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Chaotic scattering and the magneto-Coulomb map
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A nonrelativistic classical electron scattering by a fixed ion in a uniform magnetic field is discussed. The
system is nonintegrable, and there is chaotic scattering for a certain class of initial conditions. A two-
dimensional discrete map is derived from the equation of motion. Our map exhibits four different types of
motion by changing the parameters which characterize the initial condition. The fractal structure for certain
observables is obtained. The width of the chaotic scattering region in the impact parameter is estimated
numerically. We suggest a certain class of plasma environments where the chaotic scattering may have an
important role.
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I. INTRODUCTION

In this paper, we consider the problem of a nonrelativis
classical electron scattering by a fixed ion in a uniform m
netic field. This system is nonintegrable, hence one can
pect the appearance of the chaotic scattering for certain c
of initial conditions. Indeed, this has been noticed by De
et al. @1# and analyzed later by Schmidtet al. @2# ~also see
@3–8# for the trapped motion of the electron in the classi
case as well as in the quantum case!. So far, all analyses
were based on the continuous flow generated by the equa
of motion. However, as we shall show below, that there
many cyclotron periods in a single scattering during
electron-ion interaction time interval. As a result, the nume
cal integration of the equation of motion for the continuo
flow is very time consuming and the predictions for lon
time behavior become unstable, which is the typical case
the chaotic scattering. For this reason, we shall derive a
crete map of the chaotic scattering.

In order to get a picture of the chaotic scattering, let
first consider the case that an incoming electron with an
tial velocity parallel to the magnetic field in thez direction
~see Fig. 1!. We will consider more general initial condition
later. Suppose the electron is scattered by a nearly 90° a
and it starts doing cyclotron motion in the neighborhood
the ion. Due to the attractive force from the ion, while doi
circular motion in thexy plane, the electron oscillates alon
the z direction, and eventually escapes in the forward
backward direction. In the phase space, there is a dom
where the scattered electron is very sensitive with respec
a slight change of the initial condition. In Fig. 1, the tw
electron orbits have been numerically integrated from
equation of motion~10! given later. Both of the electron
have the same dimensionless initial velocityv(t50)51.0ẑ
and the dimensionless positionz(t50), but with a slightly
different dimensionless impact parameters, i.e.,b51.02 and
b51.03, respectively. The normalization will be introduc
in Sec. II. Eventually, the electron in Fig. 1~a! is scattered
backward, while the electron in Fig. 1~b! is scattered for-
1063-651X/2002/65~5!/056212~8!/$20.00 65 0562
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ward. These examples show that, indeed, many cyclo
periods appear before the oscillation in thez direction ends.

The structure of this paper is as follows: In Sec. II, w
shall derive a two-dimensional map for the positionz and the
velocity vz in the z direction, where the position is taken t
be the farthest point from the ion in each cyclotron perio
The derivation of the map which works for the general si
ation is a difficult task due to the nonintegrability. Hence,
this paper, we restrict our interest to a case where the in
ence of the Coulomb force may be considered as a sm
perturbation over the cyclotron motion. This situation can
achieved for the case where the electron has a large velo
in the cyclotron motion. As we shall see, we can derive
desirable map with a relatively simple calculation for th
case.

In Sec. III, the comparison of our map with the numeric
integration is presented. As we shall see, the agreeme
excellent.

In Sec. IV, we shall display the phase plots obtained fr
our map for several situations, including trapped motion n
the chaotic scattering regime and the case for the cha
scattering. Our map shows that there exist islands that co
spond to the trapped motion inside the chaotic scatte
region.

In Sec. V, we shall discuss a parameterd dependence of
motion, whered is defined as the distance of the guidin
center line of the electron orbit from the ion. Our map sho
that there appear four different types of motion, depend
on d. These different motions appear by changingd from
small value to large value, in such a way that for small va
we have a trapped chaotic orbit, then chaotic scattering o
again trapped chaotic orbit, and finally for larged we obtain
a regular scattering orbit. We shall analytically explain t
origin of these four different types of motion.

In Sec. VI, we shall display the fractal structure in th
final velocity vz

f in the z direction and the bouncing numbe
nz of orbit before the electron escapes to infinity.

In Sec. VII, we shall numerically analyze the width of th
chaotic scattering region in the impact parameter as
©2002 The American Physical Society12-1
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FIG. 1. Initial sensitivity for
chaotic scattering is shown in
terms of the two electron orbits
The dot denotes the ion. Initia
conditions are~a! b51.02 and
~b! b51.03 with the same
z(t50)5210 and v(t50)

51.0ẑ.
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function of the velocityv of the electron. We shall see tha
the smaller the velocityv, the wider the chaotic region.

In the last section, we shall give a comment on the plas
environment, where the chaotic scattering may play an
portant role.

II. DERIVATION OF MAP

We consider an electron in a Coulomb potential of a fix
ion with a chargeZe at the origin together with a uniform
magnetic fieldB5Bẑ. The Hamiltonian in the cylindrica
coordinates (r̃ ,f̃,z̃) and the momenta (P̃r ,P̃f ,P̃z) is

H̃5
P̃r

2

2me

1
P̃z

2

2me

1
1

2me
S P̃f

r̃
1

vcmer̃

2 D 2

2
1

4pe0

Ze2

Ar̃ 21 z̃2
,

~1!

where the variables with dimensions are denoted by the
des. There is a characteristic time scale, i.e., the cyclo
frequency

vc5
eB

me
, ~2!

which can be used to introduce the dimensionless timet,

t5vct̃ . ~3!

FIG. 2. A typical orbit of the chaotic scattering. The dot deno
the ion. The electron starts from the left to the ion (z5210) with a
velocity v510 in the z direction, and an impact parameterb
50.0096. After the electron is scattered by a nearly 90° angle,
guiding center is moving in a nearly straight line parallel to t
magnetic field, and the electron is doing a nearly circular motion
the xy plane.
05621
a
-

d
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n

A space scaler 0 is defined as the radius of a circular Kepl
rian motion such that the Keplerian frequency is equal to
cyclotron frequency

1

r 0
3/2
A Ze2

4pe0me
5vc , r 05S Zme

4pe0B2D 1/3

, ~4!

and the length is normalized as

r5 r̃/r 0 . ~5!

In this system, there are two invariants of motion, i.e., t
energy and the angular momentum. These invariants are
normalized as

Pf5
P̃f

mevc
2r 0

, E5
Ẽ

mevc
2r 0

2
. ~6!

We have

Pf5~xẏ2yẋ!2
1

2
~x21y2!, ~7!

E5
1

2
~ ẋ21 ẏ21 ż2!2

1

~x21y21z2!1/2
. ~8!

The dimensionless Hamiltonian is given by

H5
Pr

2

2
1

Pz
2

2
1

1

2 S Pf

r
1

r

2D 2

2
1

Ar 21z2
. ~9!

This leads to the equation of motion

r̈5 ṙ3 ẑ2
r̂

r 2
. ~10!

s

e

n
FIG. 3. Variables in the map.
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FIG. 4. The comparison be
tween the map and the numeric
integration for (z,vz) vs t. The ini-
tial condition is z051.5, vz

0

50.4, v510, andd510. The cy-
clotron period is 2p.
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There is no parameter in the equation of motion, hence
only controllable factor is the initial condition in the dimen
sionless units. We note that the equation of motion~10! has a
similar structure for the restricted three-body problem in
lestial mechanics where the Coriolis force corresponds to
magnetic force@6,9#. For this case the chaotic scattering
the vicinity of the parabolic motion has been noticed@10#.

For the scattering problem, both the incoming and
outgoing states of the electron are generally helical cyclot
orbits ~see, e.g., Fig. 9!. In order to get a map in a simpl
form that exhibits a chaotic behavior, we restrict our inter
to the case where the Coulomb force may be treated
small perturbation to the magnetic force. One can easily
pect that this can be achieved if the two conditions

vz!v and v@1, ~11!

are satisfied during the cyclotron motion, wherevz is the
component ofv parallel toz. Indeed, the first conditionvz
!v gives v''v, wherev' is the component ofv perpen-
dicular toz. This condition gives the dimensionless cyclotr
radiusre'v. Due to the second conditionv@1, the electron
spends almost all the time far from the ion, and the cyclot
motion dominates during each cyclotron period. Thus,
Coulomb force may be treated as a small perturbation. T
again due to the first condition of Eq.~11!, the motion of the
guiding center of the electron is so slow that the Coulo
force may give a long-time resonance effect that leads
chaotic motion.

Moreover, one may expect that if the condition~11! is
satisfied, the distance between the guiding center line and
ion remains nearly constant during the scattering for alm
all initial conditions. Indeed the numerical integration h
verified this prediction. In Fig. 2, we show a typical orbit
the chaotic scattering that satisfies the condition~11!. We see
05621
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that the motion in thexy plane is nearly circular and th
guiding center is moving in a nearly straight line parallel
the magnetic field.

Under this consideration we now construct the map
follows. Let d be the distance between the ion and the gu
ing center line. In Fig. 3, we illustrate a configuration for th
construction of the map. In this figure,vz

i andzi are defined
as thez andvz at the farthest points of the electron from th
ion in thexy plane, andz8 i is defined as thez at the closest
points of the electron from the ion in thexy plane for each
cyclotron motion. First we construct an auxiliary map for t
variable pair (vz

i ,z8 i). From the equation of motion the
change invz at the farthest point to the ion during one c
clotron motion is evaluated as

vz
i 112vz

i 'E
0

2p z~ t !dt

@z~ t !21v21d222vd cost#3/2
, ~12!

where we have approximated that the cyclotron rad
re(t)'v and d(t)'d with given constantsv and d, and
approximated that the electron does a uniform circular m
tion of period 2p. Moreover, because of the condition~11!
of the small perturbation during each cyclotron period,
may approximatez(t) by a constantz8 i . Then we have

vz
i 112vz

i 'E
0

2p z8 idt

@z8 i21v21d222vd cost#3/2

5
4z8 iA~d2v !21z8 i2

~d22v21z8 i2!214v2z8 i2
EF 24dv

~d2v !21z8 i2G ,

~13!
-

.

FIG. 5. The comparison of the
phase-space («z ,t) plots between
the map and the numerical inte
gration for the trapped chaotic
motion near scattering regime
The initial condition is z051.1,
vz

050, v510, andd59.
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FIG. 6. Trapped chaotic mo
tion near scattering regime in
phase-space («z ,t) plots.
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whereE(m) is the complete elliptic integral of the secon
kind.

To estimate the change inz8, we further approximate tha
the electron has a constant velocityvz'vz

i 11 betweenz8 i

andz8 i 11. Then we have

z8 i 112z8 i52pvz
i 11 . ~14!

A set of Eqs.~13! and ~14! gives a two-dimensional area
preserving map. In this map, the two variables (vz

i ,z8 i) are
defined at different points, i.e., the aphelion forvz

i and the
perihelion forz8 i , respectively.

In order to have a map with two variables defined at
same point, e.g., the aphelion, we use the pair (vz

i ,zi) and
approximate as

zi5z8 i2pvz
i . ~15!

Then we obtain a final form of the map for (vz
i ,zi), which is

also area preserving,

vz
i 115vz

i 1
4~zi1pvz

i !A~d2v !21~zi1pvz
i !2

@d22v21~zi1pvz
i !2#214v2~zi1pvz

i !2

3EF 24dv

~d2v !21~zi1pvz
i !2G ,

~16!
zi 115zi1p~vz

i 1vz
i 11!.

We call this map the ‘‘magneto-Coulomb map.’’
In order to have a criterion for the electron to esca

without being bounced back in thez direction, it is conve-
nient to write the map in terms of the Keplerian energy«z
and its canonical conjugatet defined by

«z5
1

2
vz

22
1

uzu
,

~17!

t5sgn~z!S vz

«z~22«z1vz
2!

2
1

A2u«zu3/2
tan21

vz

A2u«zu
D .

The derivation oft will be presented at the end of this se
tion. The comparison of the chaotic scattering with the c
in which the electron moves in a straight line along thez axis
without the magnetic field with the same initial valuesvz

0 and
05621
e

e

e

z0 shows that, if the latter electron can escape, i.e.,«z
0

5 1
2 (vz

0)221/uz0u.0, then the former one can also escap
Then the electron escape criterion is

«z>0 and zvz>0. ~18!

Here we have introduced the second condition for the sign
zvz , to ensure that the electron is leaving the ion and w
never come back.

The variablet is calculated from the equation of motio
for the one-dimensional Kepler problem without the ma
netic field,

dvz

dt
52sgn~z!

1

z2 , ~19!

and the relation«z5
1
2 vz

221/uzu. We have

t52sgn~z!Evz
dvzS 1

2
vz

22«zD 22

5sgn~z!S vz

«z~22«z1vz
2!

2
1

A2u«zu3/2
tan21

vz

A2u«zu
D 1C.

~20!

The integration constantC50 is determined by imposing th
condition thatt is continuous atz50 where«z→2`. We
note that Eq.~20! ensures area preserving

]~«z ,t!

]~vz ,z!
51. ~21!

FIG. 7. Phase-space plot for scattering motion.
2-4



-

CHAOTIC SCATTERING AND THE MAGNETO-COULOMB MAP PHYSICAL REVIEW E65 056212
FIG. 8. Islands of the trapped
motion inside the scattering re
gion.
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III. COMPARISON OF MAP WITH NUMERICAL
INTEGRATION

In order to see the accuracy of our map, we compare
results from the map to those from the numerical integrati
Because of the choice of the coordinate system in Fig. 3,
initial condition (z0,vz

0) and the parameters (v,d) in the map
correspond tox5v1d, y50, vx50, vy5v, z5z0, andvz

5vz
0 in the numerical integration. The numerical integrati

has been performed byMATHEMATICA with the Gauss-
Kronrod method.

In Fig. 4, we show the comparison between the map
the numerical integration for the time evolution
$z(t),vz(t)% with z051.5, vz

050.4, v510, and d510,
where the lines denote the results from the numerical in
gration and the dots denote the results from the map.
agreement between the map and the numerical integratio
excellent.

In Fig. 5, we show the comparison between the map
the numerical integration in the phase-space («z ,t) plot for
the initial condition:z051.1, vz

050, v510, andd59. From
the map~17!, we see that«z→2` as t→0 ~that corre-
05621
e
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sponds toz→0). In Fig. 5, the points corresponding to larg
u«zu are not shown.

For the individual trajectory there is a slight differenc
between the map and the numerical integration. Howe
the ensemble of the points has essentially the same stru
~e.g., the location of the islands and the chaotic regio!,
which is a well-known feature of the phase-space plots in
chaotic dynamics that are generated from the different a
rithms.

IV. PHASE-SPACE PLOTS

In this section, we shall show the phase-space p
(«z ,t) that have been created from the map for several s
ations of the trapped motion and of the scattering motion

In Fig. 6, we have plotted the trapped motion near
scattering regime. Figure 6~a! has been created from fou
initial conditions:z050.8,1.0,1.1, and 1.5 with the samevz

0

50, v510, andd58.9. For the chaotic motion, we hav
plotted up to 1000 iterations. Figure 6~b! is also the trapped
motion, but is much closer to the scattering regime than
ones in Fig. 6~a!. The figure has been created from a sing
-
t-

r
r

FIG. 9. Four types of orbits,
i.e., 1 trapping, 2 chaotic scatter
ing, 3 trapping, and 4 regular sca
tering. The initial condition z0

52.0, vz
050.2, and the paramete

v510 are the same for all the fou
cases, but the parameterd is dif-
ferent, i.e.,d58.7, 9.4, 11.3, and
51, respectively.
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initial condition, z0510, vz
050, v510, andd58.6. Note

that the domain oft is much larger and«z is more closer to
zero than the ones in Fig. 6~a!.

In Fig. 7, we have plotted a scattering motion. The init
condition is z055, vz

050, v510, andd510.8. After 768
cyclotron periods, we have«z.0 and the electron has es
caped toward the infinity from the ion. When the electr
passes the ion each time, the point jumps randomly from
loop to another, and it eventually escapes. We notice
large size of the figure int direction, and smaller value o
u«zu.

In Fig. 8, we show the islands of the trapped orbits ins
the chaotic scattering region. In Fig. 8~a!, the gray points are
the scattered orbits generated from two initial conditio
z051.5 and 1.7, with the samevz

050, v510, andd58.9.
These points have escaped to«z.0 after 7835 and 2091
cyclotron periods, respectively. The dark points in Fig. 8~a!
are the periodical points of period 13, with the initial cond
tion: z051.6, vz

050, v510, andd58.9. The magnified sec
tion of the right-most dark point is shown in Fig. 8~b!. We
see the island structure of the trapped motion. The points
generated from four different initial conditions:z0

51.583, 1.584, 1.59, and 1.595, with the samevz
050, v

510, andd58.9. The case withz051.583 gives the scat
tered orbit.

V. D DEPENDENCE OF MOTION

In this section, we consider ad dependence of the motio
of the electron for a givenv and with a given initial condi-
tion (z0,vz

0). By increasingd, we found four different types
of motion. They are as follows:

~1! if d!v, the motion is trapped;
~2! if d;v, the motion is chaotic scattering;
~3! if d@v, the motion is trapped again; and
~4! if we increased further, we then have nonchaotic sca

tering motion.

In Fig. 9, we show the four corresponding orbits that a
generated from the numerical integration. The initial con
tion z052.0, vz

050.2, and the parameterv510 are the same
for all the four cases, but the parameterd is different, i.e.,
d58.7, 9.4, 11.3, and 51, respectively.

The existence of the four regions can be explained
follows. The equation of motion in thez direction is
05621
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z̈52
z

~z21r'
2 !3/2

, ~22!

wherer' is the component ofr perpendicular to thez direc-
tion. If d!v, thenr''v, and Eq.~22! may be approximated
as

z̈'2
z

~z21v2!3/2
. ~23!

On the other hand, ifd@v, thenr''d, and Eq.~22! may be
approximated as

z̈'2
z

~z21d2!3/2
. ~24!

In each of the above two cases, we see a well-defined po
tial in thez direction from the equation of motion. If the tota
energy~i.e., the potential energy plus the kinetic energy! in
thez direction is negative, the electron is trapped. Then fo
proper initial condition such that the total energy is negat
in each case, we have two trapping regions, denoted by
gion 1 and region 3 in Fig. 10.

For each potential if we increase the energy to the posi
region, then we obtain the scattering motion. The interact
for the potential~23! is relatively larger than the potentia
~24!. As a result, the chaotic scattering region is much lar
in region 2 than in the region around the border betwee
and 4. Indeed, there exists a chaotic scattering region
tween 3 and 4. However, this region is so narrow that o
cannot easily detect the chaotic scattering.

VI. FRACTAL STRUCTURE

It is well known that whenever we have a chaotic motio
there appears a fractal structure in some variables. In
section we show the fractal structure in thevz

f , i.e., the value
of vz when the electron escapes to infinity, and the bounc
numbernz of the electron, wherenz is defined as the numbe
of timesvz changes its sign before the electron escapes.

FIG. 10. Four different regions of motion.
-
FIG. 11. Fractal structure ob
tained from the map invz

f vs vz
0

for initial conditions vz
0P ~a!

@0.2,0.25# and ~b! @0.2,0.2001# z0

51.5, v510, andd510.
2-6
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FIG. 12. Fractal structure ob
tained from the map innz vs vz

0

for initial conditions vz
0P ~a!

@0.2,0.25# and ~b! @0.2,0.2001#,
z051.5, v510, andd510.
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In Fig. 11~a!, we showvz
f as a function ofvz

0 , with vz
0

P@0.2,0.25#, z051.5, v510, andd510. It is seen that by
slightly changingVz

050, there are regions wherevz
f has a big

change. This indicates the sensitivity in the initial conditio
Moreover, there are smooth regions wherevz

f changes
slowly. This shows that even inside the chaotic scatter
regime, there exist regular regions.

In Fig. 11~b!, we magnify a small section invz
0 , i.e., vz

0

P@0.2,0.2001# to see the fractal structure. This figure sho
that inside the chaotic scattering regime, there is self sim
ity, which is typical of the fractal structure.

In Fig. 12~a!, we shownz vs vz
0 for the same domain o

Fig. 11~a!. It can be seen that whenevernz is constant,vz
f is

smooth, while in the chaotic region forvz
f , we have the

chaotic region fornz . We again magnify the same interval
vz

0 for nz , as shown in Fig. 12~b!, and one can see again th
fractal structure innz .

VII. WIDTH OF CHAOTIC SCATTERING REGION

In this section, we estimate the size of the chaotic sca
ing region. For the case thatv is small, the effect of the
Coulomb force becomes a large perturbation over the cy
tron motion. This suggest that the smaller the velocity,
wider the chaotic region. In this section, we shall verify th
prediction and numerically estimate the width of the chao
region in the impact parameter as a function ofv. However,
our map is restricted only for the large values ofv. For this
reason, we perform the numerical integration of the equa
of motion to find the width, instead of using our map.

We take the initial condition of the electron to be paral
to z with a velocity v. In this case, the initial condition is
specified by the impact-parameterb and the velocityv, and
we use the numerical integration to compute the widthdb of
the chaotic region for fixedv. Since the chaotic scatterin
region is much lager in region 2 in Fig. 10, we restrict o
interest in this domain.

In order to computedb, we need to define the uppe
bound and the lower bound of the chaotic region. To this e
we first note that ifb is too large, there is no bouncin
motion of the electron, i.e.,nz50. For this case we have
regular scattering. Hence, the upper bound of the cha
motion is determined by the boundary inb betweennz50
andnzÞ0. On the other hand, ifb is too small, there is only
one bouncing, i.e.,nz51, which corresponds to the othe
regular scattering. Hence, the lower bound of the cha
05621
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motion is determined by the boundary inb for smallb region
betweennz51 andnzÞ1.

In Fig. 13, we showdb as a function ofv from the results
of the numerical integration. We see thatv decreases asdb
increases. The chaotic scattering is more likely to be
served for smallv.

VIII. CONCLUDING REMARKS

For the casev@1, we have derived a magneto-Coulom
map which has produced a good agreement with the num
cal integration of the equation of motion. Using our map,
could predict a long-time behavior of the electron scatter
in the chaotic regime. We have found that there appear f
different regions of the motion by changing the distanced of
the guiding center line of the cyclotron motion of the ele
tron from the ion. Our map has shown that the fractal str
ture in the final velocityvz

f and in the bouncing numbernz .
We have also shown that the width of the chaotic scatter
region becomes larger for smaller velocityv.

Suppose this scattering occurs in the plasma environm
then one can expect that plasma transport may bec
anomalous under the influence of the chaotic scattering.
results suggest that the smallerv, the more anomalous th
plasma transport. In the following we present several plas
environments, wherev&1. These cases are the ultraco
neutral plasma@11#, the white dwarf atmosphere, the neutro
star atmosphere, withv51.0, 2.4, and 0.5, respectively. W
expect the chaotic scattering has a stronger influence
these plasma environments. With the relation32 kBTe
5 1

2 me(vvcr 0)2, whereTe is the electron temperature, th
dimensionless velocity can be expressed as

FIG. 13. Widthdb of chaotic scattering region in the impac
parameterb as a function of initial velocityv.
2-7
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v5~3kB!1/2~4pe0me
2!1/3e21

Te
1/2

~ZB!1/3

5@0.18 K21/2T1/3#
Te

1/2

~ZB!1/3
, ~25!

where and K and T denote Kelvin and Tesla. Table I li
some relative parameters for these three plasma env
ments. The parametersb90, le and lDe are the impact pa-
rameter for 90° Rutherford scattering, thermal DeBrog
wavelength and Debye length in the dimensional units,
spectively,

b905
Ze2

12pe0kBTe
, ~26!

le5
2p\

A2pmekBTe

, ~27!

lDe5Ae0kBTe

nee
2

. ~28!

TABLE I. Representative plasmas where chaotic scattering
predicted.

Plasma
environments

Ultracold
neutral
plasma

White dwarf
atmosphere

Neutron star
atmosphere

Te ~K! 0.1 5.03104 1.03106

B ~T! 4.031024 1.03104 1.03108

v 1.0 2.4 0.5
ne (m23) 2.031015 1.031022 1.031030

ne
21/3 ~m! 7.931026 4.631028 1.0310210

r 0 ~m! 3.731025 4.3310210 9.2310213

db ~m! 2.831025 1.031029 1.3310212

b90 ~m! 5.631025 1.1310210 5.6310212

re ~m! 3.031025 8.6310210 3.8310213

lDe ~m! 4.931027 1.531027 6.9310211

le ~m! 2.431027 3.3310210 7.5310211
y

05621
s
n-

-

Finally we give a comment on the effect of the radiati
dumping. During the cyclotron motion, the electron los
energy because of the radiation. In this paper, we have
glected this effect. Here we estimate the radiation energy
and show that the loss is very small. Let us consider
dimensionless powerP(t) radiated by an electron undergo
ing a dimensionless accelerationa(t). It is given by

P~ t !5
vc

me

e2

6pe0c3 a2~ t !

5
e3

6pe0c3me
2

Ba2~ t !

5@1.1310212 T21#B a2~ t !, ~29!

and the radiated energy is

dE5E dt P~ t !5@1.1310212 T21#BE dt a2~ t !. ~30!

In the case ofv;1, we havea(t);1. Then the incident
electron has an energyE5 1

2 v2;1. We can see from Eq.~30!
that, in a time period of thousands cyclotron periods or l
the energy radiated from an electron can be neglected, c
pared to the electron energyE.

For the case where many ions are distributed randoml
space, one can apply our map for each ion and introduce
multimagneto-Coulomb map. This corresponds to the L
entz model in statistical physics. We hope to estimate
transport coefficients in this multi-magneto-Coulomb m
elsewhere.
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