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Single relaxation time model for entropic lattice Boltzmann methods
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For lattice Boltzmann methods based on entropy functions, we derive a collision integral which enables
simple identification of transport coefficients, and which circumvents construction of the equilibrium. Imple-
mentation of the two-dimensional hydrodynamics demonstrates considerable increase of stability with respect
to conventional lattice Boltzmann schemes.
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I. INTRODUCTION

The lattice Boltzmann method~LBM ! is a useful ap-
proach to simulation of complex macroscopic phenomen
spatially extended systems such as hydrodynamics@1#. In the
LBM, macroscopic equations are not addressed directly b
conventional discretization procedure, rather, ‘‘envelopin
fully discrete kinetic models are constructed in such a w
that ~i! their long time, large scale limit matches the mac
scopic dynamics in question, and~ii ! they are easily imple-
mented numerically. In its present and mostly used form,
LBM is based on~i! a polynomial ansatz with tailored prop
erties for the local equilibrium, and~ii ! a single relaxation
time model~SRTM! for the relaxation~collision! term. The
SRTM has been borrowed from the well known Bhatnag
Gross-Krook approximation of the Boltzmann collision int
gral of classical kinetic theory. The resulting method
known as the LBGK model@2,3#.

However, in spite of impressive evidence of success
application of the LBM@1#, the method is still in the devel
opment phase. One of the demanding problems, recogn
by many authors, is that of numerical instability@1,4–7#.

It has been discussed for some time in the literat
@1,4,5,7# that the stability of the LBM could be improved
the method could be based on an analog of the BoltzmanH
theorem. Theoretical progress in this direction has rece
been achieved@4,8#. The essence of this work is as follow
~i! To construct entropy functions whose local equilib
have the desired properties rather than constructing th
equilibria approximately, and~ii ! to implement the discrete
time H theorem for these entropy functions through cons
eration of pairs of states with equal entropy, and introduct
of state-dependent~and hence variable! relaxation times. Al-
though these results are relatively recent, tests have dem
strated the unconditional stability of this class of lattice Bo
zmann models~ELBM hereafter! @5,7#.

With the entropy-based approach to constructing the
tice Boltzmann models, a different set of problems aris
The most challenging of them is to answer the questi
How to implement a single relaxation time model in t
framework of the ELBM? Indeed, in many cases, implem
tation of the ELBM with the BGK collision integral migh
require numerical evaluation of local equilibria@7#. On the
other hand, wide families of admissible collision models c
be introduced once the entropy functional is known, wh
circumvent construction of the local equilibrium explicit
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@4#. While the potential richness of these families may
important, it is sometimes crucial to have the simplest, sin
relaxation time models because identification of transport
efficients is then straightforward. To the best of our know
edge, construction of a SRTM different from the BGK a
proximation has never been addressed in classical contin
kinetic theory@when the local equilibrium is known explic
itly ~the local Maxwellian!, there is simply no demand fo
that#.

In this paper, we construct a single relaxation time mo
for the ELBM. This SRTM does not require explicit know
edge of the local equilibrium but the identification of th
transport coefficients remains as simple as before. We c
sider a realization of the ELBM for two-dimensional isothe
mal hydrodynamics, demonstrating a considerable gain
stability with respect to the classical LBGK method.

II. OVERVIEW OF THE METHOD

In the LBM setup, one considers populationsf i of discrete
velocitiescW i , wherei 51, . . . ,b, at discrete timet. The set of
velocitiesc¢ is represented by the links of a regular lattice
each lattice siterW, and it may also include a zero vector. It
convenient to introduceb-dimensional population vectorsf,
and we set̂ xuy&5( i 51

b xiyi . Local hydrodynamic variables
Mk , wherek51, . . . ,n, andn,b, are defined at each lattic
site, Mk(rW)5^mkuf(rW)&, wheremk are corresponding micro
scopic densities. In the particularly important case of
isothermal hydrodynamics considered below, the mic
scopic densities are1 and c¢, while the local hydrodynamic
variables are

r5^1uf &, ~1!

ruW 5^c¢uf &. ~2!

Vectors orthogonal tomk are conveniently described in term
of a basisgs where s51, . . . ,b2n, and ^gsugp&5dsp ~the
kinetic subspace!. Nonhydrodynamic variableŝgsuf & corre-
spond to higher-order moments in the context of class
kinetic theory. The basic equation to be solved is

f~rW1c¢,t11!2f~rW,t !52
1

2t
@ f~r,t !2f eq~r,t !#. ~3!
©2002 The American Physical Society12-1
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Then a quadratic form for the equilibrium distribution di
tribution function f eq is used, which reproduces the Navie
Stokes equation up to the orderO(M2). HereM is the Mach
number andt is a parameter related to the viscosity. Ho
ever, this approach of constructing the equilibrium distrib
tion as a way to get back the Navier-Stokes equation w
desired accuracy does not guarantee obeying theH theorem.

III. ENTROPIC LATTICE BOLTZMANN EQUATION

In the entropic lattice Boltzmann method another a
proach is taken to ensure theH theorem for discrete time
The basic idea is to construct anH function relevant to the
dynamics considered and then obtain the full dynamics fr
the knowledge of theH function. The whole construction o
the ELBM is based on the convex nature of theH function. If
the functionH is Boltzmann-like~the case considered be
low!, then it is defined in the domain of non-negative pop
lation vectors. Non-negative population vectors with fix
values of the hydrodynamic variables but different in t
nonhydrodynamic variables form the phase space of
model~the kinetic polytope!. The description of kinetic poly-
topes is an interesting problem of linear programming
itself, studied recently in the context of the ELBM@7#, and
greatly studied in the closely related context of chemical
netics @9#, where it is known as the reaction polytope. F
nally, the local equilibrium population vectorf

eq
is the mini-

mizer of the entropy functionH subject to fixed values o
local hydrodynamic variables. The generic ELBM is bas
on the following kinetic equation:

f ~rW1c¢,t11!2f ~rW,t !5D* @ f ~rW,t !#. ~4!

Here the left hand side is the conventional discrete f
propagation, while the right hand side is the ELBM collisio
integral:

D* 5ba@ f ~rW,t !#D@ f ~rW,t !#. ~5!

In this expression, the parameterb is fixed in the interval
@0,1#, anda is the scalar function of the population vecto
The functiona ensures the discrete timeH theorem, and is
the nontrivial root of the scalar nonlinear equation

H~ f !5H~ f 1aD@ f # !. ~6!

Finally, thebarecollision integralD must satisfy the follow-
ing set of admissibility conditions:̂mkuD&50 for anyf ~lo-
cal conservation laws!, and ^“HuD&<0 for any f , where
“H is the gradient ofH in the space of population vector
~local entropy production inequality!. The entropy produc-
tion inequality must become an equality, and theD must
become equal to zero in the case off 5f

eq
. The structure of

the ELBM collision integral~5! can be interpreted as fol
lows. Bare collision integrals are stripped of any relaxat
time parameters, and are merely directions in the spac
populations, pointing toward the change of state in the co
sion update. The parametera defines the maximal step alon
this direction so that the entropy will not decrease. The co
bination (ba)21 is thus the effective relaxation time in th
05631
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fully discrete kinetic picture. It should be stressed@4# that in
order for the ELBM~4! to recover the desired macroscop
equations, entropy functions cannot be taken as arbitrary
should be found by a separate consideration. We shall c
back to this point later on but for the time being the functi
H will remain unspecified.

IV. COLLISION INTEGRAL

As discussed earlier, there is a class of possible collis
integrals from which the desired dynamics can be c
structed. For the purpose of identification of the paramete
the macroscopic dynamics~kinematic viscosity in the presen
case! the BGK approximation is a simple option. Howeve
for any relevantH function, obtaining the equilibrium distri-
bution in an explicit form is a nontrivial problem. This migh
require solving a minimization problem at each time step@7#.
Our idea is to use this potential freedom available in cho
ing the collision integral and construct a collision integral
such a way that ease of identification of the parameter in
single relaxation time is preserved, while explicit knowled
of the corresponding equilibrium is avoided. The method
constructing such a collision integral is described in this s
tion.

In the LBM, derivation of the transport coefficients
done using the Chapman-Enskog method in the vicinity
the local equilibrium. In this derivation, spectral properti
of the linearized collision integral are most important. T
linearization of the ELBM collision integral~5! reads

dD* 5baeqLdf . ~7!

Here L is the linearized bare collision integral, andaeq
5a(f eq) is found upon expanding Eq.~6! at equilibrium to
the first nontrivial~quadratic! order.@Note that a substitution
of f eq into Eq. ~6! does not give an equation foraeq. This is
natural because, by its sense,aeq is a relaxation paramete
which can only be specified by considering deviations fro
equilibrium.# The result reads

aeq52
2^df u““H~ f

eq
!uLdf &

^Ldf u““H~ f
eq

!uLdf &
. ~8!

Here““H(f eq) is theb3b matrix of second derivatives o
the entropy function at equilibrium. Equation~8! suggests
that, in general,aeq has a spectrum of values dependent
the direction along which the equilibrium is approache
However, drastic simplification of Eq.~8! happens ifL has
the projector property:

LL52L. ~9!

In this case, the relaxation parameteraeq becomes indepen
dent of the direction in the kinetic polytope along which t
state relaxes to equilibrium. This is the essence of the SR
which simply says that all theb2n kinetic variables relax to
zero at the same rate. This important property is satisfied
particular, by the linearized bare BGK collision integral, a
it has already been demonstrated elsewhere@8# that in this
caseaeq52.
2-2
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It is important to notice that simplification of the nea
equilibrium dynamics with the projector property~9! con-
cerns solely thelinearizedbare collision integral, but doe
not say anything yet about situations far from equilibriu
There might be many collision integrals which have the sa
property ~9! near equilibrium but are different elsewher
Our goal is therefore to construct a nonlinear SRTM whi
on the one hand, has the desired projector property~9! near
equilibrium ~and thus is equivalent to the linearized BGK!,
and, on the other hand, requires only knowledge of the
tropy function.

In order to construct the SRTM, we first write the opera
L with the property~9! in terms of a given basis of th
kinetic subspacegs :

L52 (
s51

b2n

ugs&^gsu. ~10!

We seek the SRTM within the following family of admis
sible collision integrals:

uD&52 (
s,p51

b2n

ugs&Ksp~ f !^gpu“H&. ~11!

Here Ksp are elements of a positive definite (b2n)3(b
2n) matrix K. The functionsKsp may depend on the popu
lation vector, and any representative of the family~11! is
admissible. A requirement that the linearization of the co
sion integral~11! equalsL ~10! uniquely defines the matrixK
at equilibrium:

K~ f eq!5C21~ f eq!,

Csp~ f eq!5^gsu““H~ f eq!ugp&. ~12!

Finally, we need to extend the the matrixK(f eq) to arbitrary
f . This extension is not unique but we suggest the simp
approach, which amounts to replacingf eq by f in Eq. ~12! to
give

K~ f !5C21~ f !,

Csp~ f !5^gsu““H~ f !ugp&. ~13!

The matrixC( f ) is symmetric and positive definite for anyf
~the last statement follows from the strict convexity of t
entropy function for anyf ). ThenC21 exists for anyf , and
it is straightforward to prove that the resulting matrixK( f ) is
positive definite for anyf . In this case we find the nonlinea
SRTM given by Eqs.~11! and~13!, which is the main result
of our paper. Notice that the matrixK( f ), and all the other
elements in Eq.~11!, are well defined only once the entrop
function is known. For our model,aeq52, and, given that
the entropy functionH is chosen appropriately@4#, all the
derivations of the transport coefficients found by the LBG
model remain valid. Indeed, application of the stand
Chapman-Enskog analysis to the lattice Boltzmann equa
~4! with unspecifiedentropy functionH ~hence, with un-
specified equilibriumf eq) demonstrates that the dissipativ
terms in the macroscopic equations are proportional to
05631
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2b)/(2b) in the case of the entropic SRTM, whereas they
proportional to (t21/2) in the case of the standard LBG
collision integralDBGK52(1/t)@ f 2f eq# ~see Refs.@5,7# for
details of the Chapman-Enskog computation within t
ELBM scheme!. Now, for the macroscopic equations to ha
the required form, in the LBGK scheme the equilibrium h
to be specified@2,3#, whereas in the ELBM scheme the e
tropy function has to be found. For isothermal hydrodyna
ics, such entropy functions has been found in Ref.@4#. In
particular, for the two-dimensional case considered bel
the unique Boltzmann-like entropy function is known@4#
such that its equilibrium reduces to the known LBGK eq
librium ansatz@2# in the limit of low Mach number. There-
fore, the form of the hydrodynamic equations in the lo
Mach number limit is the same for both the models~the
Navier-Stokes equations!. The viscosity coefficient is di-
rectly read off from the well known LBGK result@2# through
the correspondencet2152b, and we have n5cs

2(1
2b)/(2b), wherecs

2 is the sound speed squared.

V. SOLVING ESTIMATION EQUATION
FOR THE ENTROPY

The next important point concerns solving the nonline
equation~6!. Because the entire ELBM is largely based
convexity of the entropy function, and also because work
with Boltzmann-likeH functions does not permit any non
positivity of populations, it is desirable to avoid methods th
do not respect positivity and convexity. Our approach
based on a two-side estimate of the location of the nontri
root of Eq. ~6!. The upper boundamax.0 is the minimal
solution to the equationsf i1aD i50, D i,0. In geometrical
terms,amax corresponds to the point on the boundary of t
kinetic polytope where the rayf (a)5f 1aD,

a>0, intersects
the boundary. Construction of the lower boundamin was
based on earlier general studies of the initial layer problem
dissipative kinetics@11,12#. Specifically, we consider anothe
nonlinear equation:

^“H~ f 1aD!uD&50. ~14!

In geometrical terms, the unique solution to this equati
amin , defines the population vectorf min5f 1aminD, which is
the minimum entropy state on the rayf (a). Indeed, the mini-
mum condition is the tangency point of the ray to a level
entropy function, which is precisely statement~14!. The non-
trivial solution to Eq. ~6! is strictly in the interval
@amin ,amax#. In order to evaluateamin , we have applied the
quasi-Newton method of Ref.@11# which guarantees succes
sive approximationsamin

(n) , n51, . . . , and for alln it is valid
that 0,amin

(n) <amin . Moreover, the first approximationamin
(1)

is known analytically@see Ref.@11#, Eq. ~9!#. Therefore, we
have used this estimate, which guarantees that the solutio
located strictly inside the interval@amin

(1) ,amax#. Starting with
this estimate, the bisection method is implemented, wh
guarantees that positivity of populations will not be violate
2-3
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VI. CHOICE OF THE H FUNCTION

For any dynamics anH function can be constructed usin
the concept of minimization of the entropy under constrain
In the case of isothermal hydrodynamics the local equi
rium must obey the constraints of mass and momentum c
servation@Eq. ~1! and Eq.~1!#. For the sake of completenes
we shall recall here the major steps of the derivation for
nine-velocity lattice@4#. For this case theH function to be
minimized under the constraints is

H5(
l 50

8

hl~ f l !, ~15!

wherehl , l 50, . . . ,8, are the set ofnine a priori unknown
convex functions. By using the symmetry of the nin
velocity lattice the number of the unknown functions can
reduced to three functionsh0 , h1, andh2 corresponding to
velocities with magnitudes 0, 1, and 2, respectively. Thus

H5h01(
l 51

4

h1~ f l !1(
l 55

8

h2~ f l !. ~16!

We seek anH function such that its minimumf eq subject to
the hydrodynamic constraints@Eq. ~1! and Eq.~1!# satisfies
the relation for the pressure tensor

(
i 51

b

ciacib f i
eq5ruaub1rcs

2dab , ~17!

wherecs is the speed of sound, which is a free parameter
the time being. Here for the sake of clarity we have used
component notation. This statement of the problem leads
set of nonlinear functional equations. In order to solve th
equations approximately, we require that Eq.~17! is satisfied
05631
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up to second order inlacia . Here la (a51,2,3) are
Lagrange multipliers corresponding to constraints. The
sulting set of differential equations~rather than functional
equations! have a solution only if we takecs

251/3. The en-
tropy function after solving this set of equations@4# is

H5 f 0 lnS f 0

8 D1(
l 51

4

f l lnS f l

2 D1(
l 55

8

f l ln~2 f l !. ~18!

As l2;u4, this solution will satisfy Eq.~17! to the order
O(u4) only. Thus the pressure tensor is accurate up to fou
order only. To be specific, the equilibrium pressure tensor
the form

Pab
eq 5ruaub1rcs

2dab1Pab8 , ~19!

where Pab8 is a nonisotropic tensor of orderu4, the Mach
numberM5u/cs, and the sound speedcs51/A3. The effec-
tive scalar pressure is a function ofu4, in the present case
This u4 dependence is not surprising. It has been dem
strated in Ref.@4# that expansion of the local equilibrium o
the entropy function~18! to the orderu2, neglecting all the
higher order terms inu, results in the polynomial local equi
librium of the nine-velocity~D2Q9! model of Ref.@2# with
the equilibrium pressure tensor

Pab
eq 5ruaub1rcs

2dab . ~20!

Thus, after neglecting higher order terms inu, the method is
identical to the LBGK method with zero velocity@2#, with
which we compare the present algorithm in the next sect

VII. SOME NUMERICAL RESULTS

We have implemented the present scheme for the t
dimensional nine-velocity lattice, using the entropy functi
TABLE I. Location of vortex centers.

Primary vortex Lower left vortex Lower right vortex
Re Reference (cmax,X,Y) (cmax,X,Y) (cmax,X,Y)

400 @13#a (0.1121,0.5608,0.6078) (21.3031025,0.0549,0.0510) (26.1931024,0.8902,0.1255)
@14# (0.1136,0.5563,0.6000) (21.4631025,0.0500,0.0500) (26.4531024,0.8875,0.1188)
@15# (0.1139,0.5547,0.6055) (21.4231025,0.0508,0.0469) (26.4231024,0.8906,0.1250)
@16# (0.1130,0.5571,0.6071) (21.4531025,0.0500,0.0429) (26.4431024,0.8857,0.1143)

Present workb (0.1127,0.5573,0.6049) (21.231025,0.0392,0.0353) (26.0931024,0.8854,0.1215)
1000 @13#a (0.1178,0.5333,0.5647) (22.2231024,0.0902,0.0784) (21.6931023,0.8667,0.1137)

@14# (0.1173,0.5438,0.5625) (22.2431024,0.0750,0.0813) (21.7431023,0.8625,0.1063)
@15# (0.1179,0.5313,0.5625) (22.3131024,0.0859,0.0781) (21.7531023,0.8594,0.1094)
@16# (0.1160,0.5286,0.5643) (22.1731024,0.0857,0.0714) (21.7031023,0.8643,0.1071)

Present worka (0.1178,0.5338,0.5648) (22.1631024,0.08550,0.0797) (21.6731023,0.8654,0.1149)
Present workb (0.1178,0.5338,0.5675) (22.1831024,0.0882,0.0797) (21.6831023,0.8654,0.1149)

5000 @13#a (0.1214,0.5176,0.5373) (21.3531023,0.0784,0.1373) (23.0331023,0.8078,0.0745)
@14# (0.0921,0.5125,0.5313) (21.6731023,0.0625,0.1563) (25.4931023,0.8500,0.0813)
@15# (0.1190,0.5117,0.5352) (21.3631023,0.0703,0.1367) (23.0831023,0.8086,0.0742)

Present workb (0.1204,0.5175,0.5350) (21.3431023,0.0773,0.136) (23.031023,0.8056,0.07160)

aM50.1732.
bM50.1299.
2-4
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Eq. ~18!. The six-dimensional kinetic subspace has been
scribed in terms of the standard basis given by d’Humie`res
@10#. Inversion of the 636 matrixC, Eq.~13!, has been done
analytically.

In the first set of numerical experiments, we have sim
lated lid driven cavity flow using the present method. Loc
tions of the vortex centers as computed by the pres
method are compared with previous work@13–16# in Table I
and Table II. The grid size used in the present simulation
3203320, which is comparable to the grid size used in p
vious computations with the standard LBGK method~the
D2Q9 model! @13#. As in previous works, the Reynolds num
ber is defined by the relation Re5VL/n, whereV is the lid
velocity, L is the length of the box, andn is the kinematic
viscosity. The stream function for Re51000 and Re55000 is
shown in Fig. 1 and Fig. 2, respectively. The comparis
~Table I and Table II! demonstrates the ability of the metho
to give accurate results over a wide range of Reynolds n
ber.

In order to study the stability of the method, we ha
performed high Reynolds number simulations with a mu
smaller grid size. It was found that the present method
perform simulations at arbitrary low values of the viscos
~thus, high Reynolds number! without any numerical insta
bility. For example, on a lattice of size 1003100 the LBGK

TABLE II. Location of upper left vortex.

Upper left vortex
Re Reference (cmax,X,Y)

5000 @13# (21.4631023,0.0625,0.9102)
@14# (21.4031023,0.0667,0.9059)

Present work (21.4031023,0.0664,0.9090)

FIG. 1. Stream function for Re51000 in a simulation of lid
driven cavity flow. Parameters used are grid size 3203320; lid
velocity V50.075 (M50.1299). All quantities are given in dimen
sionless units.
05631
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method is unstable for a Reynolds number of 5000 for
velocity of lid V50.1 (M50.1732) @13,17#. However, the
present method was stable even for much coarser grids. O
lattice of size 60360, we performed the simulation up t
Re55000 with the velocity of the lid V50.075 (M
50.1299). The result~see Fig. 3! shows that the large scal
flow patterns are calculated with acceptable accura
whereas the resolution of the smaller scale flow pattern
not possible on this coarse grid. This can be attributed to
following facts.

FIG. 2. Stream function for Re55000 in a simulation of lid
driven cavity flow. Parameters used are grid size 3203320; lid
velocity V50.075 (M50.1299). All quantities are given in dimen
sionless units.

FIG. 3. Stream function for Re55000 in a simulation of lid
driven cavity flow on a coarse grid. Parameters used are grid
60360; lid velocity V50.075 (M50.1299). All quantities are
given in dimensionless units.
2-5
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~1! The lattice is too coarse to resolve the small sc
phenomena. This is the reason why the vortices at the
ners are more difficult to resolve and the stream funct
calculated by numerical integration of the velocity is n
smooth.

~2! Another problem, again related to resolution, is t
large spatial variation of all the quantities in the simulati
of high Reynolds number flow on a coarse grid. This pro
lem can be avoided by using higher order spatial discret
tion schemes for the convection of the distribution functi
@17#.

Decreasing the Mach number results in a more accu
implementation of the incompressibility condition~see Table
III !. In order to quantify the effect of the compressibility, th
mean density and the mean variation of the density are
fined as in Ref.@13#:

r̄5

E rdx

E dx
, ~21!

Dr5
1

r̄AE ~r2 r̄ !2dx

E dx
. ~22!

Density fluctuations~see Table III! are found to be of the
same order of magnitude as in the D2Q9 model@13#. How-
ever, the effect of Mach number on the magnitude of
stream function is very small due to the low Mach numb
used in the lattice Boltzmann method~see the data from the
Re51000 simulation for two different Mach numbers pr
sented in Table I!.

In another numerical experiment, the method was ext
sively tested in setup of the two-dimensional Poiseuille flo
and compared to the standard LBGK~D2Q9! model@1,2#. A
lattice with 11311 nodes was used, with standard boun
back boundary conditions and standard implementation
the pressure drop@18#. The time evolution of the profile is
demonstrated in Fig. 4.

As in the LBGK method without zero velocity and th
lattice gas method@3#, one can expect that the resulting de
sity distribution in the case of channel flow simulation wi
the present method will have a higher value at the cente
the channel where the magnitude of the velocity is high
However, this analogy is not complete in the sense that w
the error in density in the present case will be of orderu4, it
is of orderu2 in the lattice gas or LBGK model without zer
velocity. In the simulation we observe that the error due
the bounce-back condition is much larger compared to

TABLE III. Mean density fluctuation.

Size Re M Dr

3203320 1000 0.1732 1.463731023

3203320 1000 0.1299 8.543931024
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O(u4) error inherent in the stress tensor~19! ~although the
absolute value of the error is quite small!. Thus, apart from
the error at the boundary, we do not see any other signific
error in the density in computations with larger lattices, a
on the smaller lattices also the absolute value of the erro
quite small~see Fig. 5!.

For the same setup as the Poiseuille flow, the stability
both schemes has been investigated with respect to var
perturbations. In the first set of tests, nonhydrodynamic p
turbations were used, keeping the velocity at each node
tact. In particular, populations at all the nodes were pertur
by a small random amount in the same way as was propo
in Ref. @19# for fluctuating hydrodynamics. However, in ou
case the noise was switched on only at one fixed timet0,
typically after the velocity profile has developed up to
steady state~parabolic! shape. In another set of tests, th
fully developed velocity profile was perturbed by adding
small amount of velocity at each node, at timet0, in a way
consistent with the boundary conditions and respecting
incompressibility. In particular, the following perturbation
have been used~the origin of the coordinate system is at th
central node at the inlet, and the reducedx coordinate21
<x<1 is taken across the channel!:

d~ruy!50.005uymax sin~vpy!,

d~rux!520.005vpxuymax cos~vpy!, ~23!

for all the nodes except for the bounce-back nodes. On
nodes where the bounce-back has been applied, the pert

FIG. 4. Development of the velocity profile in Poiseuille flow
Reduced velocityUy(x)5uy /uymax

is shown versus reduced coo
dinate across the channelx. Solid line: analytic solution. Different
lines correspond to different instants of the reduced timeT
5(nt)/(4R2), increasing from bottom to top. Here,R is the half-
width of the channel. Symbols: simulation with the present ELB
algorithm. Parameters used are viscosityn55.001531025 (b
50.9997); steady state maximal velocityuymax

51.1021731022;
Reynolds number Re51157. All quantities are given in dimension
less units.
2-6
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tion has been set equal to zero,d(ruy)5d(rux)50. Pertur-
bations of this type are used quite often in computatio
fluid dynamics@20#.

In both the tests, the excess total kinetic energyDE(t)
5( r@u2(r,t01t)2u2(r,t0)# was monitored fort>t0. The
results are presented in Fig. 6~random perturbation! and Fig.
7 ~velocity perturbation!. The present scheme demonstra

FIG. 5. The error in the density profile in the case of Poiseu
flow. Relative error from the initial density (r0) versus the reduced
coordinate across the channelx is plotted for two different lattice
sizes (N515 andN535). Parameters used are viscosityn51.685
31022 (b50.99); steady state maximal velocityuymax

56.68
31023; reduced timet50.5. All quantities are given in dimension
less units.

FIG. 6. Time behavior of the excess kinetic energyDE after a
random perturbation in the population.~a! ELBM, n58.3752
31024 (b50.995), uymax

51.805931023. ~b! LBGK, n58.3752
31024 (b50.995),uymax

51.805 92531023. The curve terminates

after overflow att'105. All quantities are given in dimensionles
units. The excess total kinetic energyDE(t)5( r@u2(r,t01t)
2u2(r,t0)# has been monitored fort.t0.
05631
l
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the decay of the excess kinetic energy and the return to
unperturbed velocity profile fornmin

ELBM>1025 ~the minimum
viscosity we used in our tests!, whereasuDEu grows in the
LBGK scheme, resulting in ultimate numerical overflow f
nmin

LBGK,1023. The present algorithm is unconditionall
stable, and for arbitrary low values of the viscosity nev
runs into overflow. The implementation of the present mo
for different flow conditions will be reported elsewhere.

In all the computations with our model, it was found th
the hydrodynamic regime sets in rapidly, that is, the act
computed parametera very rarely deviates significantly
from its equilibrium valueaeq52, On the other hand this
value is neverexactly 2 ~within machine precision!, and
switching off the computation ofa at each time step by
setting it equal toaeq is not possible. The present SRTM
with fixed a52 is a ‘‘transient’’ model between the entrop
LBM and the LBGK: It operates with a fixed relaxation tim
but the equilibrium distribution is not yet approximated b
the quadratic form; rather, the full entropy-based collisi
matrix is used. It is not very surprising that this fixation
the relaxation time results in a violation of theH theorem,
and leads to numerical overflow, although at values of v
cosity lower than in the LBGK scheme. Thus, computati
of the parametera is indeed necessary.

VIII. COMPUTATIONAL COST AND CONVERGENCE
OF THE SCHEME

The method of implementation for the entropy estima
described above is quite general. The method can be im
mented for any entropy function. However, near local eq
librium a should be very close to 2. This information is us
to refine the root solver by using a combination of t
Newton-Raphson method and the bisection method@21#.

FIG. 7. Time behavior of the excess kinetic energyDE after the
velocity perturbation~23! with v53. ~a! ELBM, n51.683 502
31023 (b50.99), uymax

55.390 5531023. ~b! LBGK, n

51.683 50231023 (b50.99), uymax
55.390 5531023. All quanti-

ties are given in dimensionless units. The excess total kinetic en
DE(t)5( r@u2(r,t01t)2u2(r,t0)# has been monitored fort.t0.
2-7
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With this modification, the solver usually converges to t
root in approximately 10 iterations. This minimizes comp
tational overhead for solving the nonlinear equation.

In general, the ELBM has to perform two extra steps
comparison to the LBGK scheme. The first step is the co
putation of the bare collision integral, Eq.~13!. The second
step is to solve the nonlinear equation~6!. Both of these
operations scale linearly with the number of lattice nodes

On a Sun workstation for a grid size of 21321 doing
10, 000 time steps with the present scheme took around
s while with the BGK scheme the time involved was arou
13 s. A BGK simulation of 10,000 time steps for a grid si
of 63363 took around 120 s. Thus, the present scheme i
order of magnitude slower compared to the BGK method
the present scheme around 80% of the time is spent eva
ing the collision operator. Notice that the collision matrix
the standard LBGK scheme is diagonal and any impro
ment over the LBGK method has to deal at least with eva
ation of a collision matrix of size (b2M )3(b2M ). HereM
is the number of conservation laws. One such example is
recently proposed method@6# based on a linear stability
analysis. On the other hand, the time required to solve for
entropy estimates contributes only around 5–10 % to the
tal computation time. This shows that the idea of solving
entropy estimation equation at each time step to ensure thH
theorem is computationally not a very heavy burden. T
can be implemented easily in an efficient way. Howev
further progress is needed to reduce the computational
involved in the calculation of the collision step.

IX. CONCLUSION AND OUTLOOK

In this paper, we have introduced a single relaxation ti
model for the lattice Boltzmann method based on the entr
function. This model is quite general, and it circumvents d
ficulties in finding equilibria for the ELBM@7#. The above
analysis contributes to the development of the lattice Bo
mann method as the minimal, self-consistent Boltzmann
tt.
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netic theory, equipped with theH theorem, and with a real
izable collision integral.

After demonstrating that it is viable to incorporate theH
theorem into lattice Boltzmann simulations, the focus of t
entropic lattice Boltzmann model shifts back to the proble
of derivation of entropy functions with tailored propertie
The earlier approach@4# based on solving functional equa
tions becomes tedious when the number of constraints g
up, as in the case of the thermal LBGK scheme, for exam
Therefore, one needs to think of other possible approache
derivation of theH function for the thermal case. One po
sible approach might be based on a modification of the d
vation of the lattice Boltzmann method from the continuo
Boltzmann equation@22#. Indeed, this derivation is based o
Grad’s moment method@23#, together with the Gauss
Hermite quadrature in velocity space. A different but al
well known technique of continuous kinetic theory, close
related to Grad’s method, is a velocity polynomial expans
of ln f ~rather than a velocity polynomial expansion of th
distribution functionf, as in Grad’s method! @24,25#. This
method, known as the quasiequilibrium approximation~see,
e.g., @26#!, is consistent with Boltzmann’sH theorem: If
ln f* (M,v) is the approximation, whereM are the coefficients
in front of the velocity polynomials, then theH function is

H~M !5E ln f * ~M ,v!exp$ ln f * ~M ,v!%dv.

Evaluation of this expression with the help of a quad
ture is a promising source ofH functions for lattice models.
This point needs further study, which is left for future wor
It should also be mentioned that the quasiequilibrium
proximation has recently begug to be exploited system
cally for complex fluids such as flexible and liquid crysta
line polymer solutions@27#. A combination of quadrature
evaluation with these developments may contribute to de
opment of the lattice Boltzmann method for viscoelas
models where the direct approach based on the Boltzm
equation remains problematic@28#.
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