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Quantum field theory of forward rates with stochastic volatility
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In a recent formulation of a quantum field theory of forward rates, the volatility of the forward rates was
taken to be deterministic. The field theory of the forward rates is generalized to the case of stochastic volatility.
Two cases are analyzed, first when volatility is taken to be a function of the forward rates, and second when
volatility is taken to be an independent quantum field. Since volatility is a positive valued quantum field, the
full theory turns out to be an interacting nonlinear quantum field theory in two dimensions. The state space and
Hamiltonian for the interacting theory are obtained, and shown to have a nontrivial structure due to the
manifold moving with a constant velocity. The no arbitrage condition is reformulated in terms of the Hamil-
tonian of the system, and then exactly solved for the nonlinear interacting case.
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I. INTRODUCTION further developed in Refl12] (and references cited thergin
to account for stochastic volatility. Amin and Ni§3] studied
Forward rates are essential to the debt market, and haJge market data of Eurodollar options to obtain the implied
wide-ranging applications in finance. The most widely usedorward rate volatility and Bouchauet al.[14] analyzed the
model of the forward rates is the Heath-Jarrow-Mortonfuture contracts for the forward rates. Both references con-

(HIM) model[1]. There are a number of ways that the HIM cluded that many features of the market, and in particular the
model can be generalized. In Ref&] and[3] a correlation (stochasti¢ volatility of forward rate curve, could not be

- . s ; fully explained in the HIM framework.
between forward rates with different maturities was intro-

. The model for the forward rates proposed in R&f)] is a
duced, and |n_Ref$_.4] and[5] the forward rate was modeled field theoretic generalization of the HIM model, and so it is
as a stochastic string.

The application of techniques of physics to finafiee] natural to extend the field theory model to account for sto-
) ; ) ) _ chastic volatility of the forward rates. In contrast to quantum
have proved to be a fruitful field; in particular, path integral ¢4 theory, the formulation of the forward rates as a sto-
techniqueq8] have been applied to various problems in fi- chagtic string[4,5] cannot be extended to the case where
nance. In Ref[9] path integral techniques were applied to \gjatility is stochastic due to nonlinearites inherent in the
study the case of a security with stochastic volatility. In Ref-problem.
[10] the HIM model was generalized by treating the forward  The forward rates are the collection of interest rates for a
rates as a quantum field; empirical studies in Ret] show  contract entered into at timefor an overnight loan at time
that the field theoretic model for the forward rates proposeg~t. At any instant, there exist in the market forward rates
in Ref. [10] fits market data fairly well. for a duration ofTgg in the future; for example, if refers to

The volatility qf the forward rates is a central measure Ofpresent timet,, then one has forward rates fraguntil time
the degree to which the forward rates fluctuate. In the model

studied in Ref[10], the volatility of the forward rates was Volatility of Volatility
taken to be deterministic. The question naturally arises as tc
whether the volatility itself should be considered to be a
randomly fluctuating quantity. The volatility of volatility is
an accurate measure of the degree to which volatility is ran-
dom. Market data for the Eurodollar futures provides a fairly
accurate estimate of the forward rates for the US dollar, anc
also yields its volatility of volatility of the forward rates.
Eurodollar futures data given in Fig. 1 plots the 30 days
moving average of the volatility of volatility for the forward
rates, and shows that it contributes about 0.0006—0.0007 pe&
year to the forward rates, which are in the neighborhood of %
0.05-0.06 per year. The fluctuations in the volatility of the
forward rates are about 10% of the forward rates, and henct
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significant.
We conclude from the data that the volatility of the for-
ward rates needs to be treated as a fluctuating qua(dtom 0.0005 s . .
chastig¢ field. The widely studied HIM modé¢lL] has been 0 2 ﬁme‘tyear) 6 8
FIG. 1. The volatility of the volatility of the forward ratestd:
*Email address: uspbeb@nus.edu.sg standard deviation
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FIG. 2. DomainP of the forward rates.
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to+ Teg in the future. In the markef - is about 30 yr, and ing from some initial timeT; to a future timet=T;. Since
hence we hav&zg>30 yr. In general, at any timeg all the  all the forward rated (t,x) are always for the future, we
forward rates exist till time+ Tgg [10]. The forward rates at havex>t; hence the quantum fielf(t,x) is defined on the
time t are denoted by (t,x), with t<x<t+Tgg, and con- domain in the shape of a parallelogrémthat is bounded by
stitute the forward rate curve. parallel linesx=t andx=Tgg+t in the maturity direction,
Since at any instant there are infinitely many forward and by the lines=T,; andt=T; in the time direction, as
rates, it resembles @onrelativisti¢ quantum string. Hence shown in Fig. 2. Every point inside the domd&hrepresents
we need an infinite number of independent variables to dean independent integration variadié,x).
scribe its random evolution. The generic quantity describing The field theory interpretation of the evolution of the for-
such a system is a quantum fidldi5]. For modeling the ward rates, as expressed in the donfjris that of a(non-
forward rates and treasury bonds, we consequently need telativistic quantum string moving with unit velocity in the
study a two-dimensional quantum field on a finite Euclideanx (maturity) direction.
domain. Since we know from the HIJM model that the forward
We consider the forward ratei{t,x) to be a quantum rates have a drift velocity(t,x) and volatility o(t,x), these
field; that is, f(t,x) is taken to be anindependentandom have to appear directly in the Lagrangian for the forward
variable for eactx and eactt. For notational simplicity we rates. To define a Lagrangian, we first need a kinetic term,
consider both andx continuous, and discretize these param-denoted byL,..ic, Which is necessary to have a standard
eters only when we need to discuss the time evolution of th@me evolution for the forward rates.
system is some detail. We need to introduce another term to constrain the change
In Sec. Il, we briefly review the quantum field theoretic of shape of the forward rates in the maturity direction. The
formulation given in Ref[10] of the forward rates with de- analogy of this in the case of an ordinary string is a potential
terministic volatility. In Sec. Ill the case of stochastic vola- term in the Lagrangian, which attenuates sharp changes in
tility is analyzed, and which can be done two different the shape of the string, since the shape of the string stores
ways. First, volatility can be considered to be a function ofpotential energy. To model a similar property for the forward
the (stochastig forward rates, and second, volatility can be rates we cannot use a simple tensionlike te#f1 {x)? in the
considered to be an independent quantum field. Both thegeagrangian since, as we will show in Sec. VII, this term is
cases are analyzed. The resulting theories are seen to hged out by the martingale condition.
highly nontrivial nonlinear quantum field theories. The martingale condition requires that the forward rates
In Sec. IV the underlying state space and operators of theagrangian contain higher-order derivative terms, essentially
forward rates quantum field is defined. In particular, the gena term of the form ¢*f/9xdt)?; such string systems have
erator of infinitesimal time evolution of the forward rates, been studied in Ref16] and are said to be strings with finite
namely, the Hamiltonian, is derived for the two cases of storigidity. Such a term yields a term in the forward rates La-
chastic volatility. In Sec. V the Hamiltonian for the forward grangian, namelyLiqiy . With & new parameteg; the ri-
rates with stochastic volatility is derived. In Sec. VI a Hamil- gidity of the forward rates is then given by7 and quan-
tonian formulation of the martingale condition is derived. Intifies the strength of the fluctuations of the forward rates in
Sec. VII the martingale constraint for the case of stochastighe time-to-maturity directiorx. In the limit of x—0, we
volatility is solved exactly using the Hamiltonian formula- recover(upto some rescalingghe HIM model, and which
tion. And lastly, in Sec. VIII the results obtained are dis- corresponds to an infinitely rigid string. The action for the

cussed, and some remaining issues are addressed. forward rates is given by
T t+TER
Il. LAGRANGIAN FOR FORWARD RATES WITH S[f]:f dtf dxc[f] (1)
DETERMINISTIC VOLATILITY Ti t

We first briefly recapitulate the salient features of the field
theory of the forward rates with deterministic volatilfty0]. — f L[f] ©)
For the sake of concreteness, consider the forward rates start- P ’
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with the Lagrangian densitg[ f] given by ll. LAGRANGIAN FOR FORWARD RATES WITH

STOCHASTIC VOLATILITY
LIT1= Lyinetid T 1+ Liigidiyl T
[F1=Lunend 1+ Lrgay 1 To render the volatility functiorr(t,x) stochastic, in the

af(t,x) 2 formalism of quantum field theory, requires that we elevate

1 ot —a(tx) o(t,x) from a deterministic function into random function,
==5| |7 namely, into a quantum field. There are essentially two ways
2 a(t,x) . o . ;
of elevating volatility to a stochastic quantity, namely, to
af(t,%) 2 either(a) consider it be a function of the forward raftét,x),
1ol o~ a(t,X) or else(b) to consider it to be another independent quantum
| = 3) field o(t,x). We study both these possibilities.
w? L X o(t,x)
o f(t,X) < + 0. 4) A. Volatility as a function of the forward rates

We consider the first case where volatility is rendered
The presence of the second term in the action given in Ecstochastic by making it a function of the forward rafés].
(3) is not ruled out by no arbitragll4], and an empirical The standard models using this approach consider that vola-
study[11] provides strong evidence for this term in the evo-tility is given by
lution of the forward rates.

In summary, we see that the forward rates behave like a a(t,x,f(t,x))=oo(t,x)f"(t,X), (10
guantum string, with a time and space dependent drift veloc-
ity a(t,x), an effective mass given by d(t,x), and string oo(t,X)  (deterministic function (12)

rigidity proportional to 142,

Since the field theory is defined on a finite dom@&ras
shown in Fig. 2, we need to specify the boundary condition§_|
on all the four boundaries of the finite parallelogrém

Fixed (Dirichlet) initial and final conditionsThe initial
and final (Dirichlet) conditions in the time direction are f(tx)=fe?9>0, —cosg(t,x)<+o. (12
given by

Since volatility o(t,x)>0, we must havef(t,x)>0.
ence, in contrast to Ed4), we have

Having f (t,x)>0 is a major advantage of the model since in
the financial markets forward rates are always positive. In the
limit of u—0, the following HIM models are covered by
Eqg. (10), and these models have been discussed from an
empirical point of view in Ref[13]. (1) Ho and Lee(1986
0model, o(t,x,f(t,x))=0p; (2) CIR (1989, o(t,x,f(t,x))
=oofY4(t,x); (3) Courtadon (1982, o(t,x,f(t,x))

(4) Vasicek (1977, o(t,x,f(t,x))=0pexp
linear proportional HJIM (1992,

Ti(To) <X<Ti(T¢)+ Tgg, )

wheref(T;,x) andf(T;,x) are the specified initial and final
forward rate curves, respectively.

Free (Neumann) boundary condition§o specify the
boundary condition in the maturity direction, one needs t
analyze the action given in E¢l) and impose the condition
that there be no surface terms in the action. A straightforward™ aof (1,X);

analysis yields the following version of the Neumann condi-L " AX=DL (9
o(t,x,f(t,x))=[og+ o1 (x—1)]T(t,x)].

tion How do we generalize the Lagrangian given in E).to
af(t,x) a case where the forward rates are always positive? We in-
9 at —a(t,X) terpret the Lagrangian given in E@) to be an approximate
T, <t<T¢,— =0, (6)  one that is valid only if all the forward rates are close to
X o(t,X) some fixed valud,. We then have
X=t or Xx=t+Tgg. (7) St " 2(t.X)
The quantum field theory of the forward rates is defined by ot =foe™ at (13
the Feynman path integral by integrating over all configura-
tions of f(t,x), and yields
dp(t,X)
~fo—5 +0(¢?). (14)
z=f Dfeslf, (8)
. Hence we make the following mapping:
J Dfs(f)[Pf df(t,x). (9)
t,X)e — o
af(t,x)_}foaqS(t,x). 15
Note thateSll/Z is the probability for different field con- Jt at
figurations to occur when the functional integral o¥ét,x)
is performed. Equation(3) then generalizes to
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L[ 1= Lyinetd ¢1+ Lrigiainyl b1 Tht_a Lagr_angian_ for the inFeracting system is not uniqug;
5 there is a wide variety of choices that one can make to fulfill

f dp(t,x) —a(t.x) all the conditions given above. A possible Lagrangian for the

1 0 ot att interacting system, written by analogy with the Lagrangian

for the case of stochastic volatility for a single secuffy; is

2 v (t,X)
ot x)e given by
e (t,X) 2
1] o Toar  —atX) of oh 5 2 [ oh 5 2
— | = . (16 - Ta = -
w2 L X\ ot x)er et (16 o 1 a - at 1|t
p
2(1—p?) o & 2 &
We will show later—in deriving the Hamiltonian—that the
system needs a nontrivial integration measure. We hence de- of 2 dh 2
fine the theory by the Feynman path integral 1 laolat @ 110l ot
Coprlox\ e )] plax\ g ’
= —vaS[4]
z fD¢ fredtel 17 (21)
+o : ;
J Dopf "= [] f dep(t,x)f¥(t,x). (18) with action
(tx)er J —o
The boundary conditions given fé(t,x) in Egs.(5) and(6) S[f'h]:J’ L. (22)
continue to hold for stochastic volatility Lagrangian given in P

Eq. (16).
We need to specify the boundary conditions for the inter-

B. Volatility as an independent quantum field acting system. The initial and final conditions for the forward
ratesf(t,x) given in Eq.(5) continue to hold for the inter-
acting case, and are similarly given for the volatility field as
dthe following.

Fixed (Dirichlet) initial and final conditionsThe initial

value is specified from data, that is,

We consider the second case where volatititft,x) is
taken to be amndependentstochastit quantum field. Since
one can only measure the effects of volatility on the forwar
rates, all the effects of stochastic volatility will be manifested
only via the behavior of the forward rates.

For simplicity, we consider the forward rate to be a quan-
tum field as given in Eq(4) with Ti(T)<x<Ti(T¢) + Ter, (23)

f(tx),  —e<ftx)<te. (19 whereo(T; ,x) ando(T;,x) are the specified initial and final
volatility curves, respectively.

The boundary condition in thedirection for the forward
ratesf(t,x)—as given in Eq(6)—continues to hold for the
interacting case, and for volatility field is similarly given by

Since the volatility functiono(t,x) is always positive,
that is, o(t,x)>0, we introduce another quantum field
h(t,x) by the following relation(the minus sign is taken for
notational convenienge

the following.
o(t,x)=aee "0 —co<h(t,x)<+x. (20) Free (Neumann) boundary conditions
The system now consists tfo interacting quantum fielgls d [ oh(t,x)
namely, f(t,x) and h(t,x). The interacting system’s La- Ti<t<Ty, | =5 —Btx)|=0, (24)
grangian should have the following features.
A parametef¢ that quantifies the extent to which the field
h(t,x) is not deterministic. A limit ofé—0 would, in effect, X=t or x=t+Teg. (25
“freeze” all the fluctuations of the fieldh(t,x), and reduce it
to a deterministic function. On quantizing the volatility fieldr(t,x) the boundary con-

A parametetx to control the fluctuations df(t,x) in the  dition for the forward ratef (t,x) given in Eq.(6) is rather
maturity direction similar to the parametgr that controls  unusual. On solving the no arbitrage condition, we will find
the fluctuations of the forward ratd¢t,x) in the maturity that « is a (quadratig¢ functional of the volatility field

directionx. o(t,x); hence the boundary condition E() is a form of

A parameterp with —1<p=<+1 that quantifies the cor- interactionbetween the (t,x) and o(t,x) fields.
relation of the forward rates’ quantum fiefdt,x) with the We need to define the integration measure for the quan-
volatility quantum fieldh(t,x). tum field h(t,x); the derivation of the Hamiltonian for the

A drift term for volatility, namely, B(t,x)—which is  system dictates the following choice for the measure,
analogous to the drift term(t,x) for the forward rates. namely,
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e o o o o o o o o o FIG. 3. Lattice in time and maturity direction.

X

+oo we are following is opposite to the one taken in Ri]
f DfDo = [] f df(t,x)do " (t,x) (26)  where the Lagrangian for a stock price with stochastic vola-
(t,x)eP J —o L . . . . .
tility was derived starting from its Hamiltonian.
o The state space of a field theory is a linear vector space—
=11 f df(t,x)dh(t,x)ehtx). (27)  denoted byV—that consists of functionals of the field con-
(tx)ep J - figurations at some fixed time (A brief discussion of the
state space is given in Ref9].) The dual space of
V—denoted by, ,—consists of all linear mappings from
“to the complex numbers, and is also a linear vector space.
Let an element oft be denoted byg) and an element of
Vaua DY (p|; then(p|g) is a complex number. We will refer
Z=J DfDo SN, (28)  to both V and Vg, as the state space of the system. The
Hamiltonian H is an operator—the quantum analog of
The (observedl current market value of any financial de- €nergy—that is an element of the tensor product space
rivative, sayO[ f,h], is expressed as thverage valuefthe ~ ® Vaua- The matrix elements of{ are complex numbers,
instrument—denoted byO[ f,h])—taken over all possible and given by(p|#|g).

The partition function of the quantum field theory for the
forward rates with stochastic volatility is defined by Feyn
man path integral as

values of the quantum field&(t,x) and h(t,x), with the In this section, we study the features of the state space and
probability density given by théappropriately normalized Hamiltonian for the forward rates. For notational brevity, we
action. In symbols consider the forward rates quantum figld,x) to stand for

both the quantum field$(t,x) and h(t,x). Since the La-
1 grangian for the forward rates given in E1) has only first
(O[f,h])= Zf DfDo'O[f,h]eS" M. (29 order derivatives in time, an infinitesimal generator, namely,
the HamiltonianH exists for it. Obtaining the Hamiltonian
We consider the limit of the volatility being reduced to a for the forward rates is a complicated exercise due to the
deterministic function. For this limit we havép, and x  hontrivial structure of the underlying doma# In particular,
—0. The kinetic term of théa(t,x) field in the action given the forward rates quantum field will be seen to have a dis-

in Eq. (22) has the limit(upto irrelevant constants tinct state space; for every instant.
For greater clarity, we discretize both time and maturity
dh 2 time into a finite lattice, with lattice spacing in both direc-
1 ot Jh tions taken to be. (For a string moving with velocity, the
lim H exp| — —f — H 1) ——B), maturity lattice would have spacing ofe.) On the lattice,
£0 tXEP 2)p\ & txep | Jt the minimum time for futures contract is timg for most

(30 applicationse=1 day. The points comprising the discrete
which implies that domain? are shown in Fig. 3.
The discrete domaif® is given by

(o(t,x))=0og(e NtX) (31
(t,x)—e€(n,l), n,l(integers, (33
t
=oggpexp — | dt’B(t',x)t +O(&,k,p).
0 p‘ ft AX)[+OEwop) (T0,Tr, Ter)— €Ny Np Neg), 34
(32)
lattice P={(n,1)|N;j<n<N;; n=<I<(n+Ngp)},
IV. HAMILTONIAN AND STATE SPACE (35
The Feynman path integral formulation given in E4s/) F(t,x)—f 36)
and (28) is useful for calculating the expectation values of ' nl»
guantum fields. To study questions related to the time evolu-
tion of quantities of interest, one needs to derive the Hamil- ~ 9T(tL.X) _ Tneqy=Tny IF(X)  Triva—fay @37
tonian for the system from its Lagrangian. Note the route that ot € ' X € '

056122-5



BELAL E. BAAQUIE PHYSICAL REVIEW E 65 056122

AQ,

FIG. 4. Two consecutive time slices forne andt=(n+1)e.

The partition function is now given by a finite multiple

integral, namely, FIG. 5. Reconstructing the lattice from the two time slices.
| df. 3l 38 Consider again the two consecutive time sliceandn
_(n hep n €7 (38) +1 given in Fig. 4. We interpret the forward rates for two
' adjacent instants, namelyf, F.} and{F, 'fn+1'n+1+NFR}
S=Z S(n) (39) given in Egs.(40) and(41), respectively—and which appear
n ' in the action Eq(42)—as the coordinates of the state spaces
_ _ _ _ V, andV,, 1, respectively.
Consider two adjacent time slices labeledrbgndn+1, For every instant of time there is a distinct state space
as shown in Fig. 45(n) is the action connecting the forward ), , and its dualy,,,. The coordinates of the state spaces
rates of these two time slices. V, andV, . are given by the tensor product of the space of

As can be seen from Fig. 4, for the two time slices there isstate for every maturity poirt namely,
a mismatch of the two-lattice sites on the edges, namely,
lattice sites Q,n) at timen and (h+1,n+1+Ngg) at time
n+ 1 are not in common. We isolate the unmatched variables
and have the following. Variables at tinme E<fnyn|<|”:n| (coordinate state 0Mpan),  (44)

<’?n| = ®ns|sn+NFR<fn,l|

{fn,n:Fn}a FnE{fn,l|n+1$|$n+NFR}' (40 |fn+1>:®(n+1)s|sn+1+NFR|fn+1,l>

Variables at timef+1), =|Fu)lfniinr1en (coordinate state oby ;).

{Fn.fosinsringgh  Fn={fnspy[n+1si<n+Neg}. (45)
(41)
) . The state vectofF,) belongs to the spac®,,,, but we
Note that although the variablés, refer to timen+1, we  reinterpret it as corresponding to the state spggat earlier
label them with earlier timen for later convenience. From tjme n. This interpretation allows us to study the system
Fig. 4 we see that botbets of variables fFandF, cover the instantaneously using the Hamiltonian formalism.
samelattice sites in the maturity direction, namely+ 1 The state spac#), consists of all possible functions of

<I=n+Ngg, and hence have the same number of forwardy_, forward rates{f, ,,F,}. The state spaces, differ for
rates, namelyNggr— 1. The Hamiltonian will be expressible gifferent n by the fact that a different set of forward rates
solely in terms of these variables. comprise its set of independent variables.

From the discretized time derivatives defined in E2f) Although the state spacés andV,., are not identical,
the discretized actios(n) contains terms that couple only there is an intersection of these two spaces, namely,
the common points in the lattice for the two time slices,), NV, ., that covers the same interval in the maturity direc-
namely, the variables belonging to the detsF,. We hence tion, and is coupled by the actiof(n). The intersection

have for the action yields a state space, namely,, on which the Hamiltonian
evolution of the forward rates takes place. In symbols, we
=eX Lfof 47 have

S(n) 6{|} nl nlo n+1,l] (42
Vn+1:~7:n®|fn+l,n+l+NFR>a (46)

=e>, L[FniFnl. 43
E% n[ " n] ( ) Vdual,n:<fn,n|®-7:dual,nr (47)
As shown in Fig. 5, the action for the entire dom& Hny  Fa=Fo=Hn€ Vauan® Va+1- (48

shown in Fig. 3 can be constructed by repeating the construc- o )
tion given in Figure 4 and summing over the acti§m)  The Hamiltonian’, is an element on the tensor product

over all timeN;=<n=N;. space spanned by the operatb?:ﬁ)(T:nL namely, the space
The Hamiltonian of the forward rates is an operator thatof operators given byF,® Fy,ain -

acts on the state space of states of the forward rates; we The vector space¥,, and the Hamiltoniarf{,, acting on

hence need to determine the coordinates of its state spacethese spaces are shown in Fig. 6.
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| f f } | | | Viia shows that there is an asymmetry in the time direction, with

T H the Hamiltonian beingndependenif the earliest forward

nt1 rate f,, , of the initial state and of théatest forward rate

—t—t—t—f—t— Vst foi1ns1en,, OF the final state. It is thimsymmetryin the
T " propagation of the forward rates which yields the parallelo-

| | | . | | | v, gram domainP given in Fig. 2, and reflects the asymmetry
L that the forward rate$(t,x) exist only forx>t.
FIG. 6. HamiltoniansH,, propagating the space of forward rates ~ FOr notational simplicity, we henceforth use continuum
V. notation; in particular, the state space is labeled/pyand
state vector byf,). The elements of the state space of the
Note that both the stat¢k,) and(F | belong to the same forward rates/, includes all the financial instruments that are

state spaceF,, and we use tilde to indicate that the two traded in the market at time In continuum notation, from
states araifferent in contrast, for example, the two states Ed- (45, we have that
|f) and(f| indicate that one state is the dual of the other.
As one scans through all possible values for the forward If)= ®t<XSt+TFR|f(t'X)>' (59
ratesf andf, one obtains a complete basis for the state space
V,. In particular, the resolution of the identity operator for IFo)=®tex=ts gl (1)) (56)
V,—denoted byZ,—is a reflection that the basis states are
complete, and is given bjg] In continuum notation, the only difference between state vec-
tors |f,) and|F;) is that, in Eq.(56), the pointx=t is ex-
_ cluded in the continuous tensor product.
= [ f dfp[fa)(fal (49 The partition functionZ given in Eq.(38) can be recon-
structed from the Hamiltonian by recursively applying the

n<l<n+Ngg

_ _ 5 procedure discussed for the two time slices. We then have, in
Ef dfondFalfoniFa)(faniFal- (500  continuum notation, that
The Hamiltonian of the systeri is defined by the Feyn- Z:f DfeSlfl (57)
man formula(upto a normalizatiop from Eq.(42), as

Ty
Pn exp{ e% Lol fn ,fn+1,|]) :<finitia||7_{eXP( - fTi H(t)dt ]lffinal>! (58

=(fnn.Fole” " [Fo.foiiniain.):  (BD)  where the symbofl in the equation above stands for time
ordering thelnoncommutingoperators in the argument, with
where in generab, is a field-dependent measure term. Usingthe earliest time being placed to the left.
the property of the discrete action given in E43), we have

A. Bond state vectors

Pn ex;( e> Li[F, ,|~:n]) The most important state vectors in finance are those of
U} the coupon and zero coupon bonds. Consider a risk-free zero

—(f = e~ <Tn[F, f Y (52 coupon treasury bond that matures at timeith a payoff of
nnotn nointintltNeg $1. The price of the bond at timte<T is given by

=(Fole”"|F ). (53) P(t,T)=e J{td=p[f;,T], (59)

Equation(53) is the main result of this section. The state vectofP(t,T)) is an element of the state space

In going from Eq.(52) to Eq. (53) we have used the fact ). We write the bond state vector as follows:
that the action connecting time sliceasandn+1 does not

contain the variabled , and fn+l-n+1+NFR’ respectively. P(t,T)=(f|P(t,T)) (60)
This leads to the result that the Hamiltoni&f consequently
does not depend on these variables. — o~ ITTe0dx 61)

The interpretation of Eq(53) is that the Hamiltoniari,,

propagates the initial staté-,| in time ¢ to the final state

IF,). Note the relation Another state vector is the coupon boi®}, with payoff
-

of amountc, at timeT,, with a final payoff ofL at timeT.

= = We then have that the state vector of the coupon bond is
(fan.Fnle n|anfn+1,n+1+NFR>:<Fn|e "Fn) linear superposition of the zero coupon bonds and is given
(54 by
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A=fooq e (s i efp ta). (69)

We rewrite EQ.(68) using Gaussian integration and obtain
(ignoring henceforth irrelevant constants

t)>:2I c|P(t,T))+LIP(t,T)). (62)

V. HAMILTONIAN FOR THE FORWARD RATES WITH
STOCHASTIC VOLATILITY

eSm=]] fdp(x)exrr[—gf P(X)D(x,X";t)p(x")
We have obtained a general expression for the Hamil- X

tonian in terms of the actio8 as given in Eq(53), and need

to apply this formula to the case of the specific Lagrangian of +i f p(x)A(X ]
the forward rates to obtain the explicit expression for its

Hamiltonian.

2
From Eq.(53) we have the following: 1— iz ‘9_2 D(x,x':t)
ne X
pneSM=p exp( E% L[H,, HyiFy Fal (63 =6(x—x") (Neumann boundary conditions
(70)
=(Fn:Hole™ [ Hp), (64 An explicit derivation of the propagatdd(x,x’;t) is given
S - in the Appendix, and yields
where we have explicitly included the volatility quantum
field h(t,x) in the equation above. ) )
For notational simplicity, we consider the maturity direc- ~ D(XX"\0)= 5= —— {coshuTer—p|x—x'])
. . . . S Sin(uTegr)
tion x to be continuous, and consider only the time direction
to be discrete. In the continuum notation, the subtleties of the +cosh uTer— m(x+x"—2t)]}. (71)
variables at timg andt+ e are accounted for by carefully ]
analyzing the variables appearing on theundariesof the Let the measure term be defined as
interval [t<x=<t+Tgg]. We have, for the actiors(n) for
time t=ne, the following: pn=11 f "(nex). (72)
X
n)= ef Ly(t,X), (65) Rescalep(x) as follows(and which will effectively cancel
the measure term
f - J " (66) p—To ooe"p. 73

We then have

A. Hamiltonian for the forward rates with stochastic volatility

As a warm-up exercise, we first obtain the Ham|Iton|anpn f dp(x)exp{ f POO (s e b= efg ) (x)
for the simpler case of the volatility being a function of the

forward rates. Recall that the Lagrangian for this system is €
given by T o 00"’ p(X)D(X,X";t)aoe”?p(X') p. (74)
0
LI 1= Liinetid ¢1+ Lrigicity[ ¢
et :g' 't)y 5 Recall from Eq.(53) that the Hamiltonian is defined by
do(t,x
1] oo et preSV = (Bl Tl by ) (75
- 2 UO(I,X)eV¢(t'X)
:e—an(t)f Dpeifp(¢:+e—¢t) (76)
d(t,X) 2
1] g fomgr —altx) : - : e
~—\1 2 . (67) and yields, dropping the subscriptn ¢;, the Hamiltonian
w? X\ ot x)ert) for the forward rates, namely,

On discretizing the Lagrangian we obtain, using boundary 1 ) . b
condition Eq.(6), that Hy()=— 2_1‘3 70" (X)D(x,x";t) 7o (X")

S(n)=eJ =——J

PR PR x5—2_if K 7
12 %2 sh(x)0h(x) Tol Y4
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The Hamiltonian is non-Hermitian with complex eigenval-
ues. Although this would be problematic in physics, this is
not so in finance since the Hamiltonian is not a physical
guantity(such as energywhose eigenvalues are observables,

and hence is not required to have real eigenvalues.

B. Hamiltonian for the forward rates and volatility
quantum fields

We now consider the case when both the forward rateg
and its volatility fluctuate independently and are representedp
by separate quantum fields. We hence examine the Lagrang-

ian given in Eq.(21), namely,

of dh 2
it 1 a Y a
1X:_ -
2(1-p?) o ¢
oh 2 [ of 2
1| ot P 1 laolat @
2\ ¢ 22l \ o
oh 12
19| at 8
22| ax g K (78
where recall
—oo=<f(t,x), h(t,x)<+o. (79

Discretizing time and, for notational simplicity, suppress-

ing the time and maturity labels, we write the Lagrangian
in matrix notation as follows:

1 g
S(n)=— Zf [o TAETIBI(X)M(X,X" ;)| .,

& B
(80)
where
1 1 9 p
1—p2 ,u,Z(?X 1—p2
M(x,x";t)=
p 1 1 &2
1—p? 1-p% k2 9x?
X S(x—x") (81)
and
A=f,, —f,—ea, (82
B=h...—h—eB. (83

Note that in obtaining Eq(80) for S(n) we have used the
boundary conditions on the fields given in E(®). and(24).

We rewrite Eq{(80) using Gaussian integration and obtain

(ignoring irrelevant constants

PHYSICAL REVIEW B5 056122

es(”)zl_X[ fdp(x)dQ(X)exy{—gf[DQ]Ml

)

Recall from Eq.(27) that the Feynman path integral has a
nontrivial measures—1(t,x), and in obtaining the Hamil-
nian we need to take this into account.

Define the measure term by

q

(84)

+|J[pq]

PnE].:.[ U_l(x)

(85

and rescale the andq variables in Eq(84) for eachx as

p—ap, (86)
q—&q. (87)
We then obtain from Eq84) that

n) _ € - op

pre )—f Dquexp(—gf [opéqIM 1[ gq}
. f[ ]{f—f—ea ) @8

i ~
pq h—Fi—ep

showing that the measure term cancels out. We hence have
from above

pneS=(F:Rle” <*|f:h) (89
:e_an(t)f DqueX%|f p(f—hf)—}—IJ’ Q(h_ﬁ)}
(90)

and which yields the Hamiltonian for the forward rates and
volatility as independent quantum fields given by

5
H(t)=3f igi -t &
2 sf "ish 5

ioh

(91)

From Eq.(81) we have
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1—p?
D,—D++—2(I’+D+—I’,D,)
K
M Yx,x":;t)=c
p(D_-—D)
where
2K2
= £ . (92
V(k? = u?)?+4ppk?
fo=e [w2+ k2= (k= p?)?+4p?u?k?]
T 2(1-p?) ’
(93
&2
= — e | DL(XX" ;1) = 8(x—x),
X

with Neumann boundary condition£94)

For solving the martingale condition, we will need
G(x:x' =M 7 (x,x;1) (95)

M2

V(K= p?)?+4p%p

75 <*(D_~D.)

PHYSICAL REVIEW E 65 056122

p(D_—Dy)

2 1

D ~D,+-—~(r,D,~1 D)
o

A. Martingale condition for a single security

Consider an option on a securi§=¢€* that matures at
time T and has a payoff function given lg(x,K), whereK
is the strike price. As discussed in R¢10], the risk-free
evolution of the security is given by the Hamiltonigt,
with the value of the option at time<T being given by

f(t,x)=e—f<T—t>f dx'(x|e"T-V%s|x"Vg(x") (97)

(r is a given constant risk-free spot interest yate

The martingale condition for the risk-free evolution of the
security is that the discounted evolution of the future price of
the security at some future time, say, is equal, on the
average, to the price of the security at earlier timdhe
equation for the martingale condition states

S(x(1))=Eqy,jle” " 7V S(x(t,))], (99)

where the notatiorE[t,t*][Y] denotes the average valueYof

over all the stochastic variables in the time interviat (].
From Eq.(97), we have

+(1—p2)(r+D+—r_D_)]. (96) S(X):e_r(t*_t)fw dxr<x|e—(t*—t)HS|X7>S(Xr) (99)
VI. HAMILTONIAN FORMULATION OF THE .
MARTINGALE CONDITION =>(x|s):f dx’(x|e” "Dty (x| S),
The principle of no arbitrage is central to the theory of ) (100

finance, and a path integral formulation of this principle is
given in Ref[10]. For the case of deterministic volatility, the Using the completeness equation for a single security given
Lagrangian for the forward rates as given in E8). is qua- by
dratic, and hence the condition of no abitrage could be

solved exactly by performing a Gaussian path integration I= f dx|x)(x| (101
[10]. It is well known from theoretical finance, Refd.,10], -
that the condition of no arbitrage is fulfilled if the evolution ields from Eq.(99), the operator equation
of the financial instrument obeys the martingale condition? q-9), P q
We hence examine the Hamiltonian formulations of the mar- |[S)=e L "DHstN|gy =, (102
tingale condition. ) ) ) )
For the case of stochastic volatility, the Lagrangian isSince timet, is arbitrary, we have
nonlinear and hence the condition of no arbitrage cannot be (H+1)|S)=0. (103

solved explicitly using the path integral; for this reason we
reformulate the no arbitrage condition using the Hamil-One can easily verify that the Black-Scholes Hamiltonian for
tonian. We will show that the Hamiltonian formulation, even both the case of deterministic and stochastic volatility given
for the nonlinear theory of the forward rates with stochasticin Ref.[9] satisfies Eq(103).

volatility, allows for an exact solution of the no arbitrage  The result given in Eq(103 shows that the existence of
condition. a martingale measure is equivalent to a risk-free Hamiltonian

We first derive the Hamiltonian formulation of no arbi- that annihilategup to a constant) the underlying securit.

trage for the case of a single securysince the derivation We will see that a similar condition holds for the Hamil-
for the forward rates is more complex. tonian of the forward rates, but with a number of complica-
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FIG. 7. Domains for no arbitrage based on
t treasury bonds.

T T+T

i FR X

tions arising from the nontrivial domain of the forward rates We have, from the completeness equation given in(Eg),
and that the spot ratg(t) = f(t,t) is itself a stochastic quan- that
tity.
) . ItJr e j Dﬁft+ E|’f[+ e><~f’t+ E| . (108)
B. Martingale condition for the forward rates
The martingale condition states that the price of the bondHence we have from Eq107) that
P(t, ,T) at some future timé&>t, >t is the equal to the
price of the bond at timg discounted by the risk-free inter- (fIP(t,T))y=(f|e ftVe "O|P(t+¢T)) (109
est rater (t) =f(t,t). In other words,
. =|P(t,T))=e 'theHO|P(t+¢,T)). (110
P(t,T)=Ej, (e /T"OUP(L, T)], (104 L . _
T It can be verified, using the explicit representation of the zero

where, as beforeE[tyt*][Y] denotes the average value bf coupon bond given in E¢61), that

over all the stochastic variables in the time interviat,(). et <EY|P(t,T))=|P(t+¢,T)). (112
In terms of the Feynman path integral, E404) yields
(for measurep) Hence we have
|P(t+€,T))=e "O|P(t+¢,T)) (112

P(t,T):f Dfp[f]e’f:*r(t)dtes[f]P(t* ,T). (105
=H(1)|P(t+¢,T))=0. (113

There are two domains involved in the path integral givenS_ h thi ial about the bond that
above in EQ.(105, namely, the domain for the treasury Ince thereé was nothing special about the bond that we con-

bonds that is nested inside the domain of the forward rate idered, we arrive at the differential formulation of the mar-
These domains are shown in Fig. 7 ingale condition, namely, that any zero coupon bond—and

Although written in an integral form, the condition Eq. consequently any coupon bond—is annihilated by the Hamil-

(105 is clearly a differential condition since it holds for any tonian’. That is,
value oft, . Hence we take, =t+e. The reason that we
need to consider only an infinitesimal change for the forward

rates is due to the time dependent nature of the state Spaggyie the similarity of the above equation with the case of a
V. For an infinitesimal evolution in time, Fhe functlonal_ln- single security given in Eq103. The role of the discount-

tegral in Eq.(l~05) collapses to an integration over the final ing factor is, however, very different in the two cases. The

time variablesf,, . on time slicet + ¢, that is, spot rater is a constant for the case of a security, whereas in

the case of the forward rates—given the difference in the

~ _ 1 orF domain for the state space at two different instances—the

P(tT)= f Dfis epir e e AP t+ €T, discounting by the spot Fr)ate is precisely the factor required to
(106)  transform the later time treasury boRq{t+ €,T) to the one

at an earlier time, namely(t,T).
We rewrite the above equation in the language of state vec-

H(t)|P(t,T))=0 forall t, T. (114

tors, namely, that VII. MARTINGALE CONDITION FOR STOCHASTIC
VOLATILITY
_ 3 —ef(t,t) o— €H[F . . ) .
<ft|P(t!T)>_f Dy, (file”"tDe <Hf,. ) Armed with the Hamiltonian for forward rates with sto-
~ chastic volatility given in Eqs(77) and (91), we apply the
X(fi, P(t+€,T)). (107  martingale condition obtained in E¢L14), namely,
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H(t)|P(t,T))=0 (115
or more explicitly
(FIHOIPE T =H(te T *t=0. (116
A. Martingale condition for volatility as a function
of forward rates
Recall that the zero coupon bond is given by
T
P(t,T)zexp( —fof dxe¢(t'x)) (117
t
and which yields
—foe?WIP(t,T), t<x<T,
—P(t,T)=
S¢p(t,X) D 0, x>T.
(118

We have from Eqs(116) and(77) that

1(7 /
[— Ef dxdx goe”?tf(t,x)D(x,x";t) oo’ ?EX I (t,x")
t

+dexa(t,x)f(t,x) P(t,T)=0=a(t,x)
t

g X ’
= f—oe”‘/’("x)f dx' D(x,x":t)ope”?tXIf(t,x")
0 t
(martingale condition (119

Note that the martingale condition given above is not con
tained in the HIM class of solutions for the drift velocity,
which are all quadratic in the volatility fieldsl3]; the ap-
pearance of the forward ratéét,x) directly in the drift ve-
locity emerges naturally in the field theoretic formulation,

and is a reflection of the kinetic term in the Lagrangian for

the case off e[ —,+o]—namely, @f/dt)>—being re-
placed by ¢¢/at)? for f e[0,+].

We can in fact prove a more general result for the action

S ¢] for the case of when stochastic volatility is a function
of the forward rates. We write the most general Lagrangial
as

J
Lqenea 101+ [ U200+ [ Wit 120

U,W [arbitrary local functions off(t,x)]. (121
The martingale condition then yields that
U(t,x)=WI(t,x)=0. (122

In particular, a string tension term in the Lagrangian has th
form
) 2

af

W(t,x)oc(ax

(123

PHYSICAL REVIEW E 65 056122
and is forbidden by the martingale condition.
B. Martingale condition for volatility as an independent

quantum field

From the Hamiltonian given in Eq91) we see that, as in
the case abovej/ sh yields zero in Eq(116) since the zero
coupon bond does not depend explicitly on the volatility
field. Using the fact that

5m
SF™(t,x)

(—1)me HXI, pox<T,

e—flexf(t,x):
0, x>T.

(1249
We hence have from Eq§116), (91), and(124)

1 T ! ’
—Eft dxdx o(t,X)G(x,x";t)o(t,x")

T
+f dxa(t,x)|P(t,T)=0=«a(t,x)
t

=o(t,X) ftxdx’G(x,x’;t)U(t,x’)

(martingale condition (125

Since there is no instrument in the financial markets at
present that trades in volatility of the forward rates, we can-
not apply the condition of martingale to the volatility field,
and in particular, we cannot obtain the drift velocity of the
volatility field, namely,3(t,x), to be a function of the other
fields and parameters of the theory. For this reg8dras to
be determined empirically from the market. To obtain the
Timit of volatility being deterministic, we need to take the
limit of &, p, andk—0. We then have

&,p,k—0, (126)
ry—u, (127)
r_—0, (129

G(x,x";t)—=D(x,x";t), (129

Wwith propagatoD(x,x’;t) given by Eq.(71).

By a remarkable set of identities, it can be shown that the
propagatorD(x,x’;t) given in Eq.(71) above is exactly
equal to the one obtained in Réfl0] using path integral
techniques. Hence the martingale condition obtainedafor
for the case of deterministic volatility using the Hamiltonian
condition is the same as the one obtained earlier by path
integration.

Incorporating the expression fe/(t,x) given in Eq.(125
into the Lagrangian yields the final result. For notational
convenience, define the following nonlocal function of the
é/olatility field

v(t,x)= thdx’G(x,x’;t)a(t,x’). (130

We hence obtain
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Jh 2 domain on which the forward rates are defined. The Hamil-
— B tonian for the forward rates is an independent formulation of
1 of ot S
- o l——v—p the theory of the forward rates, and can lead to new insights
2(1-p°) at § on the behavior of the forward rates.
The model for the forward rates with stochastic volatility

L(t,X)=

2

@ -8 ) 5 has a number of free parameters that can only be determined
1 N i by studying the market. Hence on needs to numerically ana-

2 é 2u2] 9% T Y lyze the model so as to calibrate it, and to test its ability to

i explain the market's behavior. The first step in this direction

dh 2 has been taken in Refl1] and these calculations are now

1| ol ot -5 being extended to the case of stochastic volatility.
52| ox £ |- (131
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field v (t,x) we find that the Lagrangian is nonlocal, with the
function G(x,x’;t) containing all the information regarding APPENDIX
the absence of arbitrage.

There are two further generalizations that we can make of We explicitly evaluate the propagatd(x,x’;t). Note
the Lagrangian obtained in E¢L31), namely, that the for- that the normalized eigenfunctions on the interyajt
ward rate can be made positive, that i$y0, and that <+ T.g] that satisfy the Neumann condition of vanishing de-
the propagatoG(x,x’;t) can include more complex effects rivatives atx=t andx=t+ T are given by
arising from a dependence on maturity of the rigidity para-

e V(X = s{mw(x_t)] 0,1,2,3
m X = H m= )=y L 700,
VIIl. CONCLUSIONS VTer Ter A1)
We made a generalization of the field theory model for the . . .
forward rates to account for stochastic volatility by treatingwhich satisfy the eigenvalue equation
volatility either as a function of the forward rates or as an L2 5
independent quantum field. In both cases, the Feynman path ot (9_ | M7
integral could be naturally extended to account for stochastic u? x> L m(x)= TR 1Ym0 (A2)

volatility.

For the case of deterministic volatility, it was found in Hence we have
Ref. [10] that in effect the two-dimensional quantum field
theory reduced to a one-dimensional problem due to the spe- ) 1, 1 < Um(X) (X))
cific nature of the Lagrangian. However, on treating volatil- ~ D(X.X";t)= 50— ¢5(X) + — > Tma 2
. . . . : FR FR m=1 T
ity as a quantum field, the theory is now irreducibly two ( T +1
dimensional, and displays all the features of a quantum field HIFR

(A3)

theory.

To exactly solve for the martingale condition for stochas-zd which yields, after some simplifications
tic volatility, we had to recast the condition of no arbitrage as
a condition involving the Hamiltonian of the system. To ob- , u )
tain the Hamiltonian of the forward rates, we were inturnled ~ D(X.X";0)= 5= = - ){COS“MTFR_M|X_X )

; ; MITER

to an analysis of the underlying state space of the system,
which turned out to be nontrivial due to the parallelogram +cosh uTer— m(x+x"—2t)]}. (A4)
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