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Singularities in the fluctuation of on-off intermittency
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For a two-dimensional piecewise linear map exhibiting on-off intermittency, the scaling property of fluctua-
tion, i.e., the large deviation property is investigated. It is shown that there are three phases of fluctuation and
the g-weighted average of an observed quantity has singularities such as jumps or a plateau due to transitions
between the phases. At the onset of on-off intermittency, the width of the plateau vanishes due to the disap-
pearance of one of the three phases and the singularity becomes weaker but more probable. The singularity at
the onset of on-off intermittency is also examined on the coupled logistic map.
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I. INTRODUCTION Il. PIECEWISE LINEAR MODELS OF ON-OFF
INTERMITTENCY

On-off intermittency[1,2] and riddled basing3] appear in
nonlinear dynamical systems with invariant subspacesy,
where the dynamics restricted to the invariant subspace is
chaotic. Due to the chaotic property of the dynamics in the Xni1=F(Xn), Yni1=G(Xn,Yn), (1)
invariant subspace, on-off intermittency and riddled basins
possess considerable complexity despite its simple structuighere G(x,0)=0 and thusy=0 is the invariant subspace.
of the dynamics. In the present paper, we focus on on-ofAssume that the restricted dynamics, ;=F(x,,) to the in-
intermittency that has been investigated in many respects n@riant subspace is chaotic. If the transverse Lyapunov expo-
only in low-dimensional dynamical systerfié—8| but also  npent
in continuously spatially extended systef8g.

We consider two-dimensional piecewise linear maps of
e form

For an understanding of complex behavior in nonlinear N1
dynamical systems, the scaling property of fluctuation, which lim (1/N) 2 In|aG(x,,0)/ ay| (2
is formulated as thermodynamic formalism, is uséfid,11]. N—e n=0

For example, the nonhyperbolicity of chaotic attractor due to ) ) ) ,
homoclinic tangency is characterized by the discontinuity inlong an orbit on the invariant subspace converges and is less

the g-weighted average of local expansion rgfe?]. The th'an zero, then thg invarjant subspace is transversa!ly s'table
structure of riddled basin is characterized by a multifracta®ith respect to this orbit. If we have such an orbit with
spectrum[13]. On-off intermittency is also characterized by Negative transverse Lyapunov exponent and the orbit is as-
its scaling property of fluctuation. The large deviation prop-Sociated with the natural invariant measurexpf ; =F(Xy),
erty, one of the scaling property of fluctuation, of on-off then the invariant subspace contains an attractor in Milnor's
intermittency is investigated for the distance from the invari-Sense[15]. On-off intermittency[1,2,6] is observed, if the
ant subspace with a multiplicative noise mo@] and for foIIovv_mg conditions are satisfieda) the_mvanant sgbspz_ace
the portion of time spent in the laminar phase with a piece£ontains no aytractor(b) .there are orbits on the invariant
wise linear may{8]. It is demonstrated that there appears aSUPspace having negative transverse Lyapunov exponents,
singularity in theg-weighted average of the observed quan-and(c) there is a global mechanism of reinjection. Note that
tity. The common feature of the above two models is thethe second condition enables the invariant subspace some-
existence of underlying random walks, which is consideregvhat “attracting.” o _ _
to be the origin of the observed singularity. This is suggested AS @ tractable model exhibiting on-off intermittenty],
by the fact[14] that inhomogeneous random walks generateVe |nt.rodu.ce the following simplified two-dimensional
singularities in their thermodynamic structure functions. OurPiecewise linear map:
purpose in the present paper is to clearly demonstrate singu- )
larities in the fluctuation of on-off intermittency for piece- X 1= F(%)= xn/a if 0=x,=a 3
wise linear maps by considering a set of observed variables. ntl ol(A=x)/(1—a) if a<x,<1,

In Sec. Il, we introduce two piecewise linear maps that
exhibit on-off intermittency. In Sec. lll, we calculate the y, /b if 0<x,<a,0<y,<b
thermodynamic structure functions and show that there ap- .
pear two types of singularities. A summary and concluding  Yn+1=G(Xn.Yn) =1 b¥n if a<x,<1
remarks concerning the nonhyperbolicity due to underlying yn If 0=x,<ab<y,<1,
random walks of on-off intermittency are given in Sec. IV. 4)

1063-651X/2002/665)/05621712)/$20.00 65 056217-1 ©2002 The American Physical Society



TAKEHIKO HORITA AND HIROMICHI SUETANI PHYSICAL REVIEW E 65 056217

(@ Ill. LARGE DEVIATION PROPERTIES

.onanane cee In this section, we investigate large deviation properties

[17] of on-off intermittency by introducing a set of observed
variables and generalize the result shown in the previous

(b) paper[8], where only a certain variable is observed.
C A~ Let us consider a quantity(X) defined at each phase
-o"c"a"e LR space poini. Its finite time average over steps is
FIG. 1. Graphs of possible symbol sequence for the mag@gls n—-1

I and (b) II. un(X)E(lln)kZO u(TX(X)), (10)

where 1/2<a<1 and 0<b<1 are constants. And we also
consider another modé8] by replacing the dynamics ig  where T¥ denoteskth iterate of the mag¥. Then the large

with deviation propertyf10,11] is characterized by
ynlb if 0s=x,=<a,0sy,<b (8(u—up(X)))~exgd —nS(u)] (11)
Vnr1=G(X,,Yn) =14 byn if a<x,<1,0sy,<b
(1-y)/(1-b) if b<y,<1, for large n with the fluctuation spectrunS(u), where

(5) (G(X)) denotes the average with respect to the natural in-
variant measure. Note th&(u) is a concave function taking

which is referred to as the model Il while the first model isits minimum value 0 atu=(u(X)). The thermodynamic

referred to as the model | in the following. structure functions associated witliX) are introduced by
The natural invariant measure for the asymmetric triangu-
lar map x,,+1=F(x,) of Eg. (3) is the Lebesgue measure ()= lim (1/n)In(e"4n()) (12
[16]. Since n—o
/ b™! if 0<x=<a and
IGXONY =1 it awx=1, ©

u(a)=de(a)/dg=lim (uy(X)e"9n0)/(enatnC9),
if a>1/2, the conditior(a) is satisfied and&=a,=1/2+0 is n—e
the onset point of on-off intermittency. The conditidn is
also satisfied, sincg,,;=F(x,) has a set of initial condi- ) .
tions X, such that the orbifx,} spends longer time in the Where—c«<q<<. The fluctuation spectrur§(u) is related
interval[0,a] than in the intervala,1]. The condition(c) is 0 ¢(d) with the Legendre transformation
satisfied as well. Let us consider a partition of the phase
spaceg 0,1] X[ 0,1] into rectangles S(u)=maxXqu—¢(q)}. (14

q

(13

R=[0,1x[b*1bl], j=012.... (7
In the following, we consider
With this phase space partition, a symbolic dynamics can be

consid_ere_d, where the graphs of possible symbol sequence U, if 0s=x<ab<y<1

have similar structures with random walks as shown in Fig. oo e

1. More precisely, the rectangleR;NR*(a=0,1; u(x,y)=1 U+ Iif 0<x<a,0<y=<b (15
=0,1,2...), where R°=[0,a]x[0,1] and R'=[a,1] u_ if asx<1,

X[0,1], is linearly mapped to
for the model | and

Ry if a=j=0,
) up Iif b<y=i
Rji2.-1 Otherwise, (8 .
u(x,y)=9 u; if 0sx<a,0sysb (16)
and u_ if asx=<1,0sy<b,
Ui=oR if j=0, for the model I, wheraiy, u, , andu_ are constants. Note
that a set of observed variablesan be considered by taking
Rji24-1 Otherwise, (9) several values ofiy, u,, andu_ and that the transverse
expansion rateu(x,y)=In|dG(x,y)/dy| can be considered
in the models | and Il, respectively. with an appropriate choice of the valueswf,u, , andu_ .
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Now we are interested in

M(n)= (")) (17)
n—1

=f pr(X)ex;{qgo u(Tk(X))} (18

- f AX[ HeM0]p(X), (19

wherep(X) denotes the natural invariant density afdde-
notes the Frobenius-Perron operatdtG(X)=[dYJ[ X
—=T(Y)]G(Y) [11]. Let us introduce

. 1 if XeR®
BA(X)= 0 otherwise (20
and
E (x 1 if XeR; o1
iX= 0 otherwise (21)

(«=0,1j=0,1,2...),then, in the present models, the lin-
ear space spanned bi*(X)E;(X)} is mapped to the linear
space spanned byE;(X)} under the operation of the
Frobenius-Perron operatdt and p(X), which is a fixed

point of H, can be found in the linear space spanned b
{E;j(X)}. Moreover, if we are considering piecewise constan

u(X) in eachR*NR; such thatu(X) =2, ;uj"E“(X)E;(X),

which is the case in Eq$16) and(15), then the operation of
He9"X in the linear space spanned fi;(X)} is expressed
with an infinite-dimensional matrix as follows:
HeTIE;(X) =HeW X (EX(X) + EX(X))E;(X) (22

= HEMEYX)+eMENX)E(X) (29

=3, (P et + Pﬁequjl)ei(X)f dYE(Y),

(24)
with e;(X)=E;(X)/fdYE(Y) and
Pioj =a(6;j00j 0t G +1j), (25
Pi=a’si1j, (26)
for the model | and
Pi=b'"'0'5 g+as 1. (27
Pi=a's_1;(1- 3,0, (28)

for the model Il, wherea'=1—a andb’=1—b. Thus, by
0 1
introducing a matriy P,];=Pfj e + P/, we obtain

Mn<q>=JdX_Z [Pq"lipi&i(X)= 2 [Pq"lijp;,
i,j=0 i,j=0
(29

YS({“) andS(™ according to whether all thig i, . . .
{ess tharm or not. The contribution from the bounded paths
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where p;=[dXp(X)E;(X). Note that, atq=0, [P4];; is

identified as the transition probability from the stat® the

statei of an infinite Markov chain ang;, which satisfies
Pi=2{_o[Polijpj and={_op;=1, is obtained as

pi=(a—a’)a a'/a)’ (30)
for the model | and
(a—a’)b’/(1—2a’'b") if i=0
pi= (31)

pob(a’—ab)~H(a'/a)'—b'} if i=1
for the model Il. Note also that, for>0, in both models,
[Polij=adi;1j+a’ 61, which represents random walks
as shown in Fig. 1 anfiPy];j=aed"+ 5, ;+a’el"§_;
with u(X) of Egs.(16) and(15).

By evaluating Eq.(29) for large n, we obtain¢(q) as
M(q)~e"*@ . Equation(29) is rewritten as

{i i2 int [Pq]inin—l[Pq]in—lin—z' ' '[Pq]iliopio’
01, ---ln 32)

Mn(a)

where the summation is taken over all the possible paths
{igsi1, - - .,in} with length n of the Markov chain. For a
fixed m>0, the possible paths are divided into two groups
i, are

s is

M@= X [Pl
{igsig, ... ,in}gss]m)
X[Pali i, [Pqlii,Piy (33)
m—1
:i,jzzo [(Pém))n]ijij(kgm))n,
(34)

where P{™ denotes themxm matrix defined by P{™];
=[Pgl;j(0=<i,j<m) and\{" is the largest real eigenvalue
of P{™. In another way, the possible paths are divided into
two groups St and S according to whether all the
ig,iq1, ..., are greater than O or not. If a path isSﬂ\, then

the path is equivalent to a path of random walks as men-
tioned above. The contribution from the random walk paths
SP is denoted by

>

L : 0
{ig.iq, ...,|n}eSn

X[Pali, i, [Pgliji Piy

Zy(q)= [Palii

(39

It is apparent thas?N St™ + ¢ for anym>0. Since we can
take an arbitrarily large value af, the paths that repeatedly
visit the state 0 are considered to be include®{ . Thus
the paths that are not included in b@” ands° and which
we need to take into account are the pathsiq, ... .in}
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FIG. 2. Functions\ and\’ of » andz for the model | witha

=0.6. BothA and\’ reach the same minimum value/aa’ tan-
gentially.

such that {ig,is,....ii}eS™ and {i|,ijs1,....n}
eSh_,., with a smalll compared witm, so that the expo-
nential dependence &f,(q) onn is obtained by evaluating
the sum ofM{™(q) with m—o andZ,(q).

As shown in Appendix CZ,(q) is evaluated a¥,(q)
~ e+ TU2(\ )", Thus we conclude that

9= gds +U)max\ N/}, (36)

where\ denotese™ U+ U2\ (<)

As shown in Appendixes A and By is obtained as a
function \(#) of 7=ed9(U+TU-~24)"2 for the model | and as
a function\(7,z) of » andz=e 9+ ~4-)2 for the model
Il. The minimum value of\ is 2\/aa’, which corresponds to
the band edge of the continuous
e 9U+*u-)2p and the first derivative ok continuously
vanishes aty=\/a/a’ and 2\/aa’(1-bz *\Ja/a’)=b’ 5!

for the models | and Il, respectively, where the discrete real

eigenvalue disappears. As shown in Appendix)\g,is ob-

@, *

51059

FIG. 3. Functions\ and\’ of » andz for the model Il with(a)
a=0.6 andb=0.4 and(b) a=0.7 andb=0.6. BothA and\’ reach
the same minimum value\&a’ tangentially.

eigenvalue of
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FIG. 4. Phase diagram on thgz plane for the model | with
a=0.6 corresponding to Fig. 2. The symb@isR, andB denote the
discrete eigenvalue, the contribution from random walks, and the
band edge of continuous eigenvalue, respectively.

tained as a functioh’ (z) of z, which has the same minimum
value 2/aa’ as that ofx. Note thatx and\’ do not depend
on b in the model I.

In Figs. 2 and 3\ and\’ are plotted against and » for
the models | and Il. In Figs. 4 and 5, three phaBe®, and
B introduced according to the relative magnitudes\aéind
N\’ are shown on they-z plane. In the phasB the discrete

(a)
15}
1t N R ]

05 r

0}

Inz

05|
4L
15|

FIG. 5. Phase diagrams on thez plane for the model II with
(a8 a=0.6 andb=0.4 and(b) a=0.7 andb=0.6, corresponding to
Fig. 3. The symbol®, R, andB denote the discrete eigenvalue, the
contribution from random walks, and the band edge of continuous
eigenvalue, respectively. if>a’/a, R does not exist for<1. The
dotted lines 1, 2, and 3 if8) show=e~9°5¢ andz=e~95"¢ for
—oo< < with ¢=0.057, 0.387, and 0.7, respectively.
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eigenvalue is dominant, i.e\,>\’>2./a/a’, in the phas® a'b’'z
the contribution from random walks is dominant, i.&/,
>\>2y/a/a’, and in the phasB the band edge is dominant,
i.e.,\'=N=2\/a/a’. By comparing the magnitudes ®fand
\', we obtain the boundary between the phaBeandR as and, ifb<a’/a,

)(z> ya/a') (39

n= — —
(a'z+az Y)(a'z—abz !

n=(ala’)z ! (z>\a/a") (37) a'b’
n

(z<va'la) (40)

- (a’'—ab)(azt+a'z )
and

for the model 1.
n=(ala’')z(z<+/a'la) (39) Let us fix the values oty and u., then[In »=q(u,
+U_—2up)/2,Inz=—q(u; —u_)/2] for —oe<g<oe is a
straight line passing through the origin on thejin z plane.
for the model | and By Eg. (36), a change of phases along the line on the
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FIG. 6. Theg-weighted averaga(q) and the fluctuation spectru®(u) for the model Il witha=0.6 andb=0.4. Corresponding to the
three dotted lines 1, 2, and 3 in Figi@ the values oliy=cos¢ andu, = —u_=sing are set in three waygy=0.05r for (a) and(b),
0.38 for (c) and(d), and 0.7 for (e) and(f). A plateau, a plateau and a jump, and two jumps are observ&, ift), and(e), respectively.
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FIG. 7. Phase diagrams on thez plane for(a) the model | with
a=a, and(b) the model Il witha=a, andb=0.6 at the onset of
on-off intermittency. In both models, at the origin the first deriva-
tives of both\ and\’ vanish.

In 7»-In z plane brings about a singularity #(q) at the cor-
responding value of}. At the boundary betwee® and R
denoted by a solid line in Figs. 4 and 5(q)=d¢(q)/dq
exhibits a jump. In the phas€, u(qg) is a constant since
du(q)/dg=0 and, at its boundary denoted by a dashed lin
in Figs. 4 and 5, the slopetu(q)/dq of u(q) exhibits a jump.
For example, in Fig. 6u(q) and S(u) are plotted for the
three sets of values af, andu.. expressed ag,=cos¢ and
U,=—u_=sing with ¢=0.05r, 0.387, and 0.7 corre-
sponding to the three dotted lines in Figap Figures 6a)
and Gb) are for the dotted line 1, wheng(q) has a plateau
that corresponds to a salient point$(fu). Figures 6c) and
6(d) are for the dotted line 2, whergq) has a plateau and a
jump that correspond to a salient point®fu) and a linear
slope ofS(u), respectively. Figures(6) and Gf) are for the
dotted line 3, wherei(q) has two jumps that correspond to
two linear slopes ir5(u).

In the previous papel8], the model Il withuy=1 and
u,=u_=0 is considered, where only the singularity at the
boundary betwee® andB is observed or no singularity is
observed according to whethler<a’/a or not. Note that, as
it is understood from Figs. 4 and 5, if #=0, i.e., u,
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FIG. 8. Phase diagram of singularities observed in the
g-weighted average of the transverse expansion rate for the model
Il. The symbolsc and d denote a plateau and a jump i{q),
respectively. The onset of on-off intermittency is atagy=1/2
+0.

u,=u_, then the only possible singularity im(q) due to
on-off intermittency is a plateau over a semi-infinite interval
of g. Indeed, this is also supported by the result of on-off
intermittency on the multiplicative noise modgd], where
u(X)=r? andr* are considered, with corresponding to the
distance from the invariant subspace.

Now let us consider the fluctuation of transverse expan-
sion rate IM9G/ay|, i.e.,up=0 andu,=—u_=Inb ! for the
model | anduy=Inb’~! and u,=—u_=Inb™?! for the
model Il. In the case of the model I, by considering the
vertical line (Iny=0,Inz=qgln b) with —c<g< in Fig. 4,
it is confirmed that there are two jumps urfq) and corre-
sponding two linear slopes i8(u) for a>ay=1/2+0. At
the onset of on-off intermittenca=a,, there appears no
singularity since Fig. 4 converges to Figayin the limit of
a—ag. On the other hand, in the case of the model I, a
variety of behaviors as in Fig. 6 is observed depending on

e[he values ofa andb as shown in Fig. 8, wherec” denotes

a plateau inu(q), “d” denotes a jump inu(q), and “c-d”
and “d-d” denote their combinations. In the limit o&
—ay, Fig. 5b) converges to Fig.(b) and thusu(q) exhibits

a discontinuous change of its slopel(q)/dqg at g=0, as
shown in Fig. 9. Corresponding to the singularityufg) at
gq=0, the curvature o$(u) shows a jump at the minimum of
S(u). Moreover, ifb>1/2, a jump inu(qg) and a linear slope
in S(u) are also observed at=a,. In this way, at the onset
of on-off intermittency, the degree of singularity is weakened
but it becomes more probable in the sense that it appears at
the minimum ofS(u). This singularity at the onset of on-off
intermittency can be formulated by considering conditional
variances ofnu,(X). Let us introduce the conditional vari-
anceso t (nuy(X)) ando ™ (nuy(X)) as

=u_, there appears only the singularity at the boundaryando ™ (G(X))=c" (— G(X)) with

betweenD and B, which implies a constant value af(q)
over a semi-infinite interval ofj. Here, for systems exhibit-
ing on-off intermittency, we conjecture that if the observed
guantityu(X) is independent of the direction of motion from

o (G(X)=(a(G(X)=(G(X)))) (41)
B x? if x>0
o ()= 0 otherwise. (42)

or to the invariant subspace as for the present models witRor n>1, Eq.(11) leads to
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FIG. 9. Theg-weighted average(q) and the fluctuation spectru®u) of the transverse expansion rate for the model Il wihb

=0.4 and(b) b=0.6 at the onset of on-off intermittency.

Umax

(nu)2e~"XUdy

o (MU (X))~ 43)
J’ maxefns(u)du
Umin
and
o (Nuy(X))~nk~ 3 (k= YVr k1), (45)

where, Unip=uU(q=—%), Upa=u(g==), u=u(q=0)
=(u(X)), k+=d?S(u*x0)/du?, and S(u) is expanded
around its minimum ati. Thus, if k_ # k., we have differ-
ent limiting values ofo* (nu,(X))/n and o~ (nu,(X))/n.

In Fig. 10,0 (nu,(X)) and o~ (nuy(X)) are plotted for
the coupled logistic map

—a

Xn1= 10+ —5—[fy) =T, (46)

—a

Yn1=F(yn)+ —

[F(xn) = f(yn)], (47)

with f(x)=3.8x(1—Xx), whereu(X)=(x+Y)/2 is observed

of on-off intermittencya = 0.4321 and out of on-off intermit-
tency a=0.1. Figure 10 confirms the singulariky, # « _ at
the onset of on-off intermittency. As in Figs. 4 and 5, on the
In 7-In z plane, the origin Im=Inz=0, which corresponds to
g=0 and the minimum o8(u) is always inD except at the
onset of on-off intermittency indicating that the singularities
aroundg=0 and the minimum ofS(u) can appear only at
the onset of on-off intermittency. Note that as it is under-
stood from Fig. 7 it is possible to choose an observed quan-
tity u(X) in such a way that, at the onset of on-off intermit-
tency, the corresponding line on thez#n z plane lies inR,

0.3
0.25
0.2- 0:0.4321/’/'1/7
8 T (nun(X)) "
5 045} &
©
>
01t |
” > e Lt
0.05 F -
s : ™o (nun(X)
0 o . | | I
0 20 40 60 20 2

n

FIG. 10. Conditional variances* (nu,(X)) and o~ (nu,(X))
for the coupled logistic map witla=0.432 (upper two lineg and
0.1 (lower two lines. For a=0.432, the difference of the slopes of
o (nuy(X)) ando~ (nu,(X)) confirms the discontinuity of the cur-
vature ofS(u) at the minimum at the onset of on-off intermittency.

and the parameter value is set in two ways nearly at the ons&he average is taken along an orbit of lengtH.10
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except its origin, and no singularity in(q) appears. With in EX(X), i.e., the system posseses nonhyperbolicity called
such a choice ofi(X) near the onset of on-off intermittency, unstable dimension variabilify. 8]. In contrast with unstable
there appear two jumps in(q), which disappear at the onset dimension variability, homoclinic tangencies are points

of on-off intermittency. where the unstable and stable tangent spaces degenerate such
that their direct sum does not coincide with the full tangent
IV. CONCLUDING REMARKS space. In the present systems, unstable dimension variability

) o ) ) . is due to the fact that there are infinitely many paths each of

_ Singularities in the fluctuation of on-off intermittency are \hich has infinite length and negative transverse Lyapunov
investigated on two-dimensional piecewise Ilne_ar maps. It I$xponent as well as infinitely many paths with positive
shown that there appear three phases of motion and by thgapunov exponents. Indeed, if the Markov chain shown in
crossover between the phases there appear singularities giyy " 1 is truncated into a finite Markov chain, then all the
¢(q) and correspondingly in(q) andS(u). Theg-weighted  paths with infinite length have only positive transverse
averageu(q) exhibits two types of singularities, a jump and | yanunov exponents and, moreover, only the discrete eigen-
a plateau. As the system approaches the onset of on-off iRz, es ofP, are possible, which implies that no singularity
termittency, the width of plateau i(q) shrinks to zero, if it appears ing(q). In this sense, the singularities observed
exists, and its position convergeseat 0. In this way, atthe  pere are considered to be due to nonhyperbolicity of on-off
onset of on-off intermittency, a jump in the sloge(q)/dq  intermittency.
of u(q) at q=0 appears. The singularity at the onset of \ye conjecture that, for systems exhibiting on-off intermit-
on-off intermittency is also confirmed for the coupled logis- tency, the fluctuation has singularities due to nonhyperbolic-
tic map by introducing conditional variances. _ ity of unstable dimension variability. Finally, it should be

In nonhyperbolic systems with homoclinic tangencies, thenoted that long-term numerical calculations on systems ex-
fluctuation of expansion rate exhibits a s!ngular[ty that aP+ibiting on-off intermittency may require much care due to
pears as a linear slope 8(u) [12]. The singularities ob- ynstable dimension variability, which implies a breakdown
served here are also related to nonhyperbolicity. In the modyf shadowing19]. Both numerical and theoretical investiga-

els | and II, the tangent space Xtis expressed as a direct tions on general systems are the subjects of future works.
sumE*(X) @ EY(X) of the one-dimensional linear subspaces

E*(X) andEY(X) alongx andy directions, respectively, each

of which is invariant under the tangent map, i.e., ACKNOWLEDGMENTS
DT(EX(X))=EX(T(X)) and DT(EY(X)(=EY(T(X)). The

stability in EY(X) alternates between stable and unstable de- We wish to thank Professor H. Fujisaka, Professor S.
pending onX within the attractor while it is always unstable Miyazaki, and Professor H. Hata for valuable discussions.

APPENDIX A: DISCRETE EIGENVALUES

In this appendix, the largest discrete eigenvalue df+*!-)2p  is considered.
For the model |, the truncatenx m matrix P{™ reads

aello aelyu+

a’edy- 0 ael!+ 0
- a’'edy- 0
Pa= a'ed'- .. aelu+ (AL)
0 0 aedy+
a’'ed!- 0
ap ! az!
a'z 0 az'!? 0
! .
_ Aq(uitu_)/2 az 0 ’ (A2)
€ a'z . azt ’
0 0 az!?
a'z 0

056217-8
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wherez=e~ U+ ~U-)2 gnd =AU+ TU-~240)"2 | et ys find

\ andv satisfying v P{"=edU+ U2\ e,
\vi=an lv,+a'z,, (A3)

1

Nvi=az ‘vij_i+a'zviy, 1=23,...m-1, (Ad)
Nvm=az vg,_;. (A5)
With
A+ \%2—4aa’
P (A6)

and constants, andc_, Eq.(A4) can be expressed as
vi=(cyip e u " hHz (A7)
With Eq. (A7), Egs.(A3) and(A5) become

c.(ap *+a'u,—N)+c_(ap *+a’'u_—N\)=0
(A8)

and
ci(@a—Apy)+C (pu_lu )™ *(a—ru_)=0, (A9)

respectively. Thus,

PHYSICAL REVIEW E 65 056217

Cc(p_lu )™ Ha-p_)(an t+a u—\)

=c_(a—Auy)(an *+a' u_—\). (A10)

If \>2yaa’, thenu_/u <1 and with the limit ofm— o,
Eqg. (A10) leads to
A=an +a'u_, (A11)

where the nonphysical solutioa— A\, =0, which means
c_=0, is abandoned. EquatiqgA6) is equivalent to

A=au tta'u_, up_<ala’ (A12)
and, together with EqiA11), this gives
u_=n, (A13)
if p<ia/a’'. Thus, if p<\a/a’,
A=an +a'y (A14)

is the largest real eigenvalue @ 9+*!-)2p_ for the
model I. If p<<ya/a’ is not satisfied, there is no eigenvalue
of e 4U+*U-)2p  greater than aa’.

For the model 11, the truncatex m matrix P{"™ reads

b’ elY% aedi+
b'belto 0 aeli+ 0
™ b'b%ed%  a’ed!- 0
m)_
Pa"= b’ b3edo a’edu- aedu+ (AL5)
: 0 0 ael¥+
b’bm~1egdlo a’edu- 0
b,7]71 az*l
b'bp ! az? 0
b'b?p ! a'z 0
_ eq(u++u,)/2 . Al6
b'b3y~ 1 a'z . az'! (A16)
: 0 0 az't
b'bM 1yt a'z 0
|
In a similar way as for the model |, let us find and v _ —~1ym
. . / . . _11 (M+bz )
satisfying 'v P{™ =e%U+ T2\ &y then Eq.(A3) is substi- ci| byt
tuted by 1-pibz
1—(p_bz Hm
IR, +c. b’n‘lL—)\ —0. (A18)
Ao =b' 571> b1y, (A17) 1-p_bz?
=1

and Eq.(A8) is substituted by Thus, we obtain

056217-9
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C(p-lu)™ 2(a=ru_)| b

11—(M+bz_1)m_)\) 0=9y(m)<y(0)<y(0)=m otherwise.  (B6)

1-p bz ?

Thus, for largam, there aren— 1 or malmost equally spaced
,11—(bezfl)m_)\ (AL9) solutions of @ over the interval (G7). In the limit of m
1-p_bz? ' —oo, the solutionsg form an interval[0,77] and we have a
band [—2\aa’,2y/aa’] of continuous eigenvalues of
If w_ is real andu_bz <1, then, with the limit ofm e ~a(usFu)2p - For the model I, we consider the case
—, EQ. (A19) leads to ~1Jala’ <1 otherwise the conditiofA21) for the exis-
I . tence of the eigenvalue o~ %U+*U-)2p_ greater than
A=b'y /(1= p-bz™), (A20) 5 Jaa’ is automatically satisfied. For Iarga, v(6), whose
dependence orm can be neglected, is continuous and
bounded, sincg(6) converges to

=c_(a—hu4)| b

where the nonphysical solutioa—\ . =0, which means
c_=0, is abandoned. EquatiofA20) together with Eg.
(A12) determine the largest real eigenvalue of

e AU+ +u)2p for eachq, which exists if B
’ b’y 2\/aa cosd (B7)
— —2+/aa’cos
2\aa'(1-bz Ja/a')<b'n L. (A21) 1-bz tJa/a'e'’

If the condition(A21) is not satisfied, then there is no eigen-

value ofe”9U+*1-)2p greater than gaa’. with m—oe. And y(7)=0 andy(0)= or 0 according to
whetherg(0)<0 or not, thus, similarly as for the model I,

APPENDIX B: CONTINUOUS EIGENVALUES we also have a barid-2+aa’,2yaa’] of continuous eigen-

. _ . . values ofe” 9+ *1-)2p  for the model .
In this appendix, the continuous eigenvalues of

e+ +u)2p s considered. If-2\aa’ <A <2\aa’, with

a real Ae[0,7m],u- and N can be expressed ag- APPENDIX C: EVALUATION OF Z,.(q)
a/a’e*'’ and\= 2\/aa cos# and, without loss of gen- . _
erallty we can set. =e*' with a real . Equation(A5) Each element osﬂ is a path of random walks with length
leads 'to - n, which never visit the state 0. Let us define
Re [e'*e™M?]=0 (B1)

tC(|+t)/2 |f |:_t,_t+2,...,t_2,t

K{,H= 0 otherwise,

and it is satisfied with

- (CY

Yy+mo= i(mod ). (B2)
and leti,j>0. Then the number of the possible paths of

Note that if =0, thenp, =pu_ ,y=m/2(mod =) by Eq. lengthn fromi to | is K(i—j,n)—K(i+j,n) by the reflec-
(B2) with ¢(0)=, andc, +c_=0, which means,,=0, tion principle[20]. Our purpose is to evaluate
thus #=0 is not allowed. In the same reasaiy = is also
not allowed. EquationéA3) and(A17) are also converted to
the form of Re[e'’g(#)]=0, where

g(0)=+\an t-\a'e " (B3)

for the model | and

_,1-(bz *aja")me'™’

zn<q>=i§1 pigl (a’'edu-)M(agdus)nm

X{K(i—j,n)—K(i+j,n}, (C2

where m=(n+j—i)/2 is the number of steps toward the

9(6)=b"7 1-bzr Valae? —2vaa’cosd positive direction. Withv=\/a’/ae 9U+"4-)2 Eq. (C2)
(B4) reads
for the model I, and, by eliminatings by Eq. (B2), it leads " "
to Z.(q)= e +u2(a2 )2 5 S i
v(0)=mo(mod ), (B5) o
X{K(i—j,n)—K(i+j,n)}. (C3

wherey(6)=arg{g(6)}. For the model l,y(6) is continuous
and
Note thatp;=(a’/a)' and @' —ab) *{(a’/a)'—b'} for
0=y(0)=vy(m)=y(O)<w/2 if p<.ala’ the models | and Il, respectively, and let us evaluate

056217-10
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G(v,w,n EZ Z vl THK (G —j,n) —K(i+j,n)}
(C4)
n t
=> w > v'K(j,n)
i=1 j=1-i
+ 21 2 vIK(j,n)
j—*n
n—1 n
—2 (W/v?)! 2 vIK(j,n), (C5)

j=i+
with 0<w<1. The second term of EQC5) is

n
Wn+1(1_W)—lE va—nnCm:Wn+1(l_W)—1(U—1+v)n_
m=0

(C6)

By using Stirling’s formula, the first term of EqC5) is
approximated by

1 1

nfl’zJ’ drof drw"fop "
0 ~1o

xexp{ -n

1+r 1+r 1-r 1-r
In + In

2 2 2 2

o

PHYSICAL REVIEW E 65 056217

(v o) if v>1,
2" if wsv<1,
(v " 'w+ow ™ H" if v<w. (C8)

Similarly, the third term of Eq.C5) is evaluated and its
contribution can be neglected. Sinee<1, Egs.(C6) and
(C8) lead to

(v *+o)" if v>1
G(v,w,n)~4{ 2" if w=sv=<1
(v 'w+ow H"
Thus, Eqs(C3) and(C9) lead to
lim Z,(q)'"

n—o

(C9
if v<<w.

aed¥++a’el"- if ael'+<a’'ell-

={ awé++a'w led- if awell+>a’w ledu-
2 aa’edu+*u-)2  otherwise,
(C10

wherew=a'/a and maxa'/a, b\‘} for the models | and II,
respectively. Withz=e~ 9+ ~U-)2 gnd

az '+a'z if azl<a’'z
awz '+a'w iz if awz l>a'w iz

2+aa’

Eq. (C10 is expressed aZ,(q)~e"¥"+*1-)2(\ )" Note
that the minimum value {Zaa of )\ commdes with the

Ng= (C1y)

otherwise,

Sincew<1, the maximum of the integrand is achieved at aband edge of the continuous elgenvalueeof“u++u 2p,

point on {(ro,r)|r0 0,0sr<1}U{(rq,r)|0sro=—-r<1}
and thus Eq(C7) is evaluated as

and the first derivative of/ continuously vanishes at
=w-ya/a’ and+a/a’ and equals to O between them.
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