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Chaotic scattering and the magneto-Coulomb map
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A nonrelativistic classical electron scattering by a fixed ion in a uniform magnetic field is discussed. The
system is nonintegrable, and there is chaotic scattering for a certain class of initial conditions. A two-
dimensional discrete map is derived from the equation of motion. Our map exhibits four different types of
motion by changing the parameters which characterize the initial condition. The fractal structure for certain
observables is obtained. The width of the chaotic scattering region in the impact parameter is estimated
numerically. We suggest a certain class of plasma environments where the chaotic scattering may have an
important role.
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[. INTRODUCTION ward. These examples show that, indeed, many cyclotron
periods appear before the oscillation in thdirection ends.

In this paper, we consider the problem of a nonrelativistic The structure of this paper is as follows: In Sec. Il, we
classical electron scattering by a fixed ion in a uniform mag-shall derive a two-dimensional map for the positmand the
netic field. This system is nonintegrable, hence one can extelocity v, in the z direction, where the position is taken to
pect the appearance of the chaotic scattering for certain clag® the farthest point from the ion in each cyclotron period.
of initial conditions. Indeed, this has been noticed by DelosThe derivation of the map which works for the general situ-
et al. [1] and analyzed later by Schmidt al. [2] (also see ation is a difficult task due to the nonintegrability. Hence, in
[3—8] for the trapped motion of the electron in the classicalthis paper, we restrict our interest to a case where the influ-
case as well as in the quantum casgo far, all analyses ence of the Coulomb force may be considered as a small
were based on the continuous flow generated by the equatigrerturbation over the cyclotron motion. This situation can be
of motion. However, as we shall show below, that there arechieved for the case where the electron has a large velocity
many cyclotron periods in a single scattering during thein the cyclotron motion. As we shall see, we can derive a
electron-ion interaction time interval. As a result, the numeri-desirable map with a relatively simple calculation for this
cal integration of the equation of motion for the continuouscase.
flow is very time consuming and the predictions for long- In Sec. lll, the comparison of our map with the numerical
time behavior become unstable, which is the typical case ohtegration is presented. As we shall see, the agreement is
the chaotic scattering. For this reason, we shall derive a diexcellent.
crete map of the chaotic scattering. In Sec. IV, we shall display the phase plots obtained from

In order to get a picture of the chaotic scattering, let usour map for several situations, including trapped motion near
first consider the case that an incoming electron with an inithe chaotic scattering regime and the case for the chaotic
tial velocity parallel to the magnetic field in thedirection  scattering. Our map shows that there exist islands that corre-
(see Fig. 1 We will consider more general initial conditions spond to the trapped motion inside the chaotic scattering
later. Suppose the electron is scattered by a nearly 90° anglggion.
and it starts doing cyclotron motion in the neighborhood of |n Sec. V, we shall discuss a parametiedependence of
the ion. Due to the attractive force from the ion, while doing motion, whered is defined as the distance of the guiding
circular motion in thexy plane, the electron oscillates along center line of the electron orbit from the ion. Our map shows
the z direction, and eventually escapes in the forward orthat there appear four different types of motion, depending
backward direction. In the phase space, there is a domaibn d. These different motions appear by changihdrom
where the scattered electron is very sensitive with respect tomall value to large value, in such a way that for small value
a slight change of the initial condition. In Fig. 1, the two- we have a trapped chaotic orbit, then chaotic scattering orbit,
electron orbits have been numerically integrated from thexgain trapped chaotic orbit, and finally for lardeve obtain
equation of motion(10) given later. Both of the electrons a regular scattering orbit. We shall analytically explain the
have the same dimensionless initial veloadit{t=0)=1.0z  origin of these four different types of motion.
and the dimensionless positi@it=0), but with a slightly In Sec. VI, we shall display the fractal structure in the
different dimensionless impact parameters, bes,1.02 and final velocityv; in the z direction and the bouncing number
b=1.03, respectively. The normalization will be introduced n, of orbit before the electron escapes to infinity.
in Sec. Il. Eventually, the electron in Fig(a) is scattered In Sec. VII, we shall numerically analyze the width of the
backward, while the electron in Fig.ld) is scattered for- chaotic scattering region in the impact parameter as a
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v=10, b=1.02 v=1.0, b=1.03

FIG. 1. Initial sensitivity for
chaotic scattering is shown in
terms of the two electron orbits.
1 The dot denotes the ion. Initial
0 conditions are(a) b=1.02 and
7 (b) b=1.03 with the same
2 z(t=0)=—-10 and v(t=0)
=1.0z

function of the velocityv of the electron. We shall see that A space scale, is defined as the radius of a circular Keple-

the smaller the velocity, the wider the chaotic region. rian motion such that the Keplerian frequency is equal to the
In the last section, we shall give a comment on the plasmayclotron frequency

environment, where the chaotic scattering may play an im-

portant role. 1 7&2 - [ zm, 1/3 ,
2N ameom, ¢ 07| 4rep?) @

II. DERIVATION OF MAP

We consider an electron in a Coulomb potential of a fixeg?d the length is normalized as

ion with a chargeZe at the origin together with a uniform

magnetic fieldB=BZz The Hamiltonian in the cylindrical r=rito. ®)
coordinates I, ¢,z) and the momentaR; ,P,,P,) is In this system, there are two invariants of motion, i.e., the
- - _ O energy and the angular momentum. These invariants are also
5 Pr P; 1 ( Py wcmer> 1 Ze? normalized as
= [ R + —_ ,
2me  2mg  2mg\ T 2 dmeg | Fr2+~zz E’¢ z
(1) P¢: 2 ’ g: 2 2 (6)
Mewer o Mewel §
where the variables with dimensions are denoted by the til-
des. There is a characteristic time scale, i.e., the cyclotroMve have
frequency L
eB Py=(xy=yX) = 5 (x*+y?), v
we="—, 2
C me
hich can be used to introduce the dimensionless fj =G+ ®)
which can be used to introduce the dimensionless time > <ty )
t=wct. () The dimensionless Hamiltonian is given by
v=10, b= 0.0096 H7P|'2+P§+1 P¢+r 2 1 .
2ttt T ©
M)y This leads to the equation of motion
AT
il i i -
“"‘ﬂ‘ﬂ‘,‘(?//ﬂ’/ s’ F—ix- — (10)
il ) o

P

2~

z i Z’iH
@
FIG. 2. Atypical orbit of the chaotic scattering. The dot denotes I:l
the ion. The electron starts from the left to the i@=(— 10) with a - -
velocity v=10 in the z direction, and an impact parameter
=0.0096. After the electron is scattered by a nearly 90° angle, the
guiding center is moving in a nearly straight line parallel to the

4
| ‘ l———’ |
41: x
[
e . 4 . L Z
magnetic field, and the electron is doing a nearly circular motion in

the xy plane. FIG. 3. Variables in the map.

Zi zitl
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04 20=150v9=04,0=10, d=10 2=15,2=04,0=10, d=10
0:3 175 .
15 FIG. 4. The comparison be-

0.2 12.5 tween the map and the numerical

o1 z 10 integration for ¢,v,) vst. The ini-
v 0 75 tial condition is z°=15, v]
0.1 '5 =0.4, v=10, andd=10. The cy-
02 ”s clotron period is 2r.

0.3 )
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There is no parameter in the equation of motion, hence théhat the motion in thexy plane is nearly circular and the
only controllable factor is the initial condition in the dimen- guiding center is moving in a nearly straight line parallel to
sionless units. We note that the equation of mofib®) hasa the magnetic field.
similar structure for the restricted three-body problem in ce- Under this consideration we now construct the map as
lestial mechanics where the Coriolis force corresponds to thiollows. Letd be the distance between the ion and the guid-
magnetic forcg6,9]. For this case the chaotic scattering in ing center line. In Fig. 3, we illustrate a configuration for the
the vicinity of the parabolic motion has been noti¢é@]. construction of the map. In this figure, andz' are defined
For the scattering problem, both the incoming and theas thez andv, at the farthest points of the electron from the
outgoing states of the electron are generally helical cyclotrofon in thexy plane, andz’' is defined as the at the closest
orbits (see, e.g., Fig. 9 In order to get a map in a simple points of the electron from the ion in they plane for each
form that exhibits a chaotic behavior, we restrict our interestyclotron motion. First we construct an auxiliary map for the
to the case where the Coulomb force may be treated as @riable pair (,iz,zri)_ From the equation of motion the

small perturbation to the magnetic force. One can easily eXchange inv, at the farthest point to the ion during one cy-

pect that this can be achieved if the two conditions clotron motion is evaluated as
v,<v and v>1, (11
ivi_ i [T z(t)dt
i ; ; ; v, TU,~ (12
are satisfied during the cyclotron motion, whergis the z z ], [z(t)2+u2+d2—20dcost]?”z'

component ofv parallel toz Indeed, the first condition,
<v givesv, ~v, wherev, is the component ob perpen-
dicular toz This condition gives the dimensionless cyclotronwhere we have approximated that the cyclotron radius
radiusp.~v. Due to the second conditiar>1, the electron pe(t)~v and d(t)~d with given constantsy and d, and
spends almost all the time far from the ion, and the cyclotrorapproximated that the electron does a uniform circular mo-
motion dominates during each cyclotron period. Thus, thdion of period 2r. Moreover, because of the conditiohl)
Coulomb force may be treated as a small perturbation. Theaf the small perturbation during each cyclotron period, we
again due to the first condition of E(L1), the motion of the may approximate(t) by a constanz’'. Then we have
guiding center of the electron is so slow that the Coulomb
force may give a long-time resonance effect that leads to a i
chaotic motion. FERN fz” z'dt

Moreover, one may expect that if the conditi¢hl) is 0 [2'"2+v2+d?—2vd cost]??
satisfied, the distance between the guiding center line and the
ion remains nearly constant during the scattering for almost 47'"\(d—v)?+2'"2 { —4dv

(

all initial conditions. Indeed the numerical integration has (02— 024 2/12)24 4p27'2 | (d—p)2+2'12
verified this prediction. In Fig. 2, we show a typical orbit of
the chaotic scattering that satisfies the condifiih). We see (13
Map Numerical Integration
Ozo=l.l,vzo=0, v=10, d=9, n,=736, 3000 points o 20=1.1, v,9=0, v=10, d=9, n=147, 800 points
ar QL : = FIG. 5. The comparison of the
2 2 phase-spaces(,7) plots between
4 3 the map and the numerical inte-
€, €, RN gration for the trapped chaotic
4 1 4 il motion near scattering regime.
5 iH = The initial condition isz°=1.1,
-6 I -6 vI=0, v=10, andd=9.
-7 :.} -7 i
02 01 0 01 02 02 oI 0 ol 02
T T
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(a) (b)

20=0.8,1.0,1.1,150°=0,0=10, d=8.9 20=10, v,9=0, v=10, d=8.6, n,=149, 3000 points
0f - . : 0
-1 20.1 (34
2 0.2 FIG. 6. Trapped chaotic mo-
3 & 03 i tion near scattering regime in

& 3 ¥ phase-spaces(,7) plots.
-4 -04 1
-5 05 bi
6 ; i
) i 30 200 -10 0 10 20 30
02 -0l 0 0.1 0.2 T
T

where E(m) is the complete elliptic integral of the second z° shows that, if the latter electron can escape, |e§

kind. =1(9?-1/2%>0, then the former one can also escape.
To estimate the change &i, we further approximate that Then the electron escape criterion is
the electron has a constant velocity=v,"! betweenz'’
andz’' *1. Then we have ,=0 and zv,=0. (18
ri+1 o i+1 . . .
2" =7 =2m, 14 Here we have introduced the second condition for the sign of

Zv,, to ensure that the electron is leaving the ion and will

A set of Egs.(13) and (14) gives a two-dimensional area- never come back.

: - bk
preserving map. In this map, the two variables ¢'') are The variabler is calculated from the equation of motion

defined at different points, i.e., the aphelion fdrand the  for the one-dimensional Kepler problem without the mag-
perihelion forz'', respectively. netic field,

In order to have a map with two variables defined at the
same point, e.g., the aphelion, we use the pa;r,f) and v, 1
approximate as 9 - S92z, (19
Z=7"— 7!, (15 ) L
and the relatiore,= 3v5— 1/|z|. We have
Then we obtain a final form of the map fowiz(,z‘), which is
also area preserving,

Uz 1 -2
T= —Sgr(z)f dvz(§v§—81>

A(Z +mo)J(d—0v)?+ (2 +mvh)?

i+1 i
Uz :Uz i i i i U l U
[d2—v2+(Z'+ mvl) ]2+ 4v (2 + mv})? =s z( z - tan ! —=— | +C.
’ ’ I\ (e, 70D V2?27 \2]e))
—4dv | (20)
(d—v)2+(Zl+7TU|Z)2

A . o (16)  Theintegration constai@ =0 is determined by imposing the
2 l=7+ mwl+olth. condition thatr is continuous az=0 wheree,— —x. We
note that Eq(20) ensures area preserving
We call this map the “magneto-Coulomb map.”
In order to have a criterion for the electron to escape e, ,T)

without being bounced back in thedirection, it is conve- 9(v,.2) =
nient to write the map in terms of the Keplerian energy i
and its canonical conjugatedefined by

(21)

20=5, v,9=0, v=10, d=10.8, n,=10, 786 points
0

_=.2 -0.025 e
E,=—0 -, r—(—ﬁﬁ
2277 | -0.05 ¥
(17) -0.075 wk
T=5gn2) o L a1z & 01
82(_282_“)5) \/E|82|3/2 \/m ' -0.125
-0.15
The derivation ofr will be presented at the end of this sec- -0.175
tion. The comparison of the chaotic scattering with the case -400-200 '(t) 200 400
in which the electron moves in a straight line along #teis
without the magnetic field with the same initial valuésand FIG. 7. Phase-space plot for scattering motion.
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(2) (b)

0 %= 1.5,1.6,1.7,v2=0,v=10, d=8.9 20=1.583,1.584,1.59,1.595, v,9=0, v=10, d=8.9
Z 073 ;
1 o> e e oy . . idbt 074 . .'.' fe.

e o " o8 N
o'

2 e 4 o78) ., Iz ,2, FIG. 8. I(;slanﬁs of the trapped
s o €, Yy <. motion inside the scattering re-
Sz-3 -0.76 : r / . gion.

0.77 . ’k,-"‘

4 P S &
015 0155 0.6 0165 0.17
-02 -0.15 -0.1 -005 0 005 0.1 0.15 02 T
T
[ll. COMPARISON OF MAP WITH NUMERICAL sponds te—0). In Fig. 5, the points corresponding to large
INTEGRATION |e,| are not shown.

For the individual trajectory there is a slight difference
tween the map and the numerical integration. However,
the ensemble of the points has essentially the same structure
‘(J'e.g., the location of the islands and the chaotic region

In order to see the accuracy of our map, we compare thB
S .~ Pe
results from the map to those from the numerical integration
Because of the choice of the coordinate system in Fig. 3, th

. .y . O O .
initial condition (z”,v;) and the parameters (d) in the map which is a well-known feature of the phase-space plots in the

— — — — — -0
cor%e_spond to=v+d, y=0, v,=0, vy=v, z=2", andv,  cpagtic dynamics that are generated from the different algo-
=v, in the numerical integration. The numerical integration jjihms.

has been performed bwATHEMATICA with the Gauss-
Kronrod method.

In Fig. 4, we show the comparison between the map and V- PHASE-SPACE PLOTS
the numerical integration for the time evolution of In this section, we shall show the phase-space plots
{z(t),v,()} with 20=1.5, v(z)=0.4, v=10, and d=10, (e,,7) that have been created from the map for several situ-
where the lines denote the results from the numerical inteations of the trapped motion and of the scattering motion.
gration and the dots denote the results from the map. The In Fig. 6, we have plotted the trapped motion near the
agreement between the map and the numerical integration &attering regime. Figure(® has been created from four
excellent. initial conditions:z°=0.8,1.0,1.1, and 1.5 with the sarn@

In Fig. 5, we show the comparison between the map and-0, v =10, andd=8.9. For the chaotic motion, we have
the numerical integration in the phase-spagg, ¢) plot for  plotted up to 1000 iterations. Figurél® is also the trapped
the initial condition:z°=1.1, v;):o, v=10, andd=9. From  motion, but is much closer to the scattering regime than the
the map(17), we see thate,——o as 7—0 (that corre- ones in Fig. 63). The figure has been created from a single

1 Trapping 2 Chaotic scattering
20=2.0,2.9=02,v=10, d=8.7 20=2.0,0,9=02,v=10, d=94

i FIG. 9. Four types of orbits,
510 i.e., 1 trapping, 2 chaotic scatter-
ing, 3 trapping, and 4 regular scat-
tering. The initial conditionz°
=2.0,v9=0.2, and the parameter
v =10 are the same for all the four
- _20=20,09=02,v=10, d=11.3 —_ 2=20,0=02,0=10, d=51 cases, but the parameteris dif-
T e ferent, i.e.,d=8.7, 9.4, 11.3, and
51, respectively.

3 Trapping 4 Regular scattering

Wi
i ﬂr'}"%?)""')
i / / j
el\(l(/;‘!(l/ // ’/"”

.
i /
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initial condition, 2°=10, v9=0, v=10, andd=8.6. Note d
that the domain ofr is much larger and, is more closer to M 4 regular scattering
zero than the ones in Fig(d&.

In Fig. 7, we have plotted a scattering motion. The initial
condition isz°=5, v9=0, v=10, andd=10.8. After 768
cyclotron periods, we have,>0 and the electron has es- xy plane

3 trapping

+ 2 chaotic scattering

caped toward the infinity from the ion. When the electron 1 trapping
passes the ion each time, the point jumps randomly from one
loop to another, and it eventually escapes. We notice the FIG. 10. Four different regions of motion.
large size of the figure imr direction, and smaller value of
le,]. . z
In Fig. 8, we show the islands of the trapped orbits inside == (Z2+12)32’ (22)
€

the chaotic scattering region. In FigiaB the gray points are

the scattered orbits generated from two initial conditionswherer is the component of perpendicular to the direc-
z2°=1.5 and 1.7, with the same‘z)=0, v=10, andd=8.9. tion. If d<v, thenr, ~v, and Eq.22) may be approximated
These points have escaped 4g>0 after 7835 and 2091 as

cyclotron periods, respectively. The dark points in Fitp) 8 ) 7

are the periodical points of period 13, with the initial condi- 7~ — . (23
tion: 2°=1.6,v2=0, v =10, andd=8.9. The magnified sec- (z%+v%)

tion of the right-most dark point is shown in Fig(tB. We o the other hand, ifi>v, thenr, ~d, and Eq.(22) may be
see the island structure of the trapped motion. The points argyproximated as

generated from four different initial conditionsz?

=1.583, 1.584, 1.59, and 1.595, with the sawmiE=0, v i%_;_ (24)
=10, andd=8.9. The case withZ®=1.583 gives the scat- (22+d?)%7?

tered orbit.

In each of the above two cases, we see a well-defined poten-

tial in thez direction from the equation of motion. If the total
V. D DEPENDENCE OF MOTION energy(i.e., the potential energy plus the kinetic energy
the z direction is negative, the electron is trapped. Then for a
In this section, we considerdidependence of the motion proper initial condition such that the total energy is negative

of the electron for a givem and with a given initial condi- in each case, we have two trapping regions, denoted by re-

tion (2°,09). By increasingd, we found four different types gion 1 and region 3 in Fig. 10.
of motion. They are as follows: For each potential if we increase the energy to the positive
region, then we obtain the scattering motion. The interaction

(1) if d<u, the motion is trapped: for the potential(23) is relatively larger than the potential

(24). As a result, the chaotic scattering region is much larger

(2) if d~v, the motion is chaotic scat;e.ring; in region 2 than in the region around the border between 3

(3) if d>wv, the motion is trapped again; and _ and 4. Indeed, there exists a chaotic scattering region be-

(4) if we increased further, we then have nonchaotic scat- tyween 3 and 4. However, this region is so narrow that one
tering motion. cannot easily detect the chaotic scattering.

In Fig. 9, we show the four corresponding orbits that are VI FRACTAL STRUCTURE
generated from the numerical integration. The initial condi- |t js well known that whenever we have a chaotic motion,
tion z=2.0,v9=0.2, and the parameter=10 are the same  there appears a fractal structure in some variables. In this
for all the four cases, but the parameteis different, i.e.,  section we show the fractal structure in g i.e., the value

d=8.7,9.4,11.3, and 51, respectively. . of v, when the electron escapes to infinity, and the bouncing
The existence of the four regions can be explained asumbern, of the electron, whera, is defined as the number
follows. The equation of motion in thedirection is of timesv, changes its sign before the electron escapes.
2 ’UZOE [02, 0‘25],2():1‘5,0: 10, d=10 2 vz0=[0.2,0.2001],20=1.5,v=10,d=10
L5 1.5
015 . 2 FIG. 11. Fractal structure ob-
. '0 - tained from the map irvg 'S v(z)
Yz 05 0 for initial conditions v2e (a)
B 3 0.5 “ [0.2,0.29 and (b) [0.2,0.200] Z°
) -1 =1.5,v=10, andd=10.
-1.5 1.5
020 021 022 00-23 024 025 0.20002 0.20004 0.20006 0.20008
(2 vz0
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1o PR€ [02,025), 2= 15,0=10, d=10 1 00€ [02,02001), 2= 1.5,0=10, d= 10
10 12
8 10 FIG. 12. Fractal structure ob-
n 6 n 8 tained from the map im, vs v
‘6 for initial conditions v2e (@)
4 4 [0.2,0.25 and (b) [0.2,0.2001,
2 ) 2°=1.5,v=10, andd=10.

0.20 0.21 0.22 0.23 0.24 0.25
0,0

0.20000 0.20002 020004 0.20006 0.20008 0.20
0
(%

In Fig. 11(a), we ShOWv; as a function ofug, with v‘z) motion is determined by the boundaryhrior smallb region
€[0.2,0.23, z2°=1.5, v=10, andd=10. It is seen that by betweenn,=1 andn,#1.
slightly changing\/‘;: 0, there are regions Whepé has a big In Fig. 13, we showsb as a function ob from the results
change. This indicates the sensitivity in the initial condition.of the numerical integration. We see thatlecreases asb
Moreover, there are smooth regions Whe,‘é Changes increases. The chaotic Scattering is more I|k6|y to be ob-
slowly. This shows that even inside the chaotic scatteringerved for smalb.
regime, there exist regular regions.

In Fig. 11(b), we magnify a small section in?, i.e., v?
€[0.2,0.2001 to see the fractal structure. This figure shows
fchat in§ide_ the c_haotic scattering regime, there is self similar- gq; the case>1, we have derived a magneto-Coulomb
ity, which is typical of the fractalostructure. _ map which has produced a good agreement with the numeri-

In Fig. 12a), we shown, vs v, for the same domain of ¢ integration of the equation of motion. Using our map, we
Fig. 11(a). It can be seen that whenewvey is constantp} is  could predict a long-time behavior of the electron scattering
smooth, while in the chaotic region far,, we have the in the chaotic regime. We have found that there appear four
chaotic region fon,. We again magnify the same interval in different regions of the motion by changing the distadcs
v‘Z’ for n,, as shown in Fig. 1®), and one can see again the the guiding center line of the cyclotron motion of the elec-

VIIl. CONCLUDING REMARKS

fractal structure im,. tron from the ion. Our map has shown that the fractal struc-
ture in the final velocitwi and in the bouncing number, .
VIl. WIDTH OF CHAOTIC SCATTERING REGION We have also shown that the width of the chaotic scattering

) ] ) ) ) region becomes larger for smaller velocity

In this section, we estimate the size of the chaotic scatter- Suppose this scattering occurs in the plasma environment,
ing region. For the case that is small, the effect of the then one can expect that plasma transport may become
Coulomb force becomes a large perturbation over the cycloanomalous under the influence of the chaotic scattering. Our
tron motion. This suggest that the smaller the velocity, thgesults suggest that the smalkey the more anomalous the
wider the chaotic region. In this section, we shall verify this pjasma transport. In the following we present several plasma
prediction and numerically estimate the width of the chaoticenyironments, where<1. These cases are the ultracold
region in the impact parameter as a functiorvoHowever,  neytral plasmé#l1], the white dwarf atmosphere, the neutron
our map is restricted only for the large valuesvofFor this  gtar atmosphere, with=1.0, 2.4, and 0.5, respectively. We
reason, we perform the numerical integration of the equatioRypect the chaotic scattering has a stronger influence on

of motion to finc_j f[he width_, _instead of using our map. these plasma environments. With the relatiGkgT,
We take the initial condition of the electron to be parallel — Ime(vwero)?, whereT, is the electron temperature, the

to z with a velocity v. In this case, the initial condition is gimensionless velocity can be expressed as
specified by the impact-parameteiand the velocity, and
we use the numerical integration to compute the wigtihof

the chaotic region for fixed. Since the chaotic scattering 3'3-
region is much lager in region 2 in Fig. 10, we restrict our 0'6
interest in this domain. 0'5
In order to computesb, we need to define the upper S 0’4
bound and the lower bound of the chaotic region. To this end 0'3 .
we first note that ifb is too large, there is no bouncing '
. : . 0.2
motion of the electron, i.en,=0. For this case we have a o1 .
regular scattering. Hence, the upper bound of the chaotic ' .
motion is determined by the boundary linbetweenn,=0 0.0 2 i 6 3

andn,# 0. On the other hand, i is too small, there is only

one bouncing, i.e.n,=1, which corresponds to the other  FIG. 13. Width b of chaotic scattering region in the impact-
regular scattering. Hence, the lower bound of the chaotiparameteb as a function of initial velocity .
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TABLE |. Representative plasmas where chaotic scattering is Finally we give a comment on the effect of the radiation

predicted. dumping. During the cyclotron motion, the electron loses
energy because of the radiation. In this paper, we have ne-
Ultracold glected this effect. Here we estimate the radiation energy loss
Plasma neutral White dwarf ~ Neutron star and show that the loss is very small. Let us consider the
environments  plasma atmosphere  atmosphere  dimensionless poweP(t) radiated by an electron undergo-
T. () 0L 5 0x 10° Lox 1P ing a dimensionless acceleratiaft). It is given by
B (T) 401074 1.0x 10 1.0x 108 w, €°
v 1.0 2.4 0.5 P()=— 3a’(t)
me 67€C
ne (m3) 2.0x 10" 1.0x 1072 1.0 10%°
ng 3 (m) 7.9x10°® 4.6x10°8 1.0x 100 el 5
fo (M) 37%10°5  43x10°1°  92x10° %2 = 5 2Ba()
0 6megC’m
sb (m) 2.8x10°5 1.0x10°° 1.3x10° 12 €
beo (M) 56x10°5  1.1x10°1°  56x10°12 =[1.1x10" ' T 1B &(t), (29
pe (M) 3.0¢ 107? 8.6x 107170 3.8x 10;: and the radiated energy is
Ape (M) 4.9x10 1.5x10 6.9 10
— 7 — 10 —11
Ae (m) 2410 3310 710 55=f dt P(t)=[1.1x 10 12 T*l]Bf dta(t). (30
112 In the case ofv~1, we havea(t)~1. Then the incident
v=(3Kg) Y 4mem?) et —5 electron has an energy= 3v?~ 1. We can see from EG30)
(ZB)Y? that, in a time period of thousands cyclotron periods or less
1 the energy radiated from an electron can be neglected, com-
~[0.18 K V2TV3_° (25) pared to the electron energy o _
: (ZB)Y3’ For the case where many ions are distributed randomly in

space, one can apply our map for each ion and introduce the
where and K and T denote Kelvin and Tesla. Table | listsmultimagneto-Coulomb map. This corresponds to the Lor-

some relative parameters for these three plasma enviro®ntz model in statistical physics. We hope to estimate the
ments. The parametels,, A\, and\p, are the impact pa- transport coefficients in this multi-magneto-Coulomb map

rameter for 90° Rutherford scattering, thermal DeBroglie€lsewhere.

wavelength and Debye length in the dimensional units, re-
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