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Phase diagram of the spini Blume-Capel model in three dimensions
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We use a thermodynamically self-consistent theory to obtain the phase diagram of the ferromagnétic spin-
Blume-Capel model on the simple cubic lattice. The theory is based on an Ornstein-Zernike approximation
where the direct correlation function is truncated and the dependence upon the thermodynamic variables is
determined by a set of two coupled partial differential equations. Within this framework, we localize the
critical line in zero external field with high accuracy and in good agreement with previous Monte Carlo
analysis. At low temperature, in contrast with Monte Carlo results, we find a first-order transition line ending
at a critical end point whose coordinates are given kyT(/Jc=0.213+0.003A./Jc=0.491+0.001).
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I. INTRODUCTION among the available results. The mean-field treatm&8t
that has been performed for the general Hamiltonian(Eg.
The spinS Blume-Capel model is a generalization of the predicts that the phase diagram differs for integer or half-

Ising model and is defined by the Hamiltonian odd-integer spins. More specifically, f6e= 3, the mean-field
calculation indicates a line of second-order transitions for
H=—3> SiS; +AY, 2~hY s, (1)  any value ofA without the existence of a multicritical point,
) i i but with a line of first-order transitions at low temperature

~ that ends up in an isolated critical end point. The results
wheres;=—S,—S+1, ... Sis the spin variable at each site gptained for the phase diagram of tBe 2 model in two
of a d-dimensional lattice and the first term sums over allgimensions have yielded to successive various conclusions.
nearest-neighbor pairs. The constdnt0 defines the ferro- \whereas renormalization-group calculatiofi,14] sug-
magnetic exchange coupling, is a single spin anisotropy gested the existence of a multicritical point, a recent study
parameter andh is an external field. based on transfer matrix and conformal invariarfds)]

In the case wher&=1, the Hamiltonian(1) defines the  shows that there is no multicritical point in the phase dia-
Blume-Capel modef1] and is a special case of the Blume- gram. In three dimensions, Monte Carlo simulatiph8] for
Emery-Griffiths  (BEG) Hamiltonian [2], Hgec=H  the simple cubic lattice suggest that the first-order transition
—K=jys’s?, which represents a variety of interesting line reaches the critical line, implying the existence of a mul-
physical systems, in particulafHe-*He mixtures. TheS ticritical point. Bethe-Peierl$17] and two-spin-cluster ap-
=1 model has played an important role in the developmenproximations[18] have been performed but neither of these
of tricritical phenomen#3] and has been studied by a variety studies explores the low-temperature region. On the other
of methods such as the original mean-field treatrrfdit  hand, a recent study obtained in the framework of two-spin-
series expansion$4], renormalization-group calculations cluster approximation[19] that investigates the low-
[5.6], cluster-variation methof7], and Monte Carlo simula- temperature region indicates a phase diagram in qualitative
tions [8]. The phase diagram of the Blume-Capel model isagreement with the mean-field prediction. However, this ap-
now well known and has been determined precisely for diproach, as well as the mean-field analysis, overestimates the
mensionsd=2. It presents a line of second-order transitionscritical temperatures and does not locate the critical line with
(the so-called\ line) that separates the ferromagnetic or-the same accuracy as the Monte Carlo predictions. In this
dered phase from the paramagnetic disordered phase. Thentext, one still needs an accurate and correct description of
transition line changes from second-order to first-order tranthe phase diagram in three dimensions. The purpose of this
sitions at a tricritical point. Recently, two nonperturbative paper is to study th&=3 Blume-Capel model using a ther-
approaches, one based on a thermodynamically selinodynamically self-consistent approach and to give a clear
consistent theord] and the other one based on the momen-—ut answer concerning the existence and the location of a
tum renormalization-group techniq@i0], have permitted to critical end point. We believe that the phase diagram ob-
locate the coexistence curve in three dimensions with higltained in this study is the most precise in the present litera-
accuracy, as well as the whole structure of the phase diagratare.
including the “wing” boundaries in nonzero external field  The approach used in this study is a self-consistent
[9]. Ornstein-Zernike approximatiof8COZA) that has been in-

In the case wher&=3, the model is a four-state spin troduced originally by Hoye and Stdl20] as a method for
model. Such models with additional terms in the Hamil-obtaining the thermodynamic and structural properties of
tonian have been initially introduced to give a qualitativesimple fluids. This theory has then been developed and
description of phase transitions observed in the compoundolved to study the lattice-gas model with nearest-neighbor
DyVO, [11] and also to describe ternary mixturgl?]. In  attractive interactiong21] and more recently the Blume-
contrast to the cas&=1, the phase diagram of the=3 Capel mode[9]. Both studies show that this approach gives
Blume-Capel is not well known and there are contradictionsa very accurate description of the structural and thermody-
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namic quantities even in the near vicinity of a critical point, tions C(r) and G(r) depend only on the vectar that con-
yielding effective exponents close to the exact values. Theects the two sites. In general, the direct correlation function
transition temperature for second-order as well as first-ordec(r) is expected to remain of finite range, even at the critical
transition (see also the study of the Potts mo@i22]) are  point[23]. Following the OZ approximation, we assume here
obtained with high accuracy compared to the best availablghatC(r) has exactly the range of the exchange interaction in
estimates. This approach is based on the assumption that thg Hamiltonian Eq1). This assumption implies th&(r) is

direct correlation functiorC(r) that is related to the two- truncated at nearest-neighb@N) separation and we thus
particle distribution functiorG(r) via the Ornstein-Zernike rite

equation has always the same range as the pair potential. In

the case of the lattice gas, the dependence on the thermody- C(r)=co(J,A,m) S ot cl(j,zym)gr’e (6)
namic variables givingC(r) uniquely is determined first

from a partial differential equation, which ensures that thewheree denotes a vector from the origin to one of its Ngy,
same free energy is obtained from fluctuation theory or thendc, are two arbitrary functions that depend on the ther-
so-called compressibility route and from integration of themodynamic variablesi=8J, A=8A, and m. As is well
internal energy with respect to the inverse temperature, anghown in liquid-state theory23], when one assumes some
second from the requirement of single site occupancy. In th@pproximate but explicit dependence of the direct correlation
case of the Blume-Capel mod&(r) is obtained as the so- fynction upon the thermodynamic variables, as in the random
lution of two COUpIed pal’tial differential equations that en- phase approximation or in the mean_spherica| approxima_
sure the thermodynamical self-consistency. The paper is ofion, the theory is in general thermodynamically inconsistent.
ganized as follows. In Sec. Il, we present the theory for than our self-consistent approach, the assumption(Bjjs the

S=3 Blume-Capel model. In Sec. Ill, we give the phasegnly approximation of the theory and the two functions
diggram !n zero external field and we compare our resultgndc, are determined by imposing the thermodynamic con-
with previous analyses. sistency, as explained below.
One consequence of the assumption Hj.is that the
Il. THEORY two-point correlation function is given by

Our theory is based on an Ornstein-Zernike approxima- 1
tion for the direct correlation functio@;; , whereC;; is re- G(r)= C—P(r,z), )
lated to the connected pair correlation functiGy) =(S;S;) 0

—(S)(S;) via the Ornstein-Zernik¢OZ) equations where

_ o - —ik-r
2 GiCiy=2j., @ 1 f e ®

P(r,z)= dk———=——
( 2m)d) -7 1-z\(k)
where §;; is the Kronecker symbol. The OZ equation is a

consequence of the Legendre transform is the lattice Green’s function. In the Eqg) and (8), we
have introduced the characteristic function of the lattice

AMK)=(1/c)=£* ¢ and we have substituted the unknown
GT.A{m}p=ATA{hDH+> him, (3 functionc, with the new one= — (¢, /c)c, wherec is the
' coordination number. The expression EQ.of G(r) implies

that defines the Gibbs free energyfrom the free energyr  that the exponeny giving the asymptotic behavior &(r)

= —kgT InTrexgd —H/kgT]. The free energyFis a function &t the critical point[G(r)~C/r?"2*7] is equal to zero.
of the inverse temperatu@=1/kgT, the single spin anisot- However, an important feature of the SCOZA is that the

ropy parameted and the site dependent magnetic fiéld other exponents do not take necessarily classical or spherical
whereas the Gibbs free energyis a function of8, A and values. In particular, the spontaneous magnetization for the

- : Ising model is accurately described with the expongnt
the local magnetizatiom; . The connected and direct corre- ™ "
lation functions are obtained as the second derivative® of =0.35[24] (see also Ref49] and[21] for the critical prop-

. . i erties of SCOZA.
andg with respect to the local field and local magnetization In a previous work, the SCOZA equations have been de-

rived for the Blume-Capel modé¢B]. In that case, thermo-

g
Gij=— f_ji (4)  dynamic consistency is encoded in two partial differential
dhioh; equations. These two equatidi&ys. (168 and(16b) of that
reference are in fact valid for the most general Hamiltonian
%G Eq. (1). To derive these equations, one considers the change
Cij= gm;om;’ 5 T the fiee energy associated with infinitesimal changek in
A, andh:

where 7= BF, G= G, andh;=gh;. In the case of a uni-

form magnetic fieldh;=h (or equivalently form,=m), the §F=—583 SV + A 2\ sk S 9
system is translationally invariant and the correlation func- <|EJ> (SS) EI (S Z SO
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FIG. 2. Detail of the spinodal surface in the region G=28

FIG. 1. SCOZA spinodal surface in th&{r-m) space. =0.

In terms of the pair-correlation function, the corresponding = 1 (x=1)(3x*+x(3+u)+3) 15
change in the Gibbs free energy is given by 2 (x+1)(x%+x(u—1)+1)

SGIN=— 3[G(r=e)+m?]oN+[G(r=0)+m?]5A+hom,  wherex=e" andu=4(1—7)2/72, one obtains

(10)
. 9%G
whereN is the number of lattice sites and=cJ. Co=C(k=0)= o =(kgTx™ )
For the theory to be thermodynamically consistent, the

Gibbs potential; must have the same value when integrating B (1+X)[x2+x(u—1)+1]? 16
with respect to\, A, or m. This thermodynamic consistency B X[Ux*+ 4ux3+x2(u2+9) + dux+u]’ (16

is embodied in two independent Maxwell relations between
the partial derivatives of with respect to the control vari- The boundary conditiom= 3 corresponds also to a trivial
ables(see[9] for a detailed derivation of these equatiins ~ system where in that case all the spins are inSke state.
For m=2, one hasz=0, and G(r=0)=3—-m?=P(2)/c,
aC(k=0) 1 9?2 ) implies thatP(z)/cy=0 (or cp— ).
o 3 R[G(f:e)ﬂ“ 1 (1Y Finally, one has to determine the functionsind c, for
7=1 and7=0. Insertingr=1 in Eq. (14) leads to the fact
that P(z)/co=1f(m) is a function ofm independent of\.

aG(rZO):_}aG(rze). 12 |

I\ 2 5

Using the expression of the correlation functions, E@S.
and(7), one obtains the two SCOZA equations

d L1 1 6% P(z)—1 13
ﬁco( z)= éﬁ?' (13
=2
l_O
d P(z)_l d P(z2)—1 N

N Co =D zc, | (14)

where 7=(1+3%e*)" ! varies from 0 to 1 andP(2)
=P(z,r=0). Finally, for the theory to be completely defined,
one has to determine the appropriate boundary conditions for
the solution to the Eqg13) and(14).

The full range of variation of the inverse temperatires
from 0 to « and that of the magnetizatiom goes from 0 1 2 3 4
—3 to 3 (because of the symmetng— —m, one can restrict AT
the domain tan=0). A\ =0 corresponds to the initial condi- ¢
tion provided by the exact solution of the noninteracting FiG. 3. Critical line in zero external field. The SCOZA results

model in an external field. For this system, the correlatiorare compared those obtained with the mean-field approximation

functions are nonzero only at=0 that implies thatz=0. (MFA) [13], the cluster expansion meth¢@EM) [19] and Monte
From the spontaneous magnetization Carlo simulation(MC) [16].
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FIG. 4. Spontaneous magnetizatitdashed linesand spinodal curve§ull lines) vs temperature for=0.20 (a), 7=0.17 (b), and 7

=0.16(c).

This functionf(m) may be determined for the system with-

out interaction,A=0. By inserting7=1 in Eq. (16), one
obtainsf(m)=$—m?. The equation for the remaining vari-
ablez(\,m) becomes

d B 1 &2 (9
_(1_Z)P(Z)__1_§ﬁ Z

2)P(z)—1
9 m2 N

zP(z)

7

which is nothing else that the SCOZA equation for the IsingEq. (18) on the domain; <m=3

model where the spins assume the values. Indeed, the
boundary conditionr=1 corresponds to the limiA — —o
where in that case all the stat8s- + 3 are suppressed.

P(z)—1
2 el ™ 2P

(18

where f(m)=21-m? for 0O=sm=<3% and f(m)=(m-2%)(3
—m) for m=3. 7=0 corresponds to the limiA— +=. In
this limit and for a finite external fielth, the statesS= + 2
are suppressed and the solution of EB) on the domain
0=m=1 corresponds to the SCOZA equation for tBe
=+ Ising model. On the other hand, for an infinite external
field, the statesS=+2 may be populated. The solution of
corresponds to this limit
h— +o. In particular, it gives the location of the critical
point marking the end of the wing critical linghis critical
wing is the critical line that separates the two phases where

One obtains in a similar way the boundary condition foreither theS= 3 or theS=3 spin states are populated

7=0. In that case, the variabi\,m) is determined by the
solution of the equation

Thus, Eqs(13) and(14) with the above boundary condi-
tions define the SCOZA theory for the=3 Blume-Capel
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model. We have performed the numerical resolution of these | ' | T
equations,(13) and (14), with an explicit algorithm where

the partial derivatives are approximated by finite difference
representations. From the initial condition=0, the finite 4
representation of Eqg14) and (15) gives the functiong,

andz at the next step in the direction,\ = 6\. Oncec, and

zare known at the inverse temperatarghe same procedure

is repeated to obtaig, and z at the new stepr+ S\. To
ensure the numerical stability of the explicit scherdk, is
gradually decreased as the spinodal is approached, the spin- nd
odal being defined by the divergence of the susceptibility — SCOZA (27 order)
kgTx. The shape and the localization of the spinodal is not —- SCOZA (1™'order)
known a priori but given by the numerical resolution and it 2
defines the lower bound of the domain of definition of the

T/
w

Q
m

k

® MC (2™order)

Egs.(13) and(14). During the numerical procedure, we in- O MG (1™order)
tegrate the Gibbs free energy &h
1_ —
~ ~ | ! | '
g - J’x 1 g ~ 2 3
—(NAmy=| —Z[G(r=e)+m?]ér+ —(A=0,A,m),
NV Bm= | = S[G(r=e+m]on+ S ) A

(19
FIG. 5. Phase diagram in the neighborhood of the critical end
where G(r=e)=(1-m?[P(z)—1/zP(z)] and "g'()\ point. Monte CarldMC) results suggest a first-order transition line

=O,Z,m) is the Gibbs free energy for the system without ree_lching the _critical line. The SCOZA results give a critical end
interaction. In the following section, we present the results”®'™ (small circlg.
obtained for the phase diagram in zero external fiekd0.
In the disordered phase, the zero field solution is given byimulations(MC) [16]. This comparison shows how the es-
the Gibbs free energy at=0 whereas in the ordered phase, timates of the critical temperature decrease when the effect
the zero field solution and in particular the spontaneousf fluctuations is taken into account. The CEM gives a sig-
magnetization is obtained from the conditiom(T,m)  nificant correction to the mean-field prediction and SCOZA
=(3G)/(dm)=0. brings additional corrections yielding a very good agreement
with the Monte Carlo predictions.
We have calculated the spontaneous magnetization curves
for several values of. In Fig. 4, the spinodal and the spon-
We have performed the numerical resolution for thetaneous magnetization curves are represented in the plane
simple cubic lattice using the corresponding integral expresT-m for three values ofr, 7=0.20, 7=0.17, andr=0.16.
sion of the lattice Green’s functidr25]. We observe that for=0.20, the spontaneous magnetization
The global shape of the spinodal in spadend, 7) and the  decreases continuously as the temperature decreases, with a
details for small values of are depicted in Figs. 1 and 2, curve located well above the spinodal curve. Fer0.17, the
respectively. For a fixed value of the spinodal in th@-m  spontaneous magnetization curve is still continuous, but be-
plane presents a maximum w@=0. This maximum corre- comes close to the spinodal curve for a nonzero value of the
sponds to a critical point in zero external field. For smallmagnetization. For=0.16, the spontaneous magnetization
value of r, the spinodal in thd-m plane presents three dis- curve presents a discontinuity at the temperatkg@&/Jc
tinct maxima. The two symmetric maxima with respect to the=~0.21. This discontinuity corresponds to the first-order tran-
planem=0 correspond to the two critical points in external sition at low temperature. Between the two values0.16
field (points of the two symmetrical critical wings and r=0.17, there is a critical value, for which the spon-
The critical line in zero external field is represented in Figtaneous magnetization is tangent to the spinodal at a nonzero
3 in the T-A plane. We obtain the critical temperatures for value ofm. This valuer, corresponds to the critical value of
the S==2 (r=1) and for theS=+3 (7=0) Ising model, the coordinates of the critical end point marking the end of

9J.=0.884 89 andi.=0.884 78, respectively. These values the fir_st-order transitip_n line. To c_)btain more precisely the
are in perfect agreement with that obtained in R21] and cpqr_dmates of thE_CrltlcaI end point, we decrease the mesh
they are within 0.2% of the best estimate for the Ising modeflivision of the grid in the numerical procedure. We thus have
(see[21] and references therginVe believe that the SCOZA found that the coordinates of the critical end point are
predictions for the critical temperatures in the whole range oKeTc/J¢=0.2133), A¢/Jc=0.49K1), and 7,=0.1615).

the values of the crystal field are obtained with the same This value ofA./Jc is close to the CEM valueX;="/Jc
accuracy as the one obtained for the two limits0 and~ =0.49225) whereas the mean-field value is slightly lower
—1. We have reported on the Fig 3 the results obtained witlfA¢ /Jc=0.486). These two methods however overesti-
the mean-field approximatioMFA) [13], with a cluster ex- mate significantly the critical temperature wikg Ty */Jc
pansion methodCEM) [19] and results from Monte Carlo =0.3 andkgTSEM/Jc=0.2327.

IIl. RESULTS AND DISCUSSION
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Finally, the critical line and the first-order transition line dynamically self-consistent theory. This approach allows us
in the neighborhood of the critical end point are depicted into locate first-order and second-order transitions with high
Fig. 5 in theT-A plane. We have reported on this figure the accuracy. The critical line as well as the first-order transition
MC results. The SCOZA predictions give a critical end pointline compared very well with the Monte Carlo predictions.
very close to but below the critical line. The phase diagram iBesides, different from the Monte Carlo results, the SCOZA
thus in qualitative agreement with the mean-field predictionsis accurate enough to obtain the coordinates of the critical
The agreement between the SCOZA and the simulations ignd point that terminates the first-order transition line and
very good for the whole phase diagram including the criticakt is jocated just below the critical line. We thus obtain a
line as well as the first-order one. However, the simulationg,ase diagram in qualitative agreement with the mean-field
indicate a point of first-order transition that suggests that th%rediction. This work as well as previous studies show that
first-order transition line reaches the critical one. Accordingio scozA is a powerful tool to study three dimensional

to the accuracy of th_e SCOZA to locate first-order as .weII a%pin model and that the predictions for nonuniversal quanti-
second—ordertransmon, we bglleve that the SCOZA gives th'ﬁes such as the critical temperatures can be considered as
correct phase diagram. The first-order transition line ends UByithful estimates.

in an isolated critical point and there is no multicritical point

in the phase diagram of the three-dimensio®al3 Blume-
Capel model.

IV. CONCLUSION
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