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Synchronization and information processing by an on-off coupling
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This paper proposes an on-off coupling process for chaos synchronization and information processing. An in
depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied.
We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of
dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made
to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchro-
nization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation
of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schro¨dinger
equation.
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I. INTRODUCTION

The topic of synchronization and chaos control has
tracted much attention in the past decade@1–10#. Active
research in this area has contributed greatly to the un
standing of a wide class of complex phenomena, includ
synchronization in secure communication@2#, electronic cir-
cuits@3#, and nonlinear optics@4#, coherence transfer in mag
netic resonance@5#, and oscillation in chemical and biolog
cal systems@6#. In fact, the study of this topic leads to man
practical applications in the aforementioned fields. Ma
useful synchronization approaches were proposed for sh
capturing@7#, turbulence control@8#, and signal processing
@9#. A key element used in many of these studies is the dir
simultaneous coupling of dynamical variables@9#, see Eq.
~1!. Obviously, it will be interesting to study how an altern
tive coupling scheme affects chaos synchronization and
namical behavior of nonlinear systems. In particular, it
generally unknown if an indirect, on-off coupling schem
which couples the temporal values of dynamical variab
can be used to achieve chaos synchronization. Moreover,
beneficial to explore further the potential of synchronizat
and chaos control techniques for digital signal process
~DSP! and information autoregression~IAR!. Both DSP and
IAR are of crucial importance to telecommunication, bi
medical imaging, pattern recognition, missile guidance,
get tracking, autonomous control, etc. The main objective
this paper is to explore effectiveness of an indirect, on-
coupling process for the chaos synchronization. We are
interested in the use of this synchronization-based techn
for DSP and IAR.

This paper is organized as follows. The coupling proc
is presented in Sec. II. Theoretical analysis of the proces
given in Sec. III. Analyses of stability conditions, informa
tion processing and filter properties are carried out. Su
analyses provide a guide to the selection of coupling par
eters. Section IV is devoted to numerical experiments. T
utility and effectiveness of the proposed coupling process
chaos synchronization, signal processing, and data regre
are demonstrated. This paper ends with a conclusion.
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II. THE ON-OFF COUPLING PROCESS

We consider a nonlinear dynamical system consisting
N identical subsystems, whose dynamical variables are
rectly coupled via the nearest and next-to-the-nearest ne
borhood sites

duj

dt
5 f ~uj !1Nj~ t !1a~uj 122uj 11!1~b23a!~uj 112uj !

1a~uj 222uj 21!1~b23a!~uj 212uj !, ~1!

whereujP@0,̀ )3Rn, f is a nonlinear function ofuj , which
might undergo chaotic dynamics,Nj (t) is the noise,a andb
are scalar hyperdiffusive and diffusive coupling paramete
respectively. The introduction of the hyperdiffusive couplin
is a minor generalization of the coupling process given
Lindneret al. @9# and could make the coupling slightly mor
effective. The coupling scheme in Eq.~1! is strongly dissi-
pative and a synchronous state can be attained for the ch
Duffing oscillators by using appropriate coupling paramet
@10#. We refer to this coupling as direct and simultaneous
the sense that it directly connects the dynamical variable
many subsystems during the dynamical process governe
the nonlinear relationf (uj ). As couplings are fundamental t
the behavior of dynamical systems, it is important and int
esting to study the effect of different coupling strategies.
this work, we propose the following indirect, on-off couplin
process:

duj

dt
5u t1 ,t2 , . . . ,tk

~ t !@ f ~uj !1Nj~ t !#1 ū t1 ,t2 , . . . ,tk
~ t !

3@a~uj 122uj 11!1~b23a!~uj 112uj !

1a~uj 222uj 21!1~b23a!~uj 212uj !#, ~2!

whereu t1 ,t2 , . . . ,tk
(t) is a control function that consists of

periodic train of Heaviside type intervals andū t1 ,t2 , . . . ,tk
(t)

is the complement ofu t1 ,t2 , . . . ,tk
(t) in the domain@0,̀ )

@i.e., ū t1 ,t2 , . . . ,tk
(t)512u t1 ,t2 , . . . ,tk

(t)#. Both control func-

tions are depicted in Fig. 1. During the time interval 0<t
©2002 The American Physical Society10-1
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G. W. WEI AND SHAN ZHAO PHYSICAL REVIEW E65 056210
<t1, each subsystem, together with possible noise, evo
freely without coupling. At timet1, the coupling is switched
on and the time evolution of the dynamical variables
many subsystems is entirely governed by the proposed
trolled coupling untilt2. These on-off coupling processes a
periodically arrayed in the time domain of@0,̀ ). In the rest
of this paper, we offer a theoretical analysis of the coupl
process and demonstrate its use for chaos synchroniz
and DSP.

III. THEORETICAL ANALYSES

In this section, we first examine the stability condition f
the time integration of the on-off coupling process. We th
investigate the use of the proposed process for the trend
timation of time series. Finally, we study the filter proper
of the process.

A. Stability conditions

In the conventional coupling, Eq.~1!, it is the dynamical
variables that are coupled, whereas in the on-off coupl
Eq. ~2!, it is the temporal results~values! of dynamical vari-
ables that are coupled and treated for a while before the o
of the next dynamical evolution. A key characteristic of t
on-off process is that the coupling and the nonlinear evo
tion will never coexist during whole process, so that the
tailed analysis of thenet effectof the coupling in Eq.~1!
becomes possible. At timet1<t<t2, a discretization of the
isolated system Eq.~2!, written in terms of a~time! iteration
form, can be given by

uj
s115uj

s1R~uj 21
s 22uj

s1uj 11
s !1T~uj 22

s 24uj 21
s 16uj

s

24uj 11
s 1uj 12

s !, ~3!

uj
05uj~ t1!, j 51, . . . ,N, and s50,1, . . . ,S,

where

R5bDt, T5aDt ~4!

and iteration parameter

FIG. 1. The control functions.
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S5~ t22t1!/Dt. ~5!

It should be noted thatT andR are actually scaled hyperdif
fusive and diffusive parameters, respectively. The contro
coupling process~3! is conditionally stable, similar to the
normal coupling system. It is known that the stability of th
normal coupling system is governed by the stability of bo
the intrinsic dynamics and the coupling terms@10#. For the
on-off process, the dynamical evolution is linear when t
coupling is acting, so that the stability analysis can be re
tively easily carried out. Neglecting the boundary modific
tions, we can rewrite Eq.~3! in a matrix form,

Us115AUs, ~6!

where

Us5~u1
s ,u2

s , . . . ,uN
s !T, ~7!

and the pentadiagonal matrixA has nonzero coefficients:

aj , j 225aj , j 125T, ~8!

aj , j 215aj , j 115R24T, ~9!

aj , j5122R16T, ~10!

for j 51,2, . . . ,N. If all of the eigenvalues ofA are smaller
than unity, the iterative correction

es115uuUs112Usuu ~11!

will decay, then the process is stable with respect to a la
number of iterations~or long-time evolution!. Since each di-
agonal term of the matrix is a constant, the eigenvectors oA
can be represented in terms of a complex exponential fo

U j
s5qseig j , ~12!

wherei 5A21 andg is a wave number that can be chos
arbitrarily. Substituting Eq.~12! into Eq. ~6! and removing
the common termeig j , we obtain an explicit expression fo
the eigenvalueq:

q5112T~2 cos2g2cosg21!12~R23T!~cosg21!.
~13!

For a stable process, the magnitude of this quantity is
quired to be smaller than unity,

q2,1. ~14!

For the case ofT50, q is the maximum when cosg521.
Thus, the controlled coupling process is stable provided
,R, 1

2 . On the other hand, ifR50, our analysis indicates
that 0.T.2 1

2 1/(cos2g22 cosg11), which is also derived
by taking an extremum ofq at cosg521. Therefore, the
controlled coupling process is stable provided 0.T.2 1

8 .
Under these conditions, we havees11<es, for anysPZ1.

Although the present stability analysis is limited to th
processing of the dynamical variables, the results of
analysis can be used for guiding the parameter selectio
0-2
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SYNCHRONIZATION AND INFORMATION PROCESSING . . . PHYSICAL REVIEW E65 056210
the conventional coupling in Eq.~1!. The stability conditions
of the conventional coupled process has not been fully cl
fied and the choice of the coupling parameter is essent
empirical. For such a process, the stability constraints on
coupling parameters should be within the neighborhood
the results obtained for the on-off coupling.

It is interesting to note that the controlled coupling pr
cess, Eq.~2!, provides not only an approach for the inves
gation of nonlinear dynamical systems, but also a power
realistic algorithm for DSP and IAR. We will next explor
the DSP and IAR properties of the on-off coupling proce
These properties actually in return enhance the compre
sibility of the effect of the coupling terms to the nonline
dynamical system, in particular, provide a DSP viewpoint
why the coupling can induce synchronization.

B. Information processing

For IAR, the on-off coupling forms an interesting a
proach for the trend estimation problem of a time series@11#,
which is useful for data interpretation and long-term fo
casting. The primary goal of trend estimation is to extr
trend component from time series, which is usually assum
to be the sum of the trend, the seasonal component,
random noise@11#. Nonparametric style methods are wide
used for trend estimation. Nonparametric approaches m
no assumption about the trend function, and allow great fl
ibility in the possible form of the fitting curve@12#. One
common feature of all nonparametric approaches is that t
are one or more smoothing parameters that govern the
damental tradeoff between the bias and the variance of
mates, as well as tradeoff between the smoothness and
fidelity ~closeness to time series! of estimated trend@12#.

What is more relevant to the on-off coupling process i
class of nonparametric trend estimation methods that w
constructed by explicitly quantifying the global competitio
between the two conflicting features: the smoothness and
fidelity. The earliest motivation to this approach dates ba
to 1923 when Whittaker@13# introducedgraduation. The fi-
delity and smoothness are defined as the sum of square
the residual and the accumulated power of the finite diff
ence, respectively. Hodrick and Prescott@14# provided a con-
crete version of Whittaker’s approach, which has been ex
sively used in the real business cycle literature
detrending. Recently, Mosheiov and Raveh@15# proposed a
linear programing method to estimate the trend by empl
ing the sum of theabsolutevalues rather than the commo
sum of squares to measure the smoothness and fidelity. I
present approach, the terms in the first and second brac
of Eq. ~3! are the second order and fourth order pointw
measures of smoothness, which are denoted asD2uj

s and
D4uj

s , respectively. To have a better understanding of t
controlled coupling process, we rewrite Eq.~3! as

@uj~ t1!2uj
s#1@Rv j

s211Twj
s21#50, j 51, . . . ,N,

~15!

where
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s215 (

k50

s21

D2uj
k ,

and

wj
s215 (

k50

s21

D4uj
k .

It is clear that the expression in the first square bracket is
local measure of the fidelity, while the expression in the s
ond square bracket is the accumulative local measure
smoothness. They are local measures, since calculation
volved in Eq.~15! is compactly supported. At each step
the iteration, this process guarantees that the sum of the l
deviation fromuj (t1) and the accumulative local measure
smoothness equals zero. As such, the result of each itera
is optimal in the sense of minimization, for the given inp
and the set of parametersR andT. In comparison, the previ-
ous IAR methods@13–15# seek for global minimizations
over the entire domain to obtain optimal estimates, while
present controlled coupling process forces the sum
smoothness and fidelity to pass through zero at each itera
to give an optimal trend.

Besides the minimization of two properties, another i
portant aspect of the construction of nonparametric trend
timation method is the tradeoff balance. Since the previou
discussed iteration correction

es115uuUs112Usuu5uuRD2Us1TD4Usuu ~16!

is actually a global smoothness measure of estima
trend at thesth iteration, one can argue that as the ite
ative process lasts longer, the estimated trend beco
smoother, while the deviation ofUs from U05U(t1)
5@u1(t1),u2(t1), . . . ,uN(t1)#T becomes larger. In othe
words, the tradeoff between the smoothness and the fid
in the coupling terms is governed by the iteration parame
S, as well as scaled hyperdiffusive and diffusive paramet
T andR. Therefore, the on-off coupling process forms a u
ful approach to IAR applications. The advantage of the p
posed controlled coupling lies in its localization and simpl
ity.

For a real application of IAR, the choice of smoothin
parameters is clearly a crucial issue. Fortunately, this pr
lem has been extensively studied in the literature, since ev
nonparametric estimation approach encounters the same
current widely used criteria for choosing smoothing para
eters includes cross validation and generalized cross va
tion @12#. These methods are also applicable within the o
off coupling process.

The IAR properties of the coupling can be understo
from the point of view of nonlinear dynamical studies. For
coupled nonlinear dynamics, the IAR smoothness propert
actually the similarity of subsystems, while the fidelity is th
deviation of dynamical system subjected to coupling. A sy
chronous state is a state having perfect similarity, and
largest deviation. It is obvious that the convergence time o
synchronous state can be controlled through coup
strengthsa andb for the general coupling~1!. SinceT andR
0-3
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TABLE I. The filter weights@W(k,6)# of the controlled coupling process (T50).

k R50.4 R50.1

0 924R621512R511050R42400R3190R2212R11 0.181824 0.390804
1 2792R611260R52840R41300R3260R216R 0.154368 0.227808
2 495R62720R51420R42120R3115R2 0.12672 0.065295
3 2220R61270R52120R4120R3 0.07168 0.01048
4 66R6260R5115R4 0.039936 0.000966
5 212R616R5 0.012288 0.000048
6 R6 0.004096 0.000001
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are scaled coupling strengths, this essentially agrees with
previous IAR investigation for fixedS. On the other hand
the local minimization property of the on-off coupling su
gests that the coupling in nonlinear dynamics also sho
have some optimization properties, which, however, are
clear at the present stage, and deserve to be explored fu

C. Filter properties

For DSP, it is important to analyze the relationship b
tween the proposed process and digital filters. To this e
we explore a weighted average representation of the c
trolled coupling process. For simplicity, we consider the c
of T50. We first setS to 1, i.e., t22t15Dt, then the con-
trolled coupling process gives

uj
15Ruj 21~ t1!1~122R!uj~ t1!1Ruj 11~ t1!,

j 51, . . . ,N, ~17!

which is clearly a local weighted average form foruj (t1). In
general, afterS iterations, the controlled coupling proce
can be represented as:

uj
S5 (

k5 j 2S

j 1S

W~k,S!uk~ t1!, ~18!

where weight functionW(k,S) has the general form,

W~k,S!55 (
h50

(S2k)/2

, g~k,S,2h! when S2k even,

(
h51

(S2k11)/2

, g~k,S,2h21! when S2k odd,

~19!

and

g~k,S,h!5
S!RS2h~122R!h

S S1k2h

2 D ! S S2k2h

2 D !h!

. ~20!

It can be easily verified that,

(
k5 j 2S

j 1S

W~k,S!51, ~21!
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W~2k,S!5W~k,S!, ;k51, . . . ,S. ~22!

Equation~18! indicates that the controlled coupling proce
can be viewed as a kernel smoother for IAR@12# and a
low-pass filter for DSP@16#. Two estimators in IAR and DSP
are essentially equivalent in the present content. As a pop
trend estimation method, a kernel smoother provides a g
estimate to trend, which is actually a low-frequency comp
nent of time series. In general, the word filter suggests
estimation will select a band of frequencies. A low-pass fil
has a pass band and a stop band at low- and high-frequ
parts, respectively. Consequently, the low-frequency
sponse of time series can pass through low-pass filter
while the high-frequency response will be attenuated. The
fore, the output of low-pass filtering is obviously a goo
estimate to trend.

In terms of assigning the weights, the controlled coupli
process filter is also analogous to those of other kernel
gression methods. For a reasonable choice ofR and S, the
greater or smaller weight will be assigned to the points cl
to or far away fromuj (t1), respectively, see Table I and Fig
2. Obviously, the distribution of the weights has a Gauss
shape whenS is sufficiently large. It is noted that the imple
mentation of the controlled coupling process becomes v
simple owing to the existence of Eq.~18!. TheS steps itera-
tion can be performed through one step filtering. Nume
cally, the weighted average form~18! is very useful. In com-

FIG. 2. The filter weights of the controlled coupling proce
(T50).
0-4
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SYNCHRONIZATION AND INFORMATION PROCESSING . . . PHYSICAL REVIEW E65 056210
parison to the previous IAR methods@13–15#, the
implementation of the on-off coupling process is qu
simple.

A simple moving average filter can be constructed by c

volving the mask (12 , 1
2 ) with itself, 2S times. WhenS51,

such a filter is the Hanning filter@17# ( 1
4 , 1

2 , 1
4 ). In our case, if

we setR5 1
4 in the Eq.~17!, the present controlled couplin

process has the same filter coefficients as those of the H
ning filter. Thus, the proposed controlled coupling proc
filter can be viewed as a generalization of the Hanning fil

We can also investigate the meaning of the DSP prop
of the coupling for the nonlinear dynamics. In the sense
DSP, the coupling process is a kind of low-pass filtering. T
difference among subsystems constitutes the high-freque
component, and will be eliminated by the~low-pass filter!
coupling during the time evolution, while the similarit
among subsystems represents the low-frequency compo
and will be enhanced by the coupling. As such, synchron
state will be attained eventually. It is noted that although
conclusion is drawn for the coupling in the linear evolutio
the same is true when nonlinear evolution is involved. B
cause the low-pass filter property of the coupling term d
not change with the nonlinearity.

IV. NUMERICAL EXAMPLES

In the rest of this paper, we demonstrate the utility of t
proposed approach for chaos synchronization, trend est
tion, and noise reduction. To this end, a few numerical
periments are carried out.

A. Application to chaos synchronization

First, we consider chaos synchronization in Duffing osc
lators with periodic boundary@10#

u̇ j5~ ẋ j ,ẏ j !5@yj ,2ayj2xj
31E cos~vt !#, ~23!

where (a,E,v)5(0.3,11.0,1.0) andj 51,2, . . . ,6.Both the
controlled coupling~2! and the normal coupling@e(yj 11
2yj )1e(yj 212yj )# @10# are employed to synchronize th
spatially extended nonlinear system~23!. It is noted that the
diffusive parametere is actuallyb in Eq. ~1! in our nomen-
clature, and the normal coupling is equivalent to the coupl
in Eq. ~1! with a50 ~i.e., T5aDt50). In numerical study,
the same diffusive parameter will be employed for both c
pling schemes, i.e.,e50.5/Dt and R50.5, and we choose
T50 in the proposed coupling. The on-off switching is fixe
as t2k112t2k510Dt and t2(k11)2t2k115SDt510Dt, for
k50,1,2, . . . . A synchronous state can be obtained by us
the on-off coupling. The average absolute differences
coupled oscillators are depicted in Fig. 3. It is seen that
using the controlled coupling, the synchronous state is a
ally reached much more quickly than by using the norm
coupling.

Next, we consider a spatiotemporal synchronization
noisy nonlinear oscillators@9#

ẋ j5Kxj2K8xj
31A sin~2p f t !1Nj~ t !, ~24!
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where (K,K8,A, f )5(2.1078,1.4706,1.3039,0.1162), j
51,2, . . .,101, and the Gaussian white noiseNj (t) has zero
mean and variances2. Both the controlled coupling~2! and
the normal coupling@e(xj 112xj )1e(xj 212xj )# @9# are
implemented for Eq.~24! with periodic boundary conditions
In the proposed coupling, we setT50, S520, andt2k11
2t2k520Dt. The spatiotemporal order is characterized by
signal-to-noise ratio~SNR!,

VSNR510 log10F original signal power

estimated noise powerG , ~25!

where the original signal is the sampled response of the n
linear system~24! without the white noise, while the esti
mated noise is the difference between the noisy response
the original signal. By fixingDt at 0.001, the SNR enhance
ment, defined as the increase in SNR owing to couplings
displayed in Fig. 4. It is seen that both couplings give exc
lent enhancement over a wide range of noise power and
pling strength, while the proposed coupling has a lar
maximum improvement.

Two SNR enhancement patterns shown in Fig. 4 o
have some differences in the lineR5eDt50.5. WhenR
.0.5, the on-off coupling is unstable, SNR enhancem
quickly decays to zero. This exactly agrees with the previo

FIG. 3. Plot of the absolute difference,e(t)5
1

12 ( i 51
6 (uxi

2xi 21u1uyi2yi 21u), of coupled Duffing oscillators.

FIG. 4. The SNR enhancement of noisy nonlinear oscillators.~a!
The controlled coupling;~b! the normal coupling.
0-5
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G. W. WEI AND SHAN ZHAO PHYSICAL REVIEW E65 056210
stability analysis. For the normal coupling, the SNR inc
ment of e.0.5/(Dt) is essentially the same as that ofe
,0.5/(Dt) for any noise strength. This means that the n
mal coupling is still stable whene.0.5/(Dt). Following the
previous discussion, the stability analysis of the normal c
pling might not need to be specifically conducted in th
example. The normal coupling will be surely stable when
stable condition of the corresponding on-off process is sa
fied, i.e.,e,0.5/(Dt).

The visual effect of spatiotemporal synchronization
duced by the on-off coupling is depicted in Fig. 5. Ea
sequence in Fig. 5 displays the evolution of a chain of 1
oscillators, time increasing upward. Following Lindneret al.
@9#, binary signals obtained through quantization are sho
The strength of the white noise is chosen as25 dB in this
example. Obviously, strong spatiotemporal disorder app
before coupling~i.e., R50), while excellent spatiotempora

FIG. 5. Spatiotemporal synchronization of noisy nonlinear
cillators.
05621
-

-

-

e
s-

-

1

n.

rs

synchronization is achieved by using the on-off coupling,
any employedR. The SNR improvement of unquantized si
nals is at least 26.

B. Application to information processing

Apart from nonlinear dynamical systems, the applicatio
of the proposed controlled coupling process to IAR and D
of real-world problems are also considered. One interes
IAR problem, the trend estimation of a benchmark time
ries, the ‘‘sales of companyX’’ @15,18#, is studied. Such a
time series can be regarded asU(t1), produced by an un-
known and unpredictable dynamic system, and its analys
of practical importance. The sales is a monthly series rang
from January 1965 to May 1971 and has a monotonic gro
ing trend and a clearly identifiable seasonal compone
Guided by the earlier stability analysis, we choose three
of (R,T) values, (0.4,0), (0,20.12), and (0.25,20.05). For
each set, the effect of changing the smoothing parametS
on the extracted trend is studied, i.e., the value ofS varies
from 1 to some large numbers, see Fig. 6. The Neum
boundary condition is used in this study. As expected, e
mates with large smoothing parameters are very smo
while for small values ofS the estimates provide good inte
polation of the data. This confirms previous theoretical stu
that the smoothing parameterS governs the smoothness
fidelity tradeoff for IAR. It is also clear from the figure tha
with appropriateS, the estimates by using differentR andT
combinations are almost identical. The smoothing para
eters used in Fig. 6~c! are nearly optimal. The correspondin
estimated trends provide similar long-run tendency. Of p
ticular importance is the slope of trends that undergoe
clear change around the 28th month, and agrees with
finding in Ref. @15#. For the study of the coupled nonlinea
dynamics, the present numerical results indicate that
single next-to-the-nearest neighborhood coupling, Eq.~1!,
can reach the same effect as the single nearest coupling~i.e.,

-

n-

le
the
FIG. 6. Trend estimated by using the co
trolled coupling process as a function ofS. Three
combinations ofR andT are tested, (1) (0.4,0);
(2) (0,20.12); (3) (0.25,20.05). In all plots,
dotted lines denote the original data, whi
dashed, dash-dotted, and solid lines denote
trends estimated by using combinations~1!, ~2!,
and ~3!, respectively.~a! S51 for all three com-
binations; ~b! S520,250,27; ~c! S538,700,52;
~d! S560,1000,80 for combinations~1!, ~2!, and
~3!, respectively.
0-6



g
s-

io

o

-

l

is

se

s
is

s
ro
th
th
s
a

he
e
n

tin
b

ca
te
an
da
-
e

on
e
o

d
pa-
es-

en-
po-
on-
he

are
er
ro-
ell

s.
by
be

nal
ent
sed
e to
ing
s. A
ami-
via

lar
rent
ree-
-

the
on

SYNCHRONIZATION AND INFORMATION PROCESSING . . . PHYSICAL REVIEW E65 056210
the normal coupling!, and so does the combined couplin
presented in Eq.~1!. This agrees with the previous discu
sion.

C. Application to noise reduction

We finally consider a DSP problem, the signal extract
from noisy data, by the on-off coupling process~2!. The
underlying nonlinear dynamical system is chosen as the n
linear Schro¨dinger equation@19#

i
]C

]t
1

]2C

]x2
12uCu2C50, xP@0,L#, ~26!

with periodic boundary conditionsC(x1L,t)5C(x,t) and
the periodL52A2p. This system is computationally diffi
cult because of possible numerically induced chaos@19#. In
this study, Eq.~26! is allowed to evolve freely with the initia
condition of the form

C~x,0!50.510.05 cosS 2p

L
xD1 i1025 sinS 2p

L
xD .

~27!

At t5t158.0, the system is perturbed and its solution
contaminated by the Gaussian white noise to the SNR
39.25 dB, see Fig. 7. The controlled coupling process is u
to restore the solution from noisy dynamical dataU(t1) dur-
ing the time periodt1<t<t2. The parameters (R,T,S) are
chosen as~0.25,20.05, 10!. From Fig. 7, it is clear that the
unwanted noise is satisfactorily suppressed by the propo
process. The restored solution matches well with the no
free solution and its SNR is as high as 50.63 dB.

V. CONCLUSION

In conclusion, we introduce an on-off coupling proce
for the synchronization of spatiotemporal systems. The p
posed process isolates the conventional coupling from
dynamical system and provides an in-depth analysis of
coupling effect. Numerical stability of the proposed proce
is analyzed, which might be useful for unisolated nonline
dynamics. In the context of trend estimation, comparison
given to several standard nonparametric methods@13–15#,
which globally minimize the smoothness and fidelity. T
proposed process is shown to balance these features in
step of time evolution, without resorting to a minimizatio
procedure, and thus, is numerically simpler than the exis
methods. The IAR properties of the coupling are shown to
comprehensible from the viewpoint of nonlinear dynami
studies. In the context of signal processing, a digital fil
expression of the controlled coupling process is derived
the connection of the proposed approach to the stan
Hanning filter@17# is made. For the study of nonlinear dy
namical system, the present discussion provides a DSP
planation about why the coupling induces synchronizati
On the other hand, the on-off process also forms an inter
ing means to determine whether a new neighborhood c
05621
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pling will introduce synchronization or not. The propose
process is finally applied to chaos synchronization, s
tiotemporal synchronization, trend estimation, and signal r
toration.

Essentially, a coupling process is a low-pass filter in g
eral and therefore, it eliminates the high-frequency com
nent, the difference among the dynamical variables of n
linear systems and leads to synchronization. T
conventional coupling and the proposed on-off coupling
two different implementations of low-pass filters. The form
is an interactive implementation and the latter is a postp
cessing implementation. Both approaches work equally w
for chaos synchronization of nonlinear dynamical system

In the numerical experiment of chaos synchronization,
using the controlled coupling, the synchronous state can
reached much more quickly than by using the conventio
coupling. In the spatiotemporal synchronization, excell
spatiotemporal order can be induced by using the propo
process, and the overall SNR improvement is comparabl
the conventional coupling. The proposed controlled coupl
process is also applied to information processing problem
benchmark time series generated by some unknown dyn
cal process is studied. The smoothness-fidelity balancing
smoothing parameters is numerically verified. The simi
and excellent trends are estimated by using three diffe
sets of parameters. The numerical results are in good ag
ment with those in the literature@15# and the present ap

FIG. 7. Signal restoration from the contaminated solution of
nonlinear Schro¨dinger equation. Top, the contaminated soluti
U(t1); Bottom, the restored solution~dashed line! and the noise-
free solution~solid line!.
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proach is simpler. Finally, the signal restoration is studi
The solution of the nonlinear Schro¨dinger equation is con
taminated by noise at the end of the first time periodt1. The
controlled coupling process is utilized to restore the wa
form. We show that the unwanted noise can be effectiv
removed by ten iterations. Obviously, the proposed appro
is readily applicable to other real-world information proce
ing problems, such as image processing. The present in
s,
.
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. E

tt.

tt.

05621
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tigation opens up a new opportunity to develop oth
synchronization-based methods both for the study of non
ear dynamics and for realistic information processing.
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