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Effect of vorticity on second- and third-order statistics of passive scalar gradients
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The influence of vorticity on second- and third-order moments of the spatial derivatives of a forced, passive
scalar field has been studied in the framework of a simplified problem; the analysis is restricted to dominating
rotation and molecular diffusion is represented by a linear model. The results reveal that, in the case of a
passive scalar experiencing forcing in an isotropic medium, both vorticity and diffusion counteract anisotropy
imposed on the scalar field. Anisotropy at the level of second-order moments appears to be destroyed essen-
tially by the action of vorticity.
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[. INTRODUCTION action in opposing the anisotropy imposed by strain.
Previous studief21,22 have addressed the respective ac-

The question of the connection between large and smafions of strain and vorticity on scalar dissipati@(g,9,,)
scales is essential to the field of turbulence. In this respectwhere D is the molecular diffusivity of the scalag; the
determining to what extent small scales experience the inflfluctuating gradient component in directionand(-) repre-
ence of |arge ones as well as the way in which such a “consents the meanThe present one is focused on the effect of
tamination” takes place is an important tagk-3]. Espe- Vorticity on second-order momentg;g;) and third-order
cially, evaluation of small-scale anisotropy implied by Moments(g’) in the case of a forced scalar field.
anisotropic large-scale forcing of velocity or scalar fields has  First, a qualitative analysis of vorticity effects is reported.
led to seriously question the principle of local isotropyThenv second- and thlrd—prder statistics of scalar.gra.dllent
[4-11]. As a matter of fact, there is now some evidence thafOmponents are studied in the framework of a simplified
large and small scales can be directly conneéfetil—13. si_tuatipn that is assgm_ed to mimic royatio_n-dominated re-
The scenario of such a coupling has been explained, in pagions in a flow. The dissipation process implied by molecular
ticular, in the case of a passive scalar field forced by a largediffusion is accounted for by means of linear modeling.
scale gradient; in this situation, experiments as well as nu-
merical simulations indeed show that sharp scalar sheets Il. QUALITATIVE ANALYSIS
“cliffs” ), aligned normally to forcing under influence of the

gr?ﬁésgfﬁa?%\gi c[%ags_eg \fgli;on of the small-scale IS'Otromﬂow experiences the effects of strain, rotation, and molecular
S o . . ._diffusion[19,21-23. The combined actions of these mecha-
An outstanding result of previous studies is the PersiS- .o o are expressed by the equations for the compof&nts
tence of anisotropy with increasing turbulence ReynoldsO]c the scalar gradient
number[11,12. This is suggested by the behavior of incre-
ments and gradient skewness but is also true at the level of dG, 1 9%G,
second-order moments of scalar derivatil@4.0]; the latter T SeGa— 50a8,igGpTD

. - . . 2
can, moreover, display a significant anisotropy in the pres-

ence of sheaf14-16. Notwithstanding the fact that recent \ypere S; represents the components of strain andthe
studies[17] reveal that the skewness may not be a relevantsmponents of vorticity. The scalar diffusiviy is assumed
indicator of a possible tendency toward isotropy, such feazy e constants;;, is the alternating symbol. The fluctua-
tures raise further questions, especially, about mechanismg s of componenG; with respect to its mean valugs;)
that may oppose anisotropy. will be written asg; (hence,G;=(G;)+g;).

Examination of the equations for the second-order mo-  gecond-order moments of the fluctuating components of
ments of scalar derivativgé48] shows that isotropization can G are defined as

be ascribed only to molecular dissipation and/or stretching.

S_tretching acts on scalgr gradients through strain and rota- Gij=(9i9;)- (2)
tion. On the one hand, in the presence of a large-scale forc-

ing, strain is likely to cause anisotropy of second- and third-TensorG is an important quantity with regard to small-scale
order moments of scalar derivatives via compression alongnixing. In particular,DG,,, is the mean dissipation rate of
the direction of forcing. On the other hand, the significantthe energy of scalar fluctuations. Moreover, the invariants of
influence of rotation on second-order statistics of scalar dethe anisotropy tensor formed frod reveal the scalar field
rivatives has been proved by numerical simulations in thestructure at the level of dissipatig6].

case of sheared turbulen¢&9] and a recent experimental Let us consider an isotropic turbulent medium in which a
and modeling study20] suggests that vorticity may also passive scalar field is forced by a uniform mean gradieimt
promote isotropization at this level. The particular action ofsuch a way thatG,)=I" (I'>0, say and(G;)=(G3)=0
vorticity thus deserves to be studied regarding its possiblg€24]. The general equations for the componentgipican be

The gradientG of a passive scalar embedded in a fluid

@
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derived from Eq.(1) [18]. The effect of vorticity on the ponents ofG corresponding to fluctuating gradients normal
diagonal components @ in the present situation is assessedto forcing (G;; andGss, here. Vorticity also limits this effect
by analyzing the corresponding equations in which strainthrough redistributionlhere, fromG;; and G5 toward Gy,).

dissipation, and transport terms are dropped: Interestingly, previous studid¥,8,10 have shown that the
statistics of scalar gradients on the total flow revealed, on the
dgiq contrary, thatG,,>G,,=Gs3. Since the latter result is most

dt ~ 2(w391) "+ (29193) ~ (@30192), C) probably explained by the effect, on the scalar field, of com-
pression events associated with cliff structures normal to the

dG,, direction of forcing[8,18], it can be inferred that the statis-
ar =(w30192) —{®19293), (4)  tics of scalar gradients is dominated by strain in this kind of
experiment.
dg The influence of vorticity on the skewnesses of gradient
33 IS~ =(g3 i
o = 2(0193)T +{019593) — { 029173). (5) ~ components, that isSg =(g7’), can also be discussed from

simplified equations. The latter are derived using @g,

Indices 1, 2, and 3 refer to components in a coordinate sys- dSGl 3 3 3

tem defined by the orthogonal vector basg,k,,xs) with TR §<w3gf)l“+ E(wzgfgg,)— §<w3g§g2), (6)
X3=X1XX,. For convenience, it will be assumed that the
scalar is represented by hdat passive conditionsand that

X, direction is referred to as “up” and-x, as “down.” The
case under study thus corresponds to an isotropic turbulent
flow in which a transverse, uniform temperature gradient is

dSGz_3 2 3 2
.~ 3 (@391 — (01930 + 5 ((039:92)

2
applied. This situation is akin to a well-documented experi- —(®103093)), 7
ment[8,10,28.
The forcing termdfirst terms on the right-hand sides of d563 3 2 3 o 3 5
Egs. (3) and (5), respectively represent production of; at §<“’lg3>r_ §<‘”291g3>+ §<“’19293>- ®

and Gs3. It is indeed easy to show that;g,) is negative

whereas(w,g3) is positive. As a matter of fact, positive In Eqg. (6), (w3g3)=0 (because ofwz symmetry and
rotation aroundxs (ws>0) simultaneously brings warm (w,g%gs;)=0 (which results from the fact thab, and the
fluid toward x;<0 and cold fluid toward;>0 causing a fluctuating componentsy; are uncorrelated Correlation
negative fluctuation of the gradient along, that is,g:  (w,g%g,) is also equal to zero. Hence, vorticity alone does
<0. Inversely, w3<0 implies g;>0 and hence{wsd1)  not imply any skewness oB;, which is expected because
<0. A similar reasoning on the effect of rotation around  ,, makes fluctuationg;, symmetrically, either positive or
shows that(w;93)>0. Vorticity, therefore, promotes the negative. Similarly, there is no production 8¢ .

variance of gradient components that are normal to the di- £, o ination of the terms of Eq7), followinag the same
rection of forcing(g; andgs, in the present cajeA nega- kind of reasoning as previously, reveals tlfat;g;g3)<0

tive forcing (I'<<0) would lead to the same result since, in 2 X .
. " . and (0,0503)>0; w3 and g, are negatively correlated
that case, correlations between vorticity and scalar gradien L
whereasw, and g; are positively correlated as already ex-

components would assume opposite signs. . - .
The second effect of vorticity consists in redistributing the P2in€d- Vorticity thereby produces a negative skewrigss

energy of gradient fluctuations among the three directiongvhenT'>0 and the opposite result would be found in the
which is represented by the third-order correlation termscase of a negative forcinf. Vorticity thus implies a skew-
The sum of the latter is indeed zero as can be checked fromess ofG,, the sign of which is opposite to the sign of
Egs.(3)=(5). In the present situation, redistribution “feeds” forcing. Now, it is established that in isotropic turbulence,
Ga at the expense af;; andGag; this mechanism is repre- SINSs,)=sgnl’) [5-8,29 as a result of the existence of cliff
sented by the terméw;g,9,) and{(w,9,03), respectively. structures moving along the direction of forcing. This, again,
The former is essentially positive while the latter is negativelends support to the idea that scalar gradient statistics is de-
As already mentionedy5 andg; are negatively correlated. termined by strain in this situation. In passing, it is worth
In addition, any rotation arounxk tends to bring warm fluid noticing that the statistics of scalar gradients, at least at the
down and cold fluid up, resulting in a negative fluctuatipn level of second-order moments, is governed by vorticity
of the gradient along,; this implies{w3g.9,)>0. Simi-  rather than by strain when shear is superimposed on the forc-
larly, {@,9,95)<<0 (any rotation aroundk, also causes a ing of the scalar field19].
negative fluctuatiorg,). Correlation{w,g,gs) is zero be-
cause rotation arounxl, (the direction of forcing does not Ill. MODEL PROBLEM
cause any fluctuation of the scalar gradient components.
Hence, there is no redistribution betwe@n and Gs;.

To summarize, it is likely that anisotropic large-scale forc-  The role of vorticity in the statistics of scalar gradients is
ing of a scalar field in isotropic turbulence results, innow investigated analytically in the framework of a simpli-
rotation-dominated regions, in promoting the diagonal com{fied problem. As in the preceding section, the situation of a

A. Instantaneous scalar gradient
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scalar field forced by a gradieit (parallel tox,) is consid- It is to be stressed that the above solution, derived from a
ered. Equatiorfl) is written forG,;, G,, andG3 neglecting  system in which the effect of strain is neglected, retains some
the influence of strain. In a way similar to the approach usegbhysical validity with regard to the effect of pure rotation
for modeling the effect of viscosity in the velocity gradient only if it is restricted to time smaller than the time scale of
equation[26], molecular diffusion is represented by a relax- strain buildup. Since rotation-generated strain develops on a
ation mechanism acting with the diffusion frequerfgy. time scale of ordew ™, this condition impliet<w™!. In

The following system, derived from E¢l) together with  the following, the analysis will thereby be limited t6<1.
the above hypotheses, is subsequently assumed to mimic théhen considering a turbulent medium, this restriction justi-
evolution of the scalar gradient components when rotatiorfies neglecting vorticity destruction by viscosity effect since,

dominates: at the smallest scales), *~/?/v whereas at larger scales,
4G 1 w,'</?v (wherew, is the vorticity at scale’ and v the
1 . S .
FTOk ~(05G3— wiG,y)— 4G, (9) kinematic viscosity.
4G B. Second-order statistics of scalar gradient components
F*Z= E(ngl—wIGs)— f5(G,—T), (10 It is now assumed that vorticity has a random, isotropic
orientation in the coordinate systemy(x,,X3) (see Appen-
dix A). In other words, one considers a large numiNgfN
dGs 1 | . . . ; . N
3F = “(0FG— 03 Gy)—5G;. (11)  —°) of points at which a randomly oriented rotation is ap-

plied. In addition, it is stated that the diffusion frequerfgy

is the same at each point. The statistics of the scalar gradient
on this set of points is akin to an ensemble statistics condi-
tioned on rotation. In this regard, it is to be underlined that
the statistical properties derived in the following sections are
thereby different from those relating to the total flow; in
particular, the analytical results presented hereafter do not
conflict with the discussion of Sec. Il, which is devoted to
the overall statistics. Note that symbg) is, however, still
used to represent the mean in the following.

Vorticity decay due to viscosity is neglected and the diffusion
frequencyf is assumed not to depend on time. The follow-
ing normalized quantities are defined:=wt, fi="fy/w,
o} = /o, with 0= (w,w,)"2

With G;1(0)=G3(0)=0 andG,(0)= v as initial condi-
tions, the solution of Eq949)—(11) is

Gi=[A; cogt*/2)+B; sin(t*/2) + w* w% (y—T)]

Xexp — f5t*)+C; (12) From Eq.(12), it follows that
where (G)=0, (Ggz)=0, (13
214 (1—(3’)T
A= -olo;y+ 1+4f*2(2 5wl i+ o3)T; (Gg)=T"~— Tfsg{l—[cos(t*/Z)
fx +2 £% sin(t*/2) Jexp( — F5t%)}. (14)

B.= +—2 215 1), L .
1= 3y 1+4f% (2fpw3y=wiezl) The above derivation of the mean gradient components re-

quires the values of the vorticity momerigssnumber of them
4f%2 are zero—see Appendix)Alt is also stated thafy)=T,
Ao=| v gzl |(1-w2%); which implies that, initially, the mean value G, is T'. Note
P that, from Eq.(14), (G,)<I". The statistics of5; is similar
x to the one ofG; and is not reported in the following.
£ The second-order moment$gf)=G;, (95)=G,,) are
derived from Eqs(12)—(14) and their exact expressions are
given in Appendix B.
The case of vanishing rotationo(~0) leads to obvious
results since then

B,= 1+4f*2(1 w3y

*

Az=—w; 03 y+ f*Z(Zwa’z‘wg—w’f)F;

1+4

f* G1:0 and gll: 0,

Bomwly— P (2 fhwl v+ w3 w3 T),
3T WY T ggE2 e 10 273 =I'+(y—T)exp—fpt),

o} 0l 203} w32+ 4fE2 Goor=T?(T,— 1)exp(— 2 fpt),

S qrangr ST ez U
D D with Z,=(¥*)/T? (thus, Z,=1). If Gy, is initially nonzero

(Z,#1) then, the ratiaj,,/G;, remains infinite. In a more
general case wher€,(0)=1y,; and G,(0)=1y, with {y,)

=1y and (y,)=TI,, it is straightforward to show that

c _w§w§+2w’1’f’5r
=< -~ -
8 1+4f%
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G,,/G11 is constant. In the framework of the present model, ) w2 t*?2 s
diffusion alone, therefore, does not cause destruction of the G1=I"T w3 >T+O(t ), (20)
initial anisotropy of second-order moments.

In the following, the regimes of vanishing and moderate t*2
diffusion determined, respectively, bf—0 and O(f%) Goo=T3(Z,~1)|1-(1—(w}?) e +0(t*%), (21)
=0(1), areconsidered, restricting the analysis to the small-
time limit, t* <1. and the evolution of anisotropy of second-order moments is

given by

1. t*<1 and f§—0

From Egs.(B1) and (B2), the following expressions are 9_22: 4(17—121)»[*7% o(1),
derived: 01 I, w;3
t*z that |S,
G11=T2T (%) — +O(t*%), (15
11 7< 3 > 4 ( gzz 12(Z.y_1) L,
g_:I—t +0(1). (22
*2 11 Y
_ 2
QZZ_FZ(IF 1){1_(1_@”2k ) 4 In this case too, vorticity makes anisotropy decay*is’.
1 7 1 t*4 2. t*<1 and O(f%)=0(1
(5 pterd+ jeord) 35 . Hemed
3 12 4 16 In this regime,
+F2(<w*4)—<w*2>2)g+0(t*6) (16) 2/ %2 Z,-1
2 2 64 ' G11=T'Yw3°) 1+m

*2

\orticity implies production ofG,,. The initial variance of
y Imp p G11 T+O(t*4)a (23

G, is destroyed by vorticity that is represented by the
O(t*?) term in Eq.(16). Vorticity, however, also promotes
G, as revealed by bot®(t*4) terms.

13 *

I —
+ Y
1 2(1+4f’57)2

1
Gor=T2(T,~ 1)[ 1-2f5t5+| 2152~ Z(l—<w;2>)}t*2

The caseZ,=1 is a special one that corresponds to zero

initial variance of G,. The variances of5; and G, thus 2 1
become simplified, —21f% §f’|52_ Z(l_w;z» t*3+O(t*4)}
2/ %2 *2 x4
_ * 4
Gii=T'¥ w} >T+O(t* )s (17 +T2((03 Y — (w32 2)a+0(t*5). (24)
* 4

2 ) w20 6 In Eq. (24), the first O(t**) term is not given explicitly
Goo=1""({wz") = (w3 )aJrO(t ). (18)  pecause it makes the expression more complicated and is of
no use for subsequent calculations.

The ratioGy,/G», is a measure of the diagonal anisotropy of ~ The variancegy, is essentially produced by vorticity, at

tensorg, orderO(t*?); simultaneously, diffusion opposes the increase
of G1; but at ordetO(t*%). Diffusion causes the decay of the
G (0} 2> initial value of G,, via aO(t*) term. The lasO(t**) term in
o = 16mt* “24+0(1). Eq. (24) expresses promotion @k, by vorticity.
22 2 2 If Z,=1 then
Replacing the moments of vorticity by their numerical values ) t*2
(see Appendix A G1=TXw} >(l—th*)T+O(t*4), (29
g11 x_2 t*4
9_22_6(1 +O(1) (19) g22=F2(<w>2\-4>_<w§2 2)a+o(t*5)’ (26)

Initially, the ratio G11/G,, tends to infinity. At small times and
G11>G,, but the ratio decreases rapidly #s™ 2 under the

action of vorticity. This is explained by the fact th@; is G 16 (w}? S
produced via the interaction between vorticity and forcing g_zz_ <w*2<4)_<w*2< 2>2t +O" ),
and thatg,, is fed by redistribution fronG,; (andGs5).

In the general case whefg,# 1, which can be rewritten as
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— -3/2_ -1
] - 85,7 86,0 "=TT|
= X[(03)(3(ws ") —2(w5%)?) —(03°)]
If Z,#1, Gy, is given by Eq.(23) andG,, by X ({03 % —(wk2)2)~32
Gro=T 2(1 —1)(1-2f5t*)+O(t*?). (28 When replacing the moments of vorticity by their numerical
values, one obtains
Then, from Eqs(23) and(28), _
gs(23) and(28) Sg,=0.640|T| %, (32)
A(Z,—1)t* 2 ot*
g_22: (Z,~1) — Therefore, in the case of zero initial variance@, vorticity
911 <w*2 + vy 1+ L produces a skewnes%, of order unity, of the same sign as
° (1+4f5%)? (1+4f5%)? :

the forcing. In the general casg # 1, the analysis will be
+0(1). (29) undertaken, as previously, in the small-time limit.

Note that, as in the case of second-order momedes.
IIB), the regime of vanishing rotation is trivial; it is indeed

At t* =0, G;,=0 andG,,=T"*(Z,~1) as a consequence of ¢, demonstrated thés. decays as exp(3fpt) and that
the initial conditions that have been chosen. Afterwagis, y %2 y P(3fo)

increases as a result of production by vorticity agpd de- Séz r-ema?ns constant. The regimes of vanishing and moder-
creases essentially under action of diffus{@uy. (28)]; the  ate diffusion are tackled in turn in the following.
ratio G,,/G,, decreases at* ~?2, at the leading ordefEq.

(29)]. Diffusion also causes destruction of anisotropy but at 1. t*<1and f5—0
OrderO(t*_l). It iS, hOWeVer, clear from EC(29) that dif- In this regime, expansion of EQB?’) leads to
fusion alone would not ensure the destruction of the initial
anisotropy and that this process requires the existence of vor- t*2
ticity. S6,=S6,(0) 1-3(1— (w3 )) —

C. Third-order statistics of scalar gradient components (7 13(w 2>+3< w* 4>> tr4 +3I‘3(I —1

2 2

The third-order moments are derived from Eq@$2)— 2 2 7

(14). It is found thatSg, = S, =0 which was expected. The . - x4 .
* *

exact expression fafs, is given in Appendix B. X((@37)=(@39)%) 55 +O(t*7). (33

In the special case whef®g,= 1, Eq.(B3) is reduced to

3 Examination of Eq.33) indicates that vorticity makes the

initial skewness decrease via tBét*2) term. Vorticity also
amplifies the initial skewness but the corresponding term is
4 * 4
. 5 ek ekexy 113 of orderO(t**) only. The lastO(t**) term represents pro-
X[{codt*/2)+2 fp sin(t*/2)fexp( — fpt*) — 1], duction of skewness by vorticity; a8® is multiplied by a
(30 positive factor, this term expresses that, in the case of zero
initial skewness, vorticity implies a skewness the sign of

that is, replacing the moments of vorticity by their numerical WNich is the sign of forcing.

So,= (T arEap (@3 ) (308" ~ 2w1?)) ~(wt)]

values, (33‘;he normalized skewness is derived from E@$) and
_ 160 * | £* sin(t*/ I t*4
Sez—w_l_’_—z”gz)s[l—{coit 2)+2 £ sin(t*/2)} 8*2 S 1+3 <a) >_<w~§2 2) 128+31—~|1—~|—1

Xexp(— fpt*)]%. (31) x4
D X(Iy_l)fl/2(<w>2\-4>_<w§2 2)1:3—2‘*'0(':*6), (34)

Equation(31) shows that the sign (3@2 is given by the sign

of the forcing term[’ (the cubic time-dependent term is posi- whereS, is the initial normalized skewness.

tive). This is not inconsistent with the discussion of Sec. Il As expressed by the last term of E&4), vorticity pro-
since, here{G,) is an ensemble mean value that is not con-duces a normalized skewness that has the same sign as forc-
stant but, in the domain of interedt*(<1), decreases under ing. It also appears that, depending on the valu&,gfvor-

the action of vorticity as can be checked from Etg). ticity either destroys(if 7,<2, i.e., in the case of a weak
Using Eq.(B2) (with Z,,=1) and Eq.(31), the normalized initial variance ofG,) or strengthengif 7,>2, that is, the
skewness of3, is derived to be initial variance ofG, is largg the initial skewnesss, .
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2. t*<1 and O(f§)=0(1) Regarding third-order moments, the analysis is less
In this case, straightforward:
Vorticity, on the one hand, always produces a skewness of
2 1 2 t*2 the scalar gradient component corresponding to the direction
315" 7 (1—(w2%)) | of forcing (G.); this is represented by a weak term, of order
O(t**) [Egs.(33)—(36)]. On the other hand, in the regime of

SGZZSGZ(O)( 1_3f6t* +3

_of|fx2_ 1(1_<w* 2})}£+O(t*4)] vanishing diffusion t5—0), vorticity also implies destruc-
b|'D 4 2 2 tion of a possible initial skewnes%; (0) [Egs.(33)]. In this
tx4 regime, however, depending on the intensity of the initial
+33(7,- 1) ({0} N—(w5%)?) e +0O(t*®). fluctuations, vorticity either destroys or reinforces the initial
normalized skewness @, [Eq. (34)];
(35 In the regime of moderate diffusiofO(fg)=0(1)],

both decays of skewness and its normalized value are en-

Sured by diffusion, the corresponding terms being of orders
O(t*) and O(t*3), respectively{Eqgs. (35) and (36)]. It is

AFforth mentioning, however, that without rotation, diffusion
would not make the initial normalized skewness decrease, at
least in the framework of the present model.

forcing [last O(t*#) term). In the case of a nonzero initial
skewness, however, the prevailing mechanism is the decre
implied by diffusion and represented byQ{t*) term.

The normalized skewness is found to be

35 The present simplified analysis does not allow one to

S’éz=$y 1- ?f’53t*3+ o(t*%) |+3r|r| 1 draw definitive conclusions regarding passive scalar gradient
statistics in real turbulence. Some qualitative trends can,

tx4 however, be put forward. In particular, it can be suggested

X(Z,~1) (3"~ (03?)?) §+O(t*s)- that, when anisotropy of the scalar field results from the ex-

istence of front structures oriented normally to a large-scale
(36) forcing, mechanisms implying destruction of this anisotropy
exist(at least at the level of second- and third-order moments
of scalar derivativesand are likely to depend on the struc-
Ytures thicknesgsay, /). Indeed, when the latter is of the
order of the Kolmogorov’s length scalg(the smallest thick-
ness of the front structures if unity Schmidt number is as-
IV. DISCUSSION AND CONCLUDING REMARKS sumed then vorticity at scales larger thaphas a negligible
influence with respect to diffusion at the front scale and can-

The above approach is just aimed at revealing the influ- i isot Thi be thought . .
ence of vorticity on second- and third-order moments of the 'Ot OPPOSE anisotropy. his can be thought as a regime in
hich diffusion tends to be the prevailing mechanism with-

gradient of a passive scalar in a simplified situation; the lattelV ¢ I th lavi . . ioned
can be considered to mimic forcing of a scalar in an isotropi®Ut: Tor all that, playing on anisotropy since, as mentione
medium. The main assumptioiaking the problem ana- previously, diffusion acting alone does not destroy gnlsot—
lytically tractable consisted in restricting the analysis to OPY at the level of second-order moments nor does it make
dominating rotation and in representing diffusion effects by &he normalized skewness decrease; in other words, one could
linear model already used in other studi@6]. Statistics Say that the front structures are thickened by diffusion more
presented in Sec. Ill can be viewed as being conditioned of@pidly than they rotate. On the other hand, vorticity at scales
rotation. The results were furthermore discussed in the smalPf order 7 is as important as diffusion and ensures the return

The destruction of the initial skewness by diffusion is again
the leading mechanism although it occurs at third order onl
ng is promoted by vorticity through ®(t*#) term.

time limit and can be summarized as follows. to isotropy of second-order moments; simultaneously, in the
Regarding second-order moments of scalar gradient coniresence of such a vorticity, diffusion destroys the skewness
ponents: in a regime that would correspond to “moderate diffusion”

In the framework of the model used, diffusion alone hasin the present studyO(f5)=0(1)].
no effect in the destruction of an initial anisotropy at the If the thickness/ of the front structures is appreciably
level of second-order moments. larger thanz (say, of the order of the Taylor's microscale

The return to isotropy is governed by vorticitggs.(19),  then, vorticity at scales smaller thaf has obviously no
(22), (27), and(29)]. This is most likely explained by the fact effect on the structures because it cannot make them rotate.
that, as shown in a preliminary qualitative analysis, vorticityAt scales of order’, the influence of diffusion with respect
both promotes second-order moments of scalar derivativel® vorticity scales as I§e1 (where Re is the Reynolds num-
taken in directions normal to forcing;; andGss, here and  ber at scale” defined as Re~ w,/?/v). This implies that at
ensures redistribution of gradient fluctuations energy towardarge Reynolds number, the possible destruction of anisot-
the second-order moment corresponding to the direction afopy at the level of front structures the thickness of which is
forcing (i.e., from G;; and G35 toward G,,). Note that in the larger thanz is governed by vorticity(at the scale of the
presence of rotation, diffusion contributes to the destructioriront thicknesg in a way that would correspond to the re-
of anisotropy but does not prevail in this procégs. (29)];  gime of “vanishing diffusion” in the present studyf§—0).
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Of course, part of the vorticity at scales larger thashould
also contribute to the process.

PHYSICAL REVIEW E 65 056307

It is found that(1) any moment with at least one odd expo-
nent amongm, n, andp is zero (which follows from isot-

When considering arbitrary values of the Schmidt num-ropy); (2) (w??")=1/(2n+1); (3) <wi*2wj*2>:1/15 (
ber, the latter discussion also suggests that the larger thejy: (4) etc....

Schmidt number, the larger the action of vorticity on the

front structuregand thereby on anisotropghould be.
Finally,
vorticity and diffusion may play a significant role in coun-

the above results lend support to the idea that bOtllPPENDIX B: EXACT EXPRESSIONS FOR THE SECOND-

AND THIRD-ORDER MOMENTS

teracting the strain-generated anisotropy of a scalar field

when the latter is forced by a large-scale gradient in isotropic

1. Second-order moments of5; and G,

turbulence. In passing, anisotropy at the level of second-
order moments and hence, of dissipation, is likely to be de- 2

stroyed essentially by vorticity. The latter conclusions would
require specific experiments or simulations to be confirmed.

APPENDIX A: STATISTICS OF VORTICITY
ORIENTATION

The vorticity vectore is defined in the coordinate system
determined by the orthogonal vector base,k,,x3) with
X3=X;XX,. If 6 is the angle betweem and its projection
wp on the K;, X3) plane andy is the angle betweexy and
wp, then

ot =(1-s>)Ycos¢, (A1)
w3 =S, (A2)
wi=(1-s)2sing, (A3)

where o} = w;/w ands=siné.

The component®; define a vector with a random, iso-
tropic orientation if¢) ands are random variables with uni-
form distributions ovef0,27] and[—1,1], respectively. The
corresponding probability density functions ar,(¢')
=1/27 and P,(s')=1/2 with ¢' ands’ being the sample
variables. Any moment of component§ can thus be com-
puted using Eqs(A1)—(A3) and the probability distribution
functionsP, and Ps:

1 1
(wic mwazcnwg p>: E f_l(l_S/Z)(m+p)/25/ndSr

szwcoé“qb’sinp ¢'de’.  (A4d)
0

guzmﬁw*{zwﬁzﬂl—exﬁ— f5t*)
X{cogt*/2)+2 f¥ sin(t*/12)} 1>+ (w3 ?)
X[2 f5+exp(— f5t*){sin(t*/2) — 2 f cogt*/2)}]?]

+T2(Z,— 1)exp — 2 f§t*)

X[ (0¥ ?wi?){1—cogt*/2)}?

(03%)
+m$lﬂ2(t 12)]. (B1)
2
szzm(<w§4>_<w§2>2)[l—eXP(—f’Bt*)

x{cogt*/2)+2 f} sin(t*/2)} 1>+ T%(Z,— 1)
xexp(— 2 FEt)[(1— 2(w3 2 + (w5 *)) cod(t*/2)

+2((03 %) — (w3 %)) codt*/2) + (w3 H)]. (B2)

In the above equationg,=(y*/I'? and thus,Z,>1; T,
=1 corresponds to zero initial variance ®. Note that the
initial conditions imply thatG;,(0)=0 and 922(0)=1"2(Iy
-1).

2. Third-order moment of G,

S6,=Sa,(0)exp = 3fHt*)[(1-3(w3 %)+ 3(w5 %) — (w5 ®))cos'(t*/2) +3(( w3 ?) — 2(w} *) + (w3 ®) ) cos(t*/2)

3

+3((@3 %) — (w3 %)) cog t*/2) + (w3 ®) ]+ m[<w§ (303 %)~ 2w3*)?) —(w3%)]

X[(cogt*/2)+2 f% sin(t*/2))exp( — f5t*)— 113+

3

3r
W(Iy_ Di{w3?)(w3*y—2(w3?) +2(w3 ") —(w3 )]

X cog(t*/2) = 2[( w3 *) (w3 ) — (@3 %) +(w3 *) = (w3 *)Icod t*/2) + ({03 *)(w} *) — (w3 )}

X [{cogt*/2)+2 f§ sin(t*/2)}exp( — f5t* ) — L]exp(— 2 f5t*).

(B3)
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362(0) is the initial skewness db,. It is linked to the initial normalized skewnesS,=$Gz(0)g2‘23’2(0) by

5,=86,(0)|T| (T, ~1)"%2
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