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Hydrodynamic interactions in ordering process of two-dimensional quenched block copolymers
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The hydrodynamic coarsening of microphase separation in two-dimensional diblock copolymers is studied
using numerical simulations. Results for symmetric and asymmetric block copolymers are compared. In con-
trast to the formation of the hexagonal phase where hydrodynamic flow appears not to be effective in enhanc-
ing domain coarsening, the late-time evolution of the lamellar phase proceeds faster, thus leading to a different
power-law scaling with the addition of coupling of the velocity field to the order parameter.
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[. INTRODUCTION exploited using numerical studies. However, the dynamical
scale invariance of coarsening is scarcely addressed, either

When a system is transferred from a homogeneous phasecause the simulations are performed on a rather small lat-
to an ordered phase where the initial state is thermodynamfice (hence a system freezes at long times and the pathway
cally unstable, a network of small domains of ordered phas¢éoward this state is too short to exhibit a possible asymptotic
develops spontaneously and the length scale associated wihaling behavior[6,7] or because the coarsening has not
these domains grows with time. In systems such as a binayeen followed through the average domain siich is
mixture, this domain coarsening proceeds to form macromost commonly measured in macrophase separation studies
scopic domainghence termed macrophase separation  [8,9]. Consequently, the role of velocity fields remains a
this paper we focus on block copolymers, a system in whictsource of controversy.
coarsening cannot proceed to a macroscopic scale. In what follows, we undertake a detailed numerical analy-

A characteristic feature of the block copolymers is thesis of the growth law of domain evolution in the coarsening
connectivity between chemically distinct building blocks. of microphase separating block copolymers with hydrody-
Due to this severe constraint a phase separation, which oamic flow. In Sec. Il we introduce a time-dependent
curs at low enough temperatures, can segregate at best to ténzburg-Landau-type model for the ordering dynamics of
mesoscopic length scale. This so-called microphase separ@mellar patterns, which incorporates the hydrodynamic cou-
tion produces spatially periodic patterns. The existence of thgling of the order parameter field. Our simulation is facili-
spatial period 2r/q, of the ordered structure renders the tated by the use of computationally efficient cell-dynamical-
study of microphase separation kinetics quite intriguing insystem (CDS) method, which has quite successfully
comparison with the case of macrophase separation fd¢laborated the nature of macrophase separétioh In Sec.
which qo=0. Il we present numerical results for the correlation function

It is now generally acceptdd] that, during the late stages Of the order parametéscattering functionand the orienta-
of macrophase separation, there is dynamical self-similarittional correlation function of the lamellar domains. With
where morphologies at different times can be related by shese correlation functions, quantitative study of the growth
single characteristic length.(t). In general, this length €xponentis provided. In order to address the important ques-
grows as a power law in timé,(t) ~t", wheren is called the  tion that whether hydrodynamic interactions are equally im-
growth exponent. A large number of systems can then b@ortant for both symmetric copolymers and asymmetric co-
grouped into a small number of universality classes charad®olymers, we study in Sec. IV the kinetics of microphase
terized by a common exponentdepending only on certain Separation into the hexagonal phase. Section V concludes
relevant system characteristics and not on the details of théis paper with a summary and discussion.
particular system. One of the relevant features that influence
the growth law is the presence of the coupling between the Il. DYNAMICAL MODEL
order parameter and the hydrodynamic velocity fields. When
the hydrodynamic interactions are operative it is well known
that the coarsening proceeds much faster, although the exact In this section we considek-B diblock copolymers with
value of the growth exponent remains incompletely underequal-length subchains, in which an ordered layered phase
stood[2]. with alternatingA and B rich domains(lamellag is formed.

In the microphase separation, however, the situation is favWe investigate formation of the lamellar state in two dimen-
from clear. No successful theoretical formulation is yet avail-sions with rotational invariance in the plane. The model to
able for the domain coarsening in the absence of hydrodydescribe its dynamics is the following time-dependent
namic fields. Exponents ranging from 1/5 to 1/2 have been Ginzburg-LandaUTDGL) equation for the order parameter
reported(mostly from numerical simulationg3,4]. There is .
even a suggestion of breakdown of the universahiy

Therefore it is no surprise to find that the problem of W o OH
hydrodynamic coarsening in block copolymers has been little at S

A. TDGL equations for lamellar formation

—(v-V)y. 1
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The y(r,t) is the scalar order parameter at a space-time point .2_ rv27 \rv21./=qz- [V1.{D — ) +B[V?2
(r,t), chosen to be the local monomer concentration differ-t( [VIIV ]ad =02 V1l DUL) — )+ BV ]av}

ence ofA andB species. The free energy functiond{ ¢} is
given by

BH{Y}=H{ ¥} +H {4}, 2
T K
Hs{lﬂ}:fdr<—§¢2+;$4+§(v¢)2 , €))

B
H|{l/f}=§f dffdf’w(r,t)G(r—r’)w(r',t), (4)

whereG is the Green’s function for the Laplace equation

V2G(r—r')y=—48(r—r"). (5)

The aboveH{y} is essentially the effective Hamiltonian first
derived by Leiblef11] and subsequently discussed by Ohta

and Kawasakj12]. The positive constantd, 7, u, K, andB

are phenomenological parameters. Mesoscopic order is
caused by competition between short-range attractive al
long-range repulsive interactions. They are represented, r

spectively, by the parameteksin H; andB in H,. Hence
H{¢} is inherent in the microphase separation.

The velocity fieldv(r,t) that advects the fielgs, slowly
varying with horizontal coordinates=(x,y), is an addi-

tional degree of freedom that qualitatively changes the phy
ics [13]. The velocityv is defined in terms of the vertical

vorticity Q=2z-V Xv (z being the unit vector along the
axis), which in turn is driven by distortions of the field We

n@ the above equations0], denotes the discrete version of

X[V ]qi}. (10
Here /(n,t) is the order parameter in theh cell at timet,
and

J=Atanhy+D ()~ )~ 11)

is the effective chemical potential corresponding to

— SH{y}/ 5¢. The parameteré andD set the units used in
the CDS dynamics, and the double angular brackets denote
an isotropized average of a neighborhood of cells:

1
((N=5 > X(nearest neighbor cells

1
+ 3 > X(next—nearest neighbor cells.

(12

he enclosed operataP; the discrete gradient was center
difference evaluated and for the Laplacian we used the iden-
tification[16]: [ V2]4O=3({{O))— 0). The operatofV ~?]4

is the inverse of the discrete Laplacip¥i?]y, and is com-

Sputed using fast Fourier transform techniques.

The linear stability analysis of E¢9) shows that the ho-
mogeneous stata/(=0) is destabilized for

A=A.=1+2DB. (13

report here results for the same form of vorticity driving used

in Ref.[13];

sH{y}
oy

no(cz—V2)9=2-(V ><w;), (6)

where 7, andc? are other phenomenological parameters tha
determine the strength of the coupling between the hydrod

namic flow andi.

Let us introduce the vertical vorticity potentié) defined
by Q=-V?{, so thatv=(dy{,~d,{). Also hereafter we
will use the units in whichu=K=M=1. Our model then
reads

ap=V3(— 1+ PP =V2)—By—(v-V)y, (7
(c2=VAV2;=gz-[V(VZ+BV ) yxVy], (8)

with V-v=0, andg=1/7,. In Eq.(8), V" 2y is a short-hand
notation for— [dr'G(r—r")¢(r').

B. CDS modeling

In order to simulate Eq97) and (8), we employed the
CDS method on a square lattif&0]. Explicitly, we solved
the following CDS mode[13-15.

p(n,t+1)=¢(n,t) = ((J(n,1))) + J(n,t) = Be(n,1)
—v(n,t)-[V]g(n,t), €)

The wave numbek,, of the most unstable mode is given via
the equation
230(Km) +Jo(\2kn) =3[ 1+(1-A)/(2D)], (14

(NhereJo is the Bessel function of the first kind. One also

Yinds from the linear analysis that the wave numkgthat

minimizes the free energy, is obtained as the solution of

2Jo(ke) + Jo(V2ke) =3(1— VBID). (15)

IIl. NUMERICAL RESULTS

We have simulated Eq$9) and (10) on a system of size
1024x 1024 with periodic boundary conditions. The initial
conditions were a random distribution g¢fof amplitude 0.1.

The parameters used wefe=1.22, D=0.45, c>=2, and
B=0.02, so that the critical value & is A;=1.19, andk,
=0.89, k,=0.82. Thus the aspect ratld as defined by the
system length versusk, is I'=134, and experience has
shown that one sample is sufficient to discern the gross be-
havior of our interest. We also note that the characteristic
length scale at late stages of coarsening was found to be one
order of magnitude smaller than the system $&s® below.
Hence we believe that the finite size effects are negligible in
our simulations. We will present results fgr=0 andg=>5 to
assess the importance of the hydrodynamic interactions since
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FIG. 1. Time evolution of the circularly averaged scatteringgzs'

function S(k,t) for lamellar formation with @) and without Q) B . )
hydrodynamic coupling. The times ate=100, 1000, and 50 000 a=0.20=0.01. The peak height also grows as a power law:

from low to high peaks, and the scale of the vertical axis is inSp~1t* and we foundg=a. The resulta=p implies that
arbitrary units. S(k,t) satisfies the scalingS(k,t)=//(t)f((k—ke)/ (1)),
wheref(x) is a scaling function. The notable feature of the
a different growth law may be at work for a higher value of result demonstrated by Fig. 2 is that we have a same scaling
g at which the Spira| structure is expected to f(img] consistent with/’~t*5 with the inclusion of hydrodynamlc
couplings.
A. Scattering function

We computed the circularly averaged scattering function B. Orientational correlation function

S(k,t) defined by However, the morphology of the patterns appears rather
_ _ different in the presence and absence of hydrodynafsis
S(k,t)=((k,t)y* (k,1)), (16)  Fig. 3. If hydrodynamics is included, it enhances removal of

5 defects and lamellae smoothly curved are evident in the fig-
whereys(k,t) is the Fourier transform of the order parameter,ure. To quantify the difference we have calculated the tem-
and the orientation of the wave vectoiis averaged over. To poral change in orientation of the lamellae.
remove any effect due to the finiteness of the ratio of the A direct method of probing the orientational order is to
thickness of domain walls to the domain size, we calculategvaluate a correlation function of the local orientation field,
S(k,t) after the data were hardened using the transformatiod(r,t), of the lamellar patterns. Explicitly, we have com-

— Sgny. puted the correlation function
Time evolution ofS(k,t) is shown in Fig. 1. It is seen that B )
there is a shift in the position wheBék,t) has its maximum, Ca(R)=(exp2i[6(r +R,t) = 6(r,t) ]}) (18

the shift occurring fronk,,, towardk, with increasing time.

After the peak had shifted to the positidq, representing averaging over the spatial coordinateand R for fixed R

the equilibrium lamellar thickness, narrowing of the scatter-=|R|. The local orientatiord is defined as the angle in the
ing profile and the concomitant increase of the peak intensitgirection normal to the lamellar axis. The factor of 2 is re-
occurred gradually. It turns out that the latter time region isquired by a twofold symmetry of lamellar patterns, We have
the region where the scaling behavior of coarsening is obemployed the prescription described in Appendix A to extract

served. We fittedS(k,t) to a squared Lorentzian form ¢ from simulation data. Figure (4 showsC,(r,t) for g
=0 at various times. The correlation decays with increasing
S(k,t)=a?/[ (k?*—b)?+c?]?, (17)  separatiom, and from this decay we can extract the orienta-

tional correlation lengthé,(t) as the value ofr at which
and extracted the full width at half maximumgk(t) C,(r,t) reaches the value df, whereh(<1) is some con-
=\\2—1c/b, and the peak heightS,(t)=a%c* of the  stant[note thatC,(0t)=1]. The scaling exponent is ex-
scattering function at timé The characteristic length scale tracted from a log-log plot o (t) versus time. As shown in
(domain sizg /(t), may then be defined by/(t) Fig. 4b), ¥ assumes the same value independettt, bience
=2/ 5k(t). Figure 2 displays the time dependence of thein the following we choose to use simpéj,(t) as a char-
peak intensity and width measured in this way. The characacteristic lengtfwhich we now denote by(t)] of the ori-
teristic length scale is well fitted by a power latv-t“ with  entation field.
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FIG. 3. Lamellar patterns achievedtat 10° for g=0 (a) and 5(b) with the same initial condition. The bright regions correspond to
positive values of the order parameigwhile the dark ones to negative. Each figure exhibits a 52ortion of the 1022 lattice result.

As might be expected, the qualitative difference observedae aligned at multiples ofr/3. However, the hexagonal pat-
in Fig. 3 is magnified through the orientation field. See Fig.tern has several features that sharply define it from the lamel-
5. The(t) is consistent with the power lag~t?. We found  lar pattern. A perfectly regular hexagonal pattern is not
y=0.21+0.01 forg=0 andy=0.30+0.01 forg=5, con-  permitted in a square box or any box with rational aspect
firming the stronger orientational growth in the presence okatio because the structure has to fit with nonmatching

hydrodynamic flow. boundary conditions such as periodic boundary conditions.
The so-called penta-hepta defects, most typical point defects
IV. HYDRODYNAMIC INTERACTIONS in hexagonal patterns, are very stable once having been cre-

IN HEXAGONAL PATTERNS ated[17]. It is with good reasons, therefore, to ask whether

coarsening of the hexagonal pattern is governed by the same

The lamellar phase is stable for nearly symmetricgrowth law as found in the case of lamellar systems.
diblocks, while a hexagonally packed phase is stable for

diblocks with intermediate levels of compositional asymme-

try. Increasing the volume fractiofor block ratiof) of A A. Model equations

blocks, sayf >1/2, induces interfacial curvature allowing the

longer A blocks to reside on the convex side of theB It is now widely recognized that the hexagonal structures
interface, thus reducing the elastic energy. are described by a simple extension of the free enéfgin

Hexagons are equivalent to superposition of three lamelthe form[12]

(b)
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FIG. 4. (a) Time evolution of the orientational correlation functi@(r,t) in the absence of hydrodynamic flow with successive time
steps;t=1C, 10°, 10%, 5x10% and 10 increasing from left to right(b) Time evolution of the length scal&,(t) for which C,(&; ,t)
=h, whereh=0.3, 0.5, 0.7 from top to bottom. Lines of best fit to data are also drawn, and all have the same slope 0.21.
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FIG. 5. Time evolution of the half widtl§ of the orientational correlation functio@,(r,t). Open symbols denote the result fpr0

while crosses are fay=5. Lines of the best fit to data are also drawn. Shown on the right is the plgt &) ~* versust where dk is the
width of the scattering function.

B With these changes coarsening of hexagonal patterns has
Hi{y}= §J' er dr’ Sy(r,t)G(r—r")éy(r',t), (19  been simulated and the time evolution of the figlds now
given in below.

where Sys(r,t) = y(r,t) — ¢ with ¢, the spatial average of
(r), given by ¢y=2f—1. The only changes caused by the o
replacement19) in the model are substitutions: We have studied the hexagonal domain coarsening/for
= —0.2, which corresponds tb=0.4. In the simulations we
B¢—>B(¢—E) in Eq. (7), choseA=1.25 since the dynamics appears to freeze at long
times for higher values. All the other parameters and the
— . initial conditions are the same as in Sec. lIl.
By(n.)—B(%(n.H)~¥) N Eq. (9). The scattering functions at several time steps are shown in
Thus Fig. 6(@. In Fig. 6b) the semilogarithmic plot ofS(k,t)
versusk at higher wave numbers, the second and third peaks
are evident. In particular, the peaklat \/3k, (ke being the
primary peak positionis related to the development of (110)
planes of the hexagonal phase. Figure 7 displays a double-
P(k,t)— SP(k,t)  inEq. (16). logarithmic plot of the widthsk(t) and the peak intensity

B. Simulations

A—Asecy  in Egs. (13) and(14),

1 (a) 0.1 (b) o
6 . ] v '\\

= = J

X X f/'
5 % #
- = I
= =

o
x O(%bp‘o 0, 2
0.01 N, | 270500, g0 /7
] / *’\/'».’\,...3’\?3"/'
Ll Ll 1 1 1 Ll 1 1
0.50 0.75 1.00 1.26 1.3 14 1.5 16 1.7
k k

FIG. 6. (a) Time evolution of the scattering functid®(k,t) for hexagonal pattern formation witt®) and without O) hydrodynamic
coupling. The times are=100, 1000, and 50 000 from low to high peaks, &8{#,t) is in arbitrary units(b) The higher-order peaks of
S(k,t) for the casgg=5 att=6000 (O) and 1§ (®). Notice of the logarithmic scale of the vertical axis.
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Co(R.1)=(exp(6i[0(r+R,t)— 0(r,)]}). (20

The right panel(b) in Fig. 8 displays the orientation field
0(r) of the pattern of the left panel. We have plotted there
cos &(r) with eight gray levels.

We have extracted the orientational characteristic length
&(t) by calculatingCg(r,t) with the same method that we
used forC,(r,t). The result is shown in Fig. 9. The exponent
v for & is estimated from the straight line fit to he=0.20
+0.01 for two casesi.e.,,g=0 and 5. Thus even with the
addition of hydrodynamic flow the growth remains consis-
tent with thet® scaling in the hexagonal formation.

V. SUMMARY AND DISCUSSION

FIG. 7. Time evolution of the peak intensiB (bottom) and the
inverse of the widthsk (top) of the scattering function for hexago-
nal formation. Open symbols are data ép+ O while crosses are for
g=>5.

The first theoretical attempt to study the role of hydrody-
namic interactions in the formation of a mesophase of block
copolymers was by Bahiana and Odri®]. Using the CDS
approach, they tried to get over the difficulty in producing a
So(t) of S(k,t) versus time. The growth behaviors with and well-aligned lamellar structure when the velocity field is ab-
without inclusion of hydrodynamics display very little differ- sent. Later Gonnell&t al. [6] addressed the problem using
ence. The time dependence & and of S, obey the power lattice Boltzmann simulations. These works find that the hy-
law 6k~ 1~t* and S,~t# with a=8=0.17+0.01, roughly  drodynamic fields allow the lamellae to reorder giving lo-
consistent with theé'’® scaling for lamellar growth. cally well-defined lamellar regions.

In Fig. 8@ we demonstrate the hexagonal pattern attained So far, however, the dynamical growth of the characteris-
at t=10 for g=5. The corresponding morphology far  tic length scaleL(t) in the pattern dynamics has not been
=0 is not shown there because a big difference was hardlgtudied in the presence of hydrodynamic interactions. The
visible through the eye. One can then wonder whether thsingle exception is a numerical study in REf], where the
distinction between the absence and the presence of hydrauthors have measuréqt) by the location of the first zero
dynamic coarsening is marked in the orientational order irof the pair correlation function of the order parameter. How-
hexagonal structures. Since the order is in the orientation ofver, the system saturated at quite earlier tisgpposedly
domains aligned at multiples of/3, the appropriate correla- due to the small system size used in the simulafi@md
tion function to look at is owing to the lack of data for large time the scaling growth is

500 B8 500
(a) (b)
400 400
300 300
> >
200 200
100 100 -
100 200 300 400 500 100 200 300 400 500
X X

FIG. 8. (a) Hexagonal pattern achievedtat 10° in the presence of hydrodynamic coupling. The bright regions denote positive values of
¢ while dark ones denote negative The corresponding orientation fieli{r) is displayed on the panéb). It is displayed by plotting
cos &(r) with eight gray levels; the bright regions correspond to regions with éo96and the dark ones denote cas®. Both panels
exhibit a 513 portion of the 1024 system.
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409 We have given in this paper a detailed numerical analysis
of the growth law of domain coarsening. The conclusions
° that we can draw from the present simulations are as follows.
64,6" (1) With hydrodynamic interactions the lamella-forming
. o system removes its topological defects more effectively, en-
° hancing the lamellar orientation.
66365 (2) The flow-enhanced orientation is reflected in the in-
&3 creased growth exponent of the characteristic length for the
& asymptotic orientational order.
o® (3) The power-law growth for the hexagonal domain
| ® coarsening shows very little difference with the inclusion of
loe hydrodynamic interactions.
i E— ———r ————ry To understand the underlying cause of the difference be-
1000 10000 100000 tween lamellar and hexagonal domain coarsenings, we show
time step in Fig. 10 the temporal change in the strength of the hydro-
dynamic flux (F,) and the dissipative or diffusion fluxAy).
They are defined, respectively, by

FIG. 9. Time evolution of the half widtl§ of the orientational
correlation functionCg(r,t) for hexagonal pattern formation with
+) and without hydrodynamics.
not convincingly demonstrated. Recent numerical work by
Maurits et al. [8] and by Grootet al. [9] focused on the F V= _V5_H (23)
following quantities: d Syl

Comparing the relative importance of the two transport
w(t)zvflf dr 8y2(r 1), p(t)=>, S(k,t)InS(k,t), mechanisms seen in Fig. ) in combination with Fig. 5,

K we can deduce that the hydrodynamic flow is responsible for

(2D the increased orientational order in lamellar patterns. In fact,

the orientational characteristic lengghstarts growing faster
whereV is the system volume. Unfortunately, by definition than the other length scaté (sk 1) once the hydrodynamic
these parameters cannot contain the characteristic lengflux becomes dominant. In this sense it is well justified that
scale, hence fail to capture the essential features of the othe hydrodynamic process in coarsening is sometimes re-
dering dynamics. In this connection it is worth adding thatferred to as geometrical coarseniftg] since it does not
the power-law scaling is always observed after th@) accompany the acceleration of the length seélavhich is
reaches the final plateau corresponding to its equilibriunprobed by the density correlation functi&gk,t). Hence the
value.[In Ref.[8], the authors also studied the time depen-late-stage coarsening of lamellar phases cannot be univer-
dence of the scattering functid(k,t). They then identified sally described by a single power law, and probably depends
the lower value of the peak positioik) of S(k,t) with the  on the strength of hydrodynamic coupling. To investigate the
larger domain size. Howevek,, does not represent the do- latter point systematically, is left for a future study. In this
main size but instead the lamellar spacing, being of no direatontext, it would be extremely fruitful to pursue an analogy

relevance to coarsening kinetigs. [4,19] between pattern dynamics of the lamellar phase and
<%0
1000 &
1000 \0\ /0/
O, <
:\ —O0—0-0-0-0000———O0—0—0-0-00000 100 72
5
100 0° ~; o~ 0000080 0—0-0-0-000c0
x C/O Thy x s
g 1 "
o 4
\+\+ /o Ny
Ty
10 (a) Ty, o (b)
1 /
JO
14 «orvn v v rTrrTy M M ML 01' vEETTyy M M ML v v ML
1000 10000 100000 1000 10000 100000
time step time step

FIG. 10. Temporal change in the average hydrodynamicfiyxQO) and the average diffusion fluky (crosses denot&, for g=0 and
diamonds forg=5) in the coarsening of lamellda) and hexagonalb) domains.
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that of a roll state observed in Rayleigh/Bed convections = -~ W-\

for which some amount of data are now accumulafiaj. 60 j‘li%} :;: ;: ﬁ\ \E - EfiZI\ /:D%\&
Contrary to the lamellar case, the hydrodynamic field in LOOIEET Y W 454 WSV S Y]

X\ 1

the hexagonal pattern formation is playing a subdominant A i Al

role and is not strong enough to alter the growth law. The 50 1 \ 4

diffusion flux is always dominant throughout the late stage of g BN : E[?%m NP, :Z:l, 4 "\ ::

coarseningsee Fig. 1(b)]. Although we studied several sys- B T b BN o S 4L At

tems with combinations of the model parameters other than 40 -

presented in the preceding section, we found no indication

that 7, becomes dominant ovefy. It is not yet understood 5

why hydrodynamic flux cannot be equally important for
asymmetric block copolymers, and it will be of great interest
to further investigate this problem.

Finally we briefly touch upon the wave number selection.
In our simulations we found that the peak position of the
scattering function reaches a constant valuie~st0 000 and

-

304

3.

20 5

e

104

remains at that value thereafter. Obviously the system select
a particular wave number for periodic structures in rather
earlier stages of pattern formatiofRecall the results in
Secs. Il and IV that the power-law scaling of the domain
size is observed in much late stageSurthermore, the se-
lected wave ”“”_‘b.er of thg lamellar phase is decreased Wh_en FIG. 11. Orientation fieldd(r) of the equilateral hexagonal
the hydro_dynamlc mte_ractlons are pre_zsent, as seen from l:'g,tructure[given by Eq.(A4) with k,=1/4] as obtained by the fil-
1. A possible explanation of this fact is beyond the scope Ofereqd Fourier transform method. The unit vector at sitenotes the

the present paper because wave number adjustment mighfgle g(r), and a contour plot of the hexagonal pattern is also
involve the spatial inhomogeneities induced by defects; angisplayed.

the understanding of defect motion in the coarsening process

remains challenging21]. Notwithstanding this, we apply a wherek;=k,(cosé;,sin6;), ando sets the width of the fil-
random phase approximation to solve our model. The analytering. The filtered functioms(r, 6;) is large in magnitude in
sis is given in Appendix B. It is shown there that the nonlin-those domains where the direction normal to the local
earity induced by hydrodynamic couplings leads to the stafamella is close to th@; direction. We then define the direc-
tionary pattern of smaller wave numbers. However, it iStgr field o(r) at each pointr as the angle maximizing
unclear whether this is the dominant mechanism of the wavey, (r, 9,)| as a function oft; .

number selection problem in block copolymer systems. To convince oneself of the algorithm, take up an ideal

state of straight parallel lamellae:

APPENDIX A: DOMAIN ORIENTATION FIELD

(r)=AcogkpX). (A2)

In this appendix we describe a technique to extract thel.hen
domain orientation fieldto be referred to as a director field
hereaftey, 6(r), of the domain structure. To construct the
director field we cannot use the local gradient of the order
parameter fields(r) since it vanishes at maximum and mini-
mum of ¢(r). Instead we use a slight modification of the
Fourier space filtering method of R¢R2]. For ease of un- Finding the angle maximizingy(r, #;)|, one obtains(r)
derstanding of this technique, we first consider the lamellae=0 at anyr, as required.
patterns. The above method works equally well for the hexagons

An important observation to implement the method is thatbecause superposition of three straight lamellae aligned at
S(k)z(T,//(k)Zb*(k)) [Zy(k) being the Fourier transform of multiples of 7/3 is equivalent to the hexagonal pattern. To
(r)] for each timet is strongly peaked a=Kk (which is illustrate this, we show in Fig. 11 the ideal pattern of hexa-
time dependent, in genejaWe thus introduce a filtering gons,
operatorF, that reduces the amplitude of the components
(k) that lie off thek=k, ring in Fourier space. For sim-

plicity we choose a Gaussian filter, so that the filtering is
defined by

| (1, 0¢)|2= (A2/2) e~ 4o/ {cosli 4(K, / o) *cOsbf]
+cog 2KkpX) . (A3)

3

zp(r)=;jz (e'ki'"+c.0), (A4)

=1

wherek; =Kk,(1,0), ky=kp(— 1/2,J/3/2), andky= Kp(—1/2,

—/312)=— (k,+k,), together with the director field(r)

Fob(r)=u(r, Gf)EJ efik<ref(k7kf)2/02'l‘/'/(k), (A1) that we have numericqlly extracteq by the filtering aIgorithm.
k (In the actual numerical calculations we have used eight
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angles of ¢ equaIIy_ spaced around the semicirclek_atkp _ 1 i[kx(kz—kl)]i-(kzxkl)

with ¢=0.15, and fit a parabola to sets of three neighboring v(k;kqy ky)== 5

points to determine the maximumf we note a sixfold de- 2 ko= K]

generacy of the ideal hexagons, then it can be seen that the

algorithm correctly captures the domain structure; iGeis > k% + E—k'ﬁ— E) (B7)
equal to Bragg angle of the two-dimensional triangular Bra- kf k%

vais lattice[23].
It should be remarked that the hydrodynamic coupling
APPENDIX B: STATIONARY WAVE NUMBER guv(k;kq,k,) is strictly zero if all the wave vectots allowed

WITH ADDED FLOW in (k) lie on one single ringk|=k,, corresponding to
) ) . either an infinite system of lamellae parallel to, sagirec-
In this appendix we consider how the presence of thgjgn or axisymmetric lamellar patterns.

hydrodynamic coupling affects the preferred wave number of | this appendix, we will focus on the scattering function
the final stationary lamellar states. We start with Egsand  gefined by

(8):
- S(k,t)=(J(k,1)), J(k,t)=(k,t) * (k,t).
dp=[e—(V?+k§)2 ]+ gV~ (v-V)y,  (BI) k=0t0) (kb=ptiehyrtet
From Eq.(B4) we get
V2;=gz-[V(V2+BV ) yx V], (B2)
with v=(dy¢, — 3,{), where we have rewritten E¢7) with &tJ(k,t)=2r(k)J(k,t)—% % {[gk*+gu(kiky k)]
65(72/4)_8, kOE \/72 (BS) ><l/l(_k,t)l//(_kl,t)l//(kz,t)l//(k'f'kl_kz,t)
+(k——k)}, (B8)

Since —V?¢/c?(~h?/L?<1 [13] where h is the vertical
thickness of the system artdis the horizontal characteristic
length, we have neglected, for simplicity, tNé term on the
left-hand side of Eq(8) [henceg=1/(c?7,) in Eq. (B2)]. In
Eqg. (B1) we have inserted the nonlinear coupling paramete

where k— —k) means a replacement in the foregoing term.
In order to proceed to find the equation &(k,t) we need to
alculate the average of the four-point correlation function.
, L ~ , or this purpose we notice that the instantaneous patterns we
g for convenience, which is eventually spt-1. Notice that  oqered in the simulations are labyrinthine and irregular in
the form (B1) is very similar to the Swift-Hohenber@SH)  gnace Hence we assume that the four-point correlation is
equation[24], which is a model describing cellular pattem yeotermined entirely by the pair correlation function, and that
formation in Rayleigh-Beard convection. The qnly differ- 1o modes of differenk’s are poorly correlatedNote that
ence of Eq(B1) from the SH equation is the existence of & 4 ing the coarsening of lamellar domains under consider-

g - . 2 . .
positive definite operator V< in front_of the n_onlmear term. ation, the average&y(k,t)) are zero, and therefore should
Let us solve Egs(B1) and (B2) in Fourier space. We not contribute,. Thus we substitute

define the Fourier transformation of an arbitrary function

f(r) asf(r)==,f(k)e'*", where the same notatidrn Fou- (=KD~ Kg 1) (Kg ) K+ Ky —Kg 1)
rier space should not cause any confusion hereafter. It is easy ’ ’ ' '
to solve Eq.(B2) for {(k), with which Eq.(B1) is cast into z5,(1,,,(8(k,t)8(k2,t)+ 5k2,kS(k,t)S(k1,t)

the following form after some algebra:
+ 8k, 1, S(K 1) S(Ky, 1),

_ T2 _
() =1 (0 9(k)~ gk 2 v —k)g(ko) which yields
X p(k+ky—kz) —gV(k), (B4) ~ -
v atS(k,t):zs(k,t)[r(k)—kE[3gk2+gu(k,kl)]S(k1,t)).
where . (BY)
r(k)=e—(k*=k§)>. (B5  Here

The last term on the right-hand sidRHS) of Eq. (B4) is the (k¢ k)[2 B B
flow contribution, and 0(K,ky)= M k2+ ——k?~—|. (B10)

k= k]2 @

V(k):kzl kzz v(kiki k) Y(—kp)g(ka) gk +ky ko) At this juncture, we define the effective response function

(B6)  x(k,t) by writing Eq. (B9) as
with 3,S(k,t)=—2k2x " 1(k,t)S(k,t) (B11)
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on the analogy of the relaxation to equilibrium in the general 1 K2
theory of response functionéA cautionary remark is in or- S(q)==—— == 2b 55 (B14)
der here. Since the dynamical model defined by EB4) T+k+B/ke e+ (k“—kp)

and(B2) neglects the noise terms, the solution of E811) . 5
does not relax to the proper equilibrium state. With the noisénto the left-hand side of EqB13). Here e=k3(7+2k2),
source included, however, the relationskiil2) below re-  and the last equality follows from the fact thgtk) in this

mains unaltered.Then we find form has a maximum &=k, . This approximation is valid
B “ (K for sufficiently smalle. (We can provea posteriorithat the
X—l(k't):;(t)+k2+_2+gz vl ;Q)S(q,t), renormalized parametet is always positive. For small
k a Kk enoughe, we find that
(B12)
where we have used the relati and (B3), and J A 1 kﬁ
0fE85) and (B3) S ikasa| =5 K- 2| sa),
k= g ek ke)

(=392 S(q,t)— .
a and thus the last term on the LHS of E§13) contributes at

Given thisy, we identify the asymptotic peak positibg of ~ O(g?)  since ke=k,+0O(g). The remaining term

the scattering functionS(k)=S(k,t—=) with the wave X (ke,q)S(q) can be evaluated analytically by converting

number at whichy achieves its maximum. One finds from to a continuous Fourier space. We obtain

Eq. (B12) thatk, is then given by the solution to the follow-

ing equation: . ki [A
2 v(ke,q>8<q>—ﬂln(k—b :

Ke—ks =92 v(ke,a)S(a) | |
q whereA is the upper momentum cutoff. Thus we finally get

In(A/kp)
- 16w

+gk?

d -
Je 2 vkasa@| =0 (B13 ko=kp

e

(B15)

k=k

where we have defined,=BY* Note that in the absence of to the leading order of accuracy. SinceAr,)~In(\/d)>0,

the flow (@=0), Eq. (B13) yields k.=k;,, reproducing a where\ andd are lamellar spacing and domain width, re-
well-known resul{12]. Equation(B13) is soluble for smaly  spectively, we see that, in fact, there is a trend to smaller
by substituting wave numbers at long times with added flow.

[1] For a recent review, see A.J. Bray, Adv. Ph¥8, 357 (1994. [9] R.D. Groot, T.J. Madden, and D.J. Tildesley, J. Chem. Phys.
[2] V.M. Kendon, M.E. Cates, |. Pagonabarraga, J-C. Desplat, and 110, 9739(1999.
P. Bladon, J. Fluid Mech440, 147 (2001, and references [10] Y. Oono and S. Puri, Phys. Rev. Le&8, 836 (1987); Phys.

therein. Rev. A 38, 434 (1988; S. Puri and Y. Oonojbid. 38, 1542
[3] F. Liu and N. Goldenfeld, Phys. Rev. 29, 4805(1989; A. (1988; for more recent references, see A. Shinozaki and Y.
Chakrabarti, R. Toral, and J.D. Guntahid. 44, 6503(1991); Oono, Phys. Rev. B8, 2622(1993.

C. Harrison, D.H. Adamson, Z. Cheng, J.M. Sebastian, S. Setf11] L. Leibler, Macromoleculed 3, 1602(1980.
huraman, D.A. Huse, R.A. Register, and P.M. Chaikin, Sciencd12] T. Ohta and K. Kawasaki, Macromolecul&8, 2621(1986.
290, 1558(2000. [13] Y. Shiwa, Phys. Rev. B1, 2924 (2000.

[4] Y. Shiwa, T. Taneike, and Y. Yokojima, Phys. Rev. Lét¥, [14] Y. Oono and Y. Shiwa, Mod. Phys. Lett. B 49 (1987.
4378(1996; J.J. Christensen and A.J. Bray, Phys. Reb8:  [15] M. Bahiana and Y. Oono, Phys. Rev.44, 6763(1990.

5364(1998. [16] P.I.C. Teixeira and B.M. Mulder, Phys. Rev. &5 3789
[5] T. Taneike and Y. Shiwa, J. Phys.: Condens. Ma®eL.147 (1997; Y. Oono, ibid. 55, 3792(1997).
(1999; T. Taneike, T. Nakajima, T. Nihei, and Y. Shiwan- [17] S. Ciliberto, P. Coullet, J. Lega, E. Pampaloni, and C. Perez-
published. Garcia, Phys. Rev. Letg5, 2370(1990.
[6] G. Gonnella, E. Orlandini, and J.M. Yeomans, Phys. Rev. Lett][18] H. Tanaka and T. Araki, Phys. Rev. Le®l, 389(1998.
78, 1695(1997. [19] Y. Shiwa, Phys. Lett. 228 279(1997).
[7] 1. Podariu, Z. Shou, and A. Chakrabarti, Phys. Rev6Z [20] K.R. Elder, J. Virals, and M. Grant, Phys. Rev. Le@8, 3024
R3059(2000. (1992; Phys. Rev. A46, 7618(1992; M.C. Cross and D.I.
[8] N.M. Maurits, A.V. Zvelindovsky, G.J.A. Sevink, B.A.C. van Meiron, Phys. Rev. Let75, 2152(1995; Q. Hou, S. Sasa, and
Vlimmeren, and J.G.E.M. Fraaije, J. Chem. Ph{88 9150 N. Goldenfeld, Physica 239, 219 (1997; D. Boyer and J.
(1998. Vinals, Phys. Rev. B4, 050101R) (2001); see also L. Purvis

056308-10



HYDRODYNAMIC INTERACTIONS IN ORDERING. .. PHYSICAL REVIEW E65 056308

and M. Dennin, Phys. Rev. Let86, 5898 (2001 on experi- [22] M.C. Cross, D. Meiron, and Yuhai Tu, Chads607 (1994.
mental measurements on domain coarsening in electroconve€23] C. Kittel, Introduction to Solid State PhysiodViley, New

tion. York, 1986.
[21] M.C. Cross and P.C. Hohenberg, Rev. Mod. Ph§s. 851 [24] J. Swift and P.C. Hohenberg, Phys. Revi% 319(1977; P.C.
(1993. Hohenberg and J. Swifthid. 46, 4773(1992.

056308-11



