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Dynamical phase transition of a one-dimensional kinetic Ising model with boundaries
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The Glauber model on a one-dimensional lattice with boundéfteshe ferromagnetic and antiferromag-
netic casesis considered. The large-time behavior of the one-point function is studied. It is shown that at any
temperature, the system shows a dynamical phase transition. The dynamical phase transition is controlled by
the rate of spin flip at the boundaries, and is a discontinuous change of the derivative of the relaxation time
towards the stationary configuration.
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[. INTRODUCTION magnetization at the end points, with respect to the reaction
rates. The dynamic phase transition is controlled by the spin
The principles of equilibrium statistical mechanics areflip rates of the particles at the end points, and is a discon-

well established. But thermal equilibrium is a special casetinuous change of the relaxation time towards the stationary

and little is known about the properties of systems not inconfiguration. Other generalizations of the Glauber model

equilibrium, for example, about the relaxation towards theConsist of, for example, alternating isotopic chains and alter-

stationary state. Some interesting problems in nonequilib[]ating bound chaingsee Ref.[25], for exampl¢. People

. e - . ve also considered phase transitions induced by boundary
rium systems are nonequilibrium phase transitions descr'beggnditions(see Refs[26—28, for example.

by phenomenological rate equations, and the way the system o "gopeme of the paper is as follows. In Sec. Il, the
relaxes to its steady state. As mean-ﬁelq techmques generally, e js introduced, the rates are determined using the de-
do not give correct results for low-dimensional systems,aijeq palance, and the steady state configuration of the mag-
people are motivated to study exactly solvable stochastiqetization is obtained. In Sec. Ill, the dynamical phase tran-
models in low dimensions. Moreover, solving one-sition of the system is investigated, and it is shown that it

dimensional systems should, in principle, be easier. ExaGjoes show a dynamical phase transition at any temperature.
results for some models on a one-dimensional lattice have

been obtained, for example, in Ref$—14]. Different meth- II. KINETIC ISING MODEL ON A ONE-DIMENSIONAL
ods have been used to study these models, including analyti- LATTICE WITH BOUNDARIES
cal and asymptotic methods, mean-field methods, and large- ) )
scale numerical methods. The model being addressed is the Glauber model on a

The Glauber dynamics was originally proposed to Study)ne-dimensi.onal Ia.ttice' with boundaries. Ir_l the 'Glau'ber
the relaxation of the Ising model near equilibrium states. Ith0del, the interaction is between three neighboring sites.
was also shown that there is a relation between the kinetiePin flip brings the system into equilibrium with a heat bath
Ising model at zero temperature and the diffusion annihiladt temperatureT. A spin is flipped with a rateu=1
tion model in one dimension. There is an equivalence be= fanh(28J) whenever the spins of both of its neighboring
tween domain walls in the Ising model and particles in theSites are in the same direction and is flipped with a hate
diffusion annihilation model. Kinetic generalizations of the =1+ tanh(28J) whenever the spins of both of its neighbor-
Ising model, for example, the Glauber model or the Ka-iNg sites are in the opposite directighlere 8= 1/(kgT).] At
wasaki model, are phenomenological models and have bedlpmain boundaries, spins are flipped with unit réiy the
studied extensively15—20. Combination of the Glauber rate of any change, it is of course meant the probability of
and the Kawasaki dynamics has also been Consideré@at Change during the inﬁnitesimal t|me In'[el"di|dIVIded
[21-23. by dt.) So the interactions can be written as

In Ref. [24], an asymmetric generalization of the zero- ;
temperature Glauber model on a lattice with boundaries was TTT—=TITand [ [l—~1T1 withrateu,
introduced. It was shown there that, in the thermodynamic TItT—=11Tand | T/ —|l] withrate\,
limit, when the lattice becomes infinite, the system shows
two kinds of phase transitions. One of these is a staticphase 17/ =171]] and| | T=]11 withratel.
transition, the other a dynamic one. The static phase transi- i i , ) )
tion is controlled by the reaction rates, and is a discontinuous CONSider a lattice with. sites and the Glauber dynamics

change of the behavior of the derivative of the stationan?S the interaction. The spin of the first site may flip with the
following rates:

T1l—1] withrategq,
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L T— 11 withrategs, This means that thmertia of the first spin against spin flip
does not depend on the second spin. A similar expression can
11— 7] withrateg,, be written for the rate of the spin flip of the last site.

For the infinite lattice, the Glauber model has a particle
and the spin of the last site may flip with the following rates: reaction-diffusion interpretation. If the spins of the neighbor-
ing sites are differentat a domain wa)l one may consider
the link between those sites as a particle. When the spins of
the neighboring sites are the sarre® domain wal, one
may consider the link between the sites as a vacancy. Then
the Glauber model turns into a reaction-diffusion model:

1 T— 1] withrateh,
T1—711] withrateh,,

T1l—11 withratehs,

Ll— 11 withrateh,. ®0® - OO withrate I+tanh(25J),

It is known that the time evolution equations for the one- OO~ @@ withrate 1-tani(25J),

point functions in the bulk are expressed in terms of only the
one-point functiong15]. To make this true for the bound-
aries as well, the following relations should hold:

@ O=0@ withratel,

where a particl6€a vacancy is denoted by® (O). For the
O =0t Glauber model with boundaries, to have a consistent particle
917 94=9270s, .
model, one has to impose

h;+h,=h,+hs. 1
s @ 91=09s3, 02=0a,
One may give a physical meaning to the parametgrs
andh;, by demanding the detailed balance to hold. Consider hi=hs, hy=h,. ®)

the energye of the system to be Then, the injection and extraction of particles at the first site

L-1 are
E=—|Bys;+B s +J S;S; , 2 .
1$1+Bus I D sisi 2 © O withrateg,—gs,
then, the detailed balance demands O— @ with rateg,=g,, (9)
R(S1S,—51S,)exp{B(B1S1 + IS8+ - - )} and the injection and extraction of particles at the last site are
=R(s1S2—515)exp{B(B1s; +IsiS,+ - - )}, ® O withrateh,=hs,
() :
O— @ withrateh,=h,. (10
whereR(s;:S,—$S;Sy) is the rate of the spin flip of the first . N
site froms, to s; . Equation(3) shows that Now, consider the general case where only the conditions

(1), that guarantee the closure of the time evolution, are sat-
R($15,—8182) =f(s;)exp{— Bsy(B1+Js,)}.  (4)  isfied. We have

The exponential term in the above equation is at most linear(s,)= —2(s,) + ((Si. 1) +(S_1))tanh(2BJ), 1<k<L,

in terms ofs;. So,

R(815y—518,)=T(s,)[ 1— Sytanh(By+ Js,) 1. (5 (51)= (92 093)(S1) + (91~ 92)(S2) + (95~ Gn),

Then, (s1)= —<h2+h3><sL>+<h1—h2><stl>+<h3—m(m
9:=f(~1)[1-tanhB(B;~J)], The steady-state solution to Ed.1) is
go=f(1)[1-tanhB(B;+J)], (s0=DyZ5+ D,z 1, (12
gs=f(1)[1+tanhB(B;+J)], where
ga=f(—1)[1+tanhB(B;—J)]. 6) 2,=2, *=tank{ BJ). (13)

The condition of exact solvabilityl) (the closure of time 't can be shown that in the thermodynamic limit-¢-«),

evolution equation of one-point functionkeads to 91— g
1 3
D1:

F(1)=F(—1). @) (01— 92)27—(92+93)2;’
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h;—hs 7' "H2-g,-9gs+740,—g,—tanh(28J)] -z 'tanh(28J)},
D= h) 2=y ho)zs
1 2 1 2 3 1 X{Z—h2—h3+2[h1—h2—tanf{2ﬁJ)]
D, and D, are continuous functions of the rates. So the  —Z ‘tanH2BJ)},—2""H42-g,—gs+2z 91— 9

behavior of(sy) near the ends of the lattice varies continu- B _
ously with rates, and there is no static phase transition. tanf(2/5J)] - ztanh(25J)},
x{2—h,—hgz+z 1 h;—h,—tank28J)]
I1l. THE DYNAMICAL PHASE TRANSITION — ztani(28)} = 0. (21)
OF THE SYSTEM

The average maanetization per sibét) is Obviously, z;=*1 satisfies Eq(21). But these solutions
g g per sit) lead to

L

1
m(t)= 2 (sd(t). (14

k=1

X =2a+bk). (22

And this form forx, generally does not satisfy the boundary

In the thermodynamic limit, the boundary terms are negli-conditions atk=1L. Equation(21) can be written in the

gible, and form
q G(z2)=F(2)—F(z Y =0, (23
&m(t)=2[tan}‘(2,[3J)— 1]m(t). (15 where
Then, similar to the case of the Glauber model on an infinite ~ F(2)=2'"{2-02—03+2[9: - g, tanh(2J)]
IattiC(_a,. the average m_agnetization does not show any p_hgse —z Yanh(283)} X{2—h,—hs+2[h;—h,
transition. But, as it will be shown, the system does exhibit
dynamical phase transition. —tanh(28J)]—z Ytanh(23J)}. (24)

The homogeneous part of E.1) can be written as ,
For a phase solution to E1), z=€e'?, we have

-\l
(s =hi(s)- (16) E=—2+2 tanf{(233)cos®. (25)
The eigenvalues and eigenvectors of the operatsatisfy In the thermodynamic limitl{— o), in any neighborhood of
z=1 there exists a phase solution to E2{l). The supermum
E X= — 2%+ tanh(2B8J) (X 1+ Xc-1), k#1L, of the eigenvalues determines the relaxation time toward the
stationary average-density profile. So, if all of the solutions
EX;=— (921 93)X1+ (91— 92)X2, are phase,
=[—-2+2tank2p)] % 26
Ex==(othyx +(M—hx 1, (17 ! 280)] (20

) _ Suppose now that there exist solutions that are not phases.
where the eigenvalue and the eigenvector have been denote@nsider|z|>1. Then forL—, Eq. (21) becomes

by E andx, respectively. The solution to these is
{2—9,—0gs+2 '[g1—g.—tanh(28J)] - ztanh28)}

X=azi+ bz, (18) -1
where —ztanh28J)}=0. (27
—(E+g,+9s)(azy+bz)+(9:—9,)(az+bz) =0, In general, equation complex solutions. First assume that the
solutions are real. Changing the rates, one may arrive at a
—(E+h,+hy)(aZ+ bzg) +(hy—h,)(azt 1+ bzlé—l)zo situation where the above equation has a real solution greater
1 1 3

(19) than 1. The transition occurs at the point where this equation
has a solution equal to 1. When the system has passed this
) . point, the relaxation time becomes
andz;’s satisfy
r=[—2+2(A+A " Htanh28I)] 1, 28
E=—2+tanh(2BJ)(z+z1). (20 [ ( Jtant(283)] 8
whereA is that solution to Eq(27), which is greater than 1.
So, z;z,=1. Using this and Eq(20), one can eliminatd, [Here we have assumel>0, the ferromagnetic case. For
and arrive at the antiferromagnetic cas@<0; A is that solution to
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Eq. (27) which is less than-1.] Puttingz=1 in Eq.(27), at  (This is for the ferromagnetic casd>0.) Putting z=X
least one of the following equations should hold: +iY, it is seen that the boundary of the two phases is

[ X
Y=*+(X-1) ﬂ . (32

r;l’éwe roots of the first bracket of ER7) satisfy

2[1-tanh(2B8J)]—9,—94=0,

2[1—tani(283)]—h,—h,=0. (29)

If the temperature is zero, EqR9), for example, gives,
+0,=0. Remembering that these parameters are rates, o0
arrives atg,=g,=0. So, at zero temperature, the solution
cannot passz=1. But at any other temperature, 1
—tanh(28J) is positive, and changing the parametegs, (2—g,—g3)X+0;—g,—tanh(28J) — (X?>—Y?)tanh 2 8J)
+g,4 can be made more than or less thantanh(283J).

If one uses the expressio®) and (7) for g;’s, then Eq. =0,
(29) becomes

[2—g,—g3—2Xtanh2BJ)]Y=0. (33

— 2 tank2BJ) + f[tanhB(J—B;) + tanhB(J+B;)]=0.

(30 The rootY =0 of the second equation corresponds to the real

solutions previously considered. There exists, however, an-

Puttingf_=1, theinertia of the first spin against the spin flip other solution. Using this solution, and E&2), one arrives

is the same as those of the bulk spins. In this case, howev
Eq. (30) has no solution. That is, there is no phase transition.
In fact, Eq.(30) has no solution fof <1. Forf>1, however,

it may have a solution.

It is seen that the parametegs andg, (or h, andh,) are [4 tanf28J) =2+ g2+ 95][91— 92— tani(2J) ]
control parameters of the dynamical phase transition. The +(2—g,—gs)tan283)=0. (34)
parametergy; andgs (or h; andhs) do not have any con-
tribution in the dynamical phase transition. The reggsand
g3 are the rates of the disappearance of the domain Wa”%pecifically,
But we note that the eigenvector corresponding#al is a
configuration where all the spins are the same-(z=1.) It
is this configuration that corresponds to the largest value of
E, which determines the relaxation time, and in this configu- (91— 92)(92193) —2(92+94) =0, (395
ration, there is no domain wall. The disappearance rate of
this configuration determines the relaxation time towards the
steady state, ang, andgs (or h; andhg) are irrelevant to  where Eq(1) has been used. It is clear that this boundary can
this rate. In the particle-vacancy picture, this means that thée passedas an example, one can consider the special case
rate of change of vacancy to particle is important, since th€:1=9s andg,=gd,), so that the system does have a dynami-
configuration corresponding to the maximum valueEols ~ cal phase transition even at zero temperature.
the empty lattice. For the antiferromagnetic casd<€0), equations corre-

This argument is true fod>0, the ferromagnetic case. If sponding to(34) and(35) are
J<0, then the relaxation time is determined by the value of
E at the smallest possible value of(which is less than

at zero temperature we have

—1), and the transition occurs as- —1 becomes a solution
' —g,—tanh(2BJ)][2—0,— 03+ 4 tank23J
to Eq. (27). It is not difficult to see that in this casp + g3 (079, M2p9)]12-9,~9s 249)]
(or hy+h3) determines the phase transition. The reasoning is —(2—g,—g3)tanh(28J)=0, (36)

the same as above, except that here the configuration deter-
mining the relaxation time is that correspondingzte — 1,
which means that the spins are alternating. So, in this conand
figuration there are nd7 or | | configurations and, andg,
(or h, andh,) are irrelevant.
Now consider the general case where the solutions to Eq.
(27) are complex. Co%sidering the expression fon terms | (94— 93)(92193) —2(93+91) =0, (37
of z, it is seen that there may be a larger value for Reif

respectively, and it is easily seen that there is a phase transi-
Rez+z 1)>2. (31 tion even at zero temperature.
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