microfield distribution is given by the
APEX approximation[15]. This approximation can be ob-
(12) tained by defining a functiog* (\,r) in terms of a “renor-
E‘r:nalized field”e* (r) [20]

N
V(‘{"io}):iZ:1 V(rio), €&rig)= ?70{1_(14' I%O

i0

The potential energy in the classical Gibbs ensemble is r
lated to this potential by8U ({r;o})=2ZI'V({r;o}). This al-
lows the(dimensionlesscovariance of the electric field to be
written in the form It is straightforward to expres$(\,r) in terms of ¢* (A,r)
and the ratio of field magnitudd®(r)=e(r)/e* (r),

d*(Nr)=eMEM 1, (19

re 1
C*:e_g<E'E>:_ﬁ<V0'E> 1+ ¢=(1+¢p*)R. (20

3 Substitution of¢ as a function of¢* into the serieg15)
= mf drgie(r)V-er). (13)  gives an equivalent series rearranged as a functional power
m series ing*. Truncation of this series at=1 gives

Thus, the field covariance is completely determined from the 3

electron charge density. A closely related quantity is the root GAPEX=—f drgie(r)R(r)¢* (\,r). (21)

mean square electron-ion force. 4m
The probability density for electric field magnitudési-

crofield distribution is defined by The microfield distribution in this approximation is known as

APEX and, like the Baranger-Moser approximation is speci-

) fied entirely in terms of the electron charge density. The cor-

P(e)=4meX(S(e— E)>=E—f dhe N e(e IV E) responding covariance is
212
3
&2 CAPEX=4—f drgie(r)e(r)-e*(r). (22)
=—— | dre ™ eet™, (14) i
212

The unspecified field* (r) is now chosen such that the re-
The second equality defines the generating fundB¢n). In sult (22) is exact, C""==C. Itis ar!t|C|pated that this en- _
general, it is not fully determined from the charge densityforc.emen.t Of the exact covariance improves the oyerall mi-
Oie(r). Instead, it has a formal representation as a series i rpﬁelr(]j Q|str|but|8n as (\;vell. Tf(lj(_are are (rj‘nany ways |r} WT'CE
correlations among the electrons and ion of all ordé&€§ IO\I; choice can be made, as discussed more completely be-

N The distribution of microfields due to the nearest electron

_ lie o can be obtained from the nearest neighbor distribuf®)n
G Zl f dro-drgity 1) dry)- - S r) The magnitude of the electric fiele(r) is inverted to find

(19 r(e) and the associated nearest neighbor probability distribu-
i tion is defined by
dNr)=eMeN—1, (16)
dr(e) )

Here,g”(r,- - -1, is a cluster function representing the cor- Pan(€)= 547 (€)0nn(r[€])- (23
relations among/” electrons and the ion. In particular
gl(r;)=30g;e(r)/4m. At weak electron coupling it is ex- Corrections to this approximation are discusseit].
pected that the series can be truncated=atl, leading to the In summary, the theoretical tools to be tested are the HNC
Baranger-Mose(BM) approximation 14] integral equation for the charge density, the field covariance
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FIG. 2. Comparison of the nonlinear Debyedtel form for FIG. 3. Comparison of the nonlinear Debyédkal form for
gie(r) with HNC for the high temperature casezat 1, 4, 8, 20, gie(r) with MD at 0=10 (’'=0.1, §=0.4, Z=40 and'=0.5, §
and 30.r is the dimensionless distance used all along the text. =02 z=4).

derived from the charge density, and approximate models ofvith the solution
the microfield distribution function expressed in terms of the

charge density. gie(r)~1+ BTN e " —g7r19)
¢ [1—(8IN)2] T
lll. CHARGE DENSITY

zr 1 =
The quantitygie(r) =ng(r)/n, is the number density for %exp(—_z F(e’””—e*”‘s) . (26
electrons at a distanaefrom the ion, relative to its uniform [1=(SIN)7]

value forZ=0. Since the potential is attractive this is ex-
pected to be an increasing functionrafisr — 0, and should
approach unity as— . Also, g;c(0) should be finite due to
the regularization of the Coulomb potential. To have an es
timate of its dependence on the paramei&rk, and 6 first
eliminatec;e(r) between Eqs(8) and (9) to get the single
equivalent equation

The first line of Eq(26) is the expected linear Debye-kkel
result for this regularized Coulomb potential, showing expo-
nential screening for >\ = 1/\/3T. Thead hocexponentia-
tion on the second line is called thenlinearDebye-Hickel
approximation, and is an attempt to extend the linear form to
stronger coupling. In addition the charge number and screen-

ing length have been replaced Eyandfto account for
possible form-preserving changes due to strong coupling.

IN[1+hie(r)]=—V(r)+ iJ dr'ced|r—r'])hie(r’). While there is no basis for Eq26) in theory, it is found to
4m provide a useful quantitative reference description.
(24) Figure 2 shows a fit of the nonlinear Debyed#el form

) . . . ] to the solution to the HNC equation for the high density, high
Interestingly, this nonlinear equation fog,(r) is the same as

that for the stationary solution to the nonlinear Vlasov equa-
tion. The only difference is that.(r) is replaced in the

latter by its weak coupling limit=-T'V 4(r). Thus the HNC 100 r=0.1 &5=0.4
equations folh,¢(r) have the same “physics” as the Vlasov

equation, except with a renormalized electron-electron po- © MD
tential Veo(r)— —Cod(r)/T. In fact, the weak electron- v ::gn

electron coupling is a good approximation for the conditions
considered here so effectively we are studying ion-electron
coupling via the Vlasov equatidiit appears the pair of Egs.
(6) and(7) are a better representation for numerical purposes
since the former is nonlocal but linear, while the latter is
nonlinear but locdl Now consider the further limit of
weakly coupled ion-electron interactiong;<1, so that 1 : :
hie(r)<<1. The linear approximation to Eq24) for weak 0.1 1 10
coupling becomes r

104 -==-NNHNC

g,(N

ar FIG. 4. Comparison ofjic(r) from MD with that from HNC for
hie(r)=—V(r)— EJ dr’|r—r’|*1hie(r’) (25) 525230 20, and 30. Also shown is the nearest neighbor result for
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FIG. 5. Comparison of.(r) from MD with that from HNC for FIG. 7. Covarianc&€* as a function ofZ for the high tempera-
Z=1 and 3. Also shown are the nearest neighbor densities. ture case; the solid lines are a quadratic fit to the data.

temperature case in Fig. 1, f&r=1, 4, 8,20, and 30. The when a single perturber gives the dominant contribution. Fig-
corresponding fit for the low density, low temperature case atre 6 illustrates the qualitative differences between nearest
Z=1 and 3 is equally good. Comparisons at larger values ofeighbor trajectories for=2 and c=7.5. In the former
Z in each case could not be made since only unphysicatase the domain of nearest neighbor trajectories is larger and
solutions to the HNC equations could be obtained at thesmany different particles become the nearest neighbor over
strong coupling valuesr>7.5. However, it appears that the the observation time. In contrast, at strong coupling the near-
nonlinear Debye-Hekel form continues to be a good repre- est neighbor lifetime is longer and the trajectory is much
sentation of the charge density as deduced from a fitting ofloser to the ion. Nevertheless, even for the strong coupling
the MD results. This is illustrated in Fig. 3 far=40 at high  cases studied the lifetime of the nearest neighbor is small
temperature an@=4 at low temperature, both at=10. compared to the simulation time, as required by the protocol.
The accuracy of the HNC calculations is tested in Figs. 4
and 5. The agreement is quite good in all cases. Also shown
on these figures is the corresponding nearest neighbor distri-
bution for the case¥=1, 3, and 20. Discrepancies in the For a first analysis of electron electric fields at the ion it is
nearest neighbor distribution are expected even when thi@structive to compare the evaluation of the covariance from
HNC g;c(r) is accurate since the resultO) entails addi- the exact representatiqfi3) usinggic(r) from MD simula-
tional approximations beyond HN{22]. These results tion and from HNC, as a measure of the importance of short
illustrate the domain for which a single electron dominategange structure. Figures 7 and 8 show the dimensionless co-
the charge structure. The dominance of the nearest neighbwarianceC* as a function ofZ for the high density, high
is characteristic of the conditions for all the discrepanciegemperature and low density, low temperature cases, respec-
between the theory and MD simulation results observed irively. Also shown is the BM approximation foriti8) cal-
this work. It appears that generally the theoretical many-<culated withg;e(r) from HNC, and the solid lines are a fit of
body approximations extend to attractive potentials, except

IV. ELECTRIC MICROFIELDS
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FIG. 6. Nearest neighbor trajectory plane projectionsder2
ando=7.5. FIG. 8. Same as Fig. 7 for the low temperature case.
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FIG. 9. Comparison of microfield distributions from MD and FIG. 11. Same as Fig. 10 fa=20.

APEX for the high temperature case. A dimensionless microfield in

units ofe/r2 is used.
microfield distribution differs significantly from the nearest

the data to a quadratic form i1 In both cases it is seen that neighbor distribution, showing that collective electron effects
the exact forn(13) yields the same results using either HNC dominate. The nearest neighbor distribution vanishes for
or MD, as expected from the good agreementdg(r). In  fields greater than the largest single particle fige(0)|
the low temperature case HNC does not convergeZfe3 =g/26. Also, in all cases APEX is a significant improvement
so only the MD result is shown faf=4. The trends are the upon BM although the latter is qualitatively correct. This is
same in the two cases, with increased covariance at |Zrger €xpected from the behavior of the covariance in Fig. 7.
as expected from the enhanced charge density at smaller dis- Now consider the low temperature case. Figures 13—15
tances from the ion. The Baranger-Moser approximatiorshow a comparison of MD, APEX, and BM f@=1, 3, and
shows significant deviation from the exact form, indicating4 corresponding to the coupling values @¥2.5, 7.5, and
that the microfield distribution in this approximation may 10. In contrast to the high temperature case, the nearest
show similar differences from the MD results. neighbor distribution becomes more similar to the full distri-
The microfield distributions from MD and APEX are bution as the coupling strength is increased. This shows the
compared in Fig. 9 for the high temperature casg=a8, 20, increasing dominance of the nearest neighbor. As this occurs,

and 30 corresponding to the coupling valuewref2, 5, and  there is a qualitative change in the shape of the microfield
7.5. It is seen that APEX gives a quite good approximatiorﬁistribution with the appearance of a shoulder and broaden-
even at the strongest coupling valugse caseZz=40, not Ing around the most probable value. Interestingly, the
shown for clarity of the figure, shows a similar good agree-Baranger-Moser approximation shows these general new fea-
ment between APEX and MDThe same results are shown tures, and APEX provides corrections for a good quantitative
in Figs. 10-12, including the BM approximation and the epresentation except at the strongest coupling case. In the

corresponding nearest neighbor distributions. In all cases, tHatter, the MD result for the nearest neighbor distribution is
almost indistinguishable from that for the full distribution.

The APEX calculation has been performed in two ways,

0.8 w corresponding to two different choices for the renormalized
' * % NN
M ¢ Z=8 T=0.1 5=04
0.6 ¢ 0.8 v
0 1Y Kby
t v o MD v, Z=30 T=0.1 5=0.4
5 ] v'y
w
i r |, NN
06 7 Y o v MD
Y 1 APEX
= P ---- BM
g 04 rov
ro
€
FIG. 10. Comparison of microfield distributions from MD, BM, e
and APEX forZ=8, for the high temperature case. Also shown is
the nearest neighbor microfield distribution from MD. FIG. 12. Same as Fig. 10 fat=30.
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FIG. 13. Comparison of microfield distributions from MD, BM, FIG. 15. Same as Fig. 13 fat=4.

and APEX forz=1, for the low temperature case. Also shown is

the nearest neighbor microfield distribution from MD and BM. stant and of the order of the System size. This appears to
represent better the short range correlations, particularly at

field €*. In general, this effective single particle field is cho- stronger electron-ion Coup“ng_ As increases, the second

sen to represent the average effects of correlations throughethod becomes more accurate and the first tends to fail.

some adjustable parameters that are chosen to impose tiiie figures presented here for APEX are based on adjusting
correct covariance through E(22). To suggest some possi- 7

bilities, consider the field derived from the potential of mean
force
V. DISCUSSION

*(r)=Ing; _— . . .
e (r)=Ingi(r) The objective here has been to explore in detail the appli-

1 _ cation of MD and selected many-body methods to describe
= —(e - 19, the electron charge density and electric fields in the vicinity
[1=(aIN)7] T of a positive ion. A model classical system has been postu-

lated based on a regularized Coulomb potential at short dis-
where the second line follows using the nonlinear Debyeances. Attention has been focused on the applicability of
apprOXimation. This effective field has two effects d_UG tOMD and the theory at Strong electron-ion Coup”ng, to ex-
correlations, a long range screening through the pararveter plore the qualitative differences arising from a strongly at-
and an overall intensity change through the effective chargé&active potential.

numberZ. For same sign perturbers the the correlations are One measure of the coupling between the electrons and

long range and the standard method is to varyith z=z 1€ 'ﬁn 1S t};]e value of tz_e potelntlafl at ;hi '%Z': ZF/S'
introduced and adjusted to enforce the correct covariance. A" erh|s the corrlgspon '”g vajue ﬁr thlehor 25|' T eh
the case of the attractive force here the effective charge nunvtudies here were limited w<10. At the highest values the

ber7 i dt e th i . il charge density increases by two orders of magnitude near the
erZ 1S used to require the correct covariance, on- ion, and the HNC integral equations fail to yield physically

meaningful solutions. MD simulation continues to be effec-

NI N

~V

0.154 tive at these strong coupling values, but further increase
a0 Z=3 r=05 5=02 leads to difficulties discussed aboleeg., th_e persiste_nce of a
7 Ond e trapped electron near the iprSuch conditions are likely to
o°,- \V'OO;Q o MD be only of academic interest for the model classical system,
0.10+ AR APEX with no corresponding quantum counterpart. fleoe5 the
= T S\ %3 . -—--- BM solutions obtained from HNC agree well with those from
a N v NNMD MD. This may be surprising at first since the HNC equations
h % were originally obtained for repulsive potentials, whose so-
0.08+ ‘%}0 lutions are qualitatively different from those presented here.
One possible explanation for its applicability here is the
SN close relationship of the HNC equations to the nonlinear Vla-
0.00 L . . o cl’ ~~~~~ sov equation for weakly coupled electrons. The Vlasov equa-
0 5 10 15 20 tion has a clear physical meaning as a mean field limit, even
e for strong electron-ion coupling. For the conditions consid-
ered here the HNC equations are practically equivalent to the
FIG. 14. Same as Fig. 13 f@=3. Vlasov equation. Interestingly, the form of the solution ob-

056406-9



BERNARD TALIN, ANNETTE CALISTI, AND JAMES DUFTY PHYSICAL REVIEW E65 056406

tained for weak electron-ion coupling persists at strong couplings. This difference between the high and low temperature
pling by simple exponentiation and renormalization of thecases cannot be explained in terms of the coupling parameter
charge number and screening lengthe nonlinear Debye- . Instead, it is more likely that the maximum force param-
Huckel form). This representation is found to fit the MD etero/25 represents the difference. The two examples of Fig.
results as well at the strongest coupling values, for which n@ have the same value of=10, butg/25 for the low tem-
solution to the HNC equations could be obtained. This sugperature case is twice that of the high temperature case. This
gests that other means to solve the equation may be moig probably the reason for nearest neighbor dominance in this
appropriate for strong coupling, such as variational methodsase, with increasing lifetime for each nearest neighbor as
based on the nonlinear Debye-tkel form. the maximum force increases. These effects are even more
The electric field of the electrons at the ion is finite sinceevident for dynamical properties. Elsewhere it will be shown
it is derived from the regularized Coulomb potential. Conse-that the electric field time correlation function is well ap-
quently, a single electron can contribute no more thé®s.  proximated by the single particle dynamics of the nearest
In contrast to fields around an ion of the same sign chargeyeighbor electron in the low temperature case.
the largest fields in this case are due to collective many-body
effects. Since the electric field is largest for close configura-
tions, and these are enhanced by the attractive potential, the
sampling in MD simulation requires more care than in the Both MD and current theoretical methods developed for
same sign case. An average value for the field can be definedpulsive potentials have been shown to apply as well for the
as the root mean square of the covariance/C* . Figures attractive classical electron-ion system. The accuracy of
7 and 8 show that this average value increases #ilne to  these methods extends even to strong attraction where elec-
the increased accumulation of charge at short distances. THon densities increase by several orders of magnitude. These
BM covariance(18) differs from the exact resul(l3) by  results justify application of these methods to more practical
terms depending on the correlation of two electrons in theconditions of experimental interest. These include the Tow
presence of the ion. For a repulsive potential these correldons produced at low temperatures by short pulse lasers, and
tions affect the screening at distances of the order of théhe highZ ions for diagnostics in hot, dense laser fusion
Debye length. Here, these additional correlations occur priplasmas.
marily at short distances and behave as an additional screen- The primary results of this study can be summarized as
ing of the ionic charge. This is deduced from the fact thatfollows.
enforcement of the exact covariance in APEX is improved if (1) The electron charge density and electron electric fields
the renormalized fiel@* (r) is defined in terms of an effec- at the ion can be studied efficiently and accurately by MD
tive ion charge rather than an effective screening length.  simulation, even at strong electron-ion coupling, except for
The microfield distributions calculated in this way from conditions where close electron-ion configurations begin to
APEX are in very good agreement with those from MD become important. The latter occurs primarily for the low
simulation for all charge numbers in the high temperaturgemperature casel’'=0.56=0.2). In this domain, changes
case. This includes the extreme coupling @10 atZ  in the implementation of APEX are required for the mi-
=40. The BM approximation is qualitatively correct but only crofield distribution.
semiquantitative. Again, it is somewhat surprising that these (2) The HNC solution is reasonably well approximated by
approximations derived for repulsive potentials are so goodhe nonlinear Debye distribution, with an effective charge
for these physically opposite conditions. For increagitpe ~ number and screening length.
peak shifts and broadens to emphasize higher field values. A (3) MD is effective for simulation of the charge density
characteristic of this high temperature case is a qualitativelynd electron electric fields as well, although the lifetime of
different nearest neighbor distribution, which misses most oelectrons close to the ion increases for stronger couplings.
the distribution above the peak value. This indicates that th&uch short range single electron dynamics leads to large
closest electron, with the largest single electron field, iselectric fields and requires better statistics to ascertain their
dominated by the collective coherent fields of many par{elative contribution to ensemble averages. Discrepancies be-
ticles. This effect actually increases at stronger couplings. tween the MD results and theory for the charge densities at
In contrast, the microfield distributions for the lower tem- short distances increase at strong coupling differences. Fur-
perature case have an opposite trend. As the electron-idhermore, the HNC integral equations fail to converge for
coupling increases the nearest neighbor distribution becomes>7.5. Similarly, both BM and APEX show qualitative as
closer to that of the full distribution. In Figs. 14 and 15 the well as quantitative differences from the MD results when-
two distributions can be distinguished only at the largest fielcever the nearest neighbor field becomes important.
values. In addition, the shape of the full distribution becomes
distqrted in_the direction of the nearest neighbor fqrm. This ACKNOWLEDGMENTS
entails a shift of the peak, as required by the covariance, but
also a tendency to enhance the distribution for field values Support for this research has been provided by the U.S.
below the maximum of the nearest neighbor distribution. TheDepartment of Energy Grant No. DE-FG03-98DP00218. J.D.
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VI. CONCLUSION
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