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Single relaxation time model for entropic lattice Boltzmann methods
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For lattice Boltzmann methods based on entropy functions, we derive a collision integral which enables
simple identification of transport coefficients, and which circumvents construction of the equilibrium. Imple-
mentation of the two-dimensional hydrodynamics demonstrates considerable increase of stability with respect
to conventional lattice Boltzmann schemes.

DOI: 10.1103/PhysReVE.65.056312 PACS nunierd7.11+j, 05.70.Ln

I. INTRODUCTION [4]. While the potential richness of these families may be
important, it is sometimes crucial to have the simplest, single
The lattice Boltzmann methodL.BM) is a useful ap- relaxation time models because identification of transport co-
proach to simulation of complex macroscopic phenomena igfficients is then straightforward. To the best of our knowl-
Spatia”y extended systems such as hydrodynah]_[bgn the edge, construction of a SRTM different from the BGK ap-
LBM, macroscopic equations are not addressed directly by a_roxi_mation has never been addr(a_gsgd in _classical conti_nuous
conventional discretization procedure, rather, “enveloping,”kinetic theory[when the local equilibrium is known explic-
fully discrete kinetic models are constructed in such a waytly (the local Maxwellia, there is simply no demand for
that (i) their long time, large scale limit matches the macro-that.
scopic dynamics in question, arid) they are easily imple- In this paper, we construct a single relaxation time model
mented numerically. In its present and mostly used form, théor the ELBM. This SRTM does not require explicit knowl-
LBM is based Or(|) a po'ynomia| ansatz with tailored prop- edge of the local equ|l|br|um but the identification of the
erties for the local equilibrium, andi) a single relaxation transport coefficients remains as simple as before. We con-
time model(SRTM) for the relaxation(collision) term. The sider a realization of the ELBM for two-dimensional isother-
SRTM has been borrowed from the well known Bhatnagarmal hydrodynamics, demonstrating a considerable gain in
Gross-Krook approximation of the Boltzmann collision inte- Stability with respect to the classical LBGK method.
gral of classical kinetic theory. The resulting method is
known as the LBGK mod€2,3]. Il. OVERVIEW OF THE METHOD
However, in spite of impressive evidence of successful
application of the LBM[1], the method is still in the devel- ~In the LBM setup, one considers populatidn®f discrete
opment phase. One of the demanding problems, recognizeatlocitiesc;, wherei=1, . .. b, at discrete time. The set of

by many authors, is that of numerical instability,4 7. velocitiesc is represented by the links of a regular lattice at

It has been d|scu_s_sed for some time in _the Ilterat_ureeach lattice site, and it may also include a zero vector. It is
[1,4,5,7 that the stability of the LBM could be improved if convenient to introducé-dimensional population vectofs
the method could be based on an analog of the Boltznkann  <b . -

. R and we setx|y)=={_,x;y;. Local hydrodynamic variables
theorem. Theoretical progress in this direction has recentlx/I herek— 1 dn<b defined at h latti
been achieve{4,8]. The essence of this work is as follows: " K’ where » ++ - My andn=<D, are detined a e_ac é Ice
(i) To construct entropy functions whose local equilibriasne,Mk(r)zfmk“(r)% wherem, are corresponding micro-
have the desired properties rather than constructing the0pic densities. In the particularly important case of the
equilibria approximately, andi) to implement the discrete- isothermal hydrodynam|c§ considered below, the micro-
time H theorem for these entropy functions through consid-scopic densities ar& and ¢, while the local hydrodynamic
eration of pairs of states with equal entropy, and introductiorvariables are
of state-dependeriand hence variablgelaxation times. Al-
though these results are relatively recent, tests have demon- p=(1f), D
strated the unconditional stability of this class of lattice Bolt-
zmann model$ELBM hereaftey [5,7].

With the entropy-based approach to constructing the lat-
tice Boltzmann models, a different set of problems arises, . . .
The most challenging of them is to answer the question:vecmrs qrthogonal ton, are conveniently described in terms
How to implement a single relaxation time model in the Of & basisgs wheres=1, ... b—n, and(gd|gy)= s, (the

framework of the ELBM? Indeed, in many cases, implemenKinetic subspade Nonhydrodynamic variablegg|f) corre-

tation of the ELBM with the BGK collision integral might SPOnd to higher-order moments in the context of classical
require numerical evaluation of local equilibfi@]. On the Kinetic theory. The basic equation to be solved is
other hand, wide families of admissible collision models can 1

be introduced once the entropy functional is known, which - > b e

. . S - +ct+1)— =—— — .
circumvent construction of the local equilibrium explicitly fret+1)=f(r.t) ZT[f(r’t) P o] ©

pu=(clf). @
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Then a quadratic form for the equilibrium distribution dis- fully discrete kinetic picture. It should be stresqdd that in
tribution functionf®®is used, which reproduces the Navier- order for the ELBM(4) to recover the desired macroscopic
Stokes equation up to the ord®M?). HereM is the Mach  equations, entropy functions cannot be taken as arbitrary but
number andr is a parameter related to the viscosity. How- should be found by a separate consideration. We shall come
ever, this approach of constructing the equilibrium distribu-back to this point later on but for the time being the function
tion as a way to get back the Navier-Stokes equation witiH will remain unspecified.
desired accuracy does not guarantee obeyingrttieeorem.

IV. COLLISION INTEGRAL

IIl. ENTROPIC LATTICE BOLTZMANN EQUATION . . . . ..
Q As discussed earlier, there is a class of possible collision

In the entropic lattice Boltzmann method another ap-integrals from which the desired dynamics can be con-
proach is taken to ensure tté theorem for discrete time. structed. For the purpose of identification of the parameter of
The basic idea is to construct &hfunction relevant to the the macroscopic dynamiékinematic viscosity in the present
dynamics considered and then obtain the full dynamics frontase the BGK approximation is a simple option. However,
the knowledge of théd function. The whole construction of for any relevantd function, obtaining the equilibrium distri-
the ELBM is based on the convex nature of Héunction. If ~ bution in an explicit form is a nontrivial problem. This might
the functionH is Boltzmann-like(the case considered be- require solving a minimization problem at each time $tép
low), then it is defined in the domain of non-negative popu-Our idea is to use this potential freedom available in choos-
lation vectors. Non-negative population vectors with fixeding the collision integral and construct a collision integral in
values of the hydrodynamic variables but different in thesuch a way that ease of identification of the parameter in the
nonhydrodynamic variables form the phase space of thsingle relaxation time is preserved, while explicit knowledge
model(the kinetic polytopg The description of kinetic poly- of the corresponding equilibrium is avoided. The method of
topes is an interesting problem of linear programming inconstructing such a collision integral is described in this sec-
itself, studied recently in the context of the ELBM], and  tion.
greatly studied in the closely related context of chemical ki- In the LBM, derivation of the transport coefficients is
netics[9], where it is known as the reaction polytope. Fi- done using the Chapman-Enskog method in the vicinity of
nally, the local equilibrium population vectér' is the mini-  the local equilibrium. In this derivation, spectral properties
mizer of the entropy functiomd subject to fixed values of qf thg Imganzed collision mtegral are most important. The
local hydrodynamic variables. The generic ELBM is basedinearization of the ELBM collision integrab) reads
on the following kinetic equation: SA* = Bargd. 5 . )

f(ret+1)—f(r,n=A*f"0]. (4) Here L is the linearized bare collision integral, ang.,
Here the left hand side is the conventional discrete free- @(fed iS found upon expanding E¢6) at equilibrium to

propagation, while the right hand side is the ELBM collision the Zir_st nontrivial(quadrati¢ prder.[Note t.hat a substitut?on

integral: of f¢%into Eq. (6) does not give an equation fareq. This is
natural because, by its sensg, is a relaxation parameter

A* = Ba[f(r,)]A[f(F,1)]. (5)  Which can only be specified by considering deviations from

equilibrium] The result reads

In this expression, the parametgris fixed in the interval .

[0,1], and « is the scalar function of the population vector. 2(5F[VVH(f™)|L6F)

The functiona ensures the discrete tinté theorem, and is Xeq™ (Lot [VVH(FD|LoF) (8)

the nontrivial root of the scalar nonlinear equation

Here VVH(f®9 is thebXxb matrix of second derivatives of
the entropy function at equilibrium. EquatigB) suggests
that, in generalpq has a spectrum of values dependent on
the direction along which the equilibrium is approached.
However, drastic simplification of Eq8) happens ifL has
the projector property:

H(f)=H(f + aA[f]). (6)

Finally, thebare collision integralA must satisfy the follow-
ing set of admissibility conditiongm,|A)=0 for anyf (lo-
cal conservation laws and (VH|A)<O0 for any f, where
VH is the gradient oH in the space of population vectors
(local entropy production inequality The entropy produc- LL=—L. 9)

tion inequality must become an equality, and themust

become equal to zero in the casefeff " The structure of In this case, the relaxation parametey, becomes indepen-
the ELBM collision integral(5) can be interpreted as fol- dent of the direction in the kinetic polytope along which the
lows. Bare collision integrals are stripped of any relaxationstate relaxes to equilibrium. This is the essence of the SRTM,
time parameters, and are merely directions in the space afhich simply says that all the—n kinetic variables relax to
populations, pointing toward the change of state in the collizero at the same rate. This important property is satisfied, in
sion update. The parameterdefines the maximal step along particular, by the linearized bare BGK collision integral, and
this direction so that the entropy will not decrease. The comit has already been demonstrated elsewti8tehat in this
bination (Ba) ! is thus the effective relaxation time in the caseaegq=2.

056312-2



SINGLE RELAXATION TIME MODEL FOR ENTROPIC . .. PHYSICAL REVIEW B55 056312

It is important to notice that simplification of the near- —B)/(28) in the case of the entropic SRTM, whereas they are
equilibrium dynamics with the projector propert9) con-  proportional to ¢—1/2) in the case of the standard LBGK
cerns solely thdinearizedbare collision integral, but does collision integralAggx= — (1/7)[f — 9] (see Refs|5,7] for
not say anything yet about situations far from equilibrium.details of the Chapman-Enskog computation within the
There might be many collision integrals which have the samé&LBM schemeé. Now, for the macroscopic equations to have
property (9) near equilibrium but are different elsewhere. the required form, in the LBGK scheme the equilibrium has
Our goal is therefore to construct a nonlinear SRTM whichto be specified2,3], whereas in the ELBM scheme the en-
on the one hand, has the desired projector prop@tyear tropy function has to be found. For isothermal hydrodynam-
equilibrium (and thus is equivalent to the linearized BGK ics, such entropy functions has been found in Réf. In
and, on the other hand, requires only knowledge of the enparticular, for the two-dimensional case considered below,
tropy function. the unique Boltzmann-like entropy function is knov]

In order to construct the SRTM, we first write the operatorsuch that its equilibrium reduces to the known LBGK equi-
L with the property(9) in terms of a given basis of the librium ansatz2] in the limit of low Mach number. There-
kinetic subspace;: fore, the form of the hydrodynamic equations in the low

ben Mach number limit is the same for both the modéilse
Navier-Stokes equatiopsThe viscosity coefficient is di-
L=- 5241 |95)(gsl- (10 rectly read off from the well known LBGK resul2] through
the correspondencer =28, and we have v=c§(1
We seek the SRTM within the following family of admis- — g)/(2), wherec? is the sound speed squared.
sible collision integrals:

b—n
__ V. SOLVING ESTIMATION EQUATION
) S,p2=1 195K splF)(Gpl VH). @y FOR THE ENTROPY
Here K, are elements of a positive definitdn)x (b The next important point concerns solving the nonlinear

—n) matrix K. The functionsK s, may depend on the popu- equatio_n(6). Because the entire ELBM is largely based on
lation vector, and any representative of the fam(ly) is  CONVeXity of the entropy function, and also because working
admissible. A requirement that the linearization of the colli-With Boltzmann-likeH functions does not permit any non-

sion integral11) equals. (10) uniquely defines the matrik ~ POSItIVity of populations, it is desirable to avoid methods that

at equilibrium: do not respect p_ositivit_y and convexity._ Our approach _is
based on a two-side estimate of the location of the nontrivial

K(feh=C 1(fe9), root of Eq.(6). The upper boundyy,>0 is the minimal

solution to the equation§+ «A;=0, A;<<0. In geometrical
Cop(F)=(gs| VVH(f*9|gp). (120  terms,apma COrresponds to the point on the boundary of the

kinetic polytope where the raff@=""** 4=0, intersects

Finall'y, we ”e‘?‘d o extend _the the mathf®) to arbitre}ry e boundary. Construction of the lower boung,, was

f. This ehxter;]s_m;]n IS notturllque FUt. webSL:cg_geét thf;ltmples?ased on earlier general studies of the initial layer problem in
approach, which amounts o rep acifiby f in Eq. (12) to dissipative kinetic$11,12. Specifically, we consider another
give nonlinear equation:

K(f)=C (1),
Cop()=(gd VVH(1)[gp). (13) (VH(f +ad)[4)=0. (14

The matrixC( f) is symmetric and positive definite for afy ) ) ) _ )
(the last statement follows from the strict convexity of the!n geometrical terms, the unique solution to this equation,
entropy function for any). ThenC™* exists for anyf, and ~ @min, defines the population vectdgn=f + amnA, which is

it is straightforward to prove that the resulting matif) is  the minimum entropy state on the ré{f”. Indeed, the mini-
positive definite for any . In this case we find the nonlinear Mum condition is the tangency point of the ray to a level of
SRTM given by Eqs(11) and(13), which is the main result €ntropy function, which is precisely statemehd). The non-

of our paper. Notice that the matri(f), and all the other trivial solution to Eq. (6) is strictly in the interval
elements in Eq(11), are well defined only once the entropy [ @min.@max- In order to evaluatery,,, we have applied the
function is known. For our modeky,=2, and, given that guasi-Newton method of Reff11] which guarantees succes-
the entropy functiorH is chosen appropriatelj4], all the  Sive approximations{y,, n=1, ..., and for ali it is valid
derivations of the transport coefficients found by the LBGK that O<a$ﬂ?nsamm. Moreover, the first approximatioa%i)n
model remain valid. Indeed, application of the standards known analyticallyfsee Ref[11], Eq. (9)]. Therefore, we
Chapman-Enskog analysis to the lattice Boltzmann equatiohave used this estimate, which guarantees that the solution is
(4) with unspecifiedentropy functionH (hence, with un- located strictly inside the interv@bzfﬁi)n,amax]. Starting with
specified equilibriumf *% demonstrates that the dissipative this estimate, the bisection method is implemented, which
terms in the macroscopic equations are proportional to (Quarantees that positivity of populations will not be violated.
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VI. CHOICE OF THE H FUNCTION up to second order im,cj,. Here \, («=1,2,3) are

Lagrange multipliers corresponding to constraints. The re-

For any dynaml.cs.ahllfuncnon can be constructed using sulting set of differential equationgather than functional
the concept of minimization of the entropy under constralntsé ations have a solution only if we take?=1/3. The en-
In the case of isothermal hydrodynamics the local equilib- quati av utio yrw s”

opy function after solving this set of equatiof is

rium must obey the constraints of mass and momentum corff

servation Eq. (1) and Eq.(1)]. For the sake of completeness, f 4 f 8
we shall recall here the major steps of the derivation for the H=f, In 9 +> fIn 2 +> f,In(2f). (19
nine-velocity lattice[4]. For this case théd function to be 8/ =1 2] =5

minimized under the constraints is . . . .
As \%~u?, this solution will satisfy Eq.17) to the order

8 O(u* only. Thus the pressure tensor is accurate up to fourth
H= E h(f)), (15 order only. To be specific, the equilibrium pressure tensor has
=0 the form
whereh;, 1=0, ...,8, are the set afinea priori unknown Pi%:puauﬂ+p0§§aﬁ+ Pls (19)

convex functions. By using the symmetry of the nine-
velocity lattice the number of the unknown functions can bewhere P, ; is a nonisotropic tensor of order*, the Mach
reduced to three functiorisy, h,, andh, corresponding to  numberM = u/c,, and the sound speed=1/y/3. The effec-
velocities with magnitudes 0, 1, and 2, respectively. Thus, tive scalar pressure is a function of, in the present case.
This u* dependence is not surprising. It has been demon-
strated in Ref[4] that expansion of the local equilibrium of
the entropy functior(18) to the orderu?, neglecting all the
higher order terms i, results in the polynomial local equi-
We seek arH function such that its minimurfi®® subject to  librium of the nine-velocity(D2Q9 model of Ref.[2] with

the hydrodynamic constrainf&g. (1) and Eq.(1)] satisfies  the equilibrium pressure tensor

the relation for the pressure tensor

4 8
H=ho+ 2, hy(f)+ 2, hy(f)). (16

PS%=pU g+ pCid,g. (20)

Thus, after neglecting higher order termsuinthe method is
identical to the LBGK method with zero velocify2], with

) o which we compare the present algorithm in the next section.
wherec, is the speed of sound, which is a free parameter for

the time being. Here for the sake of clarity we have used the
component notation. This statement of the problem leads to a
set of nonlinear functional equations. In order to solve these We have implemented the present scheme for the two-
equations approximately, we require that ELy?) is satisfied dimensional nine-velocity lattice, using the entropy function

b
Zl Ciaciﬁfi(eq:puauﬂ—i_pcg(saﬁy (17)

VIl. SOME NUMERICAL RESULTS

TABLE |. Location of vortex centers.

Primary vortex Lower left vortex Lower right vortex

Re REference ‘&maerxY) (’/jmaxvxvY) (wmaxver)
400 [13]2 (0.1121,0.5608,0.6078) —(1.30x 107°,0.0549,0.0510) £6.19x1074,0.8902,0.1255)
[14] (0.1136,0.5563,0.6000) —(1.46x 107°,0.0500,0.0500) £6.45<10°4,0.8875,0.1188)
[15] (0.1139,0.5547,0.6055) —~(1.42<1075,0.0508,0.0469) £6.42<10°4,0.8906,0.1250)
[16] (0.1130,0.5571,0.6071) —(1.45x 10 °,0.0500,0.0429) £6.44x10 4,0.8857,0.1143)
Present work (0.1127,0.5573,0.6049) —~(1.2x107°,0.0392,0.0353) £6.09<10 4,0.8854,0.1215)
1000 [13]2 (0.1178,0.5333,0.5647) ~(2.22x10°4,0.0902,0.0784) £1.69<10 %,0.8667,0.1137)
[14] (0.1173,0.5438,0.5625) —~(2.24x104,0.0750,0.0813) £1.74<103,0.8625,0.1063)
[15] (0.1179,0.5313,0.5625) —~(2.31x1074,0.0859,0.0781) €1.75<1072,0.8594,0.1094)
[16] (0.1160,0.5286,0.5643) ~(2.17x1074,0.0857,0.0714) €1.70<107%,0.8643,0.1071)

Present work
Present work

(0.1178,0.5338,0.5648)
(0.1178,0.5338,0.5675)

~(2.16x10*,0.08550,0.0797)
~(2.18x1074,0.0882,0.0797)

£1.67x 10 2,0.8654,0.1149)
£1.68x 10 2,0.8654,0.1149)

5000 [132 (0.1214,0.5176,0.5373) —<1.35x 10°2,0.0784,0.1373) £3.03x10°2,0.8078,0.0745)
[14] (0.0921,0.5125,0.5313) ~1.67x 10°2,0.0625,0.1563) {5.49< 10°2,0.8500,0.0813)
[15] (0.1190,0.5117,0.5352) —~(1.36x10°2,0.0703,0.1367) {3.08<10°2,0.8086,0.0742)
Present work (0.1204,0.5175,0.5350) ~1.34x1073,0.0773,0.136) £3.0x10°3,0.8056,0.07160)
)\ =0.1732.
bV =0.1299.
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TABLE Il. Location of upper left vortex. 1

Upper left vortex 0.9

Re Reference Wimaxs%,Y) 08
5000 [13] (—1.46x10 2,0.0625,0.9102) 07 f_
[14] (—1.40x 10 2,0.0667,0.9059) “E
Present work £ 1.40x 10 2,0.0664,0.9090) 06K

> 05

Eq. (18). The six-dimensional kinetic subspace has been de-
scribed in terms of the standard basis given by d’Huese
[10]. Inversion of the & 6 matrixC, Eq.(13), has been done o3k
analytically. ’

In the first set of numerical experiments, we have simu- 0.2
lated lid driven cavity flow using the present method. Loca-
tions of the vortex centers as computed by the preseni 01
method are compared with previous w¢dd—16 in Table |
and Table Il. The grid size used in the present simulation is
320x 320, which is comparable to the grid size used in pre-
vious computations with the standard LBGK methgte FIG. 2. Stream function for Re5000 in a simulation of lid
D2Q9 model [13]. As in previous works, the Reynolds num- driven cavity flow. Parameters used are grid size >3300; lid
ber is defined by the relation R&/L/v, whereV is the lid  velocityV=0.075 (M =0.1299). All quantities are given in dimen-
velocity, L is the length of the box, and is the kinematic sionless units.
viscosity. The stream function for ReL000 and Re- 5000 is
shown in Fig. 1 and Fig. 2, respectively. The comparisonrmethod is unstable for a Reynolds number of 5000 for the
(Table | and Table )l demonstrates the ability of the method velocity of lid V=0.1 (M=0.1732)[13,17]. However, the
to give accurate results over a wide range of Reynolds numpresent method was stable even for much coarser grids. On a
ber. lattice of size 6& 60, we performed the simulation up to

In order to study the stability of the method, we haveRe=5000 with the velocity of the lidvV=0.075 M
performed high Reynolds number simulations with a much=0.1299). The resultsee Fig. 3 shows that the large scale
smaller grid size. It was found that the present method caflow patterns are calculated with acceptable accuracy,
perform simulations at arbitrary low values of the viscositywhereas the resolution of the smaller scale flow patterns is
(thus, high Reynolds numbewithout any numerical insta- not possible on this coarse grid. This can be attributed to the
bility. For example, on a lattice of size 18000 the LBGK  following facts.

1 1

0.9 f— 0.9k

0.8 - 0.8 §

0.7 f 0.7 f

0.6 Yy

> 05 : > 05

0.4H 0.4

0.3 E 0.3

0.2 — 0.2

0.1 0.1F
00i ‘ 0.5 00-

FIG. 1. Stream function for Re1000 in a simulation of lid FIG. 3. Stream function for Re5000 in a simulation of lid

driven cavity flow. Parameters used are grid size >32Q0; lid driven cavity flow on a coarse grid. Parameters used are grid size
velocity V=0.075 (M =0.1299). All quantities are given in dimen- 60X 60; lid velocity V=0.075 (M =0.1299). All quantities are
sionless units. given in dimensionless units.
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TABLE lll. Mean density fluctuation. 1 .

:
o simulation
0.9f —— analytical

Size Re M A,
0.8 J
320%x 320 1000 0.1732 1.463710°3
320%x 320 1000 0.1299 8.543910 * 0.7 g
0.6 J

(1) The lattice is too coarse to resolve the small scalesv.s| -
phenomena. This is the reason why the vortices at the cor.
ners are more difficult to resolve and the stream function
calculated by numerical integration of the velocity is not o3l 8
smooth.

(2) Another problem, again related to resolution, is the
large spatial variation of all the quantities in the simulation o1} .
of high Reynolds number flow on a coarse grid. This prob-

0.2f p

lem can be avoided by using higher order spatial discretiza- % 205 0 05 1
tion schemes for the convection of the distribution function X
[17].

FIG. 4. Development of the velocity profile in Poiseuille flow.
duced velocit)Uy(x)zuy/uymax is shown versus reduced coor-
dinate across the channel Solid line: analytic solution. Different
éi_nes correspond to different instants of the reduced tife
= (vt)/(4R?), increasing from bottom to top. HerR,is the half-
width of the channel. Symbols: simulation with the present ELBM
algorithm. Parameters used are viscosity=5.0015<107° (3
=0.9997); steady state maximal velocitx,male.lozlk 1072
(21)  Reynolds number Re1157. All quantities are given in dimension-
less units.

Decreasing the Mach number results in a more accurats
implementation of the incompressibility conditiésee Table ©
[II). In order to quantify the effect of the compressibility, the
mean density and the mean variation of the density are d
fined as in Ref[13]:

O(u*) error inherent in the stress tengd9) (although the

absolute value of the error is quite smailhus, apart from

the error at the boundary, we do not see any other significant
(22) error in the density in computations with larger lattices, and
on the smaller lattices also the absolute value of the error is
quite small(see Fig. 5.

For the same setup as the Poiseuille flow, the stability of

both schemes has been investigated with respect to various

same order of magnitude as in the D2Q9 mdddll. How- eDerturbations. In the first set of tests, nonhydrodynamic per-

ever, the effect of Mach number on the magnitude of tht bat d. keening th locity at h node |
stream function is very small due to the low Mach number urbations were used, keeping the velocily at €ach node in-

used in the lattice Boltizmann methéske the data from the tact. In particular, populations at all the nodes were perturbed

Re=1000 simulation for two different Mach numbers pre- _by a small random amount in the Same way as was proposed
sented in Table)l in Ref.[19] for fluctuating hydrodynamics. However, in our

In another numerical experiment, the method was extentaSe the noise was switched on only at one fixed tige

sively tested in setup of the two-dimensional Poiseuille flow,typlcally after the velocity profile has developed up to its

and compared to the standard LBGE2Q9 model[1,2]. A steady state(paraboliq shapg. In another set of tests, the
lattice with 11X 11 nodes was used, with standard bounce-fu"y developed velocity profile was perturbed by adding a

back boundary conditions and standard implementation 0§mal! amount of velocity at each n(_)(_je, at timein a way
the pressure drofll8]. The time evolution of the profile is f:onS|stent V.V'Fh the boun_dary conditions ‘:ind respectlr}g the
demonstrated in Fig. 4 incompressibility. In particular, the following perturbations

As in the LBGK method without zero velocity and the have been use(he origin of the coordinate system is at the
lattice gas methofi3], one can expect that the resulting den-(fnzall .nOdi at the mIetk,] ang the Ireduoedoordlnate—l
sity distribution in the case of channel flow simulation with <=1 iS taken across the chanpe
the present method will have a higher value at the center of

Density fluctuationgsee Table Il are found to be of the

the channel where the magnitude of the velocity is higher. (puy) =0.003lymay SIN(@7Y),
However, this analogy is not complete in the sense that while
the error in density in the present case will be of ord&rit 6(puy) = —0.0050 X Uymay COL @ TTY), (23

is of orderu? in the lattice gas or LBGK model without zero
velocity. In the simulation we observe that the error due tdfor all the nodes except for the bounce-back nodes. On the
the bounce-back condition is much larger compared to th@odes where the bounce-back has been applied, the perturba-
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FIG. 5. The error in the density profile in the case of Poiseuille ~ FIG. 7. Time behavior of the excess kinetic eneldy after the
flow. Relative error from the initial densitypg) versus the reduced Vvelocity perturbation(23) with w=3. (a) ELBM, »=1.683 502
coordinate across the channels plotted for two different latice <1073 (8=0.99), Uy, =5.390 5% 103 (b LBGK, v
sizes (\=15 andN=35). Parameters used are viscosity 1.685 ~ =1.68350% 10 ° (8=0.99),u, =5.39055<10 . All quanti-
X107? (B=0.99); steady state maximal velocity, =6.68 ties are given in dimensionless units. The excess total kinetic energy
% 10~3; reduced timer=0.5. All quantities are given in dimension- AE(t) ==,[u?(r,to+1t) —u?(r,to)] has been monitored fae>t,.
less units.

the decay of the excess kinetic energy and the return to the

tion has been set equal to zed{pu,) = 3(pu,)=0. Pertur-  unperturbed velocity profile forge'=10"° (the minimum

bations of this type are used quite often in computationaViscosity we used in our testswhereas AE| grows in the
fluid dynamics[20]. LBGK scheme, resulting in ultimate numerical overflow for

In both the tests, the excess total kinetic enefdy(t) p-BEK1073. The present algorithm is unconditionally
=3 [u?(r,to+1)—u?(r,ty)] was monitored fort=t,. The stable, and for arbitrary low values of the viscosity never
results are presented in Fig(itandom perturbatiorand Fig.  runs into overflow. The implementation of the present model
7 (velocity perturbation The present scheme demonstratesfor different flow conditions will be reported elsewhere.

In all the computations with our model, it was found that
the hydrodynamic regime sets in rapidly, that is, the actual
computed parameterr very rarely deviates significantly
from its equilibrium valueagq=2, On the other hand this
value is neverexactly 2 (within machine precision and
switching off the computation ofr at each time step by
setting it equal toaeq is not possible. The present SRTM
with fixed =2 is a “transient” model between the entropic
o 500 1000 1500 2000 2500 3000 LBM and the LBGK: It operates with a fixed relaxation time,
but the equilibrium distribution is not yet approximated by
the quadratic form; rather, the full entropy-based collision
matrix is used. It is not very surprising that this fixation of
the relaxation time results in a violation of tté theorem,
and leads to numerical overflow, although at values of vis-
cosity lower than in the LBGK scheme. Thus, computation
of the parametew is indeed necessary.

(AE)

0 5(I)0 1 OIOO 1 5I00 20IOO 25I00 3000
time VIIl. COMPUTATIONAL COST AND CONVERGENCE

. . S OF THE SCHEME
FIG. 6. Time behavior of the excess kinetic enelyly after a

random perturbation in the populatioria) ELBM, »=8.3752 The method of implementation for the entropy estimate
X107* (B=0.995),u, =1.8059<10 °. (b) LBGK, »=8.3752  described above is quite general. The method can be imple-
X10™* (8=0.995),u, =1.80592510"°. The curve terminates mented for any entropy function. However, near local equi-
after overflow att~10°. All quantities are given in dimensionless librium « should be very close to 2. This information is used
units. The excess total kinetic energyE(t)=3[u?(r,to+t)  to refine the root solver by using a combination of the
—u?(r,to)] has been monitored fdr>t,. Newton-Raphson method and the bisection meth2d].
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With this modification, the solver usually converges to thenetic theory, equipped with thid theorem, and with a real-
root in approximately 10 iterations. This minimizes compu-izable collision integral.
tational overhead for solving the nonlinear equation. After demonstrating that it is viable to incorporate tHe

In general, the ELBM has to perform two extra steps intheorem into lattice Boltzmann simulations, the focus of the
comparison to the LBGK scheme. The first step is the comentropic lattice Boltzmann model shifts back to the problem
putation of the bare collision integral, E6L3). The second Of derivation of entropy functions with tailored properties.
step is to solve the nonlinear equatio®). Both of these The earlier approach4] based on solving functional equa-

operations scale linearly with the number of lattice nodes. tions becomes tedious when the number of constraints goes
On a Sun workstation for a grid size of 221 doing UP:asin the case of the thermal LBGK scheme, for example.

10, 000 time steps with the present scheme took around 13 erefore, one needs to think of other possible approaches to

s while with the BGK scheme the time involved was around _erivation of thel—! function for the therma}l_case. One oS-
13 s. A BGK simulation of 10,000 time steps for a grid SiZeslble approach might be based on a modification of the deri-

f 63% 63 100K d4120s. Th h h .~“vation of the lattice Boltzmann method from the continuous
0f 63X 63 took aroun s. Thus, the present scheme IS a8, mann equatiofi22]. Indeed, this derivation is based on
order of magnitude slower compared to the BGK method. INGrad’s moment method 23], together with the Gauss-

the present scheme around 80% of the time is spent evaluglygjte guadrature in velocity space. A different but also

ing the collision operator. Notice that the collision matrix in ;i known technique of continuous kinetic theory, closely

the standard LBGK scheme is diagonal and any improvege|ated to Grad's method, is a velocity polynomial expansion

mfant over thg I_-BGK m.ethod_has to deal at least with evalu-of Inf (rather than a velocity polynomial expansion of the
ation of a collision matrix Of. sizel{—M) X (b—M). HereM. distribution functionf, as in Grad’s methgd[24,25. This
is the number of conservation laws. One such example is the, .ihod. known as the quasiequilibrium approximatisee
recently proposed methoff] based on a linear stability o4 156)) is consistent with Boltzmann'$l theorem: If

analysis. On the other hand, the time required to solve for the, f*(M,v) is the approximation, whend are the coefficients
entropy estimates contributes only around 5—-10 % to the to: ’ i

o . X . in front of the velocity polynomials, then the function is
tal computation time. This shows that the idea of solving the
entropy estimation equation at each time step to ensuri the . .

theorem is computationally not a very heavy burden. This H(M):f In £*(M,v)exp{In f* (M, v)}dv.
can be implemented easily in an efficient way. However,

further progress is needed to reduce the computational cost Evaluation of this expression with the help of a quadra-

involved in the calculation of the collision step. ture is a promising source &f functions for lattice models.
This point needs further study, which is left for future work.
IX. CONCLUSION AND OUTLOOK It should also be mentioned that the quasiequilibrium ap-

proximation has recently begug to be exploited systemati-
In this paper, we have introduced a single relaxation timecally for complex fluids such as flexible and liquid crystal-
model for the lattice Boltzmann method based on the entropline polymer solutiong27]. A combination of quadrature
function. This model is quite general, and it circumvents dif-evaluation with these developments may contribute to devel-
ficulties in finding equilibria for the ELBM7]. The above opment of the lattice Boltzmann method for viscoelastic
analysis contributes to the development of the lattice Boltzmodels where the direct approach based on the Boltzmann
mann method as the minimal, self-consistent Boltzmann kiequation remains problematfi28].
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