PHYSICAL REVIEW E, VOLUME 65, 056223
Speckle statistics in a chaotic multimode fiber
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Wave chaos is devoted to the study of wave motion when the geometrical limit of rays is chaotic. Imprints
of ray chaos may be found either in spectral and spatial properties of modes or in spatio-temporal evolution of
wave packets. In this paper, we present a thorough experimental and theoretical analysis of field statistics for
light propagating in a multimode fiber with a noncircular cross section. This optical fiber serves as a powerful
tool to image waves in a system where light rays exhibit a chaotic dynamics. We show that, in the speckle
regime, the experimentally measured statistical properties of intensity patterns are well accounted for by a
“random Gaussian” hypothesis. A comparison is also made in the case of regular ray motion by using a
circular optical fiber. Possible extensions and applications of the tools and concepts of wave chaos are men-
tioned in modern communication technology.
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I. INTRODUCTION [12], microwaves[13], and optical cavitied14]. Despite
their interesting potentialitiegl5], wave chaos experiments

After three decades of studies in the field qdiantum  with visible light, in particular in optical fibers, have been
chaos the nature of quantum eigenstates of systems whodargely underestimated. Indeed, the huge advantage of light
classical limit is chaotic is still an active subject of research.n optical fibers resides in the fact that it can be most easily
In classical Hamiltonian dynamics, chaos is explained inmaged, thus enabling one to achieve very precise measure-
terms of exponential instability of trajectories with respect toments of intensity patterns. Recently, using a chaotic optical
initial conditions, leading to mixing and ergodicity. Thus, the fiber with a D-shaped transverse section, we have observed
application of probability theory to these deterministic sys-and analyzed scarred patterfis]. While spectacular, this
tems is justified[1]. It is crucial to realize that asymptotic behavior is exceptional in such chaotic optical fibers, and a
(long-time limits of dynamical averages are essential inrandom field is more generally obtained. The differences be-
classical ergodic theory. In contrast, bounded classically chaween these behaviors can be evidenced through an analysis
otic quantum systems show different behaviors since, theiof the field in terms of spatial statistics and correlations. The
frequency spectrum being discrete, all phase-space informaim of the present paper is to provide the first experimental
tion is essentially obtained after a finite amount of time. Thischaracterization of wave intensity in multimode fibers in the
conflicting situation reveals the subtle and singular nature o$peckle regime, together with a theoretical analysis in terms
the semiclassical limitboldly implemented as the famous of wave chaos.
“#—0" limit ) whose understanding is precisely the subject This paper is organized as follows. In Sec. Il, we present
of quantum chaos. In this limit, wave functions are uniformly a theoretical approach based on a modal decomposition to
distributed over the whole available phase space, which igescribe light propagation along a multimode fiber. To estab-
ergodically explored by the classical trajectories, thus localllish an analogy with quantum systems, we introduce the
resulting in a random superposition of plane waves. Trackingaraxial approximation, which we show to be valid in the
fingerprints of classical phase-space structures in quantusystem we consider. In Sec. Ill, we start from a Hamiltonian
properties(distribution of eigenfrequencies, statistical prop- formalism for wave propagation to briefly describe the geo-
erties of eigenmodes, Green’s functions, and time evolutionmetrical limit of rays and introduce the concept of chaotic
led to major advances in the field, such as random matrixilliards relevant to our study. Then semiclassical arguments
theory, and periodic orbit theory, dynamical localizat[@).  are briefly reviewed and used to predict Gaussian statistics of
In fact, these advances rapidly proved to be relevant for otheguided modes. A brief mention of periodic orbit theory is
wave systems sharing close analogies with quantum systemsade to illustrate the close connection between modes and
(e.g., microwave or acoustic systeyngiving rise towave  periodic ray motion. In Sec. IV, our experiment is described,
chaos For these systems, the goal is to understand the fate atarting with the fabrication of a specially designed multi-
interference in the geometrical limifwavelength\ —0) mode fiber. The experimental setup is then presented, fol-
when the ray motion is chaotic. Connections were also foundbwed by an analysis of the measurements of wave intensity.
with disordered system|3]. Wave and quantum chaos are We show the relevance of a Gaussian analysis for a wave
thus now well documented topid®,4,5 covering a wide pattern resulting from the superposition of ergodic guided
variety of physical systems, such as complex atomic nuclemodes. A special emphasis is placed on spatial correlations
[6], Rydberg atomg$7], electrons in quantum dof8], cold  of the near-field using the information contained in the far-
atoms[9], surface waveEL0], elastodynamicEl1l], acoustics field intensity pattern. We cannot conclude without mention-
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For B4=nikj<p?<p2=nZk5, Eq. (2) is solved at dis-
crete valuesB,, called the propagation constants of the
guided modes. This eigenvalue problem can be written in a
form

Béo— B
=—5—¢ 4)

1, Ber M0k
2 2

which, by writing V(r)=[ 82,—n?(r)k3]/2, emphasizes the

) ) _ formal equivalence between E(®) and a stationary Schro
FIG. 1. Sketch of the transverse section of the multimode flberdinger equation

studied in the paper. The cladding of the actual fiber is thicker than

shown here.

1
[—EAJrV(r) ¢=Ed. 5)
ing that, in the current context of rapidly growing optical
communications, the understanding and fine control of com;, : .
plex wave propagation in multimode fibers will constitute anTheeugenenergy fakes on discrete valus,, related to the

indispensable issue in future transmission systems. Ba's through

Ba= Bt~ 2E,. (6)
Il. THE MODEL FOR PROPAGATION ALONG THE FIBER
Using the basis generated by the eigenmoggsof the

the details of fabrication of the fiber we use. Here, we simplyzsé%h;cgmger equatiort5), the solution of Eq(1) can be writ-

give those of its characteristics which justify the approxima-
tions of our model. We use a highly multimode step-index
fiber, with respective indices of the core and of the cladding, W(r,z)= 2 Chdn(r)expli Bnz)
Ne,= 1.458 andn,=1.453. The transverse shape of the core n
is a truncated disksee Fig. 1 invariant along the fiber.

Since we are dealing with a case of weak guidance =, cnbn(r)expli VBZ,—2E,2), (7
[(ne—Ng)/ng<<1], it is expected that one can construct n
modes whose transverse field is essentially polarized in one ) ] .
direction. Indeed, in weakly guiding waveguides, though thevhere the sum should generically include the continuum
index nonuniformity is essential to ensure total internal re-States(nonguided modes with imaginag's).
flection, one may neglect it as far as polarization effects are Defining E,= «3/2, to each mode can be associated an
concerned17]. In spite of the edges of the transverse secangle ¢, with respect to thez axis defined by tad,
tion, we checked that the linear polarization of light issued=«,/8, (or, equivalently, by sim,=«,/B.). The cutoff
from our laser is indeed fairly well preserved throughout theangle  for guided modes is given by glga
fiber. We therefore will use the scalar approximation in the= \/l—(nc,/nco)2 (around 5° with the values of the indices
following theoretical approach. given above which corresponds to the maximum value
Kmax=\/,8§0— ,85. This value is related to the total number of
guided mode§18]. Indeed, the number of allowed valugs
in the intervall B, B¢, (for a given polarizatiohis given by

We denote by the position along the axis of the fiber and the Thomas-Fermi formula, which, in our context, reads
by r the position in the transverse plane. Using the transla-

tional invariancen(r,z)=n(r), the three-dimensionaBD)

A. Modal decomposition

. _ 1 1 n(r)k3— B2
Helmholtz stationary equation N(B)= EL Vdr [E-V(n]= Py dr — s
(A+ ) g(r,2) +n*(NkGy(r,2) =0, (D) S 2
_ X p2 2y
- 4W(BCO B ) 477_ 1 (8)

whereA is the transverse Laplacian, can be reduced to

where S is the area of the core. This expression yields the
Ag(r; B)+[n*(nks—B*1¢(r;8)=0, (2 well-known formula[19] for a cylindrical fiber of radius:
N=0v2/2, with v =aky(nZ,—n2)*? when allowing for both
whereko=2x/\ (N is the vacuum wavelength of the source polarizations. In our exotic fiber, the total number of modes
and (with a given polarizatiopis approximately 1500.
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B. The paraxial approximation Ill. FROM RAYS TO WAVE

Many of the theoretical results in the field of wave chaos e now consider the geometrical limit of rays and pro-
have been obtained in the quantum confgkiL8]. Though  pose to do so by deriving the eikonal equation in the paraxial
the introduction of the quantum formalism is not theoreti- approximation. This is technically much simpler than deriv-
cally indispensable, it is quite convenient to our purposesng the eikonal equation directly from the 3D Helmholtz
and is easily performed through the following transforma-equation without restricting the generality of the ensuing re-
tion. Starting from Eq.(5), one can write a pseudo-time- sylts[20]. We are then naturally led to investigate a problem

dependent Schdinger equation of chaotic billiards[21,27. Then we will address the impli-
. cations of chaotic ray motion on the statistical spatial prop-
| Beozp(1;2) =[ ~ A+ V(1)] (1;2) ©  erties of guided modes, pafial prop
which can be viewed as an evolution equation alengny _ _
solution ¢(r;z) of the above equation can also be decom- A. Chaotic ray motion
posed on thep,’s, Starting from the parabolic equati@®), if one substitutes
E r;z)=A(r;z)exdi r:z)], 16
o(riz)=3 Cn¢neXD<—iﬁ—nZ)- (10 e(r;z)=A(r;z)exli BeoL(r;2)] (16)
" o two equations are obtained,
Note that Eq.(9) corresponds to the paraxiébr para- 2 1 AA
bolic) approximation performed on Ed@l). Indeed, if one —20,L=(V L)%+ 1_n_(r) S —— (17)
writes ‘ n2, 2 A
¥(r,2)={(r;2)e' Pe?, (11) 9,(A2)= —V.(A2V L), (18)
Eq. (1) becomes Equation (18) is simply a conservation equation for the
s o is “density” A?, with “current” A’V £, whereas Eq(17) is not
8 =] - Tas Beo—n(nky| the eikonal equation since it allows for diffraction effects
| Boo2d(112) = 2 2 (rz) through the last term of the right-hand side. Indeed, the true
eikonal equation, associated to geometrical optics, is ob-
_l 3,,£(r:2) (12) tained by neglectingﬁgozAA/A, consistently with condition
2 A (13). It therefore reads
which is equivalent to Eq9) insofar as one may neglect the —3d,L=H(r,VL), (19
second order derivative of{ (paraxial or slowly varying
amplitude approximation where
2 2
< . 1 n<(r
2 2 nZ,

This neglect amounts to approximate the exact soluin
of Eq. (1) by is the Hamiltonian ang, is the transverse momentum. The
2 rays of the geometrical limit are the characteristic curves

- Beo—En ) f the Hamilton-Jacobi equation and satisfy th
el BeZ— _ 14 (r(2),p, (2)) of the Hamilton-Jacobi equation and satisfy the
e(riz)e zn: C”(ﬁ"(r)eX;](I Beo - (4 Hamilton equations

The validity of this approximation is easily established in dr dH
our experimental context. Indeed, by comparison of Efs. dz H’ (2D
and (14), corresponding terms of each sum are close if the
difference between their phases remains much smaller than dp, oH
27, ie., 4 (22)
- E, 1 E, > om These equations are straightforwardly solved for our fiber.
6B=Bco~ Bee VB~ 2En= EBCO( ,8_2> <5 Indeed, inside the uniform cor#, is reduced to its “kinetic”
Cco,

(15) part, pflz, which can be related to the angledefined above
throughpf =sir? 6. At the boundaries between core and clad-
Condition (15) leads to values o somewhat smaller ding, if sir 0<(1—n§,/n§0), the ray is reflected back to the
than the cutoff angled,.y, When allowing for the actual core. Between two consecutive specular reflections, the ray
length of the fiber. Therefore, this condition amounts to re-consists of a straight segment. We have thus reduced the
stricting the sum in Eq(14) to the first few hundreds of initial wave problem to the dynamics of a point particle in-
guided modes. side a domain with perfectly rigid walls: a billiarf23].
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(a) (b)

FIG. 2. Examples of a single ray trajectory after a propagation
of 150 in units of the radiu&: (a) inside a circular billiard, where
a caustic is clearly observe(h) inside a circular billiard cut by a Sj-1
small straight segment of length 1€R. The caustic is destroyed
due to the chaotic motion.

FIG. 3. Representation of the dynamics in a billiard through the
coordinates associated, at each rebound, to the curvilinear abscissa
Here, the dynamics refers to the evolution alarand can be along the boundary, and the sine of the angle of reflectionith
most easily visualized by projecting the ray trajectories ontdspect to the inward boundary normal.
the transverse plane. From now on, we will restrict our study
of the motion to the two-dimensionéD) projected motion. trajectories which close upon themselves in phase space

Without going into technicalities, we wish now to illus- (hence also in real spacd-or a chaotic system they must, of
trate the particular dynamics of chaotic billiards. Let us firstcourse, be unstable in the sense that any small initial devia-
recall the regular motion of rays in the billiard with the shapetion from it must diverge exponentially with time. To be
of a circle. Figure 2a) shows a typical trajectory within such complete, the proper way of evidencing chaos in billiards is
a billiard after a propagation length of 150 in units of the by considering the behavior of a collection of initial condi-
radiusR. One can clearly observe the presence of a caustidions. In Fig. 5, this set is initially shown as a dark disk in the
The latter encloses a region of space that this trajectory nevg@hase space associated to the geometry of our actual fiber.
visits (whatever the number of reflectionsThis kind of  Rapidly (exponentially with the number of reflectionthe
structure is destroyed in chaotic billiards. This is exemplifiedinitial conditions will spread over the whole surface. This
by considering the following modification of the previous behavior is precisely the sign of Hamiltonian chaos.
billiard. A new shape is obtained by cutting a small straight
segment of length IC° R. Whereas the change of boundary 1
is not visible in Fig. 2b), its effect on the dynamics is dra-
matic: for the same initial conditior{position and direction
the formerly forbidden region is invaded after a finite num-
ber of reflections. In the theory of Hamiltonian chaos, it is
shown that this effect stems from tlextreme sensitivity to
initial conditions which appears for any nonvanishing size
of the cut(excepted for a cut of IengIR, which Corresponds ................................................
to the semicircular billiard

The qualification of chaos is more conveniently studied -1
through a phase-space representation. A common representa-
tion in billiards consists in restricting the dynamics to the 1
knowledge, at each impact, of the curvilinear abscissand
of the sine of the angle of reflection, with respect to the
inward boundary normdkee Fig. 3. Thus, atjth reflection,
definingfj the unit vector tangent to the oriented boundary at
abscissa; andﬁ,— the inward normal unit vector, the trans-
verse momentum reads, =t; siné#sine;+n; sin cose; . bolreesigmete petensien” linilonds
The same trajectories as in Fig. 2 are shown in the phase
space §,sina) in Fig. 4: the regular motion is associated to -1
the conservation ofr in the circular billiard[Fig. 4(b)],
while in the truncated billiard, which is chaotic, the whole
phase space is eventually uniformly covered by almost any FiG. 4. Same trajectories as in Fig. 2 using the phase-space
trajectory[Fig. 4(b) shows the trajectory after a finite number coordinates$, sina) introduced in Fig. 3(a) The regular motion in
of bounces, i.e., at finite tinjelt should be mentioned here the circular billiard is associated to the conservatiompfb) in the
that there exist particular trajectories which do not fit intochaotic billiard, the whole phase space is asymptotically uniformly
this scheme, namely, the periodic orbits. These orbits areovered by almost any ray trajectory.

..................
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FIG. 6. A typicalergodiceigenmodgsquared amplitude solu-
tion of Eq.(25) with Dirichlet boundary conditions, in the truncated
FIG. 5. Sketch of the typical evolution in phase space of gchaotic billiard withkR=87.89. Apart from the obvious symmetry,
subset of initial conditions. Starting from an initial disk, subsequentSUCh @n eigenmode can be viewed as a superposition of plane waves
stretching and folding are depicted at larger and larger times. &t @ givenk with random phases and directions.

S

B. Gaussian statistics of ergodic guided modes (A+k?)¢»=0 inside the core

In the following, we will use the quantum terminology of _o
semiclassical techniques to designate what is otherwise re- b=
ferred to as the geometrical theory of diffractid]. Thus, The above eigenvalue problewith Dirichlet conditions is

using the quantum analog of our optical waveguide, the geo- S o X
metrical limit of rays corresponds to the classical limit of al good approximation of Eq4) for low-lying guided modes.

Lantum oroblem. In our case. the small parameter for seml§levertheless, the following qualitative arguments concerning
quantum p S : Z7 2p 2 > the statistics of eigenmodes do not rely on this approxima-
classical expansions is«k[) ™", where k“=B¢,—B°=2E

i , ) tion. In Sec. IV, to analyze our experimental results, we will
andL~ S is the typical size of the corf25], and ray tra- ot yse jt. In Fig. 64=287.89(in units of inverse radius of

jectories have to be viewed as a genuine skeleton of wavge pjliard). This figure illustrates the fact that a typical
motion[26]. In particular, the features of uniformity and isot- eigenmode can be viewed as a random superposition of 2D

ropy resulting from the chaotic exploration of phase space by|ane waves of different phases and directions but with the
rays, as illustrated in the last sectidfig. 5, should be ex-  s3me wave number [29].

pgcted to govern, Iike\_/vi_se, thg statistical distribu_tion of it one views a typical specklelike guided mode locally as
eigenmodes. The ergodicity of eigenmodes can be rigorously,e 5\ nerposition of plane waves with random directions, it

shown[27] and may be formally stated in writing down the 1,5y he shown that the field autocorrelation function
local density of states
Cylr,ro;K)=(P*(r—3r0) p(r+3ro)) ., (26)

where(---), is to be understood as an ensem{@eergy

on the boundary. (25

[ @b, steio- g

po(rx)= L ) 2 average in the asymptotic limikL>1, has the expected
drdp; &(x*/2— B H(r.p.)) value[30,31] [following the microcanonical resui23)]
= lim (|$(N[?)., (23 Cy(r,ro;K)
KkL—©
where the average reads f dp, exli Beo Py - o] 8(k?12— BEH(1,p,))
1 B , ,
(6MIPh=gg 2 14N, (24 f dr’ dpy 8(*12= BEH(r"p))
(27

the sum running ovelN eigenmodes centered arourktl
.:K2/2. This average is meaningful provided that the energyin the case of a 2D billiard, whergl(r,p,)=p?/2 in its
interval is large enough to ensure a large valueNofbut interior, the Diracé function only fixes the norm of, .

small enough for the density of states to be approximatelfquation(27) thus amounts to the well-known res{i&1]
constant within this interva[28]. In practice, an average

over a few modes is adequate, and the ergodic behavior can Cy(r,ro; k) =Jo(kr ), (28
even become a generic feature of individual eigenmodes

when (kL) ! tends to zero. In Fig. 6, the squared amplitudewhereJy(x) is the zero-order Bessel function anglis the

of such an ergodic mode is shown. It has been obtained bgorm ofry. Using an ergodic hypothesis, the average in Eq.
numerically solving (26) can be replaced by a spatial average over the midppint
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which, in practice, should be evaluated over a domain en-
compassing a sufficiently large number of oscillatip@].

In the asymptotic limit, a random superposition of plane
waves with random uncorrelated phases is expected to yield
a Gaussian random field. In the case of real eigenmodes, this
implies that the probability?($)d¢ that the eigenfunction
has a value betwee# and ¢+d¢ is given by

(29

1 ¢
PO exp( 2<¢2>)’
0.45 T T T |“ T T T

where(- - -) denotes a spatial average on the surface of the L P(¢)
fiber section32]. One should note that a Gaussian distribu-
tion does not imply the stronger requiremé®¥). The result
(29) is also recovered by random matrix thed®MT) for

the Gaussian orthogonal ensemble of real symmatricN
matrices in the limitN—cc [28]. Indeed, RMT leads to the
so-called Porter-Thomas distribution for the squared eigen-
vector components. The latter distribution is obtained from
Eq. (29 for the intensityl = ¢? and reads

0.30F dHAAty -

0.15f .

0. +2  +4
(¢ —(¢))/(¢)

Cy(ro; k)

(30 1 T T
° Truncated fiber _|

— Jo(k70)

T——
(= 22 2y

To check this behavior, we first numerically solve the
propagation equatiori25) with Dirichlet boundary condi- 1
tions using a plane-wave decomposition method. This | 1 (©
method[33] has allowed the calculation of the first 2000 !

eigenmodes of the D-shaped billiard. Because of Dirichlet or

boundary conditions, the eigenmodes are chosen to be real. B 7
Using these calculated modes, we have evaluatedathe —04E& 1 1 1 1 =

dial field autocorrelation functio€ ,(ro; ), 0 10 20 30 40 50

7o (pm)

1 27
C‘ﬁ(ro'K):Zfo d0C¢(rO’K) (3D FIG. 7. (@ A high-energy eigenmodéamplitude with xR

=87.89 in the truncated chaotic billiar(h) its associated probabil-

with @ the polar angle and where the field autocorrelation distributionP(#), compared to a Gaussian distributi@ontinu-
function C¢(r0;K) is equivalent to Eq(26) with a spatial ous ling, and(c) the radial field autocorrelation functid®,,(rq; «).

average over, o . i i ,
quasiperiod of the autocorrelation function. This correlation

C ) =(b*(r—1 41 , 32 length is related to the typical size of the speckle grain which
(oK) =(*(r—3rg) p(r+3rp)), (32 is of the order ofc~ L.

In order to reveal the ergodic behavior of the chaotic
with D the domain of integration. eigenmodes of the D-shaped billiard, we have compared the

In Fig. 7, we have represented one typical high-energ)PreV'ous results with those obtained for a typical high-energy

eigenmodelamplitudg of the D-shaped billiard for a value mode of the circular billiard. For large values of the guan-
: . : g . tized numberm associated to the number of zeros in the
of x equal to 87.89 in units of inverse radiRsits probabil-

ity distribution and the corresponding radial field autocorre-radlal direction, there exists a simple relation between the

lation function following Eqs(31) and(32). The assumption cguple of quanuzed_number's,.m) associated to the rggular
of a random superposition of plane waves is confirmed b igenmode of the circular billiard and the value sofgiven
the good agreement between the probability distributio y [34]

P(¢) and the Gaussian distribution, as can be seen in Fig.

7(b). The radial autocorrelation functio@4(rq;«) is com- e~ +2m)1 ms1. (33
pared to the expected zero-order Bessel funcligfixr o) for 2R’

xR=287.89. Note that the predictiof28) is perfectly veri-

fied. From the oscillatory nature of the autocorrelation func-The resolution of Eq(25) for the circular fiber yields solu-
tion, one should define a correlation length deduced from thé&ons of the form

where the averagé---), reads[[p---dr/[[p|¢(r)|?dr,
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(a)
04 I 7
L - (b) _0 4 1 1 1 1
sk ' i 0 10 20 30 40 50
L i ro (um)
0 L FIG. 9. Field autocorrelation functions f¢a) an eigenmode of
- - ( <¢?))/<¢2;"2 +4 the truncated billiard(b) an eigenmode of the circular billiard, and
1 ¢- (c) their associated radial representations.
) 1 T I
Co(ro; ) ;Shzzlilz;r fper we have checked this independence. On the contrary, in the
O30 circular fiber, wide variations are observed from one sample
| to another. Surprisingly enough, for particular domains of
(c) this regular fiber, one can even observe that the behavior of
i A s o S| the radial field autocorrelation function is very close to the
0 -ttt b A A zero-order Bessel functio(Fig. 9). It does not necessarily
s R A follow from this result that the field autocorrelation function
0.4L . . . . ] C,(ro;«) (32) is isotropic, as implied by Berry’s prediction

(28) for ergodic eigenmodes. As an illustration, Fig. 9 dis-
0 10 20 30 40 50 plays the behavior of the field autocorrelation functions cal-

ro (um) culated for eigenmodes, with similar values eof of the
D-shaped(a) and of the circularb) fibers. Note that, while
the radial autocorrelation functions for these two modes are
nearly indistinguishablgFig. 9(c)], only the ergodic eigen-
mode exhibits isotropic correlations.

FIG. 8. (8 A high-energy eigenmode witkR=87.0 in the
regular circular billiard,(b) its associated probability distribution
P(¢), compared to a Gaussian distributi@@ontinuous ling and
() the radial field autocorrelation functid®(r; «).

. C. Periodic orbit theory
cogld¥) even solution

PLm(N=J1(kmh X G 9) odd solution,

As any prediction concerning average behaviors, the re-
sults presented in the previous section suffer rare but impor-
tant exceptions. Indeed, inspecting Fig(dQa clear devia-
whereJ,(x,R)=0 and¥ is the angular variable in the cir- tion from ergodicity is seen, which is in fact associated to a
cular coordinates. Using these relations, we have calculatgsharticular periodic orbifsuperimposed as a solid linerhis
one eigenmode of the circular billiard, for a value ®R intensity enhancement in the vicinity of a single periodic
~87.0, shown in Fig. @. The associated probabiliffFig.  orbit (p.o) is coinedscarring [33,35. This unexpected be-
8(b)] and the corresponding radial field autocorrelation func-havior has led the quantum chaos community to reconsider
tion [Fig. 8(c)] deviate from the theoretical predictio28) the semiclassical limit23). They have established that the
and (29) pertaining to ergodic modes. This is not surprising semiclassical skeleton of eigenmodes is built on all the peri-
since the regular eigenmodes are obviously nonergodic. Imadic orbits of the system. Thus the one-to-one relationship
deed, in this context, a good test of ergodicity relies on theshown in Fig. 10, between an eigenmode and a periodic or-
independence of the above statistical quantities on the spatiblt, has to be considered as an exception, since, as the num-
domain®D introduced in Eq(32) [30]. This domain defines ber of p.o.’s proliferates exponentially with their lengths,
the statistical sample used for the evaluation of the distribueigenmodes must build upon many of them. The crucial role
tion probability. For the eigenmodes of the D-shaped fiberpf p.o.’s had already been exemplified by the famtrase
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=3 ¢ = 4.4037

FIG. 10. Examples of eigenmodes displaying an intensity en- \/ \"/’ / \
hancement in the vicinity ofa) an unstable periodic orbisuper-
imposed as a solid lineand(b) the continuous family of diameters ¢ = 7.0407
(boundaries shown as solid lines

formula[36], which establishes the semiclassical expression ;,Xﬁ \ b
of the density of states(x)=dN/dx, i’k Y
VEERNYG.
ns({K)=no(K)+2 /oWy expli k7). (35
P £ =11.564

In the above equation, the sum is running over the periodic FIG. 12. A few periodic orbits whose periods correspond to
orbits, including multiple traversals, and is the total trans-  peaks of the length spectrum shown in Fig. 11.

verse length of orbip. The quantityw, encompasses a clas-

sical amplitude related to the stability of the orbit and aplays peaks located at the lengths of the p.o.’s. In Fig. 11, we
phase associated to caustics and reflections. The smooth patow the length spectrum of the above considered billiard. A
of the density(for the Dirichlet casgis given by the so- few orbits among the shortest are indicated by arrows and are

called Weyl formulg 37] displayed in Fig. 12. Remark that the vast majority of peri-
odic orbits contribute to the generic ergodic behavior de-
S P scribed in the previous section. Interestingly enough, formula

No(x) = ox T an (36 (35) allows us to recover many of the predictions of RMT

[38]. Nonetheless, the least unstable periodic orbits or the
whereP is the perimeter of the billiard and s its surface. ~continuous family of diameters which survived the trunca-
Note that the leading term of the above expression is directi{ion, and constitute marginally unstable periodic orbits, are
obtained by differentiating Eq(8). Considering the actual responsible for the non-Gaussian statistics of the eigenmodes
density of statesi(«)=X;8(x— «;), Eq. (35) suggests that shown in Fig. 10.
its Fourier transform provideslangth spectrumwhich dis-

IV. EXPERIMENTS

R e e e |

A. Fiber design

The fiber designed and fabricated in our lab for the ex-
periment is now briefly described. Its transverse section is a
truncated disk'see Fig. 1 a silica bar of 1-cm diameter is
cut and polished and the fiber is pulled at a temperature low

[ l ] enough to avoid smoothing of the edges. This process en-
C J l 1 sures a small roughnega few nanometejsof the planar
l | surface. Moreover, since we only use lengths of the order of
10 cm, a high translational invariance is achievieds than
l | t» 3%o error on the fiber diameterThe final dimensions are
L—a D —— 120 um for the diameter of the disk and 9@m for the
0 2 46 8 El/% 12 1416 18 20 truncated diamete(Fig. 13. The cladding is composed of
40% of a black silicorfRhodorsil RTV 1523 A and 60% of
FIG. 11. Thelength spectrunor Fourier transform of the den- transparent silicoiRhodorsil RTV 1523 B We use a black
sity of stateq(«), for the eigenvalue probleii25) in the truncated ~ Silicon cladding in order to avoid propagation of light in the
chaotic billiard shown in Figs. 6 and 10. Thace formulapermits ~ cladding which could complicate the far-field intensity pat-
us to show that the length spectrum should have peaks at the perid@/n. The indices are, respectivety,=1.458 in the core and
lengths of the periodic orbits. Arrows indicate lengths correspondng=1.453 in the cladding. To prevent mode coupling due to
ing to the periodic orbits shown in Fig. 12. bends or stresses, we keep the fiber straight by embedding it
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glass micro-sampling pipet

4

Fiber axis

D LA b0\
€4 o ® 7 cladding -
1 . o
>
& :

Laser beam

ko
)

Fiber axis

FIG. 15. Relation between the incident angle on the fiber and
the transverse wave vectat

_ FIG. 13. Micrpscope obse_rvation _of the t_ransverse section of the k=Ko Sinfy, (37)
fiber embedded in a glass microcapillary pipet.
where ko=27/\. Indeed, it should be kept in mind that,

in a glass microcapillary pipet. The set is kept together in £ven with an ideal plane wave, the propagating wave in the
dural tube. A circular multimode fiber of 120m diameter ~ fiber is essentially decomposed over a certain number of
with a black silicon cladding has been fabricated in the sam@uided modes whose eigenvalues are centered.on

way to compare spatial distributions of intensity for a chaotic For the detection, we use a Sony CCD Camera of
and a regular billiardlike system. 398x 288 pixel size. The CCD is used in its most sensitive

regime(between 0.6um and 0.7 um). At the output of the
fiber, we detect either the near-field intensity or the far-field
intensity. The near-field intensity is obtained by imaging the
For our experiments, we use a He-Ne laser souice ( fiber output with ax 20 microscope objective, whereas the
=632.8 nm) with output power of 1 mW. The experimental far-field intensity is observed in the focal plane of a 2-cm-
setup is illustrated in Fig. 14. The laser beam of 1-mm diamfocal-length lens in the detection cell. Figure 16 shows typi-
eter is first spatially filtered and expanded to obtain a 5-mmca| near-fielda) and far-field(b) experimental intensity pat-
diam beam. As a result, the final diameter is large comparegbrs at the fiber output for a quasi-plane-wave illumination.
with the 120um-diam fiber so that the laser beam may be
viewed as a plane wave. We also performed another type of
illumination by using ax 10 microscope objective to focus ) _
the filtered and expanded beam on the fiber input. Here, we propose an analysis of our observations based
The key parameter of the experiment is the incident direcon the random Gaussian character of eigenmodes in the
tion of the beam given by the ang#ig between the beam and D-shaped fiber. The patterns of Fig. 16 are associated to a
the fiber axigFig. 15. The incident angle of the beam on the SUperposition of eigenmodes for a value of the transverse

fiber input fixes the mean order of the excited modes by thavave numberk:R equal to 36. This value is deduced from
way of the following simple relation: the mean radius of the ring in the far-field intensity observa-

tion. The far-field intensity («,0) is essentially the squared
P SEELEE -~ - e ]

B. Experimental setup

C. Analysis of experimental results

modulus of the spatial Fourier transfor@{(r)} of the

o ¥ 7 N
! filter and beam expander . o0 o
! & st el N s S . #
O'.i’ “,‘:- ¢ . "- '
! i o i . f -y at B =
| 3 R USRI s
vy 3 At YA - -
. S ¥a e 2X 3
: lens or objective :: '.-.ﬁ,s‘ 30 LA E -
p‘v'z"';‘:y‘, 5 o .
e e s———T T L { CCD ¢ “a\§s“"l 2 » L
y calige TP . M
¢
i 77

(@) (b)

FIG. 16. (a) Experimental near-field antb) far-field intensity
FIG. 14. Experimental setup. patterns forx.R~36.0 for a quasi-plane-wave illumination.
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field at the output of the fiber. The width of the ring in Fig. (a)
16(b) gives an estimate of the number of excited modes. In o L
practice, this number is evaluated by assuming a Gaussian il " :
shape for the radial envelope of the far-field intensity. Its full ’ Wa® o g &
width at half-maximum fixes th& interval aroundx. and v el ® L P ) v
yields 175 modes. The ring width we observe is more impor- s i ;’,» » ) >
tant than what we can theoretically expect from a plane-wave F &
illumination. It is mainly due to the initial excitation: we do » *:" - A “ . - :ﬁ‘
not have a perfect plane wave at the fiber input, so that " W . ,- w' 4
several modes are excited. te *?. & >
Thus, the complex field@/(r,z) for a propagation length
reads
N F T T T T T T ] (b)
Ur.2)= Y, andn(N)exp—iBa), (39 . ) ]
n=1 Lok e Poisson distribution ]
where a,, is the weight of modeg,, in the superposition, i 3
given by the projection of the initial condition on the eigen- e ]
modes basi§ e}, 1072 ¢ [ 3
[l
an:J f dr(1) (r,z=0)dr/S (39
S -4
10
0 2 4
with Sthe surface of the transverse section of the fiber and I/(I)

B, the propagation constant associate@to The section of
the fiber we study presents a symmetry axis. The eigenmodes FIG. 17. (a) Mode superposition in the case of a focused exci-
basis is therefore naturally decomposed into even- and oddation for the D-shaped fiber ar(®) its intensity probability com-
parity modes which correspond to two independent spectriared to the expected Poisson distribution.
[18].

Here we use a concept inspired from quantum mechanics: Combining the expressiof88) of the complex field with
In close analogy with the Heisenberg tiff&9], the Heisen-  the previous assumption on the random behavior of the

berg lengthis defined as eigenmodes and of the terrag exp(—if,2), we deduce that
the real and imaginary parts of the complex figi¢r,z) are
zy=2m/AB, (400 themselves independent random Gaussian variables. This

cannot be verified from the experimental results because we
where AB=4m/(SB.) is the mean modal spacing for a do not have experimental measurements of the complex field
given parity. Beyond this length, the guided modes can bén the fiber. Nevertheless, using this Gaussian analysis, we
considered as individually resolved leading to uncorrelate¢an derive a prediction for the behavior of the probability
phases between modes in the decompositi@®. For a distribution of the intensity and thus compare it to the results
propagation lengttz longer than the Heisenberg length, deduced from the measured intensity.
the products,e”'#n* may be viewed as independent random  If we separate the intensity of the field: | |2 using the
variables. Indeed, this condition implies that the phase difreal and imaginary part of the field assumed to be equivalent
ference between two neighboring guided modes is greaténdependent random Gaussian variables, we can derive the
than 2r. It is interesting to note that, in our system, the expression of the intensity probabiliB(l)dI from the joint
Heisenberg length probability dostribution. Its evaluation leads to the Poisson

distribution

_BeS_ 7S )

Zy 2 :ncoT

P(l)=exp(— /{1))/I). (42
may be viewed as arffectiveRayleigh length[40]. For a
Gaussian laser beam propagating out of the waigtthe  Figure 17b) illustrates the good agreement between the
Rayleigh lengthzg=7r(wg)?/\ delineates the borderline be- Poisson distribution issued from our Gaussian analysis and
tween the Fresnel near-field and the Fraunhofer far-field rethe intensity probability calculated from the measured near-
gions. At distances large compared to the Rayleigh lengtHfjeld intensity of the superposition of modes presented in Fig.
the full Fourier content of the laser beam is thus angularlyl7. The initial illumination is a focused beam with>a10
resolved as are the individual modes fully resolved in ourmicroscope objective. This experimental result agrees with
situation for distances large compared to the Heisenbergur assumption on the Gaussian statistics of the eigenmodes
length. of the truncated and chaotic fiber. A validation of this as-
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(a) l\ Cy(ro, z; K) i

_04 ] 1 1 1 1 1
0 10 20 30 40 50 60
ro (um)
F T T T T T (b) L . )
I P(I) i FIG. 19. Theradial field autocorrelation function fo.R
1 o Poisson distribution 3 ~30.0 derived from the far-field intensity pattern of Fig. 16.

3 ] The autocorrelation function is thus obtained from the ex-
107 Rl A I M E perimental observation by the way of a simple inverse Fou-
| . rier transform performed on the far-field intensity. Tiaglial

T function C(r¢,z;«.) is then calculated from the vectorial

—4 I
10 functionC,(rg,Zz; k) using the angular integratioi31) and
is presented in Fig. 19. One should notice that the radial field
10-6 ) autocorrelation still oscillates with a quasiperiod but quickly
0 2 6 8 10 12 decreases ayg, increases. It implies that long-range correla-

1/(I) tions within the complex field are reduced due to the super-
o . position of several modes. As before, we use our Gaussian
FIG. 18. (a) Mode superposition in the case of a focused exci-p o\ is to derive a prediction for the behavior of the field
tation for the circular fiber andb) its intensity probability com- o ;e rrelation function for a superposition of modes. This
pared to the Poisson distribution. analysis is original in the sense that we apply a modal ap-

gProach to describe our experimental results.

sumption will be provided by the investigations on the sp The field autocorrelation function is defined as

tial autocorrelation functions which are much more sensitive
to the nature of eigenmodes.

We now turn to compare this probability distribution to Cy(ro,zike) =(gp(r+r0,2)§*(r,2)), . (44)
the one calculated for the near-field intensity pattern at the
output of the circular fiber represented in Fig.(@8for a  |f one substitutesy(r,z) by its expression38), the field
focused excitation by & 10 microscope objective. As seen gutocorrelation function reads
before, we cannot use the Gaussian analysis to describe the

behavior of the eigenmode of the circular fiber so that we do N
not expect a Poisson distribution for the intensity probability. Cfn 7 K.) = a.a * b (r+r0 b (r)e Pnzgibnz
In Fig. 18b), we have plotted the intensity probability asso- w02 <c) n'nz/zl (@ én(r+10) by (1) %

ciated to the above intensity distribution. We can observe a
large deviation from the Poisson distribution, thus confirm-
ing that the Gaussian analysis is only relevant for the de-
scription of chaotic systems.

We are now interested in evaluating the field autocorrela- - . - .
g Fhe distinct eigenmodes are assumed to be statistically inde-

tion function of a superposition of modes as measured in ou . :
experiment. Although the complex field at the fiber outputpendent to _denve the_s_e(_:ond expression. In rela(tl@mne
cannot be measured directly, we deduce some of its propef—an recognize the definition of.the field autpcqrfelat|on func-
ties from the far-field intensity. Indeed, the far-field inten:sitytIon Cf/’(ro;")_ [Eq. (32)] asso_uated to an individual mode
is proportional to the Fourier transform of the complex near”n" Then, using the express@ﬂS), we deduce the expres-
field as the detector is placed in the focal plane of a lens. Sion Of the field autocorrelation function

The field autocorrelation function is deduced from the far-

field intensity using the well-known Fourier transform rela- N 5
tion Cylro,Zke)= 2 |an *Jo(Kal0)- (46)

N
=n§1 |an|X( pn(r+To) G (N); - (45)

Cylro.zike)=Te {1 (x,0)}, (43 , o _
As a consequence, the Gaussian analysis yields a field auto-

where (k,®) are the coordinates of the far-field space. correlation function written as a weighted sum of zero-order
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.06

.04

.02

FIG. 20. Distribution of the coupling coefficients for a plane-
wave illumination withkgR=40.0 and® =17°.

Bessel functions evaluated at each valuecpf Expression
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(@) (b)

FIG. 22. (a) Near field andb) far field at the output of a trun-
cated fiber fork [R~29.0.

(see Sec. llIB. To do this, we project a plane wave
exp(—irg-r) for a given value ofky on the basis of the

(46) thus includes the contribution of each eigenmode of theé?igenmodes and we propagate this initial condition along the

superposition(38) to the field correlations.

To calculate the right-hand side of E@6), one needs to
know the value of the squad@,|? of the coupling coeffi-
cients which are defined by the condition of illumination
(39). Experimentally, these terms cannot be perfectly evalu
ated. Indeed, only a smoothed versiofx) can be deduced
from the measured far-field intensity

1 (27
b(K)=EJO [(x,0)d0, (47)

being the angular variable in the spatial frequencies spa
(Kx 1 Ky).

To each eigenmodeé,, corresponds a ring pattern in the
far field with mean radiusc,,. The width of each ring is

ideally determined by the finite size of the section of the fiber
and fixes the scale over which the weighted density

S|an|?8(k— k;,) is smoothened to yield (k). Provided that
the experimental resolution be sufficient, the evaluation o
the |a,|?'s throughb(k) is thus intrinsically limited by dif-

fraction. Nevertheless, we can numerically confirm the valid

ity of our Gaussian analysis for the description of the field

autocorrelation function using the calculated eigenmode

T

ro (um)

C

fiber by multiplying each eigenmodg, by the phase factor
in the paraxial approximation exp{B,2~exp
[—1(E,/B0)z]- The expression of the field for a given length
of propagatiore is thus given by the relation

|

The coupling coefficients,, are then derived from the pro-
jection of the initial condition expfisgy-r) on the eigen-
modes basi$o,} (39). In Fig. 20, we have plotted the dis-
teribution of the coupling coefficients associated to a plane-
illumination with xkoR=40 (ko=|Ko|). The

N

w(r,z)=2,

n=1

. En
—i—z

Beo 49

anfﬁn(r)exp(

Wwave
corresponding smooth(«) is also shown to exemplify the
diffraction limit.

One can note that the distribution of the coupling coeffi-
ients is centered on the initial conditiof.R= xoR=40.
Using the coupling coefficients, we can evaluate the predic-
ﬂon (46) deduced from the Gaussian analysis. In Fig. 21, we

ave represented the field autocorrelation function calculated
from the far-field intensity43) compared with the evaluation

C

of the expression(46). The agreement between the two
curves is excellent, thus validating the choice of our modal
Gaussian approach.

Even though the Gaussian analysis of the experimental
field autocorrelation function is intrinsically spoiled by dif-

-
- o, )
.‘:' .'\‘ -
K - v, 2
> av b g -
gw .\l L ]
o f : s AN - *
. .‘g ¥ .‘.-l .' of -
L L C
a
LW 3
(@) (b)

FIG. 21. Comparison between the experimental field autocorre-

lation function(circle) and the prediction derived from the Gaussian
analysis(line).

FIG. 23. (a) Near field andb) far field at the output of a circular
fiber for k,R~29.0.
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FIG. 24. Autocorrelation functions associated to filtered far
fields (see textfor (a) the chaotic D-shaped fibéar-field intensity

patterns shown in Fig. 22and (b) the regular circular fibefFig. FIG. 25. Near-field intensity pattern at the output of a double-
23). Note the hexagonal structure which is strongly marked near thelad fiber with a doubly truncated inner cladding. The white circle
origin in the nonergodic case. delimits a chromium-doped codRCOM, Limoges.

fraction, one can nonetheless extract from it some informaproven its relevance and efficiency in optical telecommuni-
tion on the nature of the field. In particular, we can try to cations[41]. These EDFAs are now commonly used to re-
illustrate the essential difference in nature between the fieldstore optical signals in long-haul optical links. As applica-
in the regular(circular fiber and in the chaoti¢truncated  tions in this domain require more and more powerful signals,
fiber. We first consider the intensity patterns at the output ohigh pump power levels are consequently needed. Double-
both fibers for a plane-wave illuminatidifrigs. 22 and 28 clad fibers permit us to couple high pump power into the
These intensity patterns correspond to the superposition efoped core. In these fibers, the doped amplifying single-
several modes around a central valuexgR equal to 29. In mode(for the wavelength of the signal to be amplifiembre
order to extract the contribution tG,(ro,z;«;) of only a is embedded in a multimodéor the pump wavelengjtinner
few eigenmodes, we performsafiltering by multiplying the  cladding where the pump is injected. Amplification is
far-field intensity pattern by a Gaussian ring. The width ofachieved by a transfer of the pump power from the inner
the ring is fixed to 0.4 (corresponding to the pixel size and cladding into the core as it propagates along the fiber. By
approximately comprising nine mode®r both types of fi-  using an inner cladding with the shape of a chaotic billiard,
ber(regular and chaotjand its mean radius to,R=29. We  one may optimize the overlap of the pump field with the core
then calculate the autocorrelation functions associated talong the propagation, thus reducing the differential modal
these filtered far-field intensity patterns by performing anabsorption of the pump generally observed in standard circu-
inverse Fourier transforr@3). The resulting autocorrelation lar double-clad fibers. Indeed, in a regular circular fiber, the
functions are presented in Fig. 24. One can clearly see theverlap of guided modes varies widely from one mode to the
isotropic behavior of the autocorrelation function associateather, thus leading to fluctuating transfer rates from the inner
to the field in the D-shaped fibéFig. 24a)]. Indeed, this cladding into the core between modes. On the contrary, for
behavior is the signature of the ergodic nature of the chaotithe ergodic modes of a chaotic fiber, the overlap with the
eigenmodes of this truncated fiber. On the contrary, in theore region is essentially a constant. In a recent ppf&r
case of the circular fibdiFig. 24b)], privileged directions of we have proposed a quantitative theory for such an opti-
high correlations mark the autocorrelation function. Thismized pump absorption and provided numerical results in
nonisotropy results from the spatial distribution of the regu-fair agreement with the predictions of our theory. The latter
lar eigenmodes of the circular fiber which are characterizeéssentially relies on the fact that ergodic motion ensures a
by a finite and well-defined number of zeros in the radial andnaximal and constant overlap of the pump intensity with the
angular coordinates. doped absorbing core along the fiber. We have also shown
So far we have only considered the ergodic nature of théhat suppression of marginally stable orbits can significantly
chaotic eigenmodes. Deviations from this generic behavioimprove the absorption characteristics of such double-clad
are nevertheless observed that can be related to specific peDFA's. Experimental demonstration of pump absorption
riodic ray motion associated to the short least unstable orbiteptimization in a doubly truncated double-clad fiber has been
of the system, leading to the so-called scarring phenomenomecently achieve@3]. As an illustration, we show in Fig. 25
A scarredeigenmode displays intensity enhancement alondhe experimental near-field intensity pattern of a chromium-
short periodic orbit§see Sec. ). The spatial localization of doped double-clad fiber obtained by Ph. Leproux, Ph. Roy,
light induces strong correlations for both field and intensityJ.-M. Blondy, and D. Pagnoux of the Guided and Integrated
and the resulting autocorrelation function exhibits strong an©Optics group from Institut de Recherche en Communications
isotropy[16]. Optiques(IRCOM) Limoges, France.

V. APPLICATION TO DOUBLE-CLAD FIBER AMPLIFIERS VI. CONCLUSION

Since the first appearance of erbium-doped fiber amplifi- In conclusion, we have provided the first complete theo-
ers(EDFA) in 1987, a novel way of using optical fibers has retical and experimental characterization of wave intensity in
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a chaotic multimode optical fiber in terms of spatial statisticsoptical fiber amplifiers based on double-clad chaotic fibers
and correlations. We have been able to confirm the validity42]. Furthermore, multimode optical fibers have recently re-
of a Gaussian analysis for the statistics of the wave pattern igeived renewed interest in the context of optical multiplexing
the speckle regime. Special attention was paid to the neafn transmission systenjg4]. The feasibility of such network

field autocorrelation function, which is obtained through theappncations strongly relies on a proper understanding of

measurement of the far-field intensity, thus giving a dual waypropagation of light in complex fibers. The present work
of characterizing the amount of randomness in the propagims to serve this objective.

gated field pattern. Starting from the above experiment, fur-
ther progress is envisaged along the following directions:

selective excitation of_ modes and parametric correlations in ACKNOWLEDGMENTS
the frequency domain through the use of tunable laser
sources. The authors gratefully acknowledge useful discussions

This original experiment in multimode optical fibers pro- with Eric Picholle and helpful numerical materials from
vides interesting prospects to the applications of wave chaoc&nne Vigouroux. It is a pleasure to thank @ed Monnom
concepts to modern technology as recently exemplified irand his team for the fabrication of the chaotic fiber.
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