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Continuum percolation for randomly oriented soft-core prisms
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We study continuum percolation of three-dimensional randomly oriented soft-core polypedray. The
prisms are biaxial or triaxial and range in aspect ratio over six orders of magnitude. Results for prisms are
compared with studies for ellipsoids, rods, ellipses, and polygons and differences are explained using the
concept of the average excluded volurqe,,). For large-shape anisotropies we find close agreement between
prisms and most of the above-mentioned shapes for the critical total average excluded we{wRie, where
n. is the critical number density of objects at the percolation threshold. In the extreme oblate and prolate limits
simulations yieldn (v ~2.3 andn(ve,)~1.3, respectively. Cubes exhibit the lowest-shape anisotropy of
prisms minimizing the importance of randomness in orientation. As a result, the maximum prism value,
N(vex~2.79, is reached for cubes, a value closentgu,,)=2.8 for the most equant shape, a sphere.
Similarly, cubes yield a maximum critical object volume fractiondgf=0.22. ¢, decreases for more prolate
and oblate prisms and reaches a linear relationship with respect to aspect ratio for aspect ratios greater than
about 50. Curves o as a function of aspect ratio for prisms and ellipsoids are offset at low-shape anisotro-
pies but converge in the extreme oblate and prolate limits. The offset appears to be a function of the ratio of the
normalized average excluded volume for ellipsoids over that for priﬁﬁs{,u_e)()e/@_w)p. This ratio is at its
minimum of R=0.758 for spheres and cubes, Whefigs,nerg=0.2896 may be related @ pg=0.22 by
({;C(wba:1—[1—¢C(Sphe,e]R=O£3. With respect to biaxial prisms, triaxial prisms show increased normal-
ized average excluded volumés,,), due to increased shape anisotropies, resulting in reduced valdgs of
We confirm thaB.=n.(ve, =2C, applies to prisms, wherB, andC,, are the average number of bonds per
object and average number of connections per object, respectively.
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[. INTRODUCTION growth and coalescence or degassing of bubbles in liquids
[5]. Similarly, electrical conductivity depends on the amount,
The transport properties of multiphase materials may eigeometry, and interconnectivity of the conducf6r8]. In
ther reflect the deformation of the material as a whole undegeneral, multiple processgg] in the physical, chemical, bio-
applied stresgrheology or the transfer of some medium, logical, and earth sciences appear to show power law, i.e.,
such as electrons or fluids, within the matef@inductivity.  fractal, properties above a certain threshold and may thus be
Both types of transport are fundamentally different and de-described by percolation theory.
pend on the relevant material properties in different ways. Several soft-core(interpenetrating objectscontinuum
However, rheology and conductivity of composite materials(randomly positioned percolation studies have been con-
are both determined in part by the interconnectivity of theirducted in three-dimension&BD) systems. Investigated 3D
individual elementgobjectg that constitute their phases. percolating objects include sphefd9-13, parallel-aligned
Percolation theory describes interconnectivity of objectd6] or randomly oriented 14] ellipsoids, parallel-aligned
in a random multiphase system as a function of the geometrygubes[6], and randomly oriented hemispherically capped
distribution, volume fraction, and orientation of the objects.cylinders [15,16. In some studies, randomly oriented 2D
The structure of the composite material may evolve withellipses[17] and 2D polygong$4] are placed in a 3D system
time due to chemical reactions or temperature changes. f simulate fractures where the third object dimension may
critical threshold may be passed during the structural evolube neglected.
tion and as a result some material properties such as yield In this paper we investigate continuum percolation for
strength or conductivity can change abruptly and may exhibitandomly oriented 3D soft-core prisms. The objective is to
a power-law behavior above, and close to, the so-called pepoint out similarities between prisms and other percolation
colation threshold. systems studied previously, to expand on explanations for
Examples of composite materials that show time-differences using the excluded volume conddi& as intro-
dependent rheology include cemeft3, gels[2], and mag- duced by Balbergt al.[16,19, and to compare the number
mas[3]. Similarly, the conductivity of a medium for fluids of bonds per object to the total average excluded volume
(permeability or electrons may change with time. For ex- [16]. The latter two parameters may serve as “quasi’-
ample the permeability of a material changes with the formainvariants[16,19,2Q. We investigate prisms because in a 3D
tion or closure of pores and fractures in solidg or with  system, results can be compared in the extreme oblate limit
with 2D polygons and 2D ellipses, in the extreme prolate
limit with hemispherically capped cylinders or rods, and for
*Email address: saar@seismo.berkeley.edu; all aspect ratios with ellipsoids. Furthermore, our paper is
http://seismo.berkeley.edigaar motivated by the observation that some media, such as sus-
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pensions containing prismatic particles that can intergrow
(e.g., crystal-melt suspensions, such as some mag&jps
may best be described by interpenetrating 3D polyhedra.

Parameters of interest at the percolation threshold are the
critical number density of prisms., the critical prism vol-
ume fraction¢g., and the critical total average excluded vol-
ume (Vey. The latter parameter is given byV,)
=nc(vey [16], where the excluded volume,, is the vol-
ume around an object in which the center of another such
object cannot be placed without overlgp8]. The angular
brackets,(), denote spatial averaging over all orientation
(and size distributions. We determine numerically the aver-
age excluded volumép.,), for some prism shapes. Finally,
the critical average number of bonds per obj&, is de-
termined numerically and compared with'e,). All param-
eters are investigated for possible contributions to an invari-
ant allowing predictions of percolation thresholds. Because
of the sometimes misleading nomenclature, especially con- F|G. 1. Visualization of asimplifiedsimulation of large biaxial
cerning B;, we review some percolation theory conceptsoblate(a) and(b) and prolate(c) and(d) prisms with aspect ratios
throughout this paper. 1:10 (short-over-long axisand 10:1(long-over-short axis respec-
tively. The critical number densities ang= 1060 anch,= 7025 for
the oblate and prolate prism simulations, respectivelyadtual
simulations object side lengths are about 1/10 or less than the side

In a soft-core system the percolation threshold is reacheténgth of the inner bounding box, increases with object elonga-
when a continuous pathway of overlapping objects existgion up ton,=7x 10° for prolate prisms of aspect ratio 1000:1. The
connecting opposing sides of a bounding box. Our computeinner bounding box is used to determine if a continuous phase, or
code determines the percolation threshold and related pararfackbone(b) and (d) exists (percolation thresho)d Objects are
eters for convex 3D soft-core polyhedra of any shape, Sizeql_aced throughout the inner and outgr bounding box apd within a
and orientation distribution that are randomly positionedf”nge around the outer box so that objects can protrude into the box
(continuum percolation Here we focus on randomly ori- (@ @nd(c). The average number of bonds per objBgtand the
ented biaxial and triaxial soft-core prisms of uniform size. In"umper densityn; are determined using all object overlaps and
soft-core continuum percolation, size distribution of objectSObleCt centers, respectively, that fall within the large bounding box.
does not appear to affeat. [3] and results for parallel-
aligned objects are independent of object sHaS. asng.xs” 7 over more than four orders of magnitude Hf

Overlap of objects is determined analytically. The volumewhere s is the number of objects in a cluster ame-2.2.
fraction of a phase is determined by the number density ofrhus, the cluster-size distribution follows the power-law re-
objectsn that constitute the phase and the object’s unit vol-lationship expected betweemn. ands close to the percola-
umeV by [21] tion threshold 22,23, suggesting that finite-size effects are

minimal.
d=1—exp —nV). (1) For two continuous convex objects the average excluded
volume(ve, can be determined analytically by

Results for¢ using Eq.(1) can be verified through compari-
son with numerical volume fraction calculations using a (Ve =VatVp+(ARy+ApRy) /47, )
space discretization meth¢d]. In order to reduce finite size
effects and the possibility of imposing large-scale structurevhereV is the volumeA the area, an® the mean radius of
we place objects within a large unit bounding box whosecurvature of the objecta and b [24]. The prisms in this
volume typically is 8 to 64 times larger than the volume of study, however, have corners so tRatand thus(v,), can-
an inner bounding box used to determine connection benot be determined analytically using E@). Instead we em-
tween opposing side@ig. 1). The more common approach ploy a method analogous to Garboetial. [14] and de la
is to perform calculations with periodic boundary conditionsTorre et al. [25], and determingv,,) nhumerically by ran-
[4,14,17. In all simulations, the largest object side length isdomly placing two objects of random orientation within a
one tenth or less of the side length of the inner bounding boxbox and testing for overlap. This is repeated typically 10
Figure 1 shows visualizations of simplified simulations fortimes and the ratio of the number of overlaps over the total
randomly oriented biaxial oblate and prolate prisms. number of trials times the volume of the box (ig.,). To

Our computational method is tested by comparing result®btain a mean and a standard error, we repeat the above
with well-established values, such af and (ve, for  procedure ten times. We test this method for the case of
spheres and parallel-aligned obje#sl6], and by visualiza- parallel-aligned objects of volum¥, where in 3D for any
tions of simulations at low.. Moreover, the critical number convex object shapéve,) =8xV. This is also a test of the
density of clusters per unit volume. at percolation scales contact function for objectgl4].

IIl. METHOD
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bonds(2) divided by the total number of objectg), here resulting
in one connection. In our 3D system, randomly oriented objects

FIG. 3. Normalized average excluded vquKn_J:-\e as a func-
have average excluded volumes, rather than excluded areas. 9 4

tion of object aspect ratidand shape anisotropy,) for biaxial
. . i (squarep and triaxial (triangles prisms (this study and rotational
Al_l simulations are repeated ten times to CalCUIat‘f" a mea(biaxial) ellipsoids(circles, from[14]). Solid and dashed lines indi-
and its standard error fap;, nc, andB;. Error bars in all  cate random and parallel orientation, respectively. Error bars for
figures indicate 95% confidence intervals. Biaxial object asprisms indicate 95% confidence intervals. Short-over-medium axis
pect ratios are given as small-over-large and as large-ovegspect ratios for triaxial prisms are 1(@pward-pointing triangle
small axis length for oblate and prolate objects, respectivelyi/s (leftward-pointing trianglg and 1/10(downward-pointing tri-
The shape anisotropy of an object is defined here as the angld. Long-over-medium axis aspect ratios are as indicated by the
ratio of large-over-short axis length for both oblate and pro-figure axis.(ve,) is calculated using@®, andn, in Eq. (4) for ran-

late objects. domly oriented prismgsquares along solid lineSquares along the
dashed line showuv,, for parallel-aligned biaxial prisms, deter-
Il. AVERAGE NUMBER OF BONDS PER OBJECT B, mined using the method described in Sec. Il.

Objects in soft-core continuum percolation can interpenfor exampleB.=1.4 indicates a 140% probability per ob-
etrate each other. The average excluded volgmg) is al-  ject to have a bond, or on average each object has 1.4 bonds,
ways defined for two object?\ and B). When placed within  or 0.70 connections.

a unit volume(v,) describes the probability of each center We determineB. (and thusC.), n., and(ve, numeri-
A and B being within the other object’s excluded volume, cally and can thus confirm Eq$4) and (5) for randomly
each causing an overlap, or bo(fg. 2). oriented prisms. For example, for an aspect ratio of 3:1 we

Therefore, in a unit volumen(ve,) describes the prob- obtain (ve,)=(ve/V=13.1 and(ve)=B./(nV)=13.3.
ability of n object centers being within excluded volumes Hereafter, we use Ed4) to calculate(v,,) from B andn,
each causing an overlap, or bond, for each individual objector randomly oriented prisms. In general, the larger number
or two bonds per connectidifrig. 2). This method of count-  of overlaps in our simulation results in a more rapid and

ing each bond is commonly referred to as counting “bondsgccurate estimate dfvey using Eq.(4) than the method
per object,” which has to be distinguished from the moredescribed in Sec. II.

intuitive average number of connections per object
IV. NORMALIZED AVERAGE EXCLUDED VOLUME (V_ex)
(total number of bonds

= {total number of objecks € The normalized average excluded volume
(Ved=(vedlV ©®

is the factor by which the excluded volume is larger than the
actual volumeV of an object. Figure 3 show&,,) as a
Be=nc(vex) (4) function of aspect ratio for randomly orienteédolid line)
biaxial (squareps and triaxial (triangles prisms and for
and thus26] parallel-aligned biaxial prismgquares along dashed line
As indicated in Sec. Il{ve,) =8 for any parallel-aligned
c :nc<vex> :% ) convex 3D object. In contrast, randomly oriented biaxial
¢ 2 2° prisms exhibit an increase ifv,) with increasing shape

denotedC, at percolation. The critical average number of
bonds per object at percolation is given [d6]

056131-3



MARTIN O. SAAR AND MICHAEL MANGA

anisotropy¢ due to flattening or elongation. The combined
effect of three different axis lengths of randomly oriented
triaxial prisms increaseév,,) further. This dependency of

(vey ON shape anisotropy is expected because randomly ori-
ented objects with eccentric shapes have a higher probability 5 2'5'41
to overlap than objects of more equant shapes. In the extreme™; 2[-
oblate and prolate limits the exponents in the power-law be- <15

tween aspect ratio an@,) are close to+ 1 (Fig. 3) indi-
cating a linear relationship.

Also shown in Fig. 3(circles is the normalized average
excluded volume(ve,), for rotational ellipsoids fron{14]
recalculated from their data and E@1) in [14]. Identical
values are obtained fdp,) Wwhen using data frorfil4] and
employing Isihara’q§24] original equation as formulated by
Nichol et al. [27] and given here in our notation and with

volume normalization as
- _2+3 1+ sin"le 1—62| 1+e€ -
(Vee=2+ 3 1-& 2¢ M=) O

where the eccentricitg?=1—b?/a? is given for prolate and
oblate ellipsoids with long axia and short axis.

V. CRITICAL TOTAL AVERAGE EXCLUDED VOLUME
<VEX>

At the percolation threshold, the product in Ed) is also
called the critical total average excluded volupié]

<Vex>E nc<Uex> =Bc.

Figure 4a) shows(V,,) as a function of prism aspect ratio

8
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FIG. 4. Critical total average excluded volur{é.,) [pane(a)
and critical volume fractiorb. [panel(b) at the percolation thresh-
old versus aspect ratidand shape anisotropy) for biaxial
(squarey and triaxial (triangleg prisms (this paper and rotational

for all biaxial and some triaxial prisms investigated. Balberg(piaxial) ellipsoids(circles, from[14]). Short-over-medium axis as-

[19], Haan and Zwanzi§i12], and Balberget al. [15] show
that in 3D soft-core percolatiofVe,) = 2.8 for spheres and
parallel-aligned objects of any convex shafé,,)=0.7 for
orthogonally aligned(macroscopically isotrop)cwidthless
sticks, and intermediate[Ve,)~1.4 for highly elongated

pect ratios for triaxial prisms are 1(Bpward-pointing trianglg 1/5
(leftward-pointing trianglg 1/10(downward-pointing trianghe and
1/20 (rightward-pointing triangle Long-over-medium axis aspect

ratios are as indicated by the figure axis. Error bars for prisms

indicate 95% confidence intervals.

randomly oriented cylinders with hemispherical caps. Our

results of 1.3(Ve,»<2.79, for randomly oriented biaxial
prisms, fall within Balberg’d19] bounds.

In the extreme oblate biaxial prism limit our simulations
yield

(Ve =2.3 (extreme oblate prism limit (9

rotational ellipsoids values dfV,,) are lower and possibly
equal to values for biaxial prisms.

For an extreme prolate biaxial prism of aspect ratio
1000:1 we observe

(Ve =~1.3 (extreme prolate prism lim)t (10

This result is in close agreement with studies of similar ob-

ject shapesgFig. 4(a] such as 2D polygong4] and 2D el-
lipses[17] placed in a 3D system where 222V,,)<2.30
and(V.,) =2.2, respectivelyour definition of(V,,) is based

[Fig. 4@]. Balberg[19] finds(V,,) ~ 1.4 for extremely elon-
gated randomly oriented cylinders with hemispherical caps.
In general, maximum values ofV.,)=2.8 occur for

on a unit volume bounding box and thus already normalfarallel-aligned objects of any convex shdjeel5], where

ized. The 2D shapes may be viewed as the extreme oblatée most equant shape possible, a sphere, is always aligned.

limit of 3D objects. Garboczet al. [14] report (Ve =3.0
for randomly oriented oblate rotationdiaxial) ellipsoids, a

value higher than ours and above the upper bound of 2.

suggested by Balbefd.9]. This discrepancy has been noted
by Garbocziet al. [14], Husebyet al. [4], and de Dreuzyet

Therefore, it may be expected that we find a maximum of

8 (Ve =~2.79 (cubes (11

for the most equant prism shape, a cliba. 4(a)], where

al. [17]. Results presented in Sec. V also suggest that fothe effect of randomness in orientation is at a minimum.
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It has been arguefil4,19,20,28 that the total average Applying Eq. (6) to the appropriate terms for prisms and

excluded volume(Ve,) is not a true invariant but may be ellipsoids in Eq.(15), then substituting Eq(12), and rear-
viewed as an approximate invariant that is less sensitive teanging yields the critical prism volume fraction
object shapes thag. . Our results confirm this reduced vari- R
ability of (V,,) as a function of shape aspect ratig. 4). $p=1-(1= )" (16)
At the same time(V,,)~2.3 shows good agreement be-
tween extremely oblate prisms, 2D polygons, and 2D e
lipses, where the 2D shapes are the extreme oblate 3D limi
Similarly, (V¢,)=~1.3 applies to extremely prolate prisms,
ellipsoids, and rodshemispherically capped cylinders

In the extreme oblate and prolate limits, the ratio in the ex-
ponentR approaches ongFig. 3) and thus Eq(16) reduces

0 ¢p= ¢e as expected from Fig.(8). For the most equant
shape(cube and spheyehe ratio is at its minimum of

VI. CRITICAL VOLUME FRACTION ¢, R= 10_56: 0.758, (17

Figure 4b showsp as a function of aspect ratio for ran- jndjcating that the normalized average excluded volume for a
domly oriented soft-core biaxialquares and triaxial (tri-  sphere is 75.8% of the one for a cube. The larger excluded
angles prisms. The maximum value . is reached for the  yolume of a cube with respect to a sphere causes percolation
most equant prism shageube with aspect ratio 1:1:1In- 4t a Jower volume fraction for cubes than for spheres. With
creasing shape anisotropies due to flattening or elongatiofhe result from Eq(17) and ¢.=0.2896[10,11,13,1% for
decreasep. for biaxial prisms. The combined effect of flat- spheres Eq(16) yields ¢,=0.23 for cubes, agreeing, to
tening and elongation of triaxial prisms decreaggdurther ithin the uncertainty, with our numerical results df,
[Fig. 4b)]. The larger the shape anisotropy of an object the— 22, The agreement between results from Bd6) and
greater its normalized excluded volume,,) (Fig. 3 and  numerical result§Fig. 4(b)] for the most equant shapes as
probability of overlap. As a result, percolation occurs atwell as for the extreme aspect ratio limits suggest {Nat)
lower number densities;. Lower n; values for different may be invariant for a given aspect ratio as postulated by Eq.
object shapes result in reduced in Eq. (1), where differ-  (13). Thus, the curves in Fig.(d) are expected to converge
ences in object volume have already been accounted for bigr a given aspect ratio, possibly {¥ ey, for prisms which

the volume normalization ifv ). agrees with results for 2D objedtBig. 4(a)].
The circles in Fig. &) are results from Garbocat al. In the extreme oblate and prolate limits, the exponents of
[14] for randomly oriented soft-core rotationddiaxial) el-  the power-law relating aspect rafior shape anisotrop§) to

lipsoids. Curves of¢., as a function of aspect ratio, for ¢, are close ta- 1 [line of slope+ 1 in Fig. 4b)], indicating
ellipsoids and prisms have similar shapes but are offset foa linear relationship. Indeed, becaugg is comparable for
the most equant shapes and converge in the extreme oblatflipsoids and prisms fog>50, in this limit, the linear rela-
and prolate limits. The offset between the curves for prismsionships

and ellipsoids may be a function of the ratio
0.6/¢ (prolate

Pe= 1.27/¢ (oblate (18)

(Vere
R= <_X> (12) hold true for both biaxial prismghis paper and rotational
Pexip ellipsoids[14], where the shape anisotrogyis the ratio of

. . . large-over-small axis for both prolate and oblate objects.
for a given aspect ratio. If we assume that for a given aspect

ratio
VIl. SUMMARY

(Voryo=(Ver) (13) The percolation system of randomly oriented 3D soft-core
exp exie: prisms serves as a link combining characteristics between
other systems such as 3D ellipsoids, 3D cylinders with hemi-
spherical capsrods, 2D polygons, and 2D ellipses. All ob-
jects are randomly oriented and randomly placed in the 3D
Np{Vexp=Ne(Vexle (14 continuum. The 2D shapes are the extreme oblate limit of 3D
objects.
where here and in all following equations the subscripts Percolation parameters such as the critical volume frac-
and p denote parameters for ellipsoids and prisms, respeaion ¢., the critical total average excluded volumi¥,,)
tively. All parameters are defined as before with, n, =nc(vey, OF equivalently the average number of bonds per
(Vexp: (Vexle: ¢p. and e, being critical values at the per- object, B.=n(ve,), can be related in most of the above-
colation threshold. Substituting E€L) into Eq. (14) yields mentioned systems. Here, in the extreme oblate and prolate
limits B.~2.3 and B.~1.3, respectively. The minimum
shape anisotropy of prisms is matched for cubes wikgre
MM(l—(b ):<vex>e|n(1_¢ ). (15) ~ =2.79 reaches the prism maximum, closeBp=2.8 for
Vo P7 Ve ¢ spheres.

then by Eq.(8)
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