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Quantum field theory of forward rates with stochastic volatility
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~Received 24 October 2001; published 20 May 2002!

In a recent formulation of a quantum field theory of forward rates, the volatility of the forward rates was
taken to be deterministic. The field theory of the forward rates is generalized to the case of stochastic volatility.
Two cases are analyzed, first when volatility is taken to be a function of the forward rates, and second when
volatility is taken to be an independent quantum field. Since volatility is a positive valued quantum field, the
full theory turns out to be an interacting nonlinear quantum field theory in two dimensions. The state space and
Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the
manifold moving with a constant velocity. The no arbitrage condition is reformulated in terms of the Hamil-
tonian of the system, and then exactly solved for the nonlinear interacting case.
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I. INTRODUCTION

Forward rates are essential to the debt market, and h
wide-ranging applications in finance. The most widely us
model of the forward rates is the Heath-Jarrow-Mort
~HJM! model@1#. There are a number of ways that the HJ
model can be generalized. In Refs.@2# and @3# a correlation
between forward rates with different maturities was int
duced, and in Refs.@4# and@5# the forward rate was modele
as a stochastic string.

The application of techniques of physics to finance@6,7#
have proved to be a fruitful field; in particular, path integr
techniques@8# have been applied to various problems in
nance. In Ref.@9# path integral techniques were applied
study the case of a security with stochastic volatility. In R
@10# the HJM model was generalized by treating the forwa
rates as a quantum field; empirical studies in Ref.@11# show
that the field theoretic model for the forward rates propo
in Ref. @10# fits market data fairly well.

The volatility of the forward rates is a central measure
the degree to which the forward rates fluctuate. In the mo
studied in Ref.@10#, the volatility of the forward rates wa
taken to be deterministic. The question naturally arises a
whether the volatility itself should be considered to be
randomly fluctuating quantity. The volatility of volatility is
an accurate measure of the degree to which volatility is r
dom. Market data for the Eurodollar futures provides a fai
accurate estimate of the forward rates for the US dollar,
also yields its volatility of volatility of the forward rates.

Eurodollar futures data given in Fig. 1 plots the 30 da
moving average of the volatility of volatility for the forwar
rates, and shows that it contributes about 0.0006–0.0007
year to the forward rates, which are in the neighborhood
0.05–0.06 per year. The fluctuations in the volatility of t
forward rates are about 10% of the forward rates, and he
significant.

We conclude from the data that the volatility of the fo
ward rates needs to be treated as a fluctuating quantum~sto-
chastic! field. The widely studied HJM model@1# has been
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further developed in Ref.@12# ~and references cited therein!
to account for stochastic volatility. Amin and Ng@13# studied
the market data of Eurodollar options to obtain the impli
forward rate volatility and Bouchaudet al. @14# analyzed the
future contracts for the forward rates. Both references c
cluded that many features of the market, and in particular
~stochastic! volatility of forward rate curve, could not be
fully explained in the HJM framework.

The model for the forward rates proposed in Ref.@10# is a
field theoretic generalization of the HJM model, and so it
natural to extend the field theory model to account for s
chastic volatility of the forward rates. In contrast to quantu
field theory, the formulation of the forward rates as a s
chastic string@4,5# cannot be extended to the case whe
volatility is stochastic due to nonlinearites inherent in t
problem.

The forward rates are the collection of interest rates fo
contract entered into at timet for an overnight loan at time
x.t. At any instantt, there exist in the market forward rate
for a duration ofTFR in the future; for example, ift refers to
present timet0, then one has forward rates fromt0 until time

FIG. 1. The volatility of the volatility of the forward rates~std:
standard deviation!.
©2002 The American Physical Society22-1
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FIG. 2. DomainP of the forward rates.
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t01TFR in the future. In the market,TFR is about 30 yr, and
hence we haveTFR.30 yr. In general, at any timet, all the
forward rates exist till timet1TFR @10#. The forward rates a
time t are denoted byf (t,x), with t,x,t1TFR , and con-
stitute the forward rate curve.

Since at any instantt there are infinitely many forward
rates, it resembles a~nonrelativistic! quantum string. Hence
we need an infinite number of independent variables to
scribe its random evolution. The generic quantity describ
such a system is a quantum field@15#. For modeling the
forward rates and treasury bonds, we consequently nee
study a two-dimensional quantum field on a finite Euclide
domain.

We consider the forward ratesf (t,x) to be a quantum
field; that is, f (t,x) is taken to be anindependentrandom
variable for eachx and eacht. For notational simplicity we
consider botht andx continuous, and discretize these para
eters only when we need to discuss the time evolution of
system is some detail.

In Sec. II, we briefly review the quantum field theore
formulation given in Ref.@10# of the forward rates with de
terministic volatility. In Sec. III the case of stochastic vol
tility is analyzed, and which can be done intwo different
ways. First, volatility can be considered to be a function
the ~stochastic! forward rates, and second, volatility can b
considered to be an independent quantum field. Both th
cases are analyzed. The resulting theories are seen t
highly nontrivial nonlinear quantum field theories.

In Sec. IV the underlying state space and operators of
forward rates quantum field is defined. In particular, the g
erator of infinitesimal time evolution of the forward rate
namely, the Hamiltonian, is derived for the two cases of s
chastic volatility. In Sec. V the Hamiltonian for the forwar
rates with stochastic volatility is derived. In Sec. VI a Ham
tonian formulation of the martingale condition is derived.
Sec. VII the martingale constraint for the case of stocha
volatility is solved exactly using the Hamiltonian formula
tion. And lastly, in Sec. VIII the results obtained are d
cussed, and some remaining issues are addressed.

II. LAGRANGIAN FOR FORWARD RATES WITH
DETERMINISTIC VOLATILITY

We first briefly recapitulate the salient features of the fi
theory of the forward rates with deterministic volatility@10#.
For the sake of concreteness, consider the forward rates s
05612
e-
g

to
n

-
e

f

se
be

e
-

-

ic

rt-

ing from some initial timeTi to a future timet5Tf . Since
all the forward ratesf (t,x) are always for the future, we
havex.t; hence the quantum fieldf (t,x) is defined on the
domain in the shape of a parallelogramP that is bounded by
parallel linesx5t and x5TFR1t in the maturity direction,
and by the linest5Ti and t5Tf in the time direction, as
shown in Fig. 2. Every point inside the domainP represents
an independent integration variablef (t,x).

The field theory interpretation of the evolution of the fo
ward rates, as expressed in the domainP, is that of a~non-
relativistic! quantum string moving with unit velocity in the
x ~maturity! direction.

Since we know from the HJM model that the forwa
rates have a drift velocitya(t,x) and volatilitys(t,x), these
have to appear directly in the Lagrangian for the forwa
rates. To define a Lagrangian, we first need a kinetic te
denoted byLkinetic, which is necessary to have a standa
time evolution for the forward rates.

We need to introduce another term to constrain the cha
of shape of the forward rates in the maturity direction. T
analogy of this in the case of an ordinary string is a poten
term in the Lagrangian, which attenuates sharp change
the shape of the string, since the shape of the string st
potential energy. To model a similar property for the forwa
rates we cannot use a simple tensionlike term (] f /]x)2 in the
Lagrangian since, as we will show in Sec. VII, this term
ruled out by the martingale condition.

The martingale condition requires that the forward ra
Lagrangian contain higher-order derivative terms, essenti
a term of the form (]2f /]x]t)2; such string systems hav
been studied in Ref.@16# and are said to be strings with finit
rigidity. Such a term yields a term in the forward rates L
grangian, namely,Lrigidity , with a new parameterm; the ri-
gidity of the forward rates is then given by 1/m2 and quan-
tifies the strength of the fluctuations of the forward rates
the time-to-maturity directionx. In the limit of m→0, we
recover~upto some rescalings! the HJM model, and which
corresponds to an infinitely rigid string. The action for th
forward rates is given by

S@ f #5E
Ti

Tf
dtE

t

t1TFR
dxL@ f # ~1!

[E
P
L@ f #, ~2!
2-2
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QUANTUM FIELD THEORY OF FORWARD RATES WITH . . . PHYSICAL REVIEW E65 056122
with the Lagrangian densityL@ f # given by

L@ f #5Lkinetic@ f #1Lrigidity@ f #

52
1

2
F H ] f ~ t,x!

]t
2a~ t,x!

s~ t,x!
J 2

1
1

m2
H ]

]x
S ] f ~ t,x!

]t
2a~ t,x!

s~ t,x!
D J 2G ~3!

2`< f ~ t,x!<1`. ~4!

The presence of the second term in the action given in
~3! is not ruled out by no arbitrage@14#, and an empirical
study@11# provides strong evidence for this term in the ev
lution of the forward rates.

In summary, we see that the forward rates behave lik
quantum string, with a time and space dependent drift ve
ity a(t,x), an effective mass given by 1/s(t,x), and string
rigidity proportional to 1/m2.

Since the field theory is defined on a finite domainP as
shown in Fig. 2, we need to specify the boundary conditio
on all the four boundaries of the finite parallelogramP.

Fixed (Dirichlet) initial and final conditions. The initial
and final ~Dirichlet! conditions in the time direction ar
given by

Ti~Tf !,x,Ti~Tf !1TFR , ~5!

wheref (Ti ,x) and f (Tf ,x) are the specified initial and fina
forward rate curves, respectively.

Free (Neumann) boundary conditions. To specify the
boundary condition in the maturity direction, one needs
analyze the action given in Eq.~1! and impose the condition
that there be no surface terms in the action. A straightforw
analysis yields the following version of the Neumann con
tion

Ti,t,Tf ,
]

]x
S ] f ~ t,x!

]t
2a~ t,x!

s~ t,x!
D 50, ~6!

x5t or x5t1TFR . ~7!

The quantum field theory of the forward rates is defined
the Feynman path integral by integrating over all configu
tions of f (t,x), and yields

Z5E D f eS[ f ] , ~8!

E D f [ )
(t,x)eP

E
2`

1`

d f~ t,x!. ~9!

Note thateS[ f ] /Z is the probability for different field con-
figurations to occur when the functional integral overf (t,x)
is performed.
05612
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III. LAGRANGIAN FOR FORWARD RATES WITH
STOCHASTIC VOLATILITY

To render the volatility functions(t,x) stochastic, in the
formalism of quantum field theory, requires that we elev
s(t,x) from a deterministic function into random function
namely, into a quantum field. There are essentially two w
of elevating volatility to a stochastic quantity, namely,
either~a! consider it be a function of the forward ratef (t,x),
or else~b! to consider it to be another independent quant
field s(t,x). We study both these possibilities.

A. Volatility as a function of the forward rates

We consider the first case where volatility is render
stochastic by making it a function of the forward rates@13#.
The standard models using this approach consider that v
tility is given by

s„t,x, f ~ t,x!…5s0~ t,x! f n~ t,x!, ~10!

s0~ t,x! ~deterministic function!. ~11!

Since volatility s(t,x).0, we must havef (t,x).0.
Hence, in contrast to Eq.~4!, we have

f ~ t,x!5 f 0ef(t,x).0, 2`<f~ t,x!<1`. ~12!

Having f (t,x).0 is a major advantage of the model since
the financial markets forward rates are always positive. In
limit of m→0, the following HJM models are covered b
Eq. ~10!, and these models have been discussed from
empirical point of view in Ref.@13#. ~1! Ho and Lee~1986!
model, s„t,x, f (t,x)…5s0; ~2! CIR ~1985!, s„t,x, f (t,x)…
5s0f 1/2(t,x); ~3! Courtadon ~1982!, s„t,x, f (t,x)…
5s0f (t,x); ~4! Vasicek ~1977!, s„t,x, f (t,x)…5s0 exp
@2l(x2t)#; ~5! linear proportional HJM ~1992!,
s„t,x, f (t,x)…5@s01s1(x2t)# f (t,x)].

How do we generalize the Lagrangian given in Eq.~3! to
a case where the forward rates are always positive? We
terpret the Lagrangian given in Eq.~3! to be an approximate
one that is valid only if all the forward rates are close
some fixed valuef 0. We then have

] f ~ t,x!

]t
5 f 0ef(t,x)

]f~ t,x!

]t
~13!

. f 0

]f~ t,x!

]t
1O~f2!. ~14!

Hence we make the following mapping:

] f ~ t,x!

]t
→ f 0

]f~ t,x!

]t
. ~15!

Equation~3! then generalizes to
2-3
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L@f#5Lkinetic@f#1Lrigidity@f#

52
1

2
F H f 0

]f~ t,x!

]t
2a~ t,x!

s0~ t,x!enf(t,x)
J 2

1
1

m2
H ]

]x
S f 0

]f~ t,x!

]t
2a~ t,x!

s0~ t,x!enf(t,x)
D J 2G . ~16!

We will show later—in deriving the Hamiltonian—that th
system needs a nontrivial integration measure. We hence
fine the theory by the Feynman path integral

Z5E Df f 2neS[f] , ~17!

E Df f 2n[ )
(t,x)eP

E
2`

1`

df~ t,x! f 2n~ t,x!. ~18!

The boundary conditions given forf (t,x) in Eqs.~5! and~6!
continue to hold for stochastic volatility Lagrangian given
Eq. ~16!.

B. Volatility as an independent quantum field

We consider the second case where volatilitys(t,x) is
taken to be anindependent~stochastic! quantum field. Since
one can only measure the effects of volatility on the forwa
rates, all the effects of stochastic volatility will be manifest
only via the behavior of the forward rates.

For simplicity, we consider the forward rate to be a qua
tum field as given in Eq.~4! with

f ~ t,x!, 2`< f ~ t,x!<1`. ~19!

Since the volatility functions(t,x) is always positive,
that is, s(t,x).0, we introduce another quantum fie
h(t,x) by the following relation~the minus sign is taken fo
notational convenience!:

s~ t,x!5s0e2h(t,x), 2`<h~ t,x!<1`. ~20!

The system now consists oftwo interacting quantum fields,
namely, f (t,x) and h(t,x). The interacting system’s La
grangian should have the following features.

A parameterj that quantifies the extent to which the fie
h(t,x) is not deterministic. A limit ofj→0 would, in effect,
‘‘freeze’’ all the fluctuations of the fieldh(t,x), and reduce it
to a deterministic function.

A parameterk to control the fluctuations ofh(t,x) in the
maturity direction similar to the parameterm that controls
the fluctuations of the forward ratesf (t,x) in the maturity
directionx.

A parameterr with 21<r<11 that quantifies the cor
relation of the forward rates’ quantum fieldf (t,x) with the
volatility quantum fieldh(t,x).

A drift term for volatility, namely, b(t,x)—which is
analogous to the drift terma(t,x) for the forward rates.
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The Lagrangian for the interacting system is not uniq
there is a wide variety of choices that one can make to fu
all the conditions given above. A possible Lagrangian for
interacting system, written by analogy with the Lagrangi
for the case of stochastic volatility for a single security@9#, is
given by

L52
1

2~12r2!
S ] f

]t
2a

s
2r

]h

]t
2b

j
D 2

2
1

2
S ]h

]t
2b

j
D 2

2
1

2m2
F ]

]x
S ] f

]t
2a

s
D G 2

2
1

2k2
F ]

]x
S ]h

]t
2b

j
D G 2

,

~21!

with action

S@ f ,h#5E
P
L. ~22!

We need to specify the boundary conditions for the int
acting system. The initial and final conditions for the forwa
rates f (t,x) given in Eq.~5! continue to hold for the inter-
acting case, and are similarly given for the volatility field
the following.

Fixed (Dirichlet) initial and final conditions. The initial
value is specified from data, that is,

Ti~Tf !,x,Ti~Tf !1TFR , ~23!

wheres(Ti ,x) ands(Tf ,x) are the specified initial and fina
volatility curves, respectively.

The boundary condition in thex direction for the forward
ratesf (t,x)—as given in Eq.~6!—continues to hold for the
interacting case, and for volatility field is similarly given b
the following.

Free (Neumann) boundary conditions.

Ti,t,Tf ,
]

]x S ]h~ t,x!

]t
2b~ t,x! D50, ~24!

x5t or x5t1TFR . ~25!

On quantizing the volatility fields(t,x) the boundary con-
dition for the forward ratef (t,x) given in Eq.~6! is rather
unusual. On solving the no arbitrage condition, we will fin
that a is a ~quadratic! functional of the volatility field
s(t,x); hence the boundary condition Eq.~6! is a form of
interactionbetween thef (t,x) ands(t,x) fields.

We need to define the integration measure for the qu
tum field h(t,x); the derivation of the Hamiltonian for the
system dictates the following choice for the measu
namely,
2-4
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FIG. 3. Lattice in time and maturity direction.
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E D f Ds215 )
(t,x)eP

E
2`

1`

d f~ t,x!ds21~ t,x! ~26!

5 )
(t,x)eP

E
2`

1`

d f~ t,x!dh~ t,x!eh(t,x). ~27!

The partition function of the quantum field theory for th
forward rates with stochastic volatility is defined by Fey
man path integral as

Z5E D f Ds21eS[ f ,h] . ~28!

The ~observed! current market value of any financial de
rivative, sayO@ f ,h#, is expressed as theaverage valueof the
instrument—denoted bŷO@ f ,h#&—taken over all possible
values of the quantum fieldsf (t,x) and h(t,x), with the
probability density given by the~appropriately normalized!
action. In symbols

^O@ f ,h#&5
1

ZE D f Ds21O@ f ,h#eS[ f ,h] . ~29!

We consider the limit of the volatility being reduced to
deterministic function. For this limit we havej,r, and k
→0. The kinetic term of theh(t,x) field in the action given
in Eq. ~22! has the limit~upto irrelevant constants!

lim
j→0

)
t,xeP

expH 2
1

2EP
S ]h

]t
2b

j
D 2J → )

t,xeP
dS ]h

]t
2b D ,

~30!

which implies that

^s~ t,x!&5s0^e
2h(t,x)& ~31!

5s0 expH 2E
t0

t

dt8b~ t8,x!J 1O~j,k,r!.

~32!

IV. HAMILTONIAN AND STATE SPACE

The Feynman path integral formulation given in Eqs.~17!
and ~28! is useful for calculating the expectation values
quantum fields. To study questions related to the time ev
tion of quantities of interest, one needs to derive the Ham
tonian for the system from its Lagrangian. Note the route t
05612
f
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we are following is opposite to the one taken in Ref.@9#
where the Lagrangian for a stock price with stochastic vo
tility was derived starting from its Hamiltonian.

The state space of a field theory is a linear vector spac
denoted byV—that consists of functionals of the field con
figurations at some fixed timet. ~A brief discussion of the
state space is given in Ref.@9#.! The dual space of
V—denoted byVdual—consists of all linear mappings fromV
to the complex numbers, and is also a linear vector sp
Let an element ofV be denoted byug& and an element of
Vdual by ^pu; then^pug& is a complex number. We will refe
to both V and Vdual as the state space of the system. T
Hamiltonian H is an operator—the quantum analog
energy—that is an element of the tensor product spacV
^ Vdual. The matrix elements ofH are complex numbers
and given bŷ puHug&.

In this section, we study the features of the state space
Hamiltonian for the forward rates. For notational brevity, w
consider the forward rates quantum fieldf (t,x) to stand for
both the quantum fieldsf (t,x) and h(t,x). Since the La-
grangian for the forward rates given in Eq.~21! has only first
order derivatives in time, an infinitesimal generator, name
the HamiltonianH exists for it. Obtaining the Hamiltonian
for the forward rates is a complicated exercise due to
nontrivial structure of the underlying domainP. In particular,
the forward rates quantum field will be seen to have a d
tinct state spaceVt for every instantt.

For greater clarity, we discretize both time and matur
time into a finite lattice, with lattice spacing in both dire
tions taken to bee. ~For a string moving with velocityv, the
maturity lattice would have spacing ofve.! On the lattice,
the minimum time for futures contract is timee; for most
applicationse51 day. The points comprising the discre
domainP̃ are shown in Fig. 3.

The discrete domainP̃ is given by

~ t,x!→e~n,l !, n,l ~ integers!, ~33!

~Ti ,Tf ,TFR!→e~Ni ,Nf ,NFR!, ~34!

lattice P̃5$~n,l !uNi<n<Nf ; n< l<~n1NFR!%,
~35!

f ~ t,x!→ f n,l , ~36!

] f ~ t,x!

]t
.

f n11,l2 f n,l

e
,

] f ~ t,x!

]x
.

f n,l 112 f n,l

e
. ~37!
2-5
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The partition function is now given by a finite multipl
integral, namely,

Z5 )
(n,l )eP̃

E d fn,le
S[ f ] , ~38!

S5(
n

S~n!. ~39!

Consider two adjacent time slices labeled byn andn11,
as shown in Fig. 4.S(n) is the action connecting the forwar
rates of these two time slices.

As can be seen from Fig. 4, for the two time slices there
a mismatch of the two-lattice sites on the edges, nam
lattice sites (n,n) at time n and (n11,n111NFR) at time
n11 are not in common. We isolate the unmatched variab
and have the following. Variables at timen,

$ f n,n ,F̃n%, F̃n[$ f n,l un11< l<n1NFR%. ~40!

Variables at time (n11),

$Fn , f n11,n111NFR
%, Fn[$ f n11,l un11< l<n1NFR%.

~41!

Note that although the variablesFn refer to timen11, we
label them with earlier timen for later convenience. From
Fig. 4 we see that bothsets of variables Fn andF̃n cover the
same lattice sites in the maturity direction, namely,n11
< l<n1NFR , and hence have the same number of forw
rates, namely,NFR21. The Hamiltonian will be expressibl
solely in terms of these variables.

From the discretized time derivatives defined in Eq.~36!
the discretized actionS(n) contains terms that couple onl
the common points in the lattice for the two time slice
namely, the variables belonging to the setsF̃n ;Fn . We hence
have for the action

S~n!5e(
$ l %

Ln@ f n,l , f n11,l # ~42!

5e(
$ l %

Ln@ F̃n ;Fn#. ~43!

As shown in Fig. 5, the action for the entire domainP̃
shown in Fig. 3 can be constructed by repeating the const
tion given in Figure 4 and summing over the actionS(n)
over all timeNi<n<Nf .

The Hamiltonian of the forward rates is an operator t
acts on the state space of states of the forward rates
hence need to determine the coordinates of its state spa

FIG. 4. Two consecutive time slices fort5ne and t5(n11)e.
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Consider again the two consecutive time slicesn and n
11 given in Fig. 4. We interpret the forward rates for tw
adjacent instants, namely,$ f n,n ,F̃n% and$Fn , f n11,n111NFR

%
given in Eqs.~40! and~41!, respectively—and which appea
in the action Eq.~42!—as the coordinates of the state spac
Vn andVn11, respectively.

For every instant of timen there is a distinct state spac
Vn , and its dualVdual,n . The coordinates of the state spac
Vn andVn11 are given by the tensor product of the space
state for every maturity pointl, namely,

^ f̃ nu5 ^ n< l<n1NFR
^ f n,l u

[^ f n,nu^F̃nu ~coordinate state ofVDual,n!, ~44!

u f n11&5 ^ (n11)< l<n111NFR
u f n11,l&

[uFn&u f n11,n111NFR
& ~coordinate state ofVn11!.

~45!

The state vectoruFn& belongs to the spaceVn11, but we
reinterpret it as corresponding to the state spaceFn at earlier
time n. This interpretation allows us to study the syste
instantaneously using the Hamiltonian formalism.

The state spaceVn consists of all possible functions o
NFR forward rates$ f n,n ,F̃n%. The state spacesVn differ for
different n by the fact that a different set of forward rate
comprise its set of independent variables.

Although the state spacesVn andVn11 are not identical,
there is an intersection of these two spaces, nam
VnùVn11 that covers the same interval in the maturity dire
tion, and is coupled by the actionS(n). The intersection
yields a state space, namely,Fn , on which the Hamiltonian
evolution of the forward rates takes place. In symbols,
have

Vn115Fn^ u f n11,n111NFR
&, ~46!

Vdual,n5^ f n,nu ^ Fdual,n , ~47!

Hn , Fn→Fn⇒HnPVdual,n^ Vn11 . ~48!

The HamiltonianHn is an element on the tensor produ
space spanned by the operatorsuFn&^F̃nu, namely, the space
of operators given byFn^ Fdual,n .

The vector spacesVn and the HamiltonianHn acting on
these spaces are shown in Fig. 6.

FIG. 5. Reconstructing the lattice from the two time slices.
2-6
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QUANTUM FIELD THEORY OF FORWARD RATES WITH . . . PHYSICAL REVIEW E65 056122
Note that both the statesuFn& and^F̃nu belong to the same
state spaceFn , and we use tilde to indicate that the tw
states aredifferent; in contrast, for example, the two state
u f & and ^ f u indicate that one state is the dual of the other

As one scans through all possible values for the forw
ratesf and f̃ , one obtains a complete basis for the state sp
Vn . In particular, the resolution of the identity operator f
Vn—denoted byIn—is a reflection that the basis states a
complete, and is given by@9#

In5 )
n< l<n1NFR

E d fn,l u f n&^ f nu ~49!

[E d fn,ndF̃nu f n,n ;F̃n&^ f n,n ;F̃nu. ~50!

The Hamiltonian of the systemH is defined by the Feyn
man formula~upto a normalization!, from Eq. ~42!, as

rn expS e(
$ l %

Ln@ f n,l , f n11,l # D
5^ f n,n ,F̃nue2eHnuFn , f n11,n111NFR

&, ~51!

where in generalrn is a field-dependent measure term. Usi
the property of the discrete action given in Eq.~43!, we have

rn expS e(
$ l %

Ln@Fn ,F̃n# D
5^ f n,n ,F̃nue2eHnuFn , f n11,n111NFR

& ~52!

5^F̃nue2eHnuFn&. ~53!

Equation~53! is the main result of this section.
In going from Eq.~52! to Eq. ~53! we have used the fac

that the action connecting time slicesn and n11 does not
contain the variablesf n,n and f n11,n111NFR

, respectively.

This leads to the result that the HamiltonianHn consequently
does not depend on these variables.

The interpretation of Eq.~53! is that the HamiltonianHn

propagates the initial statêF̃nu in time e to the final state
uFn&. Note the relation

^ f n,n ,F̃nue2eHnuFn , f n11,n111NFR
&5^F̃nue2eHnuFn&

~54!

FIG. 6. HamiltoniansHn propagating the space of forward rat
Vn .
05612
d
ce

shows that there is an asymmetry in the time direction, w
the Hamiltonian beingindependentof the earliest forward
rate f n,n of the initial state and of thelatest forward rate
f n11,n111NFR

of the final state. It is thisasymmetryin the
propagation of the forward rates which yields the paralle
gram domainP given in Fig. 2, and reflects the asymmet
that the forward ratesf (t,x) exist only forx.t.

For notational simplicity, we henceforth use continuu
notation; in particular, the state space is labeled byVt , and
state vector byu f t&. The elements of the state space of t
forward ratesVt includes all the financial instruments that a
traded in the market at timet. In continuum notation, from
Eq. ~45!, we have that

u f t&5 ^ t<x<t1TFR
u f ~ t,x!&, ~55!

uFt&5 ^ t,x<t1TFR
u f ~ t,x!&. ~56!

In continuum notation, the only difference between state v
tors u f t& and uFt& is that, in Eq.~56!, the pointx5t is ex-
cluded in the continuous tensor product.

The partition functionZ given in Eq.~38! can be recon-
structed from the Hamiltonian by recursively applying t
procedure discussed for the two time slices. We then have
continuum notation, that

Z5E D f eS[ f ] ~57!

5^ f initialuTH expS 2E
Ti

TfH~ t !dtD J u f final&, ~58!

where the symbolT in the equation above stands for tim
ordering the~noncommuting! operators in the argument, wit
the earliest time being placed to the left.

A. Bond state vectors

The most important state vectors in finance are those
the coupon and zero coupon bonds. Consider a risk-free
coupon treasury bond that matures at timeT with a payoff of
$1. The price of the bond at timet,T is given by

P~ t,T!5e2* t
Tf (t,x)dx[P@ f ;t,T#. ~59!

The state vectoruP(t,T)& is an element of the state spac
Vt . We write the bond state vector as follows:

P~ t,T![^ f tuP~ t,T!& ~60!

5e2* t
Tf (x)dx. ~61!

Another state vector is the coupon bonduB&, with payoff
of amountcl at timeTl , with a final payoff ofL at timeT.
We then have that the state vector of the coupon bon
linear superposition of the zero coupon bonds and is gi
by
2-7



i

o
its

m

c-
io
th

y

an
e

ar

in

BELAL E. BAAQUIE PHYSICAL REVIEW E 65 056122
uB~ t !&5(
l

cl uP~ t,Tl !&1LuP~ t,T!&. ~62!

V. HAMILTONIAN FOR THE FORWARD RATES WITH
STOCHASTIC VOLATILITY

We have obtained a general expression for the Ham
tonian in terms of the actionSas given in Eq.~53!, and need
to apply this formula to the case of the specific Lagrangian
the forward rates to obtain the explicit expression for
HamiltonianH.

From Eq.~53! we have the following:

rneS(n)5rn expS e(
$ l %

Ln@Hn ,H̃n ;Fn ,F̃n# D ~63!

5^F̃n ;H̃nue2eHnuFn ;Hn&, ~64!

where we have explicitly included the volatility quantu
field h(t,x) in the equation above.

For notational simplicity, we consider the maturity dire
tion x to be continuous, and consider only the time direct
to be discrete. In the continuum notation, the subtleties of
variables at timet and t1e are accounted for by carefull
analyzing the variables appearing on theboundariesof the
interval @ t<x<t1TFR#. We have, for the actionS(n) for
time t5ne, the following:

S~n!5eE Ln~ t,x!, ~65!

E [E
t

t1TFR
dx. ~66!

A. Hamiltonian for the forward rates with stochastic volatility

As a warm-up exercise, we first obtain the Hamiltoni
for the simpler case of the volatility being a function of th
forward rates. Recall that the Lagrangian for this system
given by

L@f#5Lkinetic@f#1Lrigidity@f#

52
1

2
F H f 0

]f~ t,x!

]t
2a~ t,x!

s0~ t,x!enf(t,x)
J 2

1
1

m2
H ]

]x
S f 0

]f~ t,x!

]t
2a~ t,x!

s0~ t,x!enf(t,x)
D J 2G . ~67!

On discretizing the Lagrangian we obtain, using bound
condition Eq.~6!, that

S~n!5eE Ln52
1

2eE AS 12
1

m2

]2

]x2D A, ~68!
05612
l-

f

n
e

is

y

A5 f 0s0
21e2nf~f t1e2f t2e f 0

21a!. ~69!

We rewrite Eq.~68! using Gaussian integration and obta
~ignoring henceforth irrelevant constants!

eS(n)5)
x
E dp~x!expH 2

e

2E p~x!D~x,x8;t !p~x8!

1 i E p~x!A~x!J ,

S 12
1

m2

]2

]x2D D~x,x8;t !

5d~x2x8! ~Neumann boundary conditions!.

~70!

An explicit derivation of the propagatorD(x,x8;t) is given
in the Appendix, and yields

D~x,x8;t !5
m

2 sinh~mTFR!
$cosh~mTFR2mux2x8u!

1cosh@mTFR2m~x1x822t !#%. ~71!

Let the measure term be defined as

rn5)
x

f 2n~ne,x!. ~72!

Rescalep(x) as follows ~and which will effectively cancel
the measure term!

p→ f 0
21s0enfp. ~73!

We then have

rneS(n)5)
x
E dp~x!expH i E p~x!~f t1e2f t2e f 0

21a!~x!

2
e

2 f 0
2E s0enfp~x!D~x,x8;t !s0enfp~x8!J . ~74!

Recall from Eq.~53! that the Hamiltonian is defined by

rneS(n)5^f tue2eHfuf t1e& ~75!

5e2eHn(t)E Dpei *p(f t1e2f t) ~76!

and yields, dropping the subscriptt in f t , the Hamiltonian
for the forward rates, namely,

Hf~ t !52
1

2 f 0
2E s0enf~x!D~x,x8;t !s0enf~x8!

3
d2

df~x!df~x8!
2

1

f 0
E a

d

df
. ~77!
2-8
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The Hamiltonian is non-Hermitian with complex eigenva
ues. Although this would be problematic in physics, this
not so in finance since the Hamiltonian is not a physi
quantity~such as energy! whose eigenvalues are observabl
and hence is not required to have real eigenvalues.

B. Hamiltonian for the forward rates and volatility
quantum fields

We now consider the case when both the forward ra
and its volatility fluctuate independently and are represen
by separate quantum fields. We hence examine the Lagr
ian given in Eq.~21!, namely,

L~ t,x!52
1

2~12r2!
S ] f

]t
2a

s
2r

]h

]t
2b

j
D 2

2
1

2
S ]h

]t
2b

j
D 2

2
1

2m2
F ]

]x
S ] f

]t
2a

s
D G 2

2
1

2k2
F ]

]x
S ]h

]t
2b

j
D G 2

, ~78!

where recall

2`< f ~ t,x!, h~ t,x!<1`. ~79!

Discretizing time and, for notational simplicity, suppres
ing the time and maturity labels, we write the LagrangianL
in matrix notation as follows:

S~n!52
1

2eE @s21Aj21B#~x!M~x,x8;t !Fs21A

j21B G~x8!,

~80!

where

M~x,x8;t !5F 1

12r2
2

1

m2

]2

]x2
2

r

12r2

2
r

12r2

1

12r2
2

1

k2

]2

]x2

G
3d~x2x8! ~81!

and

A[ f t1e2 f̃ t2ea, ~82!

B[ht1e2h̃t2eb. ~83!

Note that in obtaining Eq.~80! for S(n) we have used the
boundary conditions on the fields given in Eqs.~6! and~24!.

We rewrite Eq.~80! using Gaussian integration and obta
~ignoring irrelevant constants!
05612
l
,

s
d
g-

-

eS(n)5)
x
E dp~x!dq~x!expS 2

e

2E @pq#M21Fp

qG
1 i E @pq#Fs21A

j21B G D . ~84!

Recall from Eq.~27! that the Feynman path integral has
nontrivial measures21(t,x), and in obtaining the Hamil-
tonian we need to take this into account.

Define the measure term by

rn[)
x

s21~x! ~85!

and rescale thep andq variables in Eq.~84! for eachx as

p→sp, ~86!

q→jq. ~87!

We then obtain from Eq.~84! that

rneS(n)5E DpDq expS 2
e

2E @spjq#M 21Fsp

jq G
1 i E @pq#F f 2 f̃ 2ea

h2h̃2eb
G D ~88!

showing that the measure term cancels out. We hence h
from above

rneS(n)5^ f̃ ;h̃ue2eHnu f ;h& ~89!

5e2eHn(t)E DpDq expF i E p~ f 2 f̃ !1 i E q~h2h̃!G
~90!

and which yields the Hamiltonian for the forward rates a
volatility as independent quantum fields given by

H~ t !5
1

2E Fs
d

id f̃
j

d

idh̃
GM 21F s

d

id f̃

j
d

idh̃

G
2E H a

d

d f̃
1b

d

dh̃
J . ~91!

From Eq.~81! we have
2-9
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M 21~x,x8;t !5cF D22D11
12r2

k2
~r 1D12r 2D2! r~D22D1!

r~D22D1! D22D11
12r2

m2
~r 1D12r 2D2!

G ,
o
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e
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n
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c5
m2k2

A~k22m2!214r2m2k2
, ~92!

r 65
1

2~12r2!
@m21k26A~k22m2!214r2m2k2#,

~93!

S 2
]2

]x2
1r 6D D6~x,x8;t !5d~x2x8!,

with Neumann boundary conditions.~94!

For solving the martingale condition, we will need

G~x;x8,t ![M 11
21~x,x8;t ! ~95!

5
m2

A~k22m2!214r2m2k2
@k2~D22D1!

1~12r2!~r 1D12r 2D2!#. ~96!

VI. HAMILTONIAN FORMULATION OF THE
MARTINGALE CONDITION

The principle of no arbitrage is central to the theory
finance, and a path integral formulation of this principle
given in Ref.@10#. For the case of deterministic volatility, th
Lagrangian for the forward rates as given in Eq.~3! is qua-
dratic, and hence the condition of no abitrage could
solved exactly by performing a Gaussian path integrat
@10#. It is well known from theoretical finance, Refs.@1,10#,
that the condition of no arbitrage is fulfilled if the evolutio
of the financial instrument obeys the martingale conditi
We hence examine the Hamiltonian formulations of the m
tingale condition.

For the case of stochastic volatility, the Lagrangian
nonlinear and hence the condition of no arbitrage canno
solved explicitly using the path integral; for this reason
reformulate the no arbitrage condition using the Ham
tonian. We will show that the Hamiltonian formulation, eve
for the nonlinear theory of the forward rates with stochas
volatility, allows for an exact solution of the no arbitrag
condition.

We first derive the Hamiltonian formulation of no arb
trage for the case of a single securityS, since the derivation
for the forward rates is more complex.
05612
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A. Martingale condition for a single security

Consider an option on a securityS5ex that matures at
time T and has a payoff function given byg(x,K), whereK
is the strike price. As discussed in Ref.@10#, the risk-free
evolution of the security is given by the HamiltonianHs ,
with the value of the option at timet,T being given by

f ~ t,x!5e2r (T2t)E
2`

`

dx8^xue2(T2t)Hsux8&g~x8! ~97!

(r is a given constant risk-free spot interest rate!.
The martingale condition for the risk-free evolution of th

security is that the discounted evolution of the future price
the security at some future time, sayt* , is equal, on the
average, to the price of the security at earlier timet. The
equation for the martingale condition states

S„x~ t !…5E[ t,t
*

]@e2(t
*

2t)rS„x~ t* !…#, ~98!

where the notationE[ t,t
*

]@Y# denotes the average value ofY

over all the stochastic variables in the time interval (t,t* #.
From Eq.~97!, we have

S~x!5e2r (t
*

2t)E
2`

`

dx8^xue2(t
*

2t)Hsux8&S~x8! ~99!

⇒^xuS&5E
2`

`

dx8^xue2(t
*

2t)(Hs1r )ux8&^x8uS&.

~100!

Using the completeness equation for a single security gi
by

I5E
2`

`

dxux&^xu ~101!

yields from Eq.~99!, the operator equation

uS&5e2(t
*

2t)(Hs1r )uS&50. ~102!

Since timet* is arbitrary, we have

~Hs1r !uS&50. ~103!

One can easily verify that the Black-Scholes Hamiltonian
both the case of deterministic and stochastic volatility giv
in Ref. @9# satisfies Eq.~103!.

The result given in Eq.~103! shows that the existence o
a martingale measure is equivalent to a risk-free Hamilton
that annihilates~up to a constantr ) the underlying securityS.
We will see that a similar condition holds for the Ham
tonian of the forward rates, but with a number of complic
2-10
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FIG. 7. Domains for no arbitrage based o
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tions arising from the nontrivial domain of the forward rat
and that the spot rater (t)5 f (t,t) is itself a stochastic quan
tity.

B. Martingale condition for the forward rates

The martingale condition states that the price of the bo
P(t* ,T) at some future timeT.t* .t is the equal to the
price of the bond at timet, discounted by the risk-free inter
est rater (t)5 f (t,t). In other words,

P~ t,T!5E[ t,t
*

]@e2*
t

t
*r (t)dtP~ t* ,T!#, ~104!

where, as before,E[ t,t
*

]@Y# denotes the average value ofY

over all the stochastic variables in the time interval (t,t* ).
In terms of the Feynman path integral, Eq.~104! yields

~for measurer)

P~ t,T!5E D f r@ f #e2*
t

t
*r (t)dteS[ f ] P~ t* ,T!. ~105!

There are two domains involved in the path integral giv
above in Eq.~105!, namely, the domain for the treasu
bonds that is nested inside the domain of the forward ra
These domains are shown in Fig. 7.

Although written in an integral form, the condition Eq
~105! is clearly a differential condition since it holds for an
value of t* . Hence we taket* 5t1e. The reason that we
need to consider only an infinitesimal change for the forw
rates is due to the time dependent nature of the state s
Vt . For an infinitesimal evolution in time, the functional in
tegral in Eq.~105! collapses to an integration over the fin
time variablesf̃ t1e on time slicet1e, that is,

P~ t,T!5E D f̃ t1er t1ee
2e f (t,t)ee*L[ f , f̃ ] P@ f̃ ;t1e,T#.

~106!

We rewrite the above equation in the language of state v
tors, namely, that

^ f tuP~ t,T!&5E D f̃ t1e^ f tue2e f (t,t)e2eHu f̃ t1e&

3^ f̃ t1euP~ t1e,T!&. ~107!
05612
d
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We have, from the completeness equation given in Eq.~49!,
that

It1e5E D f̃ t1eu f̃ t1e&^ f̃ t1eu. ~108!

Hence we have from Eq.~107! that

^ f tuP~ t,T!&5^ f tue2e f (t,t)e2eH(t)uP~ t1e,T!& ~109!

⇒uP~ t,T!&5e2e f (t,t)e2eH(t)uP~ t1e,T!&. ~110!

It can be verified, using the explicit representation of the z
coupon bond given in Eq.~61!, that

e1e f (t,t)uP~ t,T!&5uP~ t1e,T!&. ~111!

Hence we have

uP~ t1e,T!&5e2eH(t)uP~ t1e,T!& ~112!

⇒H~ t !uP~ t1e,T!&50. ~113!

Since there was nothing special about the bond that we c
sidered, we arrive at the differential formulation of the ma
tingale condition, namely, that any zero coupon bond—a
consequently any coupon bond—is annihilated by the Ham
tonianH. That is,

H~ t !uP~ t,T!&50 for all t, T. ~114!

Note the similarity of the above equation with the case o
single security given in Eq.~103!. The role of the discount-
ing factor is, however, very different in the two cases. T
spot rater is a constant for the case of a security, whereas
the case of the forward rates—given the difference in
domain for the state space at two different instances—
discounting by the spot rate is precisely the factor required
transform the later time treasury bondP(t1e,T) to the one
at an earlier time, namely,P(t,T).

VII. MARTINGALE CONDITION FOR STOCHASTIC
VOLATILITY

Armed with the Hamiltonian for forward rates with sto
chastic volatility given in Eqs.~77! and ~91!, we apply the
martingale condition obtained in Eq.~114!, namely,
2-11
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H~ t !uP~ t,T!&50 ~115!

or more explicitly

^ f tuH~ t !uP~ t,T!&5H~ t !e2* t
Tdx f(t,x)50. ~116!

A. Martingale condition for volatility as a function
of forward rates

Recall that the zero coupon bond is given by

P~ t,T!5expS 2 f 0E
t

T

dxef(t,x)D ~117!

and which yields

d

df~ t,x!
P~ t,T!5H 2 f 0ef(t,x)P~ t,T!, t,x,T,

0, x.T.
~118!

We have from Eqs.~116! and ~77! that

F2
1

2Et

T

dxdx8s0enf(t,x) f ~ t,x!D~x,x8;t !s0enf(t,x8) f ~ t,x8!

1E
t

T

dxa~ t,x! f ~ t,x!GP~ t,T!50⇒a~ t,x!

5
s0

f 0
enf(t,x)E

t

x

dx8D~x,x8;t !s0enf(t,x8) f ~ t,x8!

~martingale condition!. ~119!

Note that the martingale condition given above is not c
tained in the HJM class of solutions for the drift velocit
which are all quadratic in the volatility fields@13#; the ap-
pearance of the forward ratesf (t,x) directly in the drift ve-
locity emerges naturally in the field theoretic formulatio
and is a reflection of the kinetic term in the Lagrangian
the case of f P@2`,1`#—namely, (] f /]t)2—being re-
placed by (]f/]t)2 for f P@0,1`#.

We can in fact prove a more general result for the act
S@f# for the case of when stochastic volatility is a functio
of the forward rates. We write the most general Lagrang
as

Lgeneral5L@f#1E U~ t,x!
]f

]t
1E W~ t,x!, ~120!

U,W @arbitrary local functions off ~ t,x!#. ~121!

The martingale condition then yields that

U~ t,x!5W~ t,x!50. ~122!

In particular, a string tension term in the Lagrangian has
form

W~ t,x!}S ] f

]xD 2

~123!
05612
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and is forbidden by the martingale condition.

B. Martingale condition for volatility as an independent
quantum field

From the Hamiltonian given in Eq.~91! we see that, as in
the case above,d/dh yields zero in Eq.~116! since the zero
coupon bond does not depend explicitly on the volatil
field. Using the fact that

dm

d f m~ t,x!
e2* t

Tdx f(t,x)5H ~21!me2* t
Tdx f(t,x), t,x,T,

0, x.T.
~124!

We hence have from Eqs.~116!, ~91!, and~124!

F2
1

2Et

T

dxdx8s~ t,x!G~x,x8;t !s~ t,x8!

1E
t

T

dxa~ t,x!GP~ t,T!50⇒a~ t,x!

5s~ t,x!E
t

x

dx8G~x,x8;t !s~ t,x8!

~martingale condition!. ~125!

Since there is no instrument in the financial markets
present that trades in volatility of the forward rates, we ca
not apply the condition of martingale to the volatility field
and in particular, we cannot obtain the drift velocity of th
volatility field, namely,b(t,x), to be a function of the othe
fields and parameters of the theory. For this reasonb has to
be determined empirically from the market. To obtain t
limit of volatility being deterministic, we need to take th
limit of j, r, andk→0. We then have

j,r,k→0, ~126!

r 1→m, ~127!

r 2→0, ~128!

G~x,x8;t !→D~x,x8;t !, ~129!

with propagatorD(x,x8;t) given by Eq.~71!.
By a remarkable set of identities, it can be shown that

propagatorD(x,x8;t) given in Eq. ~71! above is exactly
equal to the one obtained in Ref.@10# using path integral
techniques. Hence the martingale condition obtained foa
for the case of deterministic volatility using the Hamiltonia
condition is the same as the one obtained earlier by p
integration.

Incorporating the expression fora(t,x) given in Eq.~125!
into the Lagrangian yields the final result. For notation
convenience, define the following nonlocal function of t
volatility field

v~ t,x!5E
t

x

dx8G~x,x8;t !s~ t,x8!. ~130!

We hence obtain
2-12
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L~ t,x!52
1

2~12r2!
S s21

] f

]t
2v2r

]h

]t
2b

j
D 2

2
1

2
S ]h

]t
2b

j
D 2

2
1

2m2 F ]

]x S s21
] f

]t
2v D G2

2
1

2k2
F ]

]x
S ]h

]t
2b

j
D G 2

. ~131!

The Lagrangian given by the equation above is a comp
description of the theory of forward rates with stochas
volatility. All the parameters in the theory, namely, the fun
tion b(t,x) and the parametersm, k, j, andr need to be
determined from market data. Due to the presence of
field v(t,x) we find that the Lagrangian is nonlocal, with th
function G(x,x8;t) containing all the information regardin
the absence of arbitrage.

There are two further generalizations that we can mak
the Lagrangian obtained in Eq.~131!, namely, that the for-
ward rate can be made positive, that is,f .0, and that
the propagatorG(x,x8;t) can include more complex effect
arising from a dependence on maturity of the rigidity pa
meterm.

VIII. CONCLUSIONS

We made a generalization of the field theory model for
forward rates to account for stochastic volatility by treati
volatility either as a function of the forward rates or as
independent quantum field. In both cases, the Feynman
integral could be naturally extended to account for stocha
volatility.

For the case of deterministic volatility, it was found
Ref. @10# that in effect the two-dimensional quantum fie
theory reduced to a one-dimensional problem due to the
cific nature of the Lagrangian. However, on treating vola
ity as a quantum field, the theory is now irreducibly tw
dimensional, and displays all the features of a quantum fi
theory.

To exactly solve for the martingale condition for stocha
tic volatility, we had to recast the condition of no arbitrage
a condition involving the Hamiltonian of the system. To o
tain the Hamiltonian of the forward rates, we were in turn l
to an analysis of the underlying state space of the syst
which turned out to be nontrivial due to the parallelogra
ov

05612
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domain on which the forward rates are defined. The Ham
tonian for the forward rates is an independent formulation
the theory of the forward rates, and can lead to new insig
on the behavior of the forward rates.

The model for the forward rates with stochastic volatili
has a number of free parameters that can only be determ
by studying the market. Hence on needs to numerically a
lyze the model so as to calibrate it, and to test its ability
explain the market’s behavior. The first step in this directi
has been taken in Ref.@11# and these calculations are no
being extended to the case of stochastic volatility.
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APPENDIX

We explicitly evaluate the propagatorD(x,x8;t). Note
that the normalized eigenfunctions on the interval@ t,t
1TFR# that satisfy the Neumann condition of vanishing d
rivatives atx5t andx5t1TFR are given by

cm~x!5
1

ATFR

cosH mp~x2t !

TFR
J , m50,1,2,3, . . . ,̀ ,

~A1!

which satisfy the eigenvalue equation

S 2
1

m2

]2

]x2
11D cm~x!5F S mp

mTFR
D 2

11Gcm~x!. ~A2!

Hence we have

D~x,x8;t !5
1

2TFR
c0

2~x!1
1

TFR
(

m51

`
cm~x!cm~x8!

S mp

mTFR
D 2

11

~A3!

and which yields, after some simplifications

D~x,x8;t !5
m

2 sinh~mTFR!
$cosh~mTFR2mux2x8u!

1cosh@mTFR2m~x1x822t !#%. ~A4!
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