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Effect of vorticity on second- and third-order statistics of passive scalar gradients
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The influence of vorticity on second- and third-order moments of the spatial derivatives of a forced, passive
scalar field has been studied in the framework of a simplified problem; the analysis is restricted to dominating
rotation and molecular diffusion is represented by a linear model. The results reveal that, in the case of a
passive scalar experiencing forcing in an isotropic medium, both vorticity and diffusion counteract anisotropy
imposed on the scalar field. Anisotropy at the level of second-order moments appears to be destroyed essen-
tially by the action of vorticity.
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I. INTRODUCTION

The question of the connection between large and sm
scales is essential to the field of turbulence. In this resp
determining to what extent small scales experience the in
ence of large ones as well as the way in which such a ‘‘c
tamination’’ takes place is an important task@1–3#. Espe-
cially, evaluation of small-scale anisotropy implied b
anisotropic large-scale forcing of velocity or scalar fields h
led to seriously question the principle of local isotro
@4–11#. As a matter of fact, there is now some evidence t
large and small scales can be directly connected@1,11–13#.
The scenario of such a coupling has been explained, in
ticular, in the case of a passive scalar field forced by a la
scale gradient; in this situation, experiments as well as
merical simulations indeed show that sharp scalar sheet~or
‘‘cliffs’’ !, aligned normally to forcing under influence of th
large-scale flow, cause violation of the small-scale isotro
of the scalar field@3,6–8,12,13#.

An outstanding result of previous studies is the pers
tence of anisotropy with increasing turbulence Reyno
number@11,12#. This is suggested by the behavior of incr
ments and gradient skewness but is also true at the lev
second-order moments of scalar derivatives@8,10#; the latter
can, moreover, display a significant anisotropy in the pr
ence of shear@14–16#. Notwithstanding the fact that recen
studies@17# reveal that the skewness may not be a relev
indicator of a possible tendency toward isotropy, such f
tures raise further questions, especially, about mechan
that may oppose anisotropy.

Examination of the equations for the second-order m
ments of scalar derivatives@18# shows that isotropization ca
be ascribed only to molecular dissipation and/or stretch
Stretching acts on scalar gradients through strain and r
tion. On the one hand, in the presence of a large-scale f
ing, strain is likely to cause anisotropy of second- and thi
order moments of scalar derivatives via compression al
the direction of forcing. On the other hand, the significa
influence of rotation on second-order statistics of scalar
rivatives has been proved by numerical simulations in
case of sheared turbulence@19# and a recent experimenta
and modeling study@20# suggests that vorticity may als
promote isotropization at this level. The particular action
vorticity thus deserves to be studied regarding its poss
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action in opposing the anisotropy imposed by strain.
Previous studies@21,22# have addressed the respective a

tions of strain and vorticity on scalar dissipationD^gaga&
~where D is the molecular diffusivity of the scalar,gi the
fluctuating gradient component in directioni, and ^•& repre-
sents the mean!. The present one is focused on the effect
vorticity on second-order momentŝgigj& and third-order
momentŝ gi

3& in the case of a forced scalar field.
First, a qualitative analysis of vorticity effects is reporte

Then, second- and third-order statistics of scalar grad
components are studied in the framework of a simplifi
situation that is assumed to mimic rotation-dominated
gions in a flow. The dissipation process implied by molecu
diffusion is accounted for by means of linear modeling.

II. QUALITATIVE ANALYSIS

The gradientG of a passive scalar embedded in a flu
flow experiences the effects of strain, rotation, and molecu
diffusion @19,21–23#. The combined actions of these mech
nisms are expressed by the equations for the componentGi
of the scalar gradient

dGi

dt
52SiaGa2

1

2
va«a ibGb1D

]2Gi

]xa]xa
, ~1!

where Si j represents the components of strain andv i the
components of vorticity. The scalar diffusivityD is assumed
to be constant;« i jk is the alternating symbol. The fluctua
tions of componentGi with respect to its mean valuêGi&
will be written asgi ~hence,Gi5^Gi&1gi!.

Second-order moments of the fluctuating components
G are defined as

Gi j 5^gigj&. ~2!

TensorG is an important quantity with regard to small-sca
mixing. In particular,DGaa is the mean dissipation rate o
the energy of scalar fluctuations. Moreover, the invariants
the anisotropy tensor formed fromG reveal the scalar field
structure at the level of dissipation@16#.

Let us consider an isotropic turbulent medium in which
passive scalar field is forced by a uniform mean gradientG in
such a way that̂ G2&5G ~G.0, say! and ^G1&5^G3&50
@24#. The general equations for the components ofGi j can be
©2002 The American Physical Society07-1
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MICHEL GONZALEZ PHYSICAL REVIEW E 65 056307
derived from Eq.~1! @18#. The effect of vorticity on the
diagonal components ofG in the present situation is assess
by analyzing the corresponding equations in which stra
dissipation, and transport terms are dropped:

dG11

dt
522^v3g1&G1^v2g1g3&2^v3g1g2&, ~3!

dG22

dt
5^v3g1g2&2^v1g2g3&, ~4!

dG33

dt
52^v1g3&G1^v1g2g3&2^v2g1g3&. ~5!

Indices 1, 2, and 3 refer to components in a coordinate
tem defined by the orthogonal vector base (x1 ,x2 ,x3) with
x35x13x2 . For convenience, it will be assumed that t
scalar is represented by heat~in passive conditions! and that
x2 direction is referred to as ‘‘up’’ and2x2 as ‘‘down.’’ The
case under study thus corresponds to an isotropic turbu
flow in which a transverse, uniform temperature gradien
applied. This situation is akin to a well-documented expe
ment @8,10,25#.

The forcing terms@first terms on the right-hand sides o
Eqs. ~3! and ~5!, respectively# represent production ofG11
and G33. It is indeed easy to show that^v3g1& is negative
whereas^v1g3& is positive. As a matter of fact, positiv
rotation aroundx3 (v3.0) simultaneously brings warm
fluid toward x1,0 and cold fluid towardx1.0 causing a
negative fluctuation of the gradient alongx1 , that is, g1
,0. Inversely, v3,0 implies g1.0 and hence,̂ v3g1&
,0. A similar reasoning on the effect of rotation aroundx1
shows that^v1g3&.0. Vorticity, therefore, promotes th
variance of gradient components that are normal to the
rection of forcing~g1 andg3 , in the present case!. A nega-
tive forcing (G,0) would lead to the same result since,
that case, correlations between vorticity and scalar grad
components would assume opposite signs.

The second effect of vorticity consists in redistributing t
energy of gradient fluctuations among the three directio
which is represented by the third-order correlation term
The sum of the latter is indeed zero as can be checked f
Eqs.~3!–~5!. In the present situation, redistribution ‘‘feeds
G22 at the expense ofG11 andG33; this mechanism is repre
sented by the termŝv3g1g2& and ^v1g2g3&, respectively.
The former is essentially positive while the latter is negati
As already mentioned,v3 andg1 are negatively correlated
In addition, any rotation aroundx3 tends to bring warm fluid
down and cold fluid up, resulting in a negative fluctuationg2
of the gradient alongx2 ; this implies ^v3g1g2&.0. Simi-
larly, ^v1g2g3&,0 ~any rotation aroundx1 also causes a
negative fluctuationg2!. Correlation^v2g1g3& is zero be-
cause rotation aroundx2 ~the direction of forcing! does not
cause any fluctuation of the scalar gradient compone
Hence, there is no redistribution betweenG11 andG33.

To summarize, it is likely that anisotropic large-scale fo
ing of a scalar field in isotropic turbulence results,
rotation-dominated regions, in promoting the diagonal co
05630
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ponents ofG corresponding to fluctuating gradients norm
to forcing ~G11 andG33, here!. Vorticity also limits this effect
through redistribution~here, fromG11 and G33 toward G22!.
Interestingly, previous studies@7,8,10# have shown that the
statistics of scalar gradients on the total flow revealed, on
contrary, thatG22.G11.G33. Since the latter result is mos
probably explained by the effect, on the scalar field, of co
pression events associated with cliff structures normal to
direction of forcing@8,18#, it can be inferred that the statis
tics of scalar gradients is dominated by strain in this kind
experiment.

The influence of vorticity on the skewnesses of gradi
components, that is,SGi

5^gi
3&, can also be discussed from

simplified equations. The latter are derived using Eq.~1!,

dSG1

dt
52

3

2
^v3g1

2&G1
3

2
^v2g1

2g3&2
3

2
^v3g1

2g2&, ~6!

dSG2

dt
5

3

2
~^v3g1&2^v1g3&!G21

3

2
~^v3g1g2

2&

2^v1g2
2g3&!, ~7!

dSG3

dt
5

3

2
^v1g3

2&G2
3

2
^v2g1g3

2&1
3

2
^v1g2g3

2&. ~8!

In Eq. ~6!, ^v3g1
2&50 ~because ofv3 symmetry! and

^v2g1
2g3&50 ~which results from the fact thatv2 and the

fluctuating componentsgi are uncorrelated!. Correlation
^v3g1

2g2& is also equal to zero. Hence, vorticity alone do
not imply any skewness ofG1 , which is expected becaus
v3 makes fluctuationsg1 , symmetrically, either positive o
negative. Similarly, there is no production ofSG3

.
Examination of the terms of Eq.~7!, following the same

kind of reasoning as previously, reveals that^v3g1g2
2&,0

and ^v1g2
2g3&.0; v3 and g1 are negatively correlated

whereasv1 and g3 are positively correlated as already e
plained. Vorticity thereby produces a negative skewnessSG2

when G.0 and the opposite result would be found in t
case of a negative forcingG. Vorticity thus implies a skew-
ness ofG2 , the sign of which is opposite to the sign o
forcing. Now, it is established that in isotropic turbulenc
sgn(SG2

)5sgn(G) @5–8,25# as a result of the existence of clif
structures moving along the direction of forcing. This, aga
lends support to the idea that scalar gradient statistics is
termined by strain in this situation. In passing, it is wor
noticing that the statistics of scalar gradients, at least at
level of second-order moments, is governed by vortic
rather than by strain when shear is superimposed on the f
ing of the scalar field@19#.

III. MODEL PROBLEM

A. Instantaneous scalar gradient

The role of vorticity in the statistics of scalar gradients
now investigated analytically in the framework of a simp
fied problem. As in the preceding section, the situation o
7-2
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EFFECT OF VORTICITY ON SECOND- AND THIRD- . . . PHYSICAL REVIEW E 65 056307
scalar field forced by a gradientG ~parallel tox2! is consid-
ered. Equation~1! is written for G1 , G2 , andG3 neglecting
the influence of strain. In a way similar to the approach u
for modeling the effect of viscosity in the velocity gradie
equation@26#, molecular diffusion is represented by a rela
ation mechanism acting with the diffusion frequencyf D .

The following system, derived from Eq.~1! together with
the above hypotheses, is subsequently assumed to mimi
evolution of the scalar gradient components when rota
dominates:

dG1

dt*
5

1

2
~v2* G32v3* G2!2 f D* G1 , ~9!

dG2

dt*
5

1

2
~v3* G12v1* G3!2 f D* ~G22G!, ~10!

dG3

dt*
5

1

2
~v1* G22v2* G1!2 f D* G3 . ~11!

Vorticity decay due to viscosity is neglected and the diffus
frequencyf D is assumed not to depend on time. The follo
ing normalized quantities are defined:t* 5vt, f D* 5 f D /v,
v i* 5v i /v, with v5(vava)1/2.

With G1(0)5G3(0)50 andG2(0)5g as initial condi-
tions, the solution of Eqs.~9!–~11! is

Gi5@Ai cos~ t* /2!1Bi sin~ t* /2!1v i* v2* ~g2G!#

3exp~2 f D* t* !1Ci , ~12!

where

A152v1* v2* g1
2 f D*

114 f D*
2 ~2 f D* v1* v2* 1v3* !G;

B152v3* g1
2 f D*

114 f D*
2 ~2 f D* v3* g2v1* v2* G!,

A25S g2
4 f D*

2

114 f D*
2 G D ~12v2*

2!;

B25
2 f D*

114 f D*
2 ~12v2*

2!G,

A352v2* v3* g1
2 f D*

114 f D*
2 ~2 f D* v2* v3* 2v1* !G;

B35v1* g2
2 f D*

114 f D*
2 ~2 f D* v1* g1v2* v3* G!,

C15
v1* v2* 22v3* f D*

114 f D*
2 G; C25

v2*
214 f D*

2

114 f D*
2 G;

C35
v2* v3* 12v1* f D*

114 f D*
2 G.
05630
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It is to be stressed that the above solution, derived from
system in which the effect of strain is neglected, retains so
physical validity with regard to the effect of pure rotatio
only if it is restricted to time smaller than the time scale
strain buildup. Since rotation-generated strain develops o
time scale of orderv21, this condition impliest,v21. In
the following, the analysis will thereby be limited tot* ,1.
When considering a turbulent medium, this restriction jus
fies neglecting vorticity destruction by viscosity effect sinc
at the smallest scales,v l

21;l 2/n whereas at larger scales
v l

21,l 2/n ~wherev l is the vorticity at scalel andn the
kinematic viscosity!.

B. Second-order statistics of scalar gradient components

It is now assumed that vorticity has a random, isotro
orientation in the coordinate system (x1 ,x2 ,x3) ~see Appen-
dix A!. In other words, one considers a large numberN (N
→`) of points at which a randomly oriented rotation is a
plied. In addition, it is stated that the diffusion frequencyf D*
is the same at each point. The statistics of the scalar grad
on this set of points is akin to an ensemble statistics con
tioned on rotation. In this regard, it is to be underlined th
the statistical properties derived in the following sections
thereby different from those relating to the total flow;
particular, the analytical results presented hereafter do
conflict with the discussion of Sec. II, which is devoted
the overall statistics. Note that symbol^•& is, however, still
used to represent the mean in the following.

From Eq.~12!, it follows that

^G1&50, ^G3&50, ~13!

^G2&5G2
~12^v2*

2&!G

114 f D*
2 $12@cos~ t* /2!

12 f D* sin~ t* /2!#exp~2 f D* t* !%. ~14!

The above derivation of the mean gradient components
quires the values of the vorticity moments~a number of them
are zero—see Appendix A!. It is also stated that̂g&5G,
which implies that, initially, the mean value ofG2 is G. Note
that, from Eq.~14!, ^G2&,G. The statistics ofG3 is similar
to the one ofG1 and is not reported in the following.

The second-order moments (^g1
2&[G11, ^g2

2&[G22) are
derived from Eqs.~12!–~14! and their exact expressions a
given in Appendix B.

The case of vanishing rotation (v→0) leads to obvious
results since then

G150 and G1150,

G25G1~g2G!exp~2 f Dt !,

G225G2~Ig21!exp~22 f Dt !,

with Ig5^g2&/G2 ~thus, Ig>1!. If G22 is initially nonzero
(IgÞ1) then, the ratioG22/G11 remains infinite. In a more
general case whereG1(0)5g1 and G2(0)5g2 with ^g1&
5G1 and ^g2&5G2 , it is straightforward to show tha
7-3
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MICHEL GONZALEZ PHYSICAL REVIEW E 65 056307
G22/G11 is constant. In the framework of the present mod
diffusion alone, therefore, does not cause destruction of
initial anisotropy of second-order moments.

In the following, the regimes of vanishing and modera
diffusion determined, respectively, byf D* →0 and O( f D* )
5O(1), areconsidered, restricting the analysis to the sma
time limit, t* !1.

1. t*™1 and fD*\0

From Eqs.~B1! and ~B2!, the following expressions ar
derived:

G115G2Ig^v3*
2&

t* 2

4
1O~ t* 4!, ~15!

G225G2~Ig21!F12~12^v2*
2&!

t* 2

4

1S 1

3
2

7

12
^v2*

2&1
1

4
^v2*

4& D t* 4

16 G
1G2~^v2*

4&2^v2*
2&2!

t* 4

64
1O~ t* 6!. ~16!

Vorticity implies production ofG11. The initial variance of
G2 is destroyed by vorticity that is represented by t
O(t* 2) term in Eq.~16!. Vorticity, however, also promote
G22 as revealed by bothO(t* 4) terms.

The caseIg51 is a special one that corresponds to ze
initial variance ofG2 . The variances ofG1 and G2 thus
become simplified,

G115G2^v3*
2&

t* 2

4
1O~ t* 4!, ~17!

G225G2~^v2*
4&2^v2*

2&2!
t* 4

64
1O~ t* 6!. ~18!

The ratioG11/G22 is a measure of the diagonal anisotropy
tensorG,

G11

G22
516

^v3*
2&

^v2*
4&2^v2*

2&2 t* 221O~1!.

Replacing the moments of vorticity by their numerical valu
~see Appendix A!,

G11

G22
560t* 221O~1!. ~19!

Initially, the ratio G11/G22 tends to infinity. At small times
G11@G22 but the ratio decreases rapidly ast* 22 under the
action of vorticity. This is explained by the fact thatG11 is
produced via the interaction between vorticity and forci
and thatG22 is fed by redistribution fromG11 ~andG33!.

In the general case whereIgÞ1,
05630
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G115G2Ig^v3*
2&

t* 2

4
1O~ t* 4!, ~20!

G225G2~Ig21!F12~12^v2*
2&!

t* 2

4 G1O~ t* 4!, ~21!

and the evolution of anisotropy of second-order moment
given by

G22

G11
5

4~Ig21!

Ig^v3*
2&

t* 221O~1!,

that is,

G22

G11
5

12~Ig21!

Ig
t* 221O~1!. ~22!

In this case too, vorticity makes anisotropy decay ast* 22.

2. t*™1 and O„f D* …ÄO„1…

In this regime,

G115G2^v3*
2&H 11

Ig21

~114 f D*
2!2

2 f D* F112
Ig21

~114 f D*
2!2G t* J t* 2

4
1O~ t* 4!, ~23!

G225G2~Ig21!H 122 f D* t* 1F2 f D*
22

1

4
~12^v2*

2&!G t* 2

22 f D* F2

3
f D*

22
1

4
~12^v2*

2&!G t* 31O~ t* 4!J
1G2~^v2*

4&2^v2*
2&2!

t* 4

64
1O~ t* 5!. ~24!

In Eq. ~24!, the first O(t* 4) term is not given explicitly
because it makes the expression more complicated and
no use for subsequent calculations.

The varianceG11 is essentially produced by vorticity, a
orderO(t* 2); simultaneously, diffusion opposes the increa
of G11 but at orderO(t* 3). Diffusion causes the decay of th
initial value ofG22 via aO(t* ) term. The lastO(t* 4) term in
Eq. ~24! expresses promotion ofG22 by vorticity.

If Ig51 then

G115G2^v3*
2&~12 f D* t* !

t* 2

4
1O~ t* 4!, ~25!

G225G2~^v2*
4&2^v2*

2&2!
t* 4

64
1O~ t* 5!, ~26!

and

G11

G22
516

^v3*
2&

^v2*
4&2^v2*

2&2 t* 221O~ t* 21!,

which can be rewritten as
7-4
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EFFECT OF VORTICITY ON SECOND- AND THIRD- . . . PHYSICAL REVIEW E 65 056307
G11

G22
560t* 221O~ t* 21!. ~27!

If IgÞ1, G11 is given by Eq.~23! andG22 by

G225G2~Ig21!~122 f D* t* !1O~ t* 2!. ~28!

Then, from Eqs.~23! and ~28!,

G22

G11
5

4~Ig21!t* 22

^v3*
2&F11

Ig21

~114 f D*
2!2G F 12

f D* t*

11
Ig21

~114 f D*
2!2

G
1O~1!. ~29!

At t* 50, G1150 andG225G2(Ig21) as a consequence o
the initial conditions that have been chosen. Afterwards,G11
increases as a result of production by vorticity andG22 de-
creases essentially under action of diffusion@Eq. ~28!#; the
ratio G22/G11 decreases ast* 22, at the leading order@Eq.
~29!#. Diffusion also causes destruction of anisotropy but
orderO(t* 21). It is, however, clear from Eq.~29! that dif-
fusion alone would not ensure the destruction of the ini
anisotropy and that this process requires the existence of
ticity.

C. Third-order statistics of scalar gradient components

The third-order moments are derived from Eqs.~12!–
~14!. It is found thatSG1

5SG3
50 which was expected. Th

exact expression forSG2
is given in Appendix B.

In the special case whereIg51, Eq. ~B3! is reduced to

SG2
5

G3

~114 f D*
2!3 @^v2*

2&~3^v2*
4&22^v2*

2&2!2^v2*
6&#

3@$cos~ t* /2!12 f D* sin~ t* /2!%exp~2 f D* t* !21#3,

~30!

that is, replacing the moments of vorticity by their numeric
values,

SG2
5

16G3

945~114 f D*
2!3 @12$cos~ t* /2!12 f D* sin~ t* /2!%

3exp~2 f D* t* !#3. ~31!

Equation~31! shows that the sign ofSG2
is given by the sign

of the forcing term,G ~the cubic time-dependent term is pos
tive!. This is not inconsistent with the discussion of Sec.
since, here,̂G2& is an ensemble mean value that is not co
stant but, in the domain of interest (t* ,1), decreases unde
the action of vorticity as can be checked from Eq.~14!.

Using Eq.~B2! ~with Ig51! and Eq.~31!, the normalized
skewness ofG2 is derived to be
05630
t
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SG2
* 5SG2

G22
23/25GuGu21

3@^v2*
2&~3^v2*

4&22^v2*
2&2!2^v2*

6&#

3~^v2*
4&2^v2*

2&2!23/2.

When replacing the moments of vorticity by their numeric
values, one obtains

SG2
* .0.64GuGu21. ~32!

Therefore, in the case of zero initial variance ofG2 , vorticity
produces a skewnessSG2

* of order unity, of the same sign a

the forcing. In the general caseIgÞ1, the analysis will be
undertaken, as previously, in the small-time limit.

Note that, as in the case of second-order moments~Sec.
II B !, the regime of vanishing rotation is trivial; it is indee
easily demonstrated thatSG2

decays as exp(23fDt) and that

SG2
* remains constant. The regimes of vanishing and mod

ate diffusion are tackled in turn in the following.

1. t*™1 and fD*\0

In this regime, expansion of Eq.~B3! leads to

SG2
5SG2

~0!F123~12^v2*
2&!

t* 2

8

1S 7

2
2

13

2
^v2*

2&13^v2*
4& D t* 4

64 G13G3~Ig21!

3~^v2*
4&2^v2*

2&2!
t* 4

32
1O~ t* 6!. ~33!

Examination of Eq.~33! indicates that vorticity makes th
initial skewness decrease via theO(t* 2) term. Vorticity also
amplifies the initial skewness but the corresponding term
of orderO(t* 4) only. The lastO(t* 4) term represents pro
duction of skewness by vorticity; asG3 is multiplied by a
positive factor, this term expresses that, in the case of z
initial skewness, vorticity implies a skewness the sign
which is the sign of forcing.

The normalized skewness is derived from Eqs.~16! and
~33!:

SG2
* 5SgF113

Ig22

Ig21
~^v2*

4&2^v2*
2&2!

t* 4

128G13GuGu21

3~Ig21!21/2~^v2*
4&2^v2*

2&2!
t* 4

32
1O~ t* 6!, ~34!

whereSg is the initial normalized skewness.
As expressed by the last term of Eq.~34!, vorticity pro-

duces a normalized skewness that has the same sign as
ing. It also appears that, depending on the value ofIg , vor-
ticity either destroys~if Ig,2, i.e., in the case of a wea
initial variance ofG2! or strengthens~if Ig.2, that is, the
initial variance ofG2 is large! the initial skewnessSg .
7-5
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2. t*™1 and O„f D* …ÄO„1…

In this case,

SG2
5SG2

~0!H 123 f D* t* 13F3 f D*
22

1

4
~12^v2*

2&!G t* 2

2

29 f D* F f D*
22

1

4
~12^v2*

2&!G t* 3

2
1O~ t* 4!J

13G3~Ig21!~^v2*
4&2^v2*

2&2!
t* 4

32
1O~ t* 5!.

~35!

Again, vorticity produces a skewness displaying the sign
forcing @last O(t* 4) term#. In the case of a nonzero initia
skewness, however, the prevailing mechanism is the decr
implied by diffusion and represented by aO(t* ) term.

The normalized skewness is found to be

SG2
* 5SgF12

35

2
f D*

3t* 31O~ t* 4!G13GuGu21

3~Ig21!21/2~^v2*
4&2^v2*

2&2!
t* 4

32
1O~ t* 5!.

~36!

The destruction of the initial skewness by diffusion is ag
the leading mechanism although it occurs at third order o
SG2

* is promoted by vorticity through aO(t* 4) term.

IV. DISCUSSION AND CONCLUDING REMARKS

The above approach is just aimed at revealing the in
ence of vorticity on second- and third-order moments of
gradient of a passive scalar in a simplified situation; the la
can be considered to mimic forcing of a scalar in an isotro
medium. The main assumptions~making the problem ana
lytically tractable! consisted in restricting the analysis
dominating rotation and in representing diffusion effects b
linear model already used in other studies@26#. Statistics
presented in Sec. III can be viewed as being conditioned
rotation. The results were furthermore discussed in the sm
time limit and can be summarized as follows.

Regarding second-order moments of scalar gradient c
ponents:

In the framework of the model used, diffusion alone h
no effect in the destruction of an initial anisotropy at t
level of second-order moments.

The return to isotropy is governed by vorticity@Eqs.~19!,
~22!, ~27!, and~29!#. This is most likely explained by the fac
that, as shown in a preliminary qualitative analysis, vortic
both promotes second-order moments of scalar derivat
taken in directions normal to forcing~G11 andG33, here! and
ensures redistribution of gradient fluctuations energy tow
the second-order moment corresponding to the direction
forcing ~i.e., fromG11 andG33 towardG22!. Note that in the
presence of rotation, diffusion contributes to the destruct
of anisotropy but does not prevail in this process@Eq. ~29!#;
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Regarding third-order moments, the analysis is le
straightforward:

Vorticity, on the one hand, always produces a skewnes
the scalar gradient component corresponding to the direc
of forcing (G2); this is represented by a weak term, of ord
O(t* 4) @Eqs.~33!–~36!#. On the other hand, in the regime o
vanishing diffusion (f D* →0), vorticity also implies destruc-
tion of a possible initial skewnessSG2

(0) @Eqs.~33!#. In this

regime, however, depending on the intensity of the init
fluctuations, vorticity either destroys or reinforces the init
normalized skewness ofG2 @Eq. ~34!#;

In the regime of moderate diffusion@O( f D* )5O(1)#,
both decays of skewness and its normalized value are
sured by diffusion, the corresponding terms being of ord
O(t* ) and O(t* 3), respectively@Eqs. ~35! and ~36!#. It is
worth mentioning, however, that without rotation, diffusio
would not make the initial normalized skewness decrease
least in the framework of the present model.

The present simplified analysis does not allow one
draw definitive conclusions regarding passive scalar grad
statistics in real turbulence. Some qualitative trends c
however, be put forward. In particular, it can be sugges
that, when anisotropy of the scalar field results from the
istence of front structures oriented normally to a large-sc
forcing, mechanisms implying destruction of this anisotro
exist~at least at the level of second- and third-order mome
of scalar derivatives! and are likely to depend on the stru
tures thickness~say, l !. Indeed, when the latter is of th
order of the Kolmogorov’s length scaleh ~the smallest thick-
ness of the front structures if unity Schmidt number is
sumed! then vorticity at scales larger thanh has a negligible
influence with respect to diffusion at the front scale and c
not oppose anisotropy. This can be thought as a regim
which diffusion tends to be the prevailing mechanism wi
out, for all that, playing on anisotropy since, as mention
previously, diffusion acting alone does not destroy anis
ropy at the level of second-order moments nor does it m
the normalized skewness decrease; in other words, one c
say that the front structures are thickened by diffusion m
rapidly than they rotate. On the other hand, vorticity at sca
of orderh is as important as diffusion and ensures the ret
to isotropy of second-order moments; simultaneously, in
presence of such a vorticity, diffusion destroys the skewn
in a regime that would correspond to ‘‘moderate diffusio
in the present study@O( f D* )5O(1)#.

If the thicknessl of the front structures is appreciabl
larger thanh ~say, of the order of the Taylor’s microscale!
then, vorticity at scales smaller thanl has obviously no
effect on the structures because it cannot make them ro
At scales of orderl , the influence of diffusion with respec
to vorticity scales as Rel

21 ~where Rel is the Reynolds num-
ber at scalel defined as Rel ;v l l 2/n!. This implies that at
large Reynolds number, the possible destruction of ani
ropy at the level of front structures the thickness of which
larger thanh is governed by vorticity~at the scale of the
front thickness! in a way that would correspond to the re
gime of ‘‘vanishing diffusion’’ in the present study (f D* →0).
7-6
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Of course, part of the vorticity at scales larger thanl should
also contribute to the process.

When considering arbitrary values of the Schmidt nu
ber, the latter discussion also suggests that the larger
Schmidt number, the larger the action of vorticity on t
front structures~and thereby on anisotropy! should be.

Finally, the above results lend support to the idea that b
vorticity and diffusion may play a significant role in coun
teracting the strain-generated anisotropy of a scalar fi
when the latter is forced by a large-scale gradient in isotro
turbulence. In passing, anisotropy at the level of seco
order moments and hence, of dissipation, is likely to be
stroyed essentially by vorticity. The latter conclusions wou
require specific experiments or simulations to be confirm

APPENDIX A: STATISTICS OF VORTICITY
ORIENTATION

The vorticity vectorv is defined in the coordinate syste
determined by the orthogonal vector base (x1 ,x2 ,x3) with
x35x13x2 . If u is the angle betweenv and its projection
vP on the (x1 , x3) plane andf is the angle betweenx1 and
vP , then

v1* 5~12s2!1/2cosf, ~A1!

v2* 5s, ~A2!

v3* 5~12s2!1/2sinf, ~A3!

wherev i* 5v i /v ands5sinu.
The componentsv i* define a vector with a random, iso

tropic orientation iff ands are random variables with uni
form distributions over@0,2p# and @21,1#, respectively. The
corresponding probability density functions arePf(f8)
51/2p and Ps(s8)51/2 with f8 and s8 being the sample
variables. Any moment of componentsv i* can thus be com-
puted using Eqs.~A1!–~A3! and the probability distribution
functionsPf andPs :

^v1*
mv2*

nv3*
p&5

1

4p E
21

1

~12s82!~m1p!/2s8nds8

3E
0

2p

cosm f8 sinp f8df8. ~A4!
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It is found that~1! any moment with at least one odd exp
nent amongm, n, and p is zero ~which follows from isot-
ropy!; ~2! ^v i*

2n&51/(2n11); ~3! ^v i*
2v j*

2&51/15 (i
Þ j ); ~4! etc....

APPENDIX B: EXACT EXPRESSIONS FOR THE SECOND-
AND THIRD-ORDER MOMENTS

1. Second-order moments ofG1 and G2

G115
G2

~114 f D*
2!2 @^v1*

2v2*
2&@12exp~2 f D* t* !

3$cos~ t* /2!12 f D* sin~ t* /2!%#21^v3*
2&

3@2 f D* 1exp~2 f D* t* !$sin~ t* /2!22 f D* cos~ t* /2!%#2#

1G2~Ig21!exp~22 f D* t* !

3F ^v1*
2v2*

2&$12cos~ t* /2!%2

1
^v3*

2&

~114 f D*
2!2 sin2~ t* /2!G . ~B1!

G225
G2

~114 f D*
2!2 ~^v2*

4&2^v2*
2&2!@12exp~2 f D* t* !

3$cos~ t* /2!12 f D* sin~ t* /2!%#21G2~Ig21!

3exp~22 f D* t* !@~122^v2*
2&1^v2*

4&!cos2~ t* /2!

12~^v2*
2&2^v2*

4&!cos~ t* /2!1^v2*
4&#. ~B2!

In the above equations,Ig5^g2&/G2 and thus,Ig>1; Ig

51 corresponds to zero initial variance ofG2 . Note that the
initial conditions imply thatG11(0)50 andG22(0)5G2(Ig

21).

2. Third-order moment of G2
SG2
5SG2

~0!exp~23 f D* t* !@~123^v2*
2&13^v2*

4&2^v2*
6&!cos3~ t* /2!13~^v2*

2&22^v2*
4&1^v2*

6&!cos2~ t* /2!

13~^v2*
4&2^v2*

6&!cos~ t* /2!1^v2*
6&#1

G3

~114 f D*
2!3 @^v2*

2&~3^v2*
4&22^v2*

2&2!2^v2*
6&#

3@„cos~ t* /2!12 f D* sin~ t* /2!…exp~2 f D* t* !21#31
3G3

114 f D*
2 ~Ig21!$@^v2*

2&~^v2*
4&22^v2*

2&!12^v2*
4&2^v2*

6&#

3cos2~ t* /2!22@^v2*
2&~^v2*

4&2^v2*
2&!1^v2*

4&2^v2*
6&#cos~ t* /2!1~^v2*

2&^v2*
4&2^v2*

6&!%

3@$cos~ t* /2!12 f D* sin~ t* /2!%exp~2 f D* t* !21#exp~22 f D* t* !. ~B3!
7-7
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SG2
(0) is the initial skewness ofG2 . It is linked to the initial normalized skewness,Sg5SG2

(0)G22
23/2(0) by

Sg5SG2
~0!uGu23~Ig21!23/2.
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