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Phase transitions in self-gravitating systems: Self-gravitating fermions and hard-sphere models
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We discuss the nature of phase transitions in self-gravitating systems both in the microcanonical and in the
canonical ensemble. We avoid the divergence of the gravitational potential at short distances by considering the
case of self-gravitating fermions and hard-sphere models. Depending on the values of the parameters, three
kinds of phase transition®f zeroth, first, and second ordere evidenced. They separate a “gaseous” phase
with a smoothly varying distribution of matter from a “condensed” phase with a core-halo structure. We
propose a simple analytical model to describe these phase transitions. We determine the value ¢hethergy
microcanonical ensemblend temperatur@n the canonical ensemblat the transition point and we study
their dependance on the degeneracy parantitefermiong or on the size of the particlg$or a hard-sphere
gag. Scaling laws are obtained analytically in the asymptotic limit of a small short distance cutoff. Our
analytical model captures the essential physics of the problem and compares remarkably well with the full
numerical solutions. We also stress some analogies with the liquid-gas transition and with the Blume-Emery-
Griffiths model with infinite range interactions. In particular, our system presents two tricritical points at which
the transition passes from first order to second order.
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[. INTRODUCTION can consider a classical hard-sphere gas by introducing an
“excluded volume” around each partic[8,9]. Other forms
The statistical mechanics of self-gravitating systems turn®f regularization are possib[@0,11. When such regulariza-

out to be very different from that of other, more familiar, tions are introduced, it is possible to evidence properly three
many-body systems, e.g., neutral gases and plasmas, duekiads of phase transitions of zeroth, first, and second order.
the unshielded, long-range nature of the gravitational forc&hey separate a “gaseous” phase, which is independant of
[1]. Due to this fundamental difference, the notion of equi-the small-scale cutoff, from a “condensed” phase in which
librium is not always well defined and these systems exhibithe particles are tightly bound. This is similar to the liquid-
a nontrivial behavior with the occurence of phase transitiongjas transition in an ordinary fluid. However, for long-range
associated with gravitational collapse. If the particles aresystems, such as self-gravitating systems, the statistical en-
treated as classical point masses, it can be shown that membles are not interchangeable and phase transitions can
global entropy maximum exists, even if the system is re-occur both in the canonical and in the microcanonical en-
stricted within a box so as to prevent evaporatj@r8]. A semble. This results in the existencetwb tricritical points,
self-gravitating system can increase entropy without boun@dne in each ensemble. In that respect the self-gravitating
by developing a dense and hot “core” surrounded by a diluteFermi gas shares some analogies with the Blume-Emery-
“halo.” There exist, however, local entropy maxinimeta-  Griffiths (BEG) model with infinite range interactiorjd 2].

stable equilibrium statgsf the condition A=—ER/GM? The object of this paper is to provide a detailed descrip-
=<0.335 is satisfied, i.e., if the enerdyis sufficiently large  tion of phase transitions in self-gravitating systems. In Secs.
(for a given box radiusR) or if the radius is sufficiently 11-V we consider the case of self-gravitating fermions. The

small (for a given energye). Since these equilibrium states equilibrium phase diagram was calculated in an earlier paper
are only local entropy maxima, the question naturally [6] and we complete this study by determining explicitly the
emerges whether they are long-lived or will collapse to avalues of energyin the microcanonical ensembland tem-
configuration with higher entropy. In any case, a phase tranperaturg(in the canonical ensemblat which the phase tran-
sition mustoccur forA > A .= 0.335 since the entropy has no sitions occur. We also propose a simple analytical model to
extremum at all above this threshdld]. In that case, the describe these phase transitions. The “gaseous” phase is
system is expected to collapse indefinitely towards a state ohodeled by a classical homogeneous sphere while the “con-
higher and higher central concentration and temperaturelensed” phase is made of a completely degenerate nucleus
This is the celebrated “gravothermal catastroph@. surrounded by a hot atmosphere with uniform dengig¢
However, if we introduce a repulsive potential at shortstrained by the box The masaM, of the nucleus is deter-
distances, complete core collapse is prevented and it can lmined by maximizing the entropffree energyvs M, for a
proved that a global entropy maximum now exists for allgiven total mass and energiemperaturgof the configura-
accessible values of energy. This effective repulsion can bton. Quite remarkably, this simple model can reproduce the
introduced in many different ways but the physical resultsmain features of the numerical study. It also allows us to
are rather insensitive to the precise form of the regularizadetermine analytically how the energy or the temperature at
tion. For example, we can study the case of self-gravitatinghe transition points depend on the degeneracy parameter. In
fermions for which an exclusion principle imposes an upperSec. VI we extend our analytical model to the case of a
bound on the distribution functiof¥—7]. Alternatively, we  classical gas with a short distance cutoff. This model has
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been studied numerically by Aronson and Han§8hand tue of the Liouville theorem. This is the origin of the “effec-
Stahlet al.[9], and our analytical model gives a good agree-tive” exclusion principle in Lynden-Bell’s theory, which has
ment with their numerical results. It is also consistent withnothing to do with quantum mechanics. In reality, the mixing
the toy models of Lynden-Bell and Lynden-B¢ll3] and entropy introduced by Lynden-Bell is a complicated sum of
Padmanabhali]. The possible astrophysical applications of Fermi-Dirac entropies for each phase level constituting the

our study are discussed in Sec. VIE. initial condition. For simplicity, we shall restrict ourselves to
the single level approximation for which the mixing entropy

Il. STATISTICAL MECHANICS OF SELF-GRAVITATING coincides with expressiofb).
FERMIONS At statistical equilibrium, the system is expected to maxi-

mize the Fermi-Dirac entropy at fixed mass and energy. In-

troducing Lagrange multipliers to satisfy these constraints,
We consider a system of fermions interacting via New- we find that thecritical points of entropy correspond to the

tonian gravity. These particles can be electrons in whitd=ermi-Dirac distribution

dwarf stars[14], neutrons in neutron stafd5,4], massive

neutrinos in dark matter modef$6,5], etc. We assume that 7o

f[he mass of the co_nflg_uratlon is sufficiently small so as to f= W’

ignore general relativistic effects. Létr,v,t) denote the dis-

tribution function of the system, i.ef(r,v,t)d®rd3v gives _ _ - _

the mass of particles whose positions and velocities are iWhere\ is a strictly positive constant, ensuring that 7,

the cell ¢,v;r+d%r,v+d3v) at timet. The integral off over andg is the inverse temperature. In the fully degenerate limit

A. The Fermi-Dirac distribution

(6)

the velocity determines the spatial density f=n,, this distribution function has been extensively studied
in the context of white dwarf stars in which gravity is bal-
3 anced by the pressure of a degenerate electror igdsin
P:f fdv, D the nondegenerate limft< 7,, the Fermi-Dirac distribution

reduces to the Maxwell-Boltzmann distribution
and the total mass of the configuration is given by

f %e—ﬁ((vz/Z)HI’), )

M= f pdr, ?)

where the integral extends over the entire domain. On th&0 that we expect to recover the properties of classical iso-

other hand, in the mean-field approximation, the total energyhermal spheres at low densitigl. In particular, the Fermi-
of the system can be expressed as Dirac spheres, like the isothermal spheres, have an infinite

mass and one is forced to confine the system within a box of
1 53 3. L . radiusR. Physically, this confinement is justified by the re-
E= if fotdrd v+ §f pPdr=K+W, (3 alization that the relaxation imcompleteso that the condi-
tions of applicability of statistical mechanics, regarding, for
whereK is the kinetic energy anw is the potential energy. example, the ergodic hypothesis, can be fulfilled only in a
The gravitational potentiab is related to the star density by limited region of space. In addition, an astrophysical system

the Newton-Poisson equation is never completely isolated afticould represent the typical
radius at which the system interacts with its neighbors.
AD=47Gp. (4) Kinetic equations have been proposed to describe the re-

In

) o o laxation of self-gravitating systems towards the Fermi-Dirac
Finally, the Fermi-Dirac entropy is given by the formula  gjistribution[18,21. If we assume that the system is subject
f f f f to tidal forces and if we allow high energy particles to escape
S= _f [—In—+(1—— 1——)]d3rd3v, (5)  the system when they reach an eneegyv?/2+d=¢,,, an
Mo 7o 7o 7o extension of the Michie-King model taking into account the
, ) . . .degeneracy can be deduced from these equai@hs For
which can be obtained by a standard combinatorial analysis. < €., one has
In this expressiong, is the maximum value accessible to the
distribution function. Ifg=2s+1 denotes the spin multiplic- “Be_ o Ben
ity of the quantum statesn the mass of the particles, amhd fo ﬁoe € )
the Planck constant, one has by virtue of the Pauli exclusion N+e Pe
principle 7o=gm?/h%. An entropy of the form’5) was also
introduced by Lynden-Bel[17] in the context of collision-  while f=0 for e>¢,, since the stars have been removed by
less self-gravitating systeme.g., elliptical galaxies, dark the tidal field. Whem— +, we recover the Michie-King
matte) undergoing a “violent relaxation” by phase mixing model[22] and whene,,— + =, we recover the Fermi-Dirac
[18—-20. In that context,;, represents the maximum value distribution (6). The density associated with the truncated
of the initial distribution function and the agual distribution djstribution function(8) goes to zero at a finite radius, which
function (coarse-grainedmust always satisfy < 5, by vir- is identified as the tidal radius. Therefore, the configuration
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has a finite mass. This distribution function could describevarying the parameték (for a fixed value of the degeneracy
elliptical galaxies and galactic halos limited in extension as garametejt), we can cover the whole bifurcation diagram in
consequence of tidal interactions with other systgh7s16. parameter spacg6]. The entropy of each configuration is
This model is, of course, more realistic than the box modelgiven by (see the Appendix

However, in order to exhibit phase transitions in self-
gravitating systems, the box model provides a more conve- Szq

7 2a®
nient theoretical framework and we shall use it in the sequel. "\~ — §A n+(a)+ pt+ink— 9u? |5ia(ke()),

17

B. Thermodynamical parameters

The thermodynamical parameters for Fermi-Dirac spherefgInd the free energy by

in the mean-field approximation have been calculated by J=S— BE. (18)

Chavanis and Sommer{®] and we shall directly use their

results. The equation determining the gravitational potentiaNote that Eq.(18) is the free energfF=E—TS up to a

at equilibrium is obtained by substituting the Fermi-Dirac negative proportionality factor. In the microcanonical en-

distribution (6) in the Poisson Eq(4), using Eq.(1). Intro-  semble, a solution is stable if it corresponds to a maximum

ducing the variablegi= B(® — &), whered, is the central  of entropyS at fixed mass and energy. In the canonical en-

potential, k= ef®o, and é=(16m%\2G 7o/8Y) Y%, it can  semble, the condition of stability requires that the solution be

be written a maximum of free energyat fixed mass and temperature. It
can be showm4] that this mean-field approach éxactin a

1d[ ,dy wo thermodynamical limit such th&l— +o with &, 7, A

— 2| &7 | =1 1(ke!9), C) : o i ; : 13 —413

g2 dé dé fixed. This implies, in particular, thaN*"R, TN~

EN~"2 andSN ™! approach a constant value fi— + .

wherel 1, denotes the Fermi integral The usual thermodynamical limit,R— + o with N/R? con-
stant is, of course, not relevant for nonextensive systems.

+ o0 n
In(t) = Jo 1+texdx (10 IIl. PHASE TRANSITIONS IN A SELF-GRAVITATING

FERMI GAS

of ordern=1/2. The boundary conditions at the origin are A. The nondegenerate limit(p=c)

#(0)=¢’'(0)=0. (12) Before considering the case of an arbitrary degree of de-

generacy, it may be useful to discuss first the nondegenerate
In the case of bounded spheres, one must stop the integratig,t corresponding to a classical isothermal gas<0). In

of Eq. (9) at £=a with that case, the thermodynamical parameters are givd3]by
2
16m2\2G 77\ * n=ay' (@), (19
a= —,6’1/2 R. (12
3 1 e W(a)
The parametew is related to the temperature and to the A= 2 ay (@) - 1//’(01)2' (20
energy by the equations
GM S 1
775/3 — apl(a), (13 = zhr-2natu(@ 24y, (2D
ER 7 5 410 where o= (47GBp,) Y?R is the normalized box radius and
A=— = ke @y 2de— S Ly (ke(@), ¢ is the normalized gravitational potential solution of the
GM?2  p*lo 3 ut Emden equatiof14]
(14
) 1d( ,d¢ y
Moreover,a andk are related to each other by the relation ? d_g d_g =e (22
()= p?, (15
: with boundary conditions
whereu is the “degeneracy parameter,” (0)= 4 (0)=0 23
w=1o\512r*G*MR®. (16)

The equilibrium phase diagranE(T) is represented in
For a given value ofu andk, we can solve the ordinary Fig. 1. The curve is parametrized lay which can be con-
differential equation(9) until the valueé=a at which the sidered as a measure of the central concentration. An equiva-
condition (15) is satisfied. Then, Eq413) and (14) deter- lent parametrization is provided by the density contrRst
mine the temperature and the energy of the configuration. By= p(0)/p(R) (see Fig. 2 In the microcanonical ensemble
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A . . . FIG. 3. Entropy and energy as functions of the central concen-
FIG. 1. Equilibrium phase diagram for classical isothermal, _ .
; . P tration «. The peaks of energy and entropy occur for the same
spheres. FoA>A . or > 7., there is no hydrostatic equilibrium
o values ofa.
and the system undergoes a gravitational collapse.

(MCE), the solutions on the upper branch of Fig.(until second order variations of entropy or.free enefgy,25.
point MCE) are stable and correspond to local entropyF©r A<Ac and <z, the stable solutions are oniyeta-
maxima. The rest of the spiral corresponds to unstable saddfiaPle There are no global maxima of entropy or free energy
points. For A>A,=0.335, there are no critical points of 'O classical point masses in gravitational interacfidh We
entropy and the system collapses indefinitely. This is the so2!SC note that the region of negative specific héaeween
called “gravothermal catastrophe.” In the canonical en_pomtsl CE and MCIE IS s:]able n t.hel mmrocar;omcal en-
semble(CE), only the solutions prior to point CE are stable. SéMble and unstable in the canonical ensemble, where it is
They correspond to local maxima of free energy. The rest of¢Placed by a phase transitidan “isothermal collapse.

the spiral corresponds to unstable saddle points.Fom, Th_|s is expected on physmal_grounds since It can be shown
—2.52, there is no hydrostatic equilibrium and the systenflUit€ generally that the specific heaustbe positive in the
undergoes an “isothermal collapse.” These stability resultscanomc_al.ensemblél]. These resglts clearly '”d'cf”‘te that
can be deduced from the turning point analysis of Kag] the statistical ensembles are not interchangeable in the case

or by solving the eigenvalue equations associated with th8f self-gravnatl_ng systemésee, €.9., Re{26]), contrary to
normal matter in which the energy is an extensive parameter.

20 . . . . In Fig. 3, we have plotted the energy and entropy as func-
015 F 1
15 + b
= 0.05 F 1
g
o 10 b
= Z
£ 005} .
A=0.335
5 A=0.198 R=709 ]
R=32.1 -0.15 - .
CE
0 1 ! 1 ! _0.05 N N N
-0.3 0 0.3 0.6 0.9 0.15 0.2 0.25 0.3 0.35
A=—ER/GM* A=—ER/GM®

FIG. 2. Density contrast of classical isothermal spheres as a FIG. 4. Entropy vs energy for classical isothermal spheres.
function of energy. The series of equilibria becomes unstable in th&/hen several solutions exist for the same energy, the states with
canonical ensemble foR>32.1 and in the microcanonical en- low entropy are unstable saddle points. They can either evolve to-
semble forR>709. The value of energy at which the density con- wards the metastable state with highest entrg®e arrow or col-
trast tends tot o is A =1/4 (singular sphene lapse to a state of ever-increasing entropy, as suggested if2REf.
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FIG. 5. Free energy and inverse temperature as functions of the FIG. 6. Free energy vs inverse temperature for classical isother-

central concentratio. The peaks occur for the same valueswof
The free energy presents an additional extremum, but it is not as-
sociated with an instability.

mal spheres. The interpretation is the same as in Fig. 4.

a smooth density profile; they form the “gaseous” phase.

The solutions on the lower bran¢pointsC) have a “core-

halo” structure with a massive degenerate nucleus and a di-

tions of the central concentratiom. We observe that the lute atmosphere: they form the “condensed” phase. Accord-
peaks occur for the same valuesafsinced S=SdE. This — | g to the criterion of KatZ23], specifically discussed in

! . n
s also clear from Fig. 4 where we have represented the e;}Qef. [6] for self-gravitating fermions, these solutions are

tropy as a function of energy. When several critical points o ! ) ; . ;
entropy exist for the same energy, only the one with thebo'[h entropy maxim@EM), while the intermediate solutions

largest entropy is an entropypaximum The other critical (pointsB) are unstable saddle pointSP. These points are

points are unstable saddle points. Therefore, if the system r%'”.‘"ar tc? p(;'(miﬁ" echipt that thzy contalnha;mlall ertr;]bry—
initially prepared on a saddle point, we expect a transition gPhic nuc ey Wi " small mass an energyhic plays the
germ” in the langage of phase transition. The

; role of a
occur from a state of low entropy to a state of higher entropydensity profiles of these solutions are given in Fié]

This is not really a phase transition but just an instability. A

similar diagram has been found for isothermal spheres de
scribed in the context of general relativit27]. In this anal-
ogy, the mass energy plays the role of the classical energy
E and the binding energg,ing=(M—Mg)c?, where M,
=Nm is the rest mass and the baryon number, plays the
role of the classical entrop$. In Figs. 5 and 6, we have
ploted the corresponding diagrams in the canonical en-

semble. Here again, the peaks of temperature correspond &

the peaks of free energy, sind&= —Edg. The free energy
has an additional peafor E=0), which has no counterpart
in the temperature diagram. However, this peak is not asso
ciated with an instability and the interpretation of the curves
is the same as in the microcanonical ensemble.

B. Large values of the degeneracy paramete¢u=10°)

We now consider the case of self-gravitating fermions
characterized by a degeneracy paramgtewe first discuss

SGMR

n

1.

0

5

5

u=1 0°

GEM

A

LEM

T T T

LEM A=0335

SP

=-0.28 7
| eem
C D

-0.7

-0.4

-0.1 0.2 0.5

A=-ER/GM?

the case of large values of the degeneracy parameter. The FIG. 7. Equilibrium phase diagram for Fermi-Dirac spheres with

extension of the classical diagram of Fig. 1 is reported in Fig, degeneracy parameter=10°. Points A form the *

gaseous”

7. We see that thg inclusion of d_egeneracy has _the effect (Hhase. They are global entropy maxit@EM) for A< A(x) and
unwinding the spiral. The evolution of the density contrastjoca| entropy maximaLEM) for A>A (). PointsC form the

along the SeI’IE‘S Of equ'“b”um |S dep|Cted |n F|g 8 In the“condensed” phase. They are LEM fO’k<At(/.L) and GEM for

rangeA, () <A <A, there exist several critical points of A>A(u). PointsB are unstable SP and contain a “germ.” This
entropy for each single value of energy. The solutions on théigure exhibits, in particular, a first order phase transition in the
upper branch of Fig. %ointsA) are nondegenerate and have microcanonical ensemble.
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FIG. 8. Density contrast as a function of energy for self- FIG. 9. Entropy of each phase vs energy fo=10°. A phase
gravitating fermions = 10). This figure can be compared with transition occurs at\;(x) at which the two stable branchésolu-
Fig. 2 for classical isothermal spheres. PoiAt§gaseous phage tions A and C) intersect. The unstable solutiofs always have
have a low density contrast. Poin& and C contain a central smaller entropy.
nucleus with high densitj6].

mass and energy. Therefore, what we see actually in the limit

To be more precise, we have plotted the entropy of thesg,_, 1+ are the metastable states. It is plausible that these
solutions as a function of energy in F|g 9. The entropy of th%etastab'e states will be selected by the dynar('[imsre'_
unstable phasgointsB) is always smaller than the entropy evant time scaleseven if states with higher entropy exist. In
of the stable phases, as it should. There is now a crossingct, depending on itfopology(i.e., the form of the profile
point in the diagram, ad = A(u«), which marks the onset of ' an initial condition withA > A(u) can either relax towards
a phase transition. At that pOint, the “gaseous” phase and thﬂ']e local entropy maximur(gaseous pha$r Co||apse to-
“condensed” phase have the same entropyMs increased  wards the global entropy maximufeondensed phaseAl-
across the transition point, the nondegenerate solutiongrnatively, forA <A.(u) an initially “condensed” configu-
(points A) pass from global to local entropy maxima. In- ration can remain frozen in this metastable state or explode
versely, the degenerate solutiofp®ints C) pass from local into a “gaseous” state with more entropy. Therefore, the
to global entropy maxima. We expect, therefore, a phasghoice of a stable equilibrium state does not only depend on
transition to occur from the “gaseous” phase to the “con- whether the equilibrium solution is a local or a global en-
densed” phase wher =A"(x). The “kink” in the curve  tropy maximum, but also on whether or not the initial con-
S(E) at the transition point where the two branches intersectlition lies in its “basin of attraction”. The characterization
corresponds to a discontinuity of temperature in the equilib-of this basin of attraction requires a nonequilibrium analysis,
rium phase diagransee the vertical plateau in Fig).7The  which is not attempted in the present paper. A first step in
specific heat is also discontinuous at that point and turnghat direction was performed by Youngkins and Mil[dr]
from positive to negative. According to Stagt al. [9], this by using a one-dimensional spherical shell model and by
phase transition could be called a “gravitational first orderChavaniset al.[26] with the aid of a simple relaxation equa-
phase transition.” It has to be noted, however, that contrartion derived from a maximum entropy production principle
to the liquid-vapor transition, the two phases cannot coexisf18]. These preliminary works reveal that the structure of this
in the present situation. basin of attraction is extremely complex so that the final state

For Ay(u)<A<A., the nondegenerate solutions are of the system cannot be easily predicted from the initial con-
metastable, but we may susp¢6t that they are long-lived dition when several entropy maxima exist. In addition, the
so that theyare physical. These solutions are insensitive tostructure of this basin of attraction also depends on whether
the small-scale regularization and depend only on the longthe system is described by the microcanonical or by the ca-
range gravitational interaction. In the limit— + oo, the tran-  nonical ensembl¢11,26].
sition energyA(u) goes to—« and we recover the classical ~ However, forA > A . the metastable phase completely dis-
spiral of Fig. 1. This spiral is formed by the metastable statesippears and, in that case, the syst@mst necessarily col-
of the “gaseous” phasépointsA). The “condensed” phase lapse. This transition is associated with what has been tradi-
(pointsC) is superposed to th& axis. These states have an tionally called the “gravothermal catastrophfg] in the case
infinite central density and an infinite temperature. The un-of classical point masses. For systems described by the
stable branchpointsB) coincides with the spiral, but these Fermi-Dirac statistics, the core ultimately ceases to shrink
states physically differ from the “gaseous” statgmintsA) when it becomes degenerate. In that case, the system falls on
by the presence of an infinitesimal “germ” with negligible to the global entropy maximurgpoint D), which is the true
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FIG. 10. Equilibrium phase diagram for Fermi-Dirac spheres FIG- 11. Equilibrium phase diagram for self-gravitating fermi-
with a degeneracy parameter= 16°. PointsA form the “gaseous”  ©NS with different values of the degeneracy parameterhe zeroth
phase. They are global maxima of free enef@FEM) for < 7, and first order phase transitions are suppressed in the microcanoni-
and local maxima of free enerdiFEM) for > 7, . The reverse is cal ensemble fou=2600 and in the canonical ensemble @r
true for pointsC in the “condensed” phase. Poin® are unstable =82.5. For_ Iarge values _q&,_ the curve makes several rotations
SP. This figure exhibits, in particular, a first order phase transition i?€f0re unwinding. The criterion of Katz tells us that one mode of
the canonical ensemble. The equality of the free energy of the twatability is lost each time the curve rotates clockwise and regained
phases J,=Jc) at the transition temperatung implies the equal- 35 the curve rotates counterclockyvise. Therefore, only the.upper and
ity of the areas delimited by the curve and the plateau, fg(, ~ OWer branches are entropy maxima. fzof +< (classical limil,

— 7)dA =0. This is similar to Maxwell’'s construction in the theory the curve v_vmds up indefinitely and tends to the spiral of Fig. 1 as
of the van der Waals gas. discussed in the text.

S . critical energyA.=0.335 and the critical density contrast

eqw!lbrlum state for these systems. Th'.s global entrOpyR=709 found by Antono\ 2] for classical particles. In that

maximum has a “core-halo” structure, with a degeneratr?]region, the specific heat is negative, which is allowed in the
Kicrocanonical ensemble. As energy decreases further, more
and more mass is concentrated in the nuclewusich be-
comes more and more degeneyaiatil a minimum acces-

. X sible energy, corresponding té ,,.{x), at which the

fact, this does not correspond to a true phase transifion nucleus contains all the mass. In that case, the atmosphere

the usual _sens)enot even to an“ |nstab|I|t)”/, but simply to the has been “swallowed” and the system has the same structure
sudden disapearance of the “gaseous” phase. It has to be

noted that the degenerate nucleus resulting from this gravas a cold white dwarf stgl4]. This s a relatively singular

tational collapse has a relatively important mass and a verhmit’ since the density drops to zero at a finite radius,
small radius(for x=10° and A=A, we have typically hereas for partially degenerate systems, the density decays

M, /M=0.22 andR, /R=5 10°3). This massive nucleus like r~< at large distances. We can study the formation of

(fermion bal) can have important astrophysical im IicationsthiS compact object by defining an order parameier
b phy b =Rgs5/R, whereRgys is the radius of the sphere that contains

E)‘Ir;%klmgl]ee ;fmgxégtg?r; r;agt;elgéneaeysrgl(r:nl\c/ltge effect of 895% of the_ ma§§10]. This parameter is lplot.ed. as a function
' of energy in Fig. 12 and the diagram is similar to the one

obtained by Follana and Laliedd0] with a different regu-
larization of the potential at the origin. For high energies, the

When the degeneracy parameter is sufficiently smalldensity varies smoothly with the distance and 1. For low
there exists only one critical point of entropy for each valueenergies, the system spontaneously forms a dense core con-
of energy(see Fig. 1Dand it is a global entropy maximum. taining more and more mass so that> k<1 [with «,
Therefore, a sufficiently strong degeneracy suppresses the6.678u%3, estimated from the mass-radius relatia8) of
phase transitions in the microcanonical ensemble, including completely degenerate nucléud/e observe that the order
the “gravothermal catastrophdsee Fig. 11 For high ener- parameter varies rapidly in the region of negative specific
gies (small values ofA) the solutions almost coincide with heats but remains continuous. According to Cerruti-Sola
the classical isothermal spheres. When the energy is lowereat al.[29], this is the mark of a second order phase transition
(large values of\) the solutions take a “core-halo” structure at A=A (corresponding to the point of minimum tempera-
with a partially degenerate nucleus surrounded by a dilutéure 7.). At that point, the specific heat is infinite and turns
Maxwellian atmosphere. It is now possible to overcome thdrom positive to negative; more precisel=dE/dT di-

times called a zeroth order phase transiti@8] since it is
associated with a discontinuous jump of entrgjpythe clas-
sical limit, the entropy of the condensed phase is infinite

C. Small values of the degeneracy parametefu=10°%)
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FIG. 12. Evolution of the order parameter with energy for FIG. 13. Free energy of each phase vs inverse temperature for
=10°. This figure illustrates the “clustering” of the self-gravitating w=10°. The interpretation is the same as in Fig. 9.

gas as energy is lowered. The presence of the “bumpA atA
was previously noted by Follana and Laligri®] in their model. IV. TRICRITICAL POINTS

We have indicated in the preceding section that the phase

H _ -1 _ —-1/2 H
Yerges like .= Ao) andt_'(ncn . ) [25]. In fact, this _transition in the microcanonical ensemble disapears at a criti-
second order phase transition” is not really a phase transicg degeneracy parameten,p=2600 and that the phase
tion; it just corresponds to the “clustering”

o _ ) ! of the self- yansition in the canonical ensemble disapearsuferucrp
gravitating gas as its energy is progressively reduced.  _go 5 These points at which thé-7 curve presents an

If we now consider the canonical situation, we see thajnfiexion are calledricritical points (TP) in the language of
several solutions exist at the same temperature. A first ordgfhase transitions.
phase transition occurs at(w) and separates a “gaseous”  |n Fig. 14, we have enlarged the phase diagram near the
phase from a “condensed” phase. The interpretation is thericritical point in the canonical ensemble. It is located at
same as in the microcanonical ensemble. The energy is digx-;p=0.5 and 7c1p=3.06. In the canonical ensemble, the
continuous at the transition so that a large amount of latendscillations of theA - curve for u> ucrp are replaced by a
heat is released. The specific heat is also discontinuous, bhbrizontal Maxwell plateau connecting the gaseous phase
remains positive. Forp> (1) the “gaseous” states are (left) to the condensed phageght). This characterizes a
metastablebut they probably are physical. This metastablecanonical first order phase transitionz{w). This diagram
branch completely disapears &t 7. and the system under- exhibits a close analogy with the classical gas-liquid transi-
goes an “isothermal collapse.” This phase transition is moreion, the liquid phase being the counterpart of tgeavita-
radical than the previous one since it is marked by the disaﬂonal) Fermi condensate. At the canonical tricritical point
pearance of the metastable phase. For self-gravitating ferm=TP the two phases merge, the plateau disappears,/and the
ons the “isothermal collapse” ends up on a compact objecBPecific heat diverges likaC~(A—A¢) ?~[n— 7 2%
that contains almost all of the mager x=10°, M, =M, Therefore, the fII’SF orde_r phase t_ransmon becomes second
and R, =6.7x10"?R at p~7.). Since the collapse is order at the_ ca_nonlcal trlc_rmcal pomt. .
marked by a discontinuity of the free enertgee Fig. 13 The grawtanona_l F_erml gas diagram is neve_rtheless more
this could be called a zeroth order phase transif@®]. It complex than the liquid-gas diagram because it presemis

. : . othertricritical point in the microcanonical ensemiMTP).
has been ShOV_V” n Rdj?_S] that the pomt_ of minimum tem- In Fig. 15, we have enlarged the phase diagram near this
perature 5. coincides with the Jeans instability criterion.

; . . . . tricritical point. It is located at\ 1p=0.38, #ytp=1.68.
More precisely, the condition of instability of an isothermal 1 jnterpretation is the same as in the canonical ensemble
gas sphere can be writtdd> (7./3)Y2L;~L;, wherel is

) - = except that the plateau is now vertical as it corresponds to a
the Jeans length. Sineg< 7., a first order phase transition discontinuity of temperature at a transition eneryy( )

can occur at scales much smaller than the Jeans $Bale (mjcrocanonical first order phase transitiohVe have de-
=(7J/3)"2Ly<L;). This might explain the formation of noted by 7gas @nd 7¢ona the values of the inverse tempera-
smaller objects than usually achieved with the ordinary Jeangyre of the two phases at the transition energy. At the tricriti-
instability. This idea has been developed by Sthdl.[9]in  cal point 7Ngas= Tcond- We have also indicated in the figure
relation with planet formation. However, the metastablethe point of minimum temperaturg, at which the specific
states forp> 7t may be long-lived and it is not clear whether heat diverge¢second order microcanonical phase transjtion
a phase transition will actually occur &t . In Fig. 16, we have plotted the values of the transition
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FIG. 14. Enlargement of the phase diagram near the tricritical  F|G, 16. Phase diagram of the self-gravitating Fermi gas in the
point in the canonical ensemble. The Maxwell construction deter,,_,, nlane. The solid line gives the transition temperature at the

mining the transition temperaturg () is done explicitly(dashed

areas. For pucrp==82.5 the Maxwell plateau disapears and h  temperatures of the two phas@ms and condensatat the micro-
curve presents an inflexion point alcrp=0.5, 7crp=3.06. At canonical first order phase transition. The dotted line gives the criti-
that point, the specific heat becomes infinite and the transition iga| temperaturey, at the microcanonical second order phase tran-

second order. This diagram is remarkably similar to the liquid-gassition. CTP and MTP are the tricritical points in the two ensembles.
transition for an ordinary fluid.

canonical first order phase transition. The dashed lines give the

also represented the minimum temperatggemarking the

temperaturep, in the canonical ensemble and the values ofonset of a microcanonical second order phasg .transiti(')n. At
the characteristic temperaturgg,s and 7cong in the micro- the CTP, this branch connects the branch. This is consis-
canonical ensemble as a function of the degeneracy pararfent with the appearance of asolatedsecond order phase
eteru. These curves characterize first order phase transitiofansition in the canonical ensemble at CTP. This diagram

in the canonical and microcanonical ensembles. We havghares some similitudes with the one obtained by Beire.
[12] in their analysis of the BEG model with infinite range

interactions. This system also displays an inequivalence of
ensembles, regions of negative specific heats, and two tric-
ritical points(one in each ensembleThis analogy suggests
that these properties are related to the long-range nature of
the interactions more than to the details of the model. This
implies a kind of universality for this type of systems. How-
ever, there are also noticable differences between the two
models. In particular, in the BEG model, second order phase
transitions are characterized by a discontinuity of the specific
heat (angular point while in our model of self-gravitating
fermions the specific heat is always continuous except at the
critical point 7. at which it divergegthis is our definition of

a second order phase transitiomherefore, there still exists

25

i+ m

05

e p=6000

p=2x10*

0
-1

-075 -05 -025 0 025 05 075 1
A=—ER/GM

a second order phase transition above the canonical tricritical
point in the BEG model but not in the self-gravitating Fermi
gas. Another consequence of the continuity of the specific
heats in our model is that the second order critical lipe

— u (dotted ling does not connect the first order critical lines

(dashed linesat the microcanonical tricritical point MTP but

FIG. 15. Enlargement of the phase diagram near the tricriticaklightly after, unlike in the BEG mod¢M2].
point in the microcanonical ensemble. The Maxwell construction

determining the transition energy,(w) is done explicitly(dashed
area$. For uytp=2600 the Maxwell plateau disappears and the
A-7m curve presents an inflexion point & yp=0.38, #nurp
=1.68. We have indicated different characteristic temperatures, as The previous study has revealed that self-gravitating fer-
described in the text. mions can undergo a phase transition from a “gaseous”

V. A SIMPLE ANALYTICAL MODEL
FOR SELF-GRAVITATING FERMIONS
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phase to a “condensed” phase. We shall now propose a 1 Am g U%ax
simple analytical model to describe this phase transition p= §f fv2d3v=T 5 (29
more conveniently. As we shall see, our model can reproduce
remarkably well the essential features of the equilibrium 3
phase diagram and it can be used to determine the depen- p=J fd3\,=4wnovmax_ (30)
dance of the critical parameters on the degeneracy parameter 3
K Eliminating the velocity between these two relations, we find
that the equation of state of a completely degenerate system
A. The “gaseous” phase is that of a polytrope with index=5/3 (or n=3/2),
The “gaseous” phase can be represented by a homoge- o3
neous distribution of particles with a Maxwellian distribution p=Kp®3, K= }( 3 ) 31)
of velocities ' 5\ 477,

p ) These results are, of course, well known from the theory of
f=———"7e" T (24)  white dwarf star§14] and they are repeated only in order to
(27T) determine the constaid in the present context. Now, from

) ~_ the theory of polytropic spherdd4], the mass-radius rela-
The relation between the energy and the temperature is givefy, s given in the general case by
by
K:NnGM(nfl)/nR(3fn)/n, (32)
3 3GM?
E= EMT_ ER (25  whereN, is a constant depending on the index of the poly-
trope. Fom=3/2, one had;,=0.4242 . . . . Therefore, the
relation between the mass and the radius of our degenerate

nucleus is

and the entropy by

705 3 2Ty —In| =
EVERPRLCARAL s

3
tinmgts. (26 M*Riznszg, with y=5.972310°%. (39
0

Introducing the normalized energy and the normalized On the other hand, its energy is given [dy]
temperaturey defined in Sec. Il B, we can rewrite the previ-

. . 2
ous equations in the form o 3 GM;
E=7 R (34)
3 3
A= 5 E 27 and its entropy is equal to zero since the distribution function

is unmixed = 7).
oS 3 3 1 By shrinking, the nucleus releases an enormous amount of
o2 2 °. - _ energy that heats the envelope. The envelope behaves there-
> Inn+Inpu+ 2+ 2 Inm=Ine. (28) fore like an ordinary gas maintained by the walls of the box
so that its density is approximately uniform. Its energy and
These equations correctly describe the gaseous phase fentropy are therefore given by
high energies and high temperatufes., low density con-

trastg. Of course, it cannot reproduce the spiral behavior of _ 3GM, (M—M,)

the classical phase diagram, which is an intrinsic property of Eha"’:E(M M) 2R
the Emden equation. An analytical expression for this spiral )
has been given in Ref25] in the asymptotic limit of high _3G(M-M,) (35
density contrasts. 5R '
B. The “condensed” phase 70S=(M—=M,)[ 5 In(27T)=In(M—M,)
For the “condensed” phase, we shall improve the core- +InV+In 7o+ 2]. (36)

halo model proposed by Chavanis and Sommgsia We

assume that the “core” is completely degenerate and we deContrary to our previous pap¢6], we have not neglected
note byM, , R, , andE, its mass, radius, and energy, re- the potential energy of the envelope as compared to its ther-
spectively. In that limit, the distribution function is a step mal energy. This sensibly improves the agreement with the
function: f=7y for v<vnax and f=0 for v>v,a. Of  full numerical solution. However, we have still assumed that
course, for a self-gravitating system, the maximum velocitythe core is much smaller than the halo, so tWat 3 7R3
Umax IS & function of the position. For this simple distribution represents the total volume of the system. For calculating the
function, the pressure and the density are given by potential energy, we have used the formula
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FIG. 17. Equilibrium phase diagram obtained from our analyti-  FIG. 18. Entropy as a function of the mass of the nucleus for
cal model =10%). It compares relatively well with the full nu- «=10° and A=-0.1>A,. This curve is obtained by using the
merical solution reported in Fig. 7. analytical formulag41)—(43). For A>A,, the “condensed” state

(point C) is a global entropy maximum and the “gaseous” state
(point A) a local entropy maximum. The solution with the “germ”
W= —477Gj pM(r)rdr, (37 (pointB) is an entropy minimum. The fraction of mass contained in
the nucleus is relatively large fqe=10 (see Fig. 19 but it de-
whereM(r) is the mass contained within the sphere of ra-creases as the classical limit is approached./As +, acong
diusr. This formula is valid for an arbitrary spherically sym- — 9 @germ—0 With acon™ ergerm-
metrical distribution of mattef22]. . .

Adding Eqgs.(34) and (35) and expressing the radius of — M- In terms of o, the radius Or: theh cor:e SR* /R
the core as a function of its mass, using E2g), the total =6.67& u [see Eq(33)]. On the other hand, we set
energy of the system is given by

AN=—"—-=0.14975.. .,
376 3 (5127%x) "
E——7TM* +§(M—M*)T
X 1
3GM*(M_M*) 3G(M_M*)2 C:§|n7_|n6_1:_2.2199... .
a 2R a 5R - (39 (40)

For a given value of energgmicrocanonical ensemblethis  Introducing furthermore the dimensionless enefggand the
relation determines the temperatuFeas a function of the dimensionless temperaturg defined in Sec. 11 B, the equa-
core mass. Therefore, the entrof86) is a function ofmM,  tons of the problem become

alone. The mass of the nucleus at equilibrium is determined

by maximizing the entropy with respect i, . After sim- A= AuBa™R— §(1_ @) 1 + §a(1_ @)+ §(1_ a)?,
plification, the conditiordSYdM, =0 is found to be equiva- 7 2 n 2 S

lent to (41)

3G 3 IN(1—a)+2In p+Au?Pa*p+ 29t —a)=Inu+C,
In(M—M*)+ﬁ(M—ZM*)—ﬁ_(M—M*)—EInT (42)
627]2/3 M4/3 3 TILS B B B § B B §
77 =NnetinV-1+Sin@2m. (39 v~ (1-a)—5Iny=in(l-a)+Inu+C+ 3],
X (43

We obtain the same relation by maximizing the free endrgy ] S
at fixed mass and temperature. Equati@® and(39) com- 707 _ 70> +7A. (44)
pletely determine the equilibrium phase diagram of self- M M

gravitating fermions in the framework of our analytical The equilibrium phase diagram is represented in Fig. 17
model. For convenience, we shall reexpress these equatiofer a degeneracy parameter=10°. It provides a fairly good
in a dimensionless form. To that purpose, we introduce thegreement with the full numerical solution of Sec. I(&e
fraction of massa contained in the core such thad, Fig. 7). Of course, we cannot expect to reproduce exactly the
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FIG. 19. Evolution of the fraction of mass contained in the
nucleus as a function of energy for a degeneracy parameter FIG. 20. Equilibrium phase diagram obtained from our analyti-
pn=10. cal model =10%). It compares relatively well with the full nu-

) o _ ) _ merical solution reported in Fig. 10.
numerical results in view of the approximations made in our

analytical model. In particular, except for very low energies,,;ig 10. The minimum energy, corresponding g, .( »)
. . 1 a !

the core is only partially degenerate and this is responsibles e ached when all the mass is in the degenerate core at zero
for the quantitative discrepencies observed between the t mperature ¢— 1, 7— +). Equation(41) then yields

diagrams. However, the qualitative behavior is the same an
this is essentially what was attempted by our analytical ap-
proach. In particular, we recover the three types of solutions Ao )= §)\ 2/3 (45)
previously studied. The solutions on the upper braipciints max.po) = g AL
A) form the “gaseous” phase. They can also be considered
as a particular limit of the core-halo model with=0. The  For A A . (1) and for sufficiently largex, one has
solutions on the lower branctpoints C) form the “con-
densed” phase and the solutions on the intermediate branch o o
(points B) are similar to the “gaseous” state@oints A) L—a~e ™77, Apa A~ 77 (46)
except that they possess a small central nudladgerm”).
To determine the stability of these solutions we have plotedrhis shows that the atmosphere is swallowed exponentially
in Fig. 18 their entropy as a function of the core masfr  rapidly when we approach the minimum energy. Figure 20
a given energy. The curvB(a) has the usual W shape” displays a clear phase transition in the canonical ensemble.
characteristic of phase transitions. The “gaseous” state ( The value of the temperature of transition is very close to the
=0) can be considered as an entropy maximum although #&xact value found in the numerical approach. In the present
does not correspond to the conditid®da=0. The other case, we can safely consider that the core of the condensate
entropy maximum corresponds to the “condensed” statds completely degenerate so that the quantitative agreement
(point C) and the entropy minimum to the solution with the with the exact solution is better than in the microcanonical
germ (point B). For A>A,, the “condensed” state€ are  ensemble. Once again, the stability of the equilibrium states
global entropy maxima and the “gaseous” stafeare local can be determined by considering the variation of the free
entropy maximdthe reverse is true fok <A;). However, to  energy with the core mastsee Fig. 21 For »<#; (7
pass fromA to C, we have to cross an entropic barrier con- > ), the “gaseous” state is a globalocal) maximum of
stituted by the solutioB. This requires that the entromle-  free energy and the “condensed” state a logglbba) one.
creaseswhich is not possible for an isolated system. There-The description of the phase transition is the same as in the
fore, depending on whether the initial fraction of masgsis ~ microcanonical ensemble.
smaller or larger thanvge,y, the system will either relax
towards the “gaseous” state or collapse towards the “con-
densed” state. Of course, this argument assumesithathe
only degree of freedom in the system, which is clearly an We shall now determine the behavior of the critical pa-
idealization. As mentioned previously, the real “basin of at-rameters ag— + (classical limi}. In the microcanonical
traction” is much more complicated. ensemble, the phase transition occurs close to the maximum
The equilibrium phase diagram corresponding to a degerenergyE, of the condensed phase, corresponding @ w).
eracy parametes = 10° is represented in Fig. 20 and it com- Using Egs.(41) and (42), we find that the condition of en-
pares relatively well with the full numerical solutiofsee ergy maximumdA =0 is equivalent to

C. Scaling laws in the limit p—+ o0
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FIG. 21. Free energy as a function of the mass of the nucleus for G- 22. Evolution of the fraction of mass contained in the
u=10° and 7=0.74< ,. For 7<7,, the “gaseous” state is a nucleus as a function of the inverse temperature for a degeneracy

global maximum of free energy and the “condensed” state is a locaParameteu = 10°.
maximum of free energy. The solution with the “germ” is a mini-

mum of free energy. The fraction of mass contained in the conden- (1—a)[—2INn9eong—IN(1—a)+Inu+C+3]

sate is close to on@ee Fig. 22 In the limit u—, acong—1, and

tgerm—O0. =—3In pgastiNpu+C+3, (52
2 where 7¢,,4iS the temperature of the condensed phagg,

the temperature of the gaseous phase, arile mass con-
tained in the condensate at the transition point. Considering
the limiting form of Egs.(27), (41), and (42), when u—

1
5 ¢

3 9
— 2/3_4/3 + —
> AuCa™"ny 57

3 4 1 9 +o 0, andy—0, we find th
_2a_ N T < I , a—0, andnp—0, we find that
(1@ z T 1-a 5")'
(47) A=— 3 — E 2/30(7/3— (53)
. . . . 2779as 7 27cond’
This equation, together with Eq&t1) and (42), determines
the functionA , (). Now, in the limit u— + o, the fraction 3 213 _4I3 _
of mass contained in the nucleus goes to zero while the tem- 2 IN Zeonat A" rpcong=1N . (54)
perature increases. Taking the limit—+o~, a«—0, and» ;
—0 in Eq.(47), we obtain the relation Solving for 7¢ong and 7gas, We get
23 713, _ 21n 1 Au?BaB 4
AuaCn=2. (48 Neond™ ® , Sl (1——a|n,u>.
)\,U/2/3a4/3 ngas ZInM 7
Considering the limiting form of Eq941) and (42) in the (55)

same approximation, we find
Substituting these results in E2), we find that the mass

3 o3 73 3 contained in the condensate behaves like
A= AuPa’— —, (49
7 27 1
a~—. 56
2 n p+ap?Pa*y=Inpu. (50 In w (58

Therefore, the thermodynamical parameters at the point dfombining the foregoing relations, we find that the energy of
maximum energy behave with the degeneracy parameter likgansition is given by

1 In w3 2/3 M2/3
Ay ™1 W*M%! A*N_M—B- AtN_—7/3' (57)
In w u (Inw)? (In )

In the classical limitA,— —«, so that the “gaseous” states
The transition pointA(x«) is determined by equating the are always metastable as previously discussed. The tempera-
entropy of the two phases. This yields tures of the two phases at the transition point behave like
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(Inw)™ approaching an arbitrarily small fraction of particles in the
Ngas™ Neond™ 53 - (58 core (M, <M) so that the potential energy goes tox.
M Since the total energy is conserved, the temperature must rise
The jump of temperature is given by to +oo and_this leads to a quari_thmic divergence Qf the
entropy. This “natural” evolution(in a thermodynamical
1 1 w2 sensgis confirmed by dynamical models of self-gravitating
- ~ . (59 systemgsee the discussion in RéR6]). It is found that the
Mcond  7Mgas  (Inu)"? gravitational collapse of classical point masses leads to a

. . . finite time singularity(the central density becomes infinite in
Finally, we can study the behavior of the fraction of mass g A Y

: ) . a finite timet.y,) with a slow algebraic divergence of the
con'talned in the germ and in the condensatgaaasfoo for temperature and a logarithmic divergence of the entropy as
a given value of energi\. For the condensatoints Q,  {_, | addition, the mass contained in the core tends to
@—0 and7—0 so that Eqs(41) and(42) simplify in zero ast—t., (the density profile at=t., is close to a

3 3 power lawp=r"~¢, with a=2.2<3) in agreement with our
—==Au?a’B, (60)  previous observations.
2n 7 We now consider the canonical situation. In the limit

3 — +o, the phase transition occurs close to maximum tem-
Zin g+ apPa®Bp=1n u. (62) perature of the conc_iensed phase, co_rr_esponding*(m).
2 Using Eq.(42), we find that the condition of temperature

, L . maximumd =0 is equivalent to
The first equality simply means that the potential energy of

the core tends te-« so that the temperature of the halo must 4 1 9

rise to+% so as to maintain the total energy fixed. Combin- §>\M2/3a”377— 1, 5770 (67)

ing Egs.(60) and(61) using Eq.(43), we obtain

713 This equation, together with E@42), determines the func-

) Scong~Inp. (62 tion 7, (u). In the limit u— + o, the fraction of mass con-
tained in the condensate comes close to unity and the maxi-

mum temperature increases. Taking the limit-1 and »
Since the entropy diverges as— + o, we recover the well- .0 in Eq. (67), we get
known fact that there is no global entropy maximum for a
classical self-gravitating gas. Note that the divergence of en- 4 . 1
tropy is relatively slow(logarithmig. For the germ(points §)\M 7= 1" 4 (68)
B), we have in the classical limit

1 (In

Acond™ Inp’ Ncond™ M2/3 )

Simplifying Egs.(41) and (42) in the same approximation,
agerm_>01 Ngerm— Mgas: Sgerm_’sgas.- (63) we obtain

These results simply reflect the fact that the unstable branch 3 3 1

approaches the gaseous branchuas +« but still differs A=Apu?P-=(1-a)—, (69)
. . 7 2 n

from it by a presence of a small germ. The size of the germ

is determined by Eq42). For u— +«, it leads to

IN(1—a)+ 2 In p+Au?Py=Inpu. (70
2/3, 413 _
A ngas=In p (64) We find, therefore, that the parameters at the point of maxi-
so that mum temperature behave like
(In )3 1 In 2

Qgerm™ ———- (65) l—a,~7——, Mp~——m Ai—Apadp)~— .

germ Mllz * mM * ,U«2/3 * ma (In /J~)2
(71)

For a given energy, the mass contained in the condensate and
in the germ goes to zero as we approach the classical limit. The transition pointp,(«) in the canonical ensemble is

However, the relation obtained by equating the free energy of the two phases. Us-
- ing the results of Secs. VA and Sec. VB we obtain the
germ _ (INw) <1 (66  9eneral relation
®cond /1,1/2

—3np+tinpu+C+1+3y
indicates that the size of the germ is much smaller than the

size of the condensate. =(1-a)[-3Iny—In(1-a)+Inpu+C+3]

These results are consistent with the proof given in Ref. 3 23 73 3.4 3 _ 3 4 2
[26] for the absence of global entropy maximum in the mi- Ap a3 (1- )+ na(l-a)+5p(l-a)f,
crocanonical ensemble. We can make the entropy diverge by (72
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wherea is the mass contained in the condensate at the tran- (In )34
sition point. In the limitu— +% and a—1, this relation Qgerm™ ~ 157 (82)
reduces to K
In the limit +, the germ contains almost no mass
—3Ing+tinu=2y\pu?s (73 K 9

while the condensate contains almost all the mass.

The free energy of the gaseous phakit-hand sidg is These results again agree with the proof given in E’Eﬂ
dominated by the contribution of the entropy and the fred©r the absence of a global maximum of free energy in the
energy of the condensed phasght-hand sidgis dominated canonlqal ensemble. We can make the free energy dlvgrge by
by the energy of the core. We find, therefore, that the tem€0!lapsing the mas$/ to a point (the divergence of is

perature of the transition behaves like simply due to the divergence of the potential energy; the
entropy has a weak, logarithmic, negative divergen€ais

In u argument w_ould suggest that Fhe natural eyolution of a sys-
M~ (74  tem of classical point masses in the canonical ensemble is to
develop a density profile in the form of&function with all
_ i ) i the mass at =0. This isnot what numerical simulations of
The mass contained in the condensate is determined by Egryitational collapse shovsee the discussion in RER6]).
(42). In the limit y.— + oo, it simplifies to It is usually found that when the system is held at a fixed
temperature, the self-similar collapse leads to a density pro-
file close to the power layw~r~2 att=t,,,. This profile
has a vanishing mass a0 and its free energy is not di-
vergent. Therefore, a finite time singularity prevents the sys-

IN(1—a)+2In 7+ Au?3p=Inpu. (75

Solving for « in Egs.(73) and(75), we get

1 tem from reaching arbitrarily large values of the free energy.
1-a~—:. (76) It is not known whether other solutions of these dynamical
8/3 : . -
M equations(not necessarily self-similarcan lead to the ex-

) pecteds function with J= +oo.
According to Egs.(27), (41), and (74), the energy of the

gaseous phase and the energy of the condensed phase behayg CLASSICAL GAS WITH A SHORT DISTANCE CUT-

at the transition point like OFF
w3 1 The case of a self-gravitating gas with a short distance
Agas™— g’ Acond™ Amal )~ —— i (77)  cut-off was first considered by Aronson and Hang&hand
o more recently by Stahét al. [9] (see the discussion in Sec.

VIID). The equilibrium phase diagram of this system is
similar to the one obtained for self-gravitating fermigsse
) Figs. 7-10. Indeed, the degeneracy parameteplays the

The jump in the energylatent heatis

(78 same role as the inverse of the short distance cu&ofte
interpretation of the phase transitions is therefore similar but

Finally, let us determine the fraction of mass contained inthe dependance of the critical parameters on the cutoff is

the condensate and in the germuass + o for a given value different. We shall therefore reformulate our analytical model
germyas: - 9 to the case of a classical hard-sphere gas and determine how
of temperature. For the condensdpmints C), a—1 so

that Eq.(42) leads to the previous results are modified in this new situation.

Acond_Agasf\’ﬂ?/g( 1+ 4inp

1— agoni~ e 79 A. The “gaseous” phase

We model the gaseous phase by a uniform distribution of

The free energy of the condensed state behaves like matter occupying the whole container. The energy and the
entropy are, therefore, given by
J~Amax ) 7]~M2/3- (80)
3 3GM?
The divergence of the free energy in the canonical ensemble E=SNT-—x— (83

is more rapid than the divergence of the entropy in the mi-

crocanonical ensemble. This is simply because the free en- 3 3 (24T 3N

ergy is dominated by the divergence of {{p®tentia) energy S/N= — + — In( ) - In( ) ) (84)
while the entropy is dominated by the divergence of the loga- 2 2 m 47R®

rithm of the temperature. For the gerimointsB), we have

in the classical limit In dimensionless variables, these equations can be rewritten
as
agerm—0, A—Agas, J—Jgas. (81 3 3
Using Eq.(42), we find that A=g- 27’ 89
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3

SIN=~3In7. (86)

In the expressiori86) for the entropy, we have not written

the constant term

47R3 [GM )\ 372
W

3N R

3+3| 2m)+I1
E En( m)+In

which plays no role in the problem.

B. The “condensed” phase

PHYSICAL REVIEW E65 056123

3+3| 24T | 3N N RS
272 m | T N aare) | MNa

_ (94)

S=N

*

—(N—N*)In<—

Let a=M, /M denote the fraction of mass contained in the
nucleus. We also introduce the filling factor

R

" 4N (99

yn

We model the “condensed” phase by a nucleus and anvhich can be regarded as an inverse normalized hard-sphere
atmosphere, each of uniform density. The velocity distribu+adius. The case of point masses corresponds to the dimit
tion of the particles is assumed to be Maxwellian with tem-— +. Clearly, u plays the same role as the degeneracy

peratureT. Let R, be the radius of the nucleus ahg. the

parameter in Sec. Il B. In dimensionless form, the equations

number of particles that it contains. We introduce an ex-Of the problem become

cluded volume~ % ra® around each particle, wheeecan be

regarded as the “effective” size of the particléd, andN, :_i 3 53, 3 _ 3,4 \2
are, therefore, related to each other by a relation of the form A 217Jr sua”™t za(l=a)+ 5(1- @)%, (96)
3 _ 3
Ry =4gN,a’, (88) SIN=—2Inyp-3alnp—(1—a)in(l—a), (97)

where g is a geometrical factor with order of magnitude \yhere we have again eliminated the const@m from the

unity that depends on the nature of the close packseg
Ref.[8]). The energy of the core is

3 3G M2
E*—EN*T— 5R, (89
and its entropy
s _N 3+3I 27T | 3N, o0
A ) En m n 47TRi : (90)

For the halo, we have

3GM,(M—M,) 3G(M—M,)?

3
EhaIOZE(N_ N )T—

expression of the entropy. We now determine the mass of the
nucleus by maximizing the entrog97) at fixed energy. This
yields the relation

3,9 213
1+|n(1—a)—3|n,u,=—E+§a7]—,u77a . (98

Equations(96)—(98) determine the equilibrium phase dia-
gram of a classical hard-sphere gas in the framework of our
analytical model. The description of this diagrgland its
dependance on the parameter is similar to the one given

in Sec. V for self-gravitating fermions. The minimum energy
corresponds to the configuration for which all the mass is in
the nucleus at zero temperature. Taking the limit-1 and

n— + in Eq. (96), we get

2R 5R ’
(91) Amam)=2u. (99
3 3 (24T 3(N—N,) For A— Ahax and for sufficiently large values af, Egs.
Shalo=(N=Ny )1 5+ 5'”( s )—In AR (96) and (98) yield
(92
1—a~e #7, AmaX—A~2— (100
As in the case of fermions, we have considered that the vol- 7

ume of the nucleus is much smaller than the volume of th .
7\Iote that the relation between the temperature and the en-

halo. Adding these expressions and using ([B) to express
the radius of the core as a function of its m&ds =N, m,
we obtain for the whole configuration

3NT_ 3Gml’3|v|i’3_ 3GM, (M—M,)
2 5a 2R

3G(M—M, )?
5R ’

(93

ergy is different from the corresponding one for self-
gravitating fermiongsee Eq(46)].

C. Scaling laws in the limit p—+ oo

The derivation of the scaling laws for the critical param-
eters of a classical hard-sphere gas is essentially the same as
for self-gravitating fermiongSec. V Q. We shall directly
give the results without detailed discussion.
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In the microcanonical ensemble, the point of maximum 1 Inu m
energy, corresponding td, (x), is determined by the rela- 1—a,~ na T Ay = Amad )~ — g
tion (110)

2
E ,72(3 _ ga+ﬂa2/3> :Eﬁmafm_ g _ L At the transition poinbzI(/L), the equality of the free en-
37110 5 3 57 1- a(lO]) ergy of the two phases yields
Ep=—-3ainp—(1-a)in(l-a)+ iuna®*+3na(l-
In the limit u— + %, the thermodyanical parameters behave® alnp=(1=a)nl=a)tsuna™zna(l-a)
at the point of maximum energy like +3p(1—a)? (111
1 (Inw)%? n In the limit u— +<0, the temperature of the transition be-
a*“m’ U P *N_W- haves like
(102 In w
At the transition pointA(u), the equality of the entropy M

of the two phases leads to the relation ) . .
P and the fraction of mass contained in the nucleus behaves

—3In7eong—3alinp—(1-a)in(1-a)=—3In Mgas- like
(103)
1
In the limit u— +, the fraction of mass contained in the 1-a~ ; (113

condensate behaves like

1 The energy of the two phases at the transition point is given

a~ m (104 by
. M M
The energy of the transition and the temperature of each Agas™— g’ Acond™ Amad )~ — na (114
phase are given by
and the jump of the energy is
© (Inpw)>
Ay~ (n g Toas™ Teond™ . (109 Acond— Agas™ - (115

For a given temperature, the thermodynamical parameters

The jump in the temperature at the transition point is - : o
Jump P P characterizing the condensate behave, in the lpmit + o,

1 1 “ like
- ~ e (106 .
Meond  Tgas (Inw) l—acong=€ "7, A~Apadp)~p, I~1Anad )
For a given energy, the thermodynamical parameters of M.
the condensate behave, in the limit- +«, like (116)
1 (Inw)5? For the germ, we have
Qcond™ m’ WcondNTi Scona~In p. In 3/2
(107) agern™| — | A—Agas, J—Jgas. (117
For the germ, we have
In 32 D. Comparision with previous works
agermN(T v Ngerm— Ngass  Sgerm— Sgas- Phase transitions in self-gravitating systems were first in-

(108 vestigated with the aid of toy models that could be solved
exactly without recourse to a mean-field approximation. For

In the canonical ensemble, the maximum temperature oéxample, Lynden-Bell and Lynden-BdllL3] considered a
the condensed phase, corresponding.ju), is determined system ofN particles confined to the surface of a sphere of

by the relation variable radius. They calculated exactly the density of states
in the microcanonical ensemble and showed the existence of

E,una‘m— 1 3 277=0 (109 a regioq _with negativ_e specific h_eats. Then, they evaluated

3 1-a 5 ) the partition function in the canonical ensemble and demon-

strated that the region of negative specific heats is replaced
In the limit u— +, the thermodyanical parameters behaveby a remarkable giant phase transition connecting a “gas-
at the point of maximum temperature like eous” phaseat high energiesto a “condensed” phas¢at
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low energies Padmanabhaji] obtained similar results with
a simpler model consisting of only two particles in gravita-

tional interaction confined within a spherical box. The phase
diagram determined by these authors is similar to the one
reported in Fig. 10. These models exhibit a phase transitior
in the canonical ensemble but not in the microcanonical en-

semble(unlike in Fig. 7. This is because, for these simple

models, the density of states remains finite when the small
scale cutoffa is set equal to zero, whereas for more realistic ©
self-gravitating systems, it diverges. By contrast, the parti- E

tion function is divergent foa=0 and this leads to the oc-

currence of a phase transition in the canonical ensemble
when a is sufficiently small. Padmanabhan investigated the
dependance of the critical parameters on the small-scale cut
off a. In particular, he found that the temperature of the tran-

sition is given by

Gn?

Tt:3a In(R/a) (118

This expression qualitatively agrees with our requit?2),
which becomes in dimensional variables

G N2/3m2

T~ 119
' aln(R/aN3) 119

Recall thatN=2 in Padmanabhan’s model. He also com-
puted the change of the energy at the transition point an
found that

1
~ 3In(R/a)

Gm?
a

1 . (120

Egas_ Econd™
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FIG. 23. Equilibrium phase diagram for a hard-sphere gas
obtained in the framework of our analytical model. The parameters
have been chosen so as to correspond to Fig. 2 of Aronson
and Hansen[8]: R=60 km, R=30 km, R=15 km; N
=10°; m=neutron mass 1.67x10 %% g; a=0.4x10"1% cm.
These parameters correspond to a neutron-star-like structure. In our
analytical model, we have adopted a value of the geometrical factor
g=2 [8]. The agreement with the numerical study of Aronson and
Hansen is fairly good. For small raditR=15 km, there is no

hase transition. For larger radiRE30 km, R=60 km), a

hase transition connects the “gaseous” ph@gmper branchto the
“condensed” phasdlower branch. This phase transition forms a
Maxwell plateau(dashed ling at a temperature depending on the
sizeR of the systemaccording to Eqs(111) and(98)]. Dot-dashed
lines represent the free enery=E—TS as a function of the in-
verse temperature for the caBe=60 km. The crossing point de-

This expression also qualitatively agrees with our resultermines the temperature of the transition.

(115), leading to

G N5/3m2
a

(121

Egas_ Econda™

The logarithmic correction in Eq120) is a particularity of
Padmanabhan’s model arising from the low valueNofFi-
nally, Padmanabhan investigated the dependance df(tage
curve with the small-scale cuto#i (see his Fig. 3.2 For
largea, his diagram is similar to that of Fig. 11. In particular,

proach tells nothing about the time scales involved in the
establishement of the equilibrium. A kinetic theory is needed
to settle that point.

Phase transitions in self-gravitating systems have also
been investigated in the mean-field approximation for less
idealized models. Aronson and Hand&j have considered
the case of a classical hard-sphere gas modeled by a van der
Waals equation of state. They considered a relatively large
cutoff and evidenced only the phase transition in the canoni-

there exists a critical short distance cutoff above which thecal ensembléthey obtained a diagram similar to that of Fig.

phase transition disappea¢sicritical point). It should be

10). They also proposed a simple analytical model to de-

stressed that the statistical approach based on the evaluatiseribe this phase transition. In their model, the “gaseous”
of g(E) or Z(B) does not determine the metastable statephase consists ol particles spread with uniform density
unlike the thermodynamical approach based on the maximithroughout the whole container and the “condensed” phase
zation of §p] or J[p]. Only the true equilibrium states, hasall N particles collapsed into a central core of uniform
which correspond to global maxima 8for J, appear in the density. The model that we proposed in Sec. VI is more
T(E) diagram(in other words, the “plateaux” are directly general because we allow the condensate to contain an arbi-
obtained without being required to make a Maxwell con-trary fraction of the total mass. Then, the fraction of mass
struction. These equilibrium states are expected to behat is actually achieved at equilibrium eterminedby
reached fort— +c but they are not necessarily the most maximizing the free energy va. In the canonical ensemble
relevant for astrophysical applications: as discussed previthe only situation discussed by Aronson and Hajstdre
ously, the metastable equilibrium states may be long-livedraction of mass contained in the condensate is close to 1, so
and may correspond to the structures that are actually olihat our precedure provides additional support to their ansatz.
served in the universe. Indeed, the statistical mechanical apdowever, our model allows us to describe also the unstable
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solution with the “germ” (a<1) and to obtain a better rep- and Sommerid6] for an arbitrary degree of degeneracy in
resentation of the whole bifurcation diagrdsee Fig. 23 In  the context of the theory of “violent relaxation.” In Re[f6],
addition, our model can also describe the phase transitions e development of the spiral for high values of the degen-
the microcanonical ensembleccuring for sufficiently small  eracy parameter and the associated phase transition that oc-
values of the cutofft), which was not considered by Aron- Curs in the microcanonical ensemi§ie addition to the more
son and Hansen. well-known phase transition in the canonical en_semWas

The study of Aronson and Hansen was reconsidered bg;learly shown. I-!owever, th(=T point of the trans!tlon was not
Stahlet al.[9] who pointed out that the van der Waals equa_expllcnly determined and this has been done in the present
tion of state does not adequately describe hard-sphere sySUdy-
tems at high densities. They considered a more general equa- _ o
tion of state and studied in detail the case of small filling E. Astrophysical applications
factors for which a phase transition occurs in the microca- The application of the hard-sphere model in astrophysics
nonical ensemble. They also determined numerically the decould concern the fragmentation of the interstellar medium
pendance of the transition temperatdirethe canonical en- and the formation of stars or even smaller objects, such as
semblg as a function of the filling factor and considered planets[9]. These objects would correspond to the “conden-
applications of their results in the context of planet forma-sate” that results from the collapse of a cloud of gas or dust.
tion. On the other hand, the model of self-gravitating fermions

Following the works of Aronson and Hansf8] and Stahl  could have applications for massive neutrinos in dark matter
et al.[9], different authors have attempted to describe phasghodels[16,5], white dwarfs[14], and neutron stargl5,4].
transitions in self-gravitating systems by introducing a small-By cooling below a critical temperature, a condensed phase
scale regularization of the gravitational potential. For ex-emerges consisting of a completely degenerate nucleus sur-
ample, in the study of Follana and Laliefi#], the softening  rounded by a dilute envelope, as extensively studied in early
is achieved by truncating tol terms an expansion of the models of stellar structurfl4]. This model could also be
Newtonian potential in spherical Bessel functions. These awelevant for the “violent relaxation” of collisionless stellar
thors obtained an equilibrium phase diagram similar to theystems, such as elliptical galaxiegl7,6,20. In that case,
one in Fig. 10. However, they could not achieve very largethe exclusion principle is a consequence of the Liouville
values ofN in their study so that they were not able to seetheorem. Since degeneracy can stabilize the system without
the development of the spiréhnd the corresponding phase changing its overall structure at large distances, we have sug-
transition in the microcanonical ensembés N— + . An- gested in Ref[6] that degeneracy could play a role in galac-
other analysis of phase transitions in self-gravitating systemgc nuclei. The recent simulations of Leeuwin and Athanas-
was provided by Youngkins and Millef11] with a one-  soula[32] and the theoretical model of Stiave[lB3] are
dimensional model of concentric spherical mass shells. Thegonsistent with this idea especially if the nucleus of elliptical
studied this system in the microcanonical, canonical, angalaxies contains a primordial massive black hole. Indeed,
grand canonical ensembles, both numerically and analytithe effect of degeneradyn the sense of Lynden-Belbn the
cally, in the mean-field approximation. They found an overalldistribution of stars surrounding the black hole can explain
good agreement between their numerical simulations and thée cusps observed at the center of galaxies. Whether or not
mean-field predictions. They observed phase transitions islliptical galaxies are degenerate remains however a matter
the microcanonical and canonical ensembles but not in thef debate because when the core becomes dense, two-body
grand canonical ensemble in which the system remains hancounters will come into play and break the Liouville theo-
mogeneous. This last result may be, however, an artifact glem (Shu’s criticism[34]). This form of degeneracy mavy,
their one-dimensional model. It is plausible that, in the granchowever, be relevant for massive neutrinos in dark matter
canonical ensemble, the self-gravitating gas fragments in models where it competes with quantum degenefa6éy. In
series of clumpgat different scalgs as observed in cosmol- fact, the thermal equilibrium distribution of massive neutri-
ogy and for the interstellar medium. Some theoretical argunos in dark matter models might be justified more by the
ments in favor of this scenario have been given by Semeliprocess of “violent relaxation” than by a collisional relax-
et al.[30] and Chavani$25]. Of course, to study the devel- ation. Indeed, the time scale of gravitational two-body en-
opment of these clumps, it is necessary to extend the thetounters for neutrinos is extremely long so that the criticism
modynamical analysis to the full three-dimensional problenyaised by Shu does not appl$5,19. Therefore, the com-
and relax the assumption of spherical symmetry. monly adopted Fermi-Dirac distribution of self-gravitating

The thermodynamics of self-gravitating fermions was in-neutrinos might be due to Lynden-Bell’s type of degeneracy
vestigated by Lynden-Bell and Wood and Hertel and Thirringrather than due to quantum mechanics. Anyway, whatever
in the early 1970¢see the discussion of Aronson and Hansenthe source of the exclusion principleynden-Bell or Paul
[8]), but these papers were apparently not published. In Refs.
[4,7], it is proved that a rigorous thermodynamic limit exists
for self-gravitating fermions but the corresponding phase 1in fact, the problem is complicated because violent relaxation
diagram is not explicitly given. This equilibrium phase dia- eventually fades before the maximum entropy state is attained.
gram was calculated by Bilic and Violli¢b] for a particular ~ Thus, Eq.(6) [or Eq.(7)] is unlikely to be reached throughout the
value of the degeneracy parameter adapted to a cosmologiaghole cluster. However, it is reasonable to hold in the central region
settling. It was also calculated independantly by Chavanisn which violent relaxation occurs most violenfl§7,31.
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the self-gravitating Fermi-Dirac model predicts the forma-the order parameter experiences a rapid variation in the re-
tion of a dense degenerate nuclefisrmion bal) with a  gion of negative specific heatbut remains continuolis
small radius and a large maF5,6]. As suggested in Refs. Similar phase transitions occur in the canonical ensemble. It
[5,36], this dense degenerate nucleus could be an alternativé interesting that these phase transitions can be understood
to black holes at the center of galaxies. On the other hand, &tith the aid of a simple analytical model that allows one to
large distances, the density of the self-gravitating Fermi gagéetermine the dependance of the thermodynamical param-
decays liker ~2, which is a condition that dark galactic halos €ters with the cut-off value. The present study can be ex-
must fulfill in order to reproduce the flat rotation curves of tended to include rotatiop38]. It is also important to de-
spiral galaxie$22]. Therefore, this model of self-gravitating velop nonequilibrium models to determine the structure of

fermions has a chance to account for the structure of darH1e basin of attraction _Of the _equnlbrlu_m states Wh.e” Sev-
matter in galactic halos. eral entropy maxima exist. A first step in that direction was

made by Youngkins and Millef11] and by Chavanit al.
[26] with the aid of simplified dynamical models. These
Vil. CONCLUSION models could be used, in particular, to investigate numeri-

In this paper, we have described the inequivalence of stacally the occurrence of the phase transitions and the robgst-
tistical ensembles and the nature of phase transitions in selfless of the metastable states. If the system is placed in a
gravitating systems by considering the case of Se|f_.metastable stat@ocal entropy ma}X|mum it W|Il_eventually
gravitating fermions or the case of a classical hard-spher®/Mp to the global entropy maximum, but this can take an
gas. The introduction of an effective repulsion at short disinfinite (physically irrelevant time. Indeed, the probability
tances avoids the singularity of the “naked” gravitational that a fluctuation will allow the phase transition t'o.develqp iS
potential. It is likely that similar results will be obtained with €xpected to be extremely logexcept near the critical point
different forms of regularization. For large values of the cut-Ac) [37]. Therefore, if the system is trapped in a metastable
off &, there are no phase transitions. For intermediate valuegate(but still slowly evolving along the series of equilibrium
of a, phase transitions occur in the canonical ensemble by l0sing mass or energy, such as for globular clugtene
not in the microcanonical ensemble. The Correspondin@hase transition will occur at the critical pOLm: rather than
phase diagram is of the type of Fig. 10 and has been foundt A¢. However, if the system is initially far from equilib-
by various author8,5,6,10. For smaller values o, phase fium, there is no simple criterion to decidepriori whether
transitions occur both in the canonical and in the microcait will converge towards the local or the global entropy maxi-
nonical ensemble. The corresponding phase diagram is of tHeum. Only direct numerical simulations can answer this
type in Fig. 7 and was first obtained in Réb]. As the question and sketch the structure of the basin of attraction for
small-scale cutoff is decreased, figE) curve winds up and ~ Self-gravitating systems.
tends to the classical spiral far—0 (see Fig. L

Depending on the value of the cutddf and of the en- ACKNOWLEDGMENTS
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entropy maxima. This transition is marked by a discontinuity
of the temperature and of the specific heats. In the lanit APPENDIX: ENTROPY OF THE SELF-GRAVITATING
—0, the transition energy is rejected tb>, so that the FERMI GAS
stable (gaseous solutions of the classical spiral are only
metastable These states may be physical, depending on In this Appendix, we give the main steps for deriving the
whether the initial condition lies in their “basin of attrac- €xpressior{17) for the entropy. Substituting the Fermi-Dirac
tion” or not [6,11,26. However, the metastable branch dis- distribution
appears at a critical enerdy,, discovered by Antonoy2],
at which the “gravothermal catastroph€3] occurs. This Mo
collapse can be considered as a zeroth order phase transition f= m,
since it is associated with a discontinuity of entropy. For
larger values ofa, there is only one entropy maximum for )
each value of energ§Fig. 10 and the previously described in the entropy(5) we obtain after some rearrangements
phase transitions are suppressed. However, as we progres-

(A1)

sively decrease the energy, the self-gravitating gas achieves B 3

higher and higher density contrasts and builds up a compact 70S=MInk+ | pydr+Kp

core containing more and more mass. This gravitational L

“clustering” can be called a second order phase transition j L w22 43,43

since the specific heats diverges at the critical pajnand T | Inj 1+ ke € drd’v.  (A2)
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The last integral can be integrated by parts yielding the value

2BK/3. Therefore,

5
70S=M Ink+ f pyd®r + 3KB. (A3)
Using the definition ofy, we get
70S=M Ink+2B8W—M Bd,+ KA. (A4)
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Using Eq.(3.12 of Chavanis and Sommer[#] to express
the potential energyV and the kinetic energi=E—W in
terms ofE, we find

37]0 7 2 alo W(a)
Vzlnk-i-r]-i-l//(a’)—§A7]—§77F|3/2(ke ).

(A6)

Now, the central density is determined by the relationFinally, usingn= u? «*, resulting from Eqs(13) and(15),

#(a) = B(®(R)— d,) with ®(R)= — GM/R. Hence

we obtain Eq.(17).
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