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Exact finite-size corrections for the square-lattice Ising model with Brascamp-Kunz
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Finite-size scaling, finite-size corrections, and boundary effects for critical systems have attracted much
attention in recent years. Here we derive exact finite-size corrections for the free Ermmgythe specific heat
C of the critical ferromagnetic Ising model on the X 2\ square lattice with Brascamp-KuBK) boundary
conditions[J. Math. Phys.15, 66 (1974] and compare such results with those under toroidal boundary
conditions. When the ratié/2= (M+ 1)/2Nis smaller than 1 the behaviors of finite-size correctionfare
quite different for BK and toroidal boundary conditions; wher¢lgj is larger than 3, finite-size corrections for
Cin two boundary conditions approach the same values. In the Nfnite we obtain the expansion of the free
energy for infinitely long strip with BK boundary conditions. Our results are consistent with the conformal field
theory prediction for the mixed boundary conditions by Cadycl. Phys.B 275 200(1986)] although the
definitions of boundary conditions in two cases are different in one side of the long strip.
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I. INTRODUCTION M XN square lattice with toroidal boundary conditiof,
Ferdinand and Fish¢7] computed the finite-size corrections
In the study of phase transitions and critical phenomena, ito the free energy, the internal energy, and the specific heat
is extremely important to understand finite-size correctiongip to orderN~*. Recently, there has been much effort in
to thermodynamical quantities. In experiments and in nuunderstanding the behavior of finite-size corrections of the
merical studies of model systems, it is essential to take intd"ee energy, internal energy, and specific heat. Izmailian and
account finite-size effects in order to extract correct infinite-Hu [15] and Sala$17] extended the results §7] for the free
volume predictions from the data. Finite-size scaljag3]  €nergy and the internal energy up to ordier® and for the
concerns the critical behavior of systems in which one oSPecific heat up to ordeN™°. Lu and Wu[16] obtained
more directions are finite, even though microscopically large€XPressions for the partition function of the Ising model on
it is valuable in the analysis of experimental and numerical n quadratic Ir_;\tuce_ megdded on a.Mob|us strip and a Klein
data in many situations, for example, for films of finite thick- ottle. They find finite-size corrections for free energy to

_1 g
ness. As soon as one has a finite system one must consi rlderN . Brascamp and Kungd] calculated the partition

the question of boundary conditions on the outer surfaces OtunCt.Ion of the Ising mqqel on thi ><.2N.square lattice for
“walls” of the system. The systems under various boundarySpeC'al boundary conditions shown |_n_F|g._1. Recentl_y Janke
' and Kennd 19] have calculated the finite-size corrections of

conditions have the same per-site free energy, internal enfe specific heat for this boundary condition upho 3 or-
ergy, specific heat, etc., in the bulk limit, whereas the finite- er. Very recently, Ivashkevich, Izmailian, and F20] pro-
size correctlon.s. are dlff(_er_ent. .To und.erstand .th.e effects Yided a systematic method to compute finite-size corrections
boundary conditions on finite-size scaling and finite-size coryy the partition function and their derivatives of the Ising

rections, it is valuable to study model systems, such as pefnodel on torus. Their approach is based on an intimate rela-
colation model[4] and the Ising mod€l5—-9]. Therefore, in

recent decades there have been many investigations oy
finite-size scaling, finite-size corrections, and boundary ef- / \\
fects for critical model systemsl0—21. Of particular im- N *
portance in such studies are exact results where the analys [
can be carried out without numerical errors.

The Ising model has exact solutions on finite lattices with
many kinds of boundary conditions, including cylindrical
[5], toroidal [6—8], and Mobius strip and Klein bottlgL6].
This class also includes the special boundary conditions in-
troduced by Brascamp and Kup&]. The calculation of the |~ Ti
exact partition function of the two-dimensional Ising model - \
in the zero field wrapped on the cylinder was performed by \\ /
Onsager in 19445]. Exploiting the exactly known partition ) + -
function of the two-dimensional Ising model on finite
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FIG. 1. The Brascamp-Kunz boundary conditions for the
*Electronic address: huck@phys.sinica.edu.tw M X 2N lattice. HereM =7 and N=8.
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tion between the terms of the asymptotic expansion and thspins are up(+1) along the upper border of the resulting
so-called Kronecker’s double serigZ0], which are directly cylinder and have the alternative values along the lower bor-
related to ellipticd functions. Expressing the final result in der of the resulting cylinder as is shown in Fig. 1. Recently
terms of § functions avoids messy sunfas in some earlier Janke and Kenngl9] have analyzed the Ising model in two
works) and greatly simplifies the task of verifying the behav- dimensions with these boundary conditions. They have de-
ior of the different terms in the asymptotic expansion underrived exact expressions for the finite-size scaling of the spe-
duality transformationM < N. Using this approach, Salas cific heat up to theM ~3 order. In this paper we obtain all
[21] computed the finite-size corrections to the free energyexact finite-size corrections for the free energy and the spe-
internal energy, and specific heat of the critical Ising modekific heat. Moreover, in our case, the terms of the asymptotic
on a triangular and honeycomb lattices wrapped on a torusexpansion are analytical functions. They are related to Kro-
Using the exact partition of Ref9] and the method of necker’s double serig®2], which in turn can be expressed
Ref. [20], in the present paper we derive exact finite-sizeby elliptic § functions[20].
corrections for the free enerdyand and the specific he@t For the BK boundary conditions, the Ising partition func-
of the critical ferromagnetic Ising model on thetxX2A  tion given in Ref.[9] can be rewritten as
square lattice with Brascamp-Kur(BK) boundary condi-

N M
tions[9] and compare such results with those under toroidal b — (\[2er)2M E(i i 3
boundary condition§7,15]. We find that when the ratig/2 man=(V2e") Mﬂl 11;[1 (1), ®

=(M+1)/2N is smaller than 1 the behaviors of finite-size

corrections forC are quite different for BK and toroidal Whereu=1/2Insinh 2 and

boundary conditions; when I&@) is larger than 3, finite-size (i—1/2) 7]
corrections forC in two boundary conditions approach the F(i,j)=4 —) +sin2(— }
same values. In the limjt/— o we obtain the expansion of 2N 2(M+1)
the free energy for infinitely long strip with BK boundary )

conditions. Our results are consistent with the conformalgw we try to express the partition functid, ,, given by
field theory prediction for the mixed boundary conditions by Eq. (3) to the form of partition function with twisted bound-
Cardy[11] although the definitions of boundary conditions in ary conditionsZ,, s(u)

two cases are different on one side of the long strip.

2 sinffu+ sinz(

. . . N-1 M-1 .
This paper is organized as follows. In Sec. Il we show ) (it a)
how to lead the partition function of Ising model under the Zop(m)= 'Ho Ho 4[sm2( N
BK boundary conditions to the form of partition function -
with twisted boundary conditions. In Sec. Il asymptotic ex- (j+B) ]
pansion of the free energy is presented. In Sec. IV expansion +sir? -~ +2sinfpul, ®
of the specific heat is presented. Our results are summarized
and discussed in Sec. V. for which a general theory about its asymptotic expansion
has been given in Ref20]. For this purpose we can express
II. ISING MODEL UNDER BRASCAMP-KUNZ the double products 12 MIZA " *F(i+1,) through
BOUNDARY CONDITIONS MY R j) as
For the Ising model on a lattio8 of N sites, the-th site 2N-1 2M+1 N M 4
of the lattice for &i<N is assigned a classical spinvariable [] I Fd+1j)=|1I II Fd ,j))
s;, which has values: 1. The spins interact according to the =9 170 =1j=1
Hamiltonian 2N-1
x [ F(i+1,0F(i+1M+1).
BH:_JE SiSj (1) e
(j) (6)

whereJ is the exchange energy, the sum runs over the neajiqa e we use the properties of functieti i

est neighbor pairs of spins, agd= 1/kgT is the inverse tem- _ Prop . _ Biti.) _
perature. The partition function of the Ising model is given F(2N+1—k,j)=F(k,j) and F(i,2M+2—k)=F(i k).
by the sum over all spin configurations on the lattice (7)

_S g BHO This transformation leads the rectangular lattlee< 2\ un-
Zising(J) = < € : @ der consideration to the lattice 24+ 1) X 2. In what fol-
lows we will use, for convenience, the definition of the as-
As is mentioned in the Introduction there are a few boundanpect ratio as=(M+ 1)/ instead of the conventional one
conditions for which the Ising model has been solved ex{&{=M/2N).
actly. Among them is the special boundary conditions studied The left-hand side of Eq(6) is nothing but the partition
by BK [9]. They considered a lattice with\Z sites in thex  function with twisted boundary conditiorﬁ,zlo(,u) given by
direction andM sites in they direction. The boundary con- Eg.(5) with N=2A andM =2(M+1). With the help of the
ditions are periodic in the direction; in they direction, the identity [23]
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2N-1

[1

1=0

(i +1/2)

4| sintPw + sir? N

=4 cosi(2Nw)

the second product in the right-hand side of Eg).can be
transformed into the form

2N—1
IT FGG+1,0F(i+1M+1)
i=0

=[4 cosf2Nw ,(0)}cosH2Nw ,(7/2)}]1?,  (8)
where
(k) =arcsinh sirtk+2 sifu 9)

is a lattice dispersion relation.
Using Egs.(4)—(6) and(8), the partition functionZ ,, ,
can be expressed as

(V2er)*MY
ZM N coshi2Nw ,(0)]cosh 2Nw ,(7/2)] Zip o).
(10)

For our further purposes we transform the partition function

Zyjp,0 into the simpler form

N—-1

_ #(n+1/2)
Zipd )= n]:[O 2 sin —

N

o

whereN=2\N andM=2(M+1).

o

IIl. ASYMPTOTIC EXPANSION OF THE FREE ENERGY

In the preceding section it was shown that the partitiony;

function of theM X 2/ Ising model with BK boundary con-

ditions can be expressed in terms of the partition function

with twisted boundary conditiong,, 5, which has been well
studied in Ref[20]. Further we will use it and for simplicity

PHYSICAL REVIEW E 65 056132

N—-1
n+1/2 S
M wo(ﬂ-(—)>=—f wo(X)dx— EBY2
n=0 N T
Agp B%/pz-%—Z
_2”52( ) (2p) 2p+2°
(13

Here S=NM=4A(M+1), B} are the Bernoulli polyno-
mials B“ at «=1/2, which are related to the Bernoulli num-
bers B,=BY as 531’2—(21 P—1)B, and ¢=M/N=(M
+1)/N We have also used the symmetry propedty(K)

= wo(m—Kk) of the lattice dispersion relation given by Eg.
(9) and its Taylor expansion

k2P
ook =k| A+ 3 5% ) (14
whereh=1, \,=—2/3, \,=4, etc.
We may transform the second term in Ef2) as
N—-1
2 In(l_e—Z Mluo(7T(FI+1/2)/N))
n=0
mE\P A,
|n—+’7T BY—2m ( ) P
g 2 fz (2p)|
L ReKaR(iN) By a5
2p+2 '

wheren=(6,056,/2)*3is the Dedekindy function; 6,, 6,

9, are elliptic ¢ functions andK37.%(ix¢) are Kronecker’s
double serie$20,27 (see also Appendix)ATaking into ac-
count the relation between moments and cumuléippen-
ix B), the differential operatora ,, that have appeared here
can be expressed via coefficients, of the expansion of the
attice dispersion relation as

Azz)\z,

we will remind some necessary parts from there. For reader’s
convenience, all the technical details of our calculations and
definitions of the special functions are summarized in the
appendices at the end of this paper. Considering the loga-

2 J
A4=)\4+3 )\25,

rithm of the partition function with twisted boundary condi- 9 (92
tions, Eq.(11), we note that it can be transformed as Ag=Ne+15Nahy o +15?\2 2
N—1
m(n+1/2)
INZy/5,0)=M ZO wO(T
N P )\ kg A Ke | k
N1 :zz( ) (_") _p 7
+ z In(1— e 2Moo(m(n+12)N)y - (1) = p;! Pel) Kyl k! gpk
n=0

Here the summation is over all positive numbgks- - -k}
and different positive numbergp,, ... ,p,} such that
pikit+---+pki=p andk=k;+---+k,—1.

The second sum here vanishes in the liMit- when our
lattice turns into infinitely long cylinder of circumferende
Therefore, the first sum gives the logarithm of the partition Substituting Eqs(13) and (15) into Eq. (12) we finally
function with twisted angle 1/2 on that cylinder. Its obtain exact asymptotic expansion of the logarithm of the
asymptotic expansion can be found with the help of thepartition function with twisted boundary conditions in terms
Euler-Maclaurin summation formul4] of Kronecker’s double series
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S(= 6,
InZy/, o(0)= g wo(X)dX+In;

P Agy ReKZZO(iNE)
(2p)! 2p+2 '
(16)

o
‘”521(?)

where [§wo(x)dx=2 G andG=0.915 966 is Catalan’s con-

stant.

After reaching this point, one can easily write down the

exact asymptotic expansion of the free enerdy=
—InZ,, ,y, at the critical point. Plugging Ed16) back in
Eqg. (10) we finally obtain

1 2G
F=—-2MN 5In2+ —
2 T

2[5

+2A/Fln(l+ J2)— 26
2 T

2P Ay REKZZL(INE)
(2p)! 2p+2

17)

Note that Kronecker’s function&>%(ix&) can be ex-

pressed in terms of the ellipti@ function only. Thus, Eq.

(17) can be rewritten in the following form:

F= 2MNfbu,k+2Nfl+fo+2 2 /\/)ZP (18
where
1 2G
foui=—5IN2~ —=-0.9296% .. ., (19)
1 2G
fi=5In(1+y2)- —=-014245..., (20
fo=— Sin2 21
0 2 n27’ (21
3
— ™ f 4 n4
f,= 360(894 99) (22)
7755 44| 18 o 4 n4 S 4
fa=— Zg3gq ™ £ 0504| 05+ 7 05365— 1694 +(65+6%)
31 0,
4 4 o2
1694+0 0 ) 1+4§02”, (23
7'é 0303 816303
- 22 4 ph 16 2Y4
fe=g7001200 (0™ & 0afa| 027+ 8
2950303 6356° a1, 3636
216505 127657 05
— _ _2 16 12 4
5 o2 1+4502 +| 625+ 2 63263
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!

711+ 504059—2
2

3 7 127
88 phpl2_ 7T
4920~ 7920 1286 )

/2

0
+8400§2 +560¢2 2)] (24)

2

4 4

1244
fe= =74 3363212377

812800§4+ 202246365

+8366403°05+ 210 49603205%+ 361 11565 03°
+3239100563°+ 107 31®3%

0/
H1+4e-= )
H 3— 20 16 14

¢ 186 8562 432 (128065°+883265°6,

+19 05665265+ 33 56805 05>+ 38 65505 0°

w10g2 920431 () 0!

20 Z2
+15 330040) 1177194332 16 3789+ 27 720¢ o,

/2

0
+48720¢2 - +2240¢* 2) (128003°+ 313662265

+321660565+ 51760‘2‘ 0,12+ 2555019

9 4 4 '

T &( 05+ 93) 0>

235438866432 7910 15650_2
/2 13

9.
2 +47880° =+ zszog2 2
2 02

+47880¢%—

0! 0" /4
+7980£32 2 + 140—) (25

0, 0, 0,

The free energy per unit length of an infinitely long strip of

width L at criticality has the finite-size scaling forfi0]

A
F=fL+f*+—+...,

3 (26)

wheref is the bulk free energy per unit areaf* is the
surface energyl. ! is a scaling field, and\ is a universal

constant that depends only on the type of boundary condi-

tions[11],

a
A=——

1 periodic boundary conditions,

T
A=—,

3 antiperiodic boundary conditions,

ko
A=——

78" free boundary conditions,
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A=—- " fixed++ boundary conditions, N AN W_s)i . (29)
48 M2 247 960/ A4
A= 2377, fixed + — boundary conditions, Here}rlwe leading finite-width correction to free energy is
48 w124M . From Egs.(26)—(29) one can see that
™ . . * 77
A=, mixed boundary conditions.  (27) L=2N, f=fpu, =0, A=—17, (30
For fixed + + (or +—) boundary conditions the spins are L=M, f=fpuu, f*=f,;, A= o (31)

fixed to the samdor opposité values on two sides of the

strip. The mixed boundary conditions correspond to free

boundary conditions on one side of the strip, and fixedOur results are consistent with the conformal field theory
boundary conditions on the other. Therefore, BK and theprediction for the mixed boundary conditijeee Eq.(27)]
mixed boundary conditions are the same on one side of thalthough the mixed boundary condition and the BK bound-
long strip(fixed to + for all sping and they are different on ary condition are different on one side of the long strip.

another side of the long striffixed to + —+ —--- for BK
boundary conditions and free boundary conditions for the v ASYMPTOTIC EXPANSION OF THE INTERNAL
mixed boundary conditions ENERGY AND THE SPECIFIC HEAT
Using Kronecker’s functions asymptotic form when ] ) N ]
—0 andé— we can obtain from Eq(17) the free energy The internal energy per spin and the specific heat per spin
per unit length of an infinitely long strip of finite width. In can be obtained from the partition functi@n, »,
the limit é—co (i.e., M— o) for fixed 2V from Eq.(17) one B
obtains the free energy expansion for infinitely long cylinder U=— —InZ _ V1+e #d —Inz
of circumference 2/, 2MNAITMANT T O MN dp MRV
(32)
- F T
Ao 2y L
2MN g2 M2V
1/2
o z 2Pt NppBops2
2N (2p)!(2p+2) e M 1+e*r d? 7 d nz 33
= T T Nlman T G NS -
2% 2G 1|2) 77(1 777'(1)3 MNY 2 du? dp
= e ————— n —_—— | —— | ——
™ 2 122N} 1440\2N, Let us first consider the internal energy. At the critical point
317° [ 1 )5 100337’/ 1 \” T=T. (w=0) the internal energy is given by
© 24192 2N 9676800(5/ Y
(28) \/—"‘\/— InZl/Z o(0). (34)

This result coincides with that obtained[it4] with the lead-  One can note thaZ,, o(«) is an even function with respect
ing finite-size correction to free energy m/12(2N) . In to its argument x, which implies immediately that
the limit £—0 (i.e. N—x) for fixed M we obtain the ex- [dZy(p)/dp],—o=0. Thus we find that internal energy
pansion of free energy of infinitely long strip with BK for the finite system is equal to its bulk values without any

boundary condition of the widtiM, finite-size corrections, namely = — 2.
At the critical pointT=T. («=0) the specific heat is
lim —— F =Myt it s———= i given by
Nﬁ)mzN bulk 24(M+1)
c=2- W \/Et 2MIn(1++2
= 2(M+ 1) (2p)!(2p+2) 1 &
2MN Inzl/Z 0(0) (35)

1 2G
+=In(1++2)- —
2 T

2G 1
=M(————In2
T 2

The analysis of th&, (0) is a little more involved. Taking
the second derivative of Eq11) with respect to mass vari-
able u and then considering the limit— 0, we obtain

1 = 1 (77 773)

22 24 3,2 "\ 247 2800
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Zipd0) G ,,(w(n+1/2)) (w(n—i—l/Z))
Zind0) M &, 9o T e Meo| g
"t (w(n+1/2))

[ m(n+ 1/2))

><exp{—2m M wq

m(n+ 1/2))
N

] : (36)

whereM =2(M+1), N=2N, andwy(x) is the second de-

rivative of w ,(x) with respect tou at criticality

PHYSICAL REVIEW E 65 056132

1/2

Y(N+1/2)=InN— 2( 1)p—$. (40)

Using the property of the Beroulli polynomialB;?,

namely,B%’pz+l 0, Eq.(39) can be rewritten as
N1 = B2 1
2 i nN- 2 ———¢(1/2) (42)

Plugging Egs.(38) and (41) back in Eq.(37), We finally
obtain

7T(n+1/2)) 4S

ME (T

InN -+ —In2 Inr— o( 1/2)]

2 O (mPE\P Tk Bll2
w" )_— o s 2p
ol sinx/1+ siréx Zﬂ-gpgl( S ) D(ZD)!
Using Taylor’s theorem, the asymptotic expansion of the (42)

wg(X) can be written in the following form:

s

<2p>' ]

wherex,=—2/3, k,=172/15, etc. The first sum in E¢36)
we may transform as
n+1/2
y 2 wo( ( >)
N
m(n+1/2)\ 4S 1
M Z (—)+7 2 n 12"
(37)

where we have introduced the functidiix) = wj(x) —2/x

Let us now consider the second sum in E36). Note that
function wg(x) can be represented as

wg(x)zéexp{ > E2p sz}’ (43

p=1 (2p)!

where coefficientse,, and «,, are related to each other
through relation between moments and cumuléAppendix

B). Following the same lines as in Sec. lll, the second sum in
Eq. (36) can be written as

N—1 oo
ZME S W ( n+1/2))ex%_2meo(w(n+1/2)”
=0 m=1 N N

=—{R1/zo(§)+¢(1/2)}+ Py

K2§—+7\2§2 2)
—2/(7m—x). This function and all its derivatives are inte- %
grable over the interval (@;). Thus, for the first term in Eq.

0 )
(37) we may use again the Euler-Maclaurin summation for- (o) -2 gz 22p | (W é) K AiNE)
mula, and after a little algebra we obtain 7(£) (2p)!
© 12/ 2¢\ p—1
+1/2 K2pB3 3
ME (”—) +2 52 p(;p ( s) , (44)
S(n * 2g\p-1 where
=—f F(x)dx—2 mE D (W—g)
mJo p=1 | S Ry §)=—21n6,(£)+Ce+2In2

andCg is the Euler constant. The differential operatélg,
(2|0)! T p=1 p NZP

that have appeared here can be expressed via coefficients
(1)2p:82p+)\2p(9/a)\ as

(38)

where [ f(X)dx=2 In2—4 Inr. The second sum in E¢37)

can be written in terms of the digamma functig{x),
N—1

>

n=0 I’H— 1/2

=y(N+1/2)— (1/2). (39

The asymptotic expansion of the digamma functifx) is
given by (see Appendix D

szwz,

Q4=a)4+3 (1)2,

Substituting Eqs(42) and(44) into Eq.(36), we obtain exact
asymptotic expansion @, (0),
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1200) 4S 2572 ¢ 8 5)
Z1/2,0(0):_ lnN+CE+In?_2ln94(§)> Cl_fcl“L; 1—In§ ,
€3] _§_2 é 4
Kzg 7" et 52) 774(5) 2=z Cam Gt
i Qop (77' f) 1/20 C3=—§ZZCZ+§01—3_,
—2m¢ 5 p(2p)! (iNE). p
(45 c =§—4C —EC + 5=
47164 271 3

Plugging Eq.(45) back in Eq.(35) we finally obtain exact

4 2
asymptotic expansion of the specific heat Cs=— £C4+ 6—C2+ écl_ %
8 1
C=— v 1)In2/\f E N)P (46)
Typical values of the constantg—c5 are given in Table |, in
where which the coefficients are consistent with those obtained in
[19].
5/2
Co=—|C +In2——z)———1—ln0 (8), Using Kronecker’s functions asymptotic form wheh
E 4] ¢ 4 —0 and£—o we can obtain from Eqg35) and (45) the
specific heat per unit length of an infinitely long strip of
=E(C +2-2) finite width. In the limit é—o (i.e., M—x) for fixed 2\
£ ' the specific heat expansion for infinitely long cylinder of
circumference 2/ can be written as
2 T 0,
—Zc,—— Aoty (gh+ ot 2 8 8 252 4
C2=C g { mEhs0at (6% 65)| 114 ¢ 02) ] ! C=—In2N+ —| CetIn—— —)
T T T 4
2 % - 2
C3 ECz, _ 477'2p 1QZPB%D 1
p=1  p(2p)! (2N)?P
c-2c.t 77554‘93‘93( 8_ 3 jag 08) 8 8 252 g\ [ 1)
47 23T T a5 T U4V Uy = — — - — | - — —
3 270 2 4 7Tln2./\/+7_r CE+In7T 4> 9(2]\/)
4£3 pb ph '
+w§0403(64_z 4) 1+4§@> 301773( 1\% 294195 1
— 6 _ i —
>4 4 02 10800\ 2N/ 1905120 2V,
+4w3§2(0404_798) 43+5§05 27593297 1|8 48
135 | 7273 874]| 40 6, 145152000 2N] 48
052 A In the limit £—-0 (i.e., N—©) for fixed M we obtain the
+7 52?+§20— , expression for specific heat of infinitely long strip with BK
2 2

boundary condition of width\1,

2 o 8 M+1( 23’2) J2
ar

C5:EC4, M In(M+1)+CE+|n? —-2——

M

2k2p82p( ) 2p-1 1
M(

2 2p—-1
The 1/M expansion of the specific heat has a form p=1 P(2P)! M+1)

8 1 8 3/2
8 1 . c =— 1+—)InM+—C+In———)
c== 1+—)|nM+2—p, (47) m M m\E w4
T M p=0 MP
8C |23’21ﬁw1 4 m\[1)\2
where R = VIR P T L v
e 8|§ 4+w 13+2+w+43w3 1\4
- 37 18\ M) "\37 18" 21600 | M
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TABLE I. Values of the coefficients,—c5 for various values of the ratié= (M + 1)/N. Presented here
are (Co—2)/8 andc;/8(i = 1,2,3) for the convenience of comparison with the results of Janke and Ke&8ha
in which 1jp is corresponding t@ in the present paper.

¢ 1/2 1 2

(cg—2)/8 -0.349694 206 . . . -0.350879732. .. -0.376 674233 . ..
c,/8 0.291838983. .. 0.29065345%8. .. 0.264 858 954 . . .
c,/8 0.180950439 . .. 0.17578434% . .. 0.125896 13B. ..
c3/8 -0.074847143 . .. -0.06968105@ . .. -0.019792842 . ..

5+ 18" 7200

2 0w 43773)

1 5
M) . (49

Note that the specific heat expansion for infinitely long cyl- 200
inder contains only even powers &f " (except, of course, l' PN
11
/

‘-

/—- 1 2
3 2 n(&/2)

1 2

the leading logarithmic terinwhile in the specific heat ex-
pansion for infinitely long strip with BK boundary condition
any integer powers oM ~* can occur. -2 -¥
In Fig. 2 we plot the aspect-ratic) dependence of the ,’
finite-size specific heat correction ter@g,C,,C,, andC, /
for the Ising model with BK boundary condition and those of ) -3 (a)
the torug[15]. We use the logarithmic scales for the horizon-
tal axis. For large enougf(>1), the finite-size properties of
the Ising model with BK boundary condition and those of the 0.5
torus become the same because the boundaries along the S TT——
shorter direction determine the finite-size properties of the 1 / Lo a2
system; for both BK boundary condition and the torus, the -0.5f o~
boundary condition along thgaxis is the periodic one. N s

V. SUMMARY AND DISCUSSION ] (b)

In this paper, we have used the method 2ff] to derive
exact finite-size corrections for the free enefgyand the
specific healC of the critical ferromagnetic Ising model on 0.5
the MX2N square lattice with Brascamp-KunzBK)
boundary condition§9]. We find that the finite-size correc- _1_0’15"“ o5 3 1n(E/2)
tions to the free energy and the specific heat are always in- -D.5 \ PLd
teger powers ofV (M 1) except, of course, the leading ! ~_~
logarithmic term in the specific heat. In the finite-size expan- f
sion of the free energy given by E@.8), only even power of L1,

N1 occur, except for the termV. In the finite-size expan- P N (e)
sion of the specific heat given by Eqel6) and (47), any
integer powers oV~ (M ~1) can occur.

We have compared our results with those under toroidal
boundary conditions. When the rat@2=(M+1)/2N is \
smaller than 1 the behaviors of finite-size correctionsGor 0'5..___,_
are quite different for BK and toroidal boundary conditions; 105 = 1‘; T
when Ing¢/2) is larger than 3, finite-size corrections 1Grin -0.5 /of ) ’
two boundary conditions approach the same value. In the _1
limit N— we obtain the expansion of the free energy for 1
infinitely long strip with BK boundary conditions. Our re- ) (4)
sults are consistent with the conformal field theory prediction -
for the mixed boundary conditions by Cargiy1] although FIG. 2. Aspect-ratio §) dependence of finite-size correction
the definitions of boundary conditions in two cases are difterms for the specific heat of the square lattice Ising model with
ferent on one side of the long strip. It is of interest to knowBrascamp-Kunz boundary conditionsolid lines and toroidal
under what conditions different boundary conditions couldboundary conditiongdashed lines (a) Cq, (b) C4, (c) C,, and(d)
still give the same finite-size corrections. Cs.

1n(£/2)
3
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The results of this paper show that the method of RefConsidering the Kronecker sums with pure imaginary aspect
[20] is quite useful for calculating exact finite-size correc-ratio, 7=i¢, we can further rearrange this expression to get
tions for critical systems. It is of interest to apply this methodsummation only over positivm>1
to calculate exact finite-size corrections for the Ising model
and other free model20] on various lattices with various 12 1/20 2p-1 g-27mé(n+1/2)

o i 4 n+1/2)<P~ .
boundary conditions so that some general features of SUCE (16)=4p 2 2 ( )

finite-size corrections could be found. (A3)
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APPENDIX A: KRONECKER’'S DOUBLE SERIES ex 2 Sy Fok( =1+ E Sy L2k

k=1 (2Kk)! k=1 (2k)!

Kronecker’s double series can be defined 23
are related to each other f25]

K1/2,0(T):_ p! e ™" Z,=F,,
P (— 2m)p mnez - (n+ m)P’
#(0,0) Z,=F,+3F2,
In this form, however, they cannot be directly applied to our Ze=Fe+15F,F 4+ 15F3,

analysis. We need to cast them in a different form. To this

_ 2 2 4
end, let us separate from the double series a subseries with Zg=Fg+28FFe+ 39, + 210F5F,+ 105

m=0,
Kl/Z,O(T):_ p! e*']Tin i Ek E Fkl)il (Fkr ir K!
P (—2mi)P i7o P e k) T R e
p! g~ mn where summation is over all positive numbérs- - -i,} and
N (—2i)P 720 A2 (n+ 7m)P’ different positive numbersk,, ... k;} such that;i;+---

+k i, =k.

Here the first sum gives nothing but Fourier representation of
Bernoulli polynomials APPENDIX C: REDUCTION OF KRONECKER'S DOUBLE

SERIES TO @ FUNCTIONS

—2mina . . .
B _ p! 2 e 7" (A1) Let us consider a Laurent expansion of the Weierstrass
p (—2mi)Pizo  nP ' function
. . 1 1
The second sum can be rearranged with the help of the iden-  ,(z)= — + —
tity 22 (700 | (z—n—mm)? (n+7m)?

| —arin © 1 *
( 2p P <e+ 5P, (ne 1P e, =t 2, (Nl
— 217! neZ (Zz+n n=0 -

The coefficientsa,(7) of the expansion can all be written in

which can easily be derived from the following equation byterms of the ellipticd functions with the help of the recursion

differentiating itp times: relation[26]
e27TIZa' o 1 +oe e—27rina 3
27TiZ(n+a):_ - e
ey n};, D %= =3 (2pT 1) (A8p_p+agdp g+ - - +ay_2ay),
A2 )
(A2) where the first terms of the sequence are
The final result of our resummation of the double Kronecker el 4 a4 4
sum IS a2:E(0203_ 0204+ 0304),
- 6
K120 1) — gLl2_ n+1/2)P-1 @2mimr(n+12) T4, 4 4, o4
V20 r)=Bj p%lo n§=)0( ) 85 =155 05+ 03 (05— 6D (65-+ 62),
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5 transformation of theg functions. In this cased,— 1/\/¢,
=34z, 6,—0 andf#;— 1/\/¢ and the Kronecker’s function can again
be reduced to the Bernoulli polynomials.

3
as=77(a2a3),
11 APPENDIX D: ASYMPTOTIC EXPANSION OF THE
1 DIGAMMA FUNCTION  #(N+ a)
8= 39(2a2+3a3) Let us start with the well known expansion of the di-

gamma functiony(N) [23],

[

1 B 1
Kronecker function&3;(7) are related directly to the coef-  y(x)=Inx— o 22p =Inx— E (—1)"— —
ficientsay(7) Xop=1 4P x P x>
(DY)
0o (2P ap(7)
Kop(m) =~ (—4m2)P (2p—1)° Plugging in the above expansiot=N+«a and expanding

the resulting factors In@ a/N),(1+ a/N) P in powers ofN 1

Kronecker funcnon&(l’p2 %7) can in their turn be related to We obtain
the functlonK (7') by means of simple resummation of o
Kronecker’s double series N+ a)=InN— 2 (—1)P

P
K29 7)= 21 PKOY 7/2) KO 7). PN
w o . k
Thus, Kronecker functionk3>%() can all be expressed in =3 > (—1)keB (prk—1)! «a
terms of the elliptico funcnons only. For practical calcula- p=1 k=0 P kip! NPTk
tions the following identities are also helpful "
aP
26%(27)= 62— 62, =InN-2> (-1)P—
p=1 pr
03(712)=26,63, . I
2 2, 2 2 1)'B (- o "
205(27)= 05+ 05, .=1p=1( ) P(-p)p! N!
05(712)= 65+ 63, -
3(7/2)= 05+ 03 e EI B (I-1)1 o'P
203(27)=206,0,, TN 2 Y B e
02(712)= 65— 03. (D2

From the formulas above we can easily write down the Kro-, "Using the relation between Bernoulli polynomia and
necker functions that have appeared in our asymptotic ©Bernoulli numberss,

pansions,
7 ! T
K120 4 p4 Bi=> B,—————a' P, D3
(1= 35| g ¥a~ 0263, ' ,20 PaU—p)ipl ¢ ©3
K&2% )= (94+ 03) 1g4+ 9493) we finally obtain Eq.(40)
. . o Ba 1
Note that whené—«~ we have limits¢,—0,0,—1,0;—1. J(N+a)=InN— 2 (— 1)p_p — (D4)
The caseé—0 can be obtained by using Jacobi’s imaginary p=1 P NP
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