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This paper discusses random matrix models that exhibit the unusual phenomena of having multiple solutions
at the same point in phase space. These matrix models have gaps in their spectrum or density of eigenvalues.
The free energy and certain correlation functions of these models show differences for the different solutions.
This study presents evidence for the presence of multiple solutions both analytically and numerically. As an
example this paper discusses the double-well matrix model with potevitidl) = — (u/2)M?+ (g/4)M*,
where M is a randomNxN matrix (the M* matrix mode] as well as the Gaussian Penner model with
V(M) = (u/2)M?—t In M. First this paper studies what these multiple solutions are in the large N limit using
the recurrence coefficient of the orthogonal polynomials. Second it discusses these solutions at the nonpertur-
bative level to bring out some differences between the multiple solutions. Also presented are the two-point
density-density correlation functions, which further characterize these models in a different universality class.
A motivation for this work is that variants of these models have been conjectured to be models of certain
structural glasses in the high temperature phase.
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l. INTRODUCTION a polynomial in M: V(M)=g;M+(g,/2)M?+ (g5/3)M?3

+(g4/4M*+ - ... TrV(M) and the measuréM are invari-

Matrix models are known to be of importance in many ant under the change of variablés—M’'=UMU" whereU
diverse areas, for example, in quantum chaos, disordered a unitary matrix. We can use this invariance to express

condensed matter systems, two-dimensional quantum grag- as an integral over the eigenvalues \,, ... \y
ity, quantum chromodynamics, and strings. In the context ops . Writing M=UD’U" where D’'=diag(\;,
the one-matrix models, the models that have been studieg )y the partiton function becomes Z

correspond to an eigenvalue distribution on a single cut in:fduf“ TN dNA(N)2exd —NEN VOy)], where A())
the complex plane where the eigenvalue density is nonzero ;.. -|)\7-oi)\l-:|lis tf|1e Vandermondé:detelrrr{inant arising from
[1]. An obvious generalization is to study a matrix model,, ~'<I" -

with a more complicated eigenvalue structure. Here we studthe grlange zf v a_nf(;\jbles. ;’hetlgf%grattnbttihls Fr'V'aI. because d
a class of models with a single Hermitian matrix but with "€ 'Nt€grand Is indepenaent oidue 1o he invarance, an

two cuts for the eigenvalue density and point out some undives a constant factor. By exponentiating the determinant,

usual features of these models different from the single-cupn€ arrives at the Dyson gas or Coﬁlomb 9as picture. Thus
he partition function iszZ=CJf” I d\;e 5™, where

matrix models. One of the important differences observed ir N ¢
these models is that they have multiple solutions whose efS(A) =NZ{Z;V(A)) =22, In]\j—\|, andC is a constant.
fect appears in certain correlation functions. This work sug- This is a system oN particles with coordinates; on the
gests the possibility that these multiple solutions may bé&eal line, confined by the potentigland repelling each other
glassy and hence these models may be useful in describinjth a logarithmic repulsion. The spectrum or the density of
certain real disordered glassy systems Rigfs3]. eigenvaluesp(x) =((1/N)=IL ; 8(x—\;)) is, in the largeN

We study here the matrix model with a double-well po-limit, just the Wigner semicircle for a quadratic potential.
tential as well as the Gaussian Penner model where similarhe physical picture is that the eigenvalues try to be at the
results are obtained Rdf4]. In both cases the potential is bottom of the well. But it costs energy to sit on top of each
symmetric about the origin. In addition to the usual symmet-other because of logarithmic repulsion, so they sprpdths
ric solutions we discuss the symmetry breaking solutions. Weupport on a finite line segment. This continues to be true
study these solutions in the largé limit and then at the whether the potential is quadratic or a more general polyno-
nonperturbative level. We also calculate the two-pointmial and depends only on there being a single well though
density-density correlators using orthogonal polynomialthe shape of the Wigner semicircle is correspondingly modi-
methods and methods of steepest descent which strengthefigd. For the quadratic potentil(x) = (x/2)x? the density is
the above observations and classifies the models in a nep(x) = (1/7)(x*—a?) where xe[—a,a], and p(x)=0

universality clas$5,6]. elsewhere. The regign—a,a] is said to be the “cut” where
p has support. The end of the cut is givendoy \2/u. See
IIl. NOTATIONS AND CONVENTIONS Fig. 1.

On changing the potential more drastically by having two
Let M be aNx N Hermitian matrix. The partition function wells the density can get a support on two disconnected seg-
to be considered = fdMe N VM) The Haar measure is ments Refs[7,8]. The simplest example is the potential
given by dM=II{L,dM;TT;;dM{PdM{? where Mj;  V(M)=(u/2)M?+(g/4)M* with ©<0, g>0. When the
=M{P+iM{?; there areN? independent variable¥(M) is  wells are sufficiently deep, specifically, whim| >2/g, the
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FIG. 1. (a). The confining potential(b) The density of eigen-
values.

density of eigenvalues is given by

p(x)z%x\/(xz—az)(bz—xz), as<x<b or —b=x<-a
=0 otherwise, (2.1

where a*=(L/g)[|x|—2Vg] and b?=(L/g)[|u|+2Vg].
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=i[V'(2+A] with A(2)=V'(2)?—4b(z) andb(z)=g7

+ u+g{(1/N)Tr M?) (see Ref[4]). The densityp(x) is then
determined by the formulep(z)=—(1/27)ImyA(2). In
what follows we will outline the recurrence coefficient
method of the orthogonal polynomials to establish that there
exist multiple solutions that give the same free enekgy
F(z), andp(z) in the largeN limit but differ at higher orders.
Then we give the results for the two-point correlat@aiso
known as the “smoothed” or “long range” correlators
these tend to different limits ad is taken to infinity along
different sequence®dd or even This property is similar to
that suggested in another model of glasses Fdf.

IIl. ORTHOGONAL POLYNOMIAL APPROACH

The partition functionZ can be rewritten in terms of the
orthogonal polynomialsP,,. These are defined a8,=\"
+CW A1+ +CIW | whereC™ are constants,
and satisfy the orthogonality conditions P{,P,)
=[*_dne NVOIP (M)PL(N)=h,8,m. For example,
Po(\)=1, P;(\)=r+c{P, P,(\)=\2+cPA+c, ... .

The eigenvalues lie in symmetric bands centered aroundhen the partition function in terms of the orthogonal poly-

each well. Thug has support on two line segments. |Ag

approaches Zg from below,a— 0 and the two bands merge

at the origin. Foru>—2./g, the density is

9 [, 2u
12| ul 12| ul
—\/—<x<A\/—
g g
=0 otherwise. (2.2

The phase diagram and density of eigenvalues for this case |Zs

shown in Fig. 2.

The simplest way to determing(z) explicitly is to use
the generating functiof (z)=(1/N Tr 1/(z—M)). F(z) sat-
isfies a Schwinger-Dyson equation whose solutiork {g)
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FIG. 2. (a) The double-well potentialb) Density of eigenval-
ues.(c) The phase diagram.

nomials is, Ref[10],

Po(A1) -+ Po(Ay)
N
Pi(Np) -+ Pi(\y)
_ NSV
Z fll;[l d\e s
Pnoa(N) -0 Pnoa(M)

(3.2

Z can be expressed in terms of thé,s;, Z
=N!hgh;h,---hy_q. For example, in theN=2 case,
= JdNpdAyexpl =NV(A1) = NV(A) ][ Po(Ag) P1(Az)
- Po()\z) Pl()\l)]zz h0h1+ hoh]_: 2|h0h1

The recurrence coefficients

The P, satisfy recurrence relations, R¢10],

XPr=Pni1t SPrt+RPh_y, (3.2

whereR,, andS, are the recurrence coefficients that depend
on the potential. These recurrence coefficients are central to
our analysis, since the free energy and all correlation func-
tions can be expressed in terms of these coefficients. The
reason why thé,'s satisfy such a simple recursion equation
is that [xP,P,_,e NV¥dx=0 becauseP,_, is a polyno-
mial of degreen—1 and can be expressed as a superposition
of P,_1,Ph_2, ... ,Po. ThusP,_, and lower order polyno-
mials do not appear on the right hand side of the recurrence
relation, Eq.(3.2). It can be shown that,=h,_;R,. Thus
the product  hghy---hy_1=hg(hgR1) (hgR{R) - - -
(hoR;- - -Ry) =hyRY*RY"2...Ry_;, hence the free en-
ergy'=InZ=InNI+NIn hy+=N"XN-n)InR,.

To solve for the recurrence coefficients we have three
methods based ofi) integrals,(ii) recurrence relations, and
(iii) an effective potential.
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1. Integrals

The recurrence coefficients can be determined by inte- 0.4
grals or moments, = fdxx"e”NV™ as described below. The
P,’s can be expressed in terms &, and S, as P,
:Xpn_SnPn_RnPn—li W|th Pozl, P]_:(X_So), andP2 n
=(X—S5))(Xx—Sy)—R;, etc. Consider the equation 0 0.2
=(Pg,P;)=[dx(x—Sy)e NV this results in an integral
equation for the coefficier, i.e., Sy=(1/hy) fdxxe NV
=1,/1y. As another example the recurrence coefficiBpt - .
can be determined as follows. The integral expression for the
recurrence coefficienR; is then found fromR;=h,/hg, 2 4 3 8 10
where hy=[dxe "V®¥=1, and h;=[dxe NVOPi(x) n o~
= [dxe "V (x—Sp)2 = [dxe "V (x2—2xS+ S3) = |,
—2I180+S§. HenceR,=(1,/15)—(I1/1o)?. Similar expres-
sions for all the other recurrence coefficients in terms of
integrals can be found.

FIG. 3. Recurrence coefficients for the single well.

For this potential we now consider the two cases corre-
sponding toV having one or two wells.

(1) The one-well caseu>0, g>0. It follows that S,
=0, because all,, are zero for odch wheneverV(x) is an

The recurrence coefficients satisfy recurrence relationsven function ofx. Then the recurrence relation I is trivially
that follow from the identitie$10] satisfied. The recurrence relation Il is

2. Recurrence relations

d e—NV(X)pn \VA P,(x)=0 3.3
| ax OV (x)P(x) 39 S=Ra+O(Ry TR Ry ] (3

and

Thus Rn+1=n/gzNR1—M/g—Rn—Rn_l. We determir_leRl
nhnflzNJ' dxe NP () V' (X)P,_1(X). (3.4 =1,/1g—(11/19)* by evaluatingl,, 14, andly numerically

and evaluateR,, for n>1 using this equation. The result,
shown in Fig. 3, suggests th&,’s lie on a smooth curve.

, Z , . . This curve is analytically determined as follows: For the
ZIP”(X)P.”(X.)e "¥09 that holds becausg,, being a I|n-. largeN limit we setn/N=x and make the ansatz thg}, is a
ear combination oan,l_ and lower order polyno_mlals_, IS smooth function of x and expand asR,=R(X)
ortr)ogonal toPn;NI\(/j(iz)ntlty (3.4) follows from the identity +(LN)Ry(X) + (LIN?)Ry(X) + - - -. Then to leading order in
JPa(X)Pq-a(x)e =nhy;. N Eq. (3.7) implies thatx=R(x)[ .+ 3gR(x)], which is a

I(.(;t\;](s ;ak(e t/hz‘i fgllowmg examples. quadratic equation inR(x) with the solution R(x)

& VIX)={ple)X . . =(1/69)[ — w+ Ju?+12gx]. This fits very well with the

For this potential the recurrence .relat.|on , I 1S 0 humerical evaluation dR,,, which can be approximated by a
= #(Pn,Pni1+S,Pnt RyPy1) =Sih,, which implies S, g6t curve at larghl as shown in Fig. 3.
=0, while the recurrence relation Il ish,_,=uN(P,,Py, The generating function for the single-well case is given
+S,_ 1Pn_1tRy_1Ph_2)=wuNh,, which implies n/N by (see Ref[4])
=uR,. This determines exactly the recurrence coefficients
S,=0 andR,=n/Nu for this potential.

(b) V() = (u/2)x%+ (gl4)x*

The recurrence relation | is

Identity (3.3) follows from the identity O

1 1
F(z2)=| dX——. 3.8
2 0 JZ°—4R(x) @8
0= Syt 0[Ry 1 1(Sh+ 1125y +R(2S,+ S, 1) +S7] - , _
On substitutingR(x) in the above equation for the generat-
(3.5 ing function one gets the same answer as that found by the
Schwinger-Dyson equation. Equati@®8) yields the expres-

while 1l is sion Eq.(2.2) for the density of eigenvalues, with a single
cut.
n by (2) The two-well caseu<0, g>0. Figure 4 exhibits a
N~ HRa T 9(Ry- 1+ Ryt Ry 1) + S5+ S0+ 5,18, numerical result foR,, in this region of phase space, which

(3.6) shows that the assumption of a single smooth function de-
' scribing R,, is no longer correct. It suggests the following
Using the initial values folR,=0, Sy, andR; we can ansatz foR, at largeN.
determineS; ,R,, ... using the above recurrence relations For n=<n (for somen to be determined we have a
for the recurrence coefficients. “period-2” structure
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FIG. 4. Recurrence coefficients for the double well.

An:A(x)+%A1(x)+--- for n even
R,= 1
B,=B(x)+ NBl(x)Jr--- for n odd,
(3.9
and forn>n, we have a “period-1" structurdas for the
one-well casg

anR(x)+%R1(x)+ . (3.10

We denotex=n/N. Substituting Eq(3.9) into Eq.(3.7) and
equating equal powers of N/we get, forx<x= u?/4g,

1
A(X)=E[|M|_\/M2_49X],

1
B(X)=5[|M|+W2—49X]- (3.11
For x=X, substituting Eq(3.10 into Eq. (3.7) we get

1
R(X)=%[—,u+\/,u2+129x]. (3.12

PHYSICAL REVIEW E 65 056115

Whenx>1, i.e., in the two-cut phase, substitutiAgB from

Eq. (311, F(2)=3[mz+9Z2—-9gz|(z°—a%)(zZ"-b?)],
which is the same as obtained by the Schwinger-Dyson equa-
tion. This yields the solution Eq2.1) for the density of
eigenvalues. Wher<1, Egs.(3.11) and(3.12) lead to the
one-cut solution Eq(2.2).

3. Effective potential method for determining recurrence
coefficients

Numerically we can evaluate the recurrence coefficient by
minimizing an effective potential.¢; that can be determined
from the recurrence relations, e.g., {(x) = ox+ (u/2)x?
+(g/2)x*, the recurrence relations are

n
N =R+ 0(Ryc 1+ R+ Ry_1+ ST+ S04 +5,18y)],

0=0+uS,+9[Rys 1(Sh1+2Sy) +R(28,+S,-1) + S31.

(3.19

It is easy to see that if one defines

0

Vett= 20 Wln Rnt uRyt E(R%+2Ran+l)+USn

H LS ISR 1+ S, S|, (319

then the recurrence relations follow by settidyq¢¢/JR,

=0 and dV¢4/9S,=0. For o=0, settingS,=0 in Eq.
(3.15 and minimizing with respect t&,, yields period-1 or
period-2 solutions foR, as shown in Figs. 3 and 4. How-
ever, wheno#0, u<0, g>0, [i.e., V(x) has two wells,
which are asymmetrj¢ then numerical minimization of Eq.
(3.15 with respect tdR,, andS, yields a solution of the type
displayed in Fig. 5. The figure suggests that the recursion
coefficients possibly become chaotic. However, whether they
are really chaotic or whether this is only apparently so, re-
quires more detailed numerical woft1,2§. It would be
rather interesting to do this and characterize this chaos and

The above analytical result and numerical figure agree very|s to understand why the recursion coefficients are so com-
well. Note thatx=1 is the equation for the phase boundary plicated. At any rate, this suggests that it might be interesting

between one-cut and two-cut phasege Sec. )l in the

to explore solutions of the Eq$3.14) for nonzero but small

double-well region of the parameter space. The generating, and see whether at=0, there are alternate solutions
function in terms of the recurrence coefficients for the two-(other than the one witls,=0 discussed earligr This in-

well case is(see Ref[4] for a derivation

1 z o
F(Z):fodx\/{zz—[A(x)+B(x)]}2—4AB T x=1

X z
_fodx\/(zz—(A—i— B))2—4AB

1 1 —
dX——=—= |f 1. 3.1
+j; X Z=2R00 if x< (3.13

deed turns out to be the case. Figure 6 shows a numerical
solution to Eq.(3.14 with ¢=0, obtained by first obtaining
solutions for progressively decreasing nonzero values,of
and using the solution for a particular valuecofs an initial
condition to get a solution for the next smaller valuesofAs
seen in Fig. 6, even at=0, we can get a solution with,

#0 by this procedure. As we show analytically in the fol-
lowing sections, there is a large family of multiple solutions
that exist ato=0. One possible explanation for the apparent
chaos in Fig. 5 is that a nontrivial mixing between multiple
solutions might be occurring.
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FIG. 5. (&) Recurrence coefficieni, for the asymmetric double wellb) Recurrence coefficient, for the asymmetric double well.

IV. MULTIPLE SOLUTIONS IN THE SYMMETRIC ~ M* n even x=A[ u+g(2B+A+C2+D2+CD)]
MATRIX MODEL

— 2 2
The simplest way to understand the existence of multiple n odd x=B[u+g(2A+B+C"+D"+CD)]

solutions that appear in these models is to consider the fol-

3
lowing integral: n even 0=uC+g[B(D+2C)+A(D+2C)+C”]

n odd 0=uD+g[A(C+2D)+B(C+2D)+D?3].

f dxxe NV (4.3
Il — %
Sozr: e (4.9 There are four equations and four unknowns here but after
0 J dxe NV some work we find that there are only three independent
- equations. The three independent equations are
for V(x) = ox+ (u/2)x?+ (g/4)x* with ©<0 andg>0, in C+D=0,
the limit c—0, V has a maximum at=0 and minimum at
x=x"= = |ul/g. The integrall; in Eq. (4.1) is zero if we — 1
take c=0, and then tak&—« for then the integrand is an A+ B+C2=F’

odd function. Hence&S,=0 for o=0. However, let us take

o# 0 first, evaluate the integral in the limit— and then X

take the limitc—0. The integral can be evaluated using the AB=—. (4.9
saddle point method. Since fer#0, one of the minimas

; . I he
gives dominant contribution, the result B,=x" as ¢ Thys there is an infinite class of solutions labeled by one

—0". ThusS, depends on the order of the limié— and  ¢,ction of x in the largeN limit. For example, let us con-

o—0. . L sider the two extreme solution§) The “symmetric solu-

A more precise way of establishing the presence of m“"[ion," characterized byC—D=0. Then Eq.(4.4) implies C
tiple solutions in these models is by using the recurrence.n_ g andA(x),B(x) are given by Eq(3.9. This is the
coefficients; the previous sections have built up the tools that, o S’olution as,discussed in Sec. (iil Tﬁe.“maximally

will be used here. Let us relax the conditi8p=0; we will asymmetric solution” characterized by—B=0. Then Eq
find that this will be interesting. Consider a period-2 ansatz(4 4 implies A=B=R=\x/g and C= —b:[|ﬂ|/g.

for both R, and, . Then —\J4x/g]¥? . The entire infinite class of solutions have the

R A S,—~C, for n even same eigenvalue density and free energy in the |hrgenit.
non " This can be seen by evaluating the generating function that

and turns out to be

R,—B,, S,—D, for n odd. (4.2 F(z)= ldx 2z-(C+D)

_ o o \[z2-2z(C+D)—(A+B—CD)]?>—4AB
As before, in the larg&l limit, settingA,,, B,, C,,, andD, (4.5
to be equal to smooth functions g&=n/N, denotedA,B,C,
D, respectively, one finds that Eq8.14) with o=0 reduce Equation(4.5) contains precisely the same three combina-
to tions that are fixed by the recurrence relation KE4.4).
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Therefore independent of which solution is chosen we get
the saméd=(z). SinceF(z) determineg and the latter deter-
minesI™ at largeN, this proves that in the limiN—o we
have an infinite set of solutions of the recurrence relations
with the same eigenvalue density and free energy. This dem
onstrates the presence of multiple solutions from the recur-
rence coefficient point of view.

V. NONPERTURBATIVE SOLUTION

The multiple solutions found above show differences at
higher powers of M, for example, in the double-scaling
limit, Refs.[8,12-18, which we describe in this section. Let
us begin by taking the symmetric solution and proceed by
expanding the even, odd recurrence coefficignB as

An=ao+ e[ fo(t)+ () ]+ e ra(t)+ro(t)] n even,
Bn=ao+ €[ fe(t) — fo(t) ]+ €[re(t) —ro(t)] n  odd,
(5.1

where x=n/N=1—€t, ap=—pu/2g, and e=N"*3. Then
upon equating equal powers ef we getf.=ry=0, f,
=f(t), re=(f>—t)/4, where the susceptibility is given by
x~(f2+1)/4. f satisfiesf”—2f3+1ft=0 the Painleve II
equation.

We then take the asymmetric solution with-B+0, C
—D#0. On making the expansion

Ch=eg(t)+€2...,

D,=—eg(t)+e..., (5.2
we get the following coupled equation Refd5-18 f”
—3+f(g?+ 12+ 3ft=0 andg”— g(g?+f?)+ 1gt=0. If we
make the substitutiofi=r cosé, g=r sin6, wherer and 6
are functions ot, thenr satisfies a modified Painleve equa-
tion

.1 3
r——r3+str— 3

2.: =
Z 5 r<6=I|=const.

0, (5.3

The casd =0 is the Painleve Il equation. The susceptibility
x~(f2+g2+t)/4=(r?+t)/4 and y~3t/4—[(1+1?)/4]t"?

+ - - -, which is very different from the symmetric case. Thus
the multiple solutions show differences at higher order in
1/N.
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FIG. 6. Graphs of recursion coefficients for a spontaneously
broken solution of the double-well potential witN=512, u

—2,9=1. (a) Recurrence coefficien®®,, (b) recurrence coeffi-
cientsS, after 100 000 minimization steps from a random start, and
(c) orbit in the A-B vs C-D plane.

VI. DISTINGUISHING MULTIPLE SOLUTIONS:
CORRELATORS, ODD AND EVEN N

Multiple solutions are distinguished by certain correlators.odd to even. However for the maximally asymmetric solu-
Consider the correlator (TrM TrM).=(TrM TrM)  tion A=B, hence this correlator remains essentially the same
—(TrM)2 where (O)=(1/2) f[dMe NTVIM)Q_ |t can be asN is changed from odd to even.
shown[4] that(TrMTr M).=Ry . SinceRy depends on the Another example of a correlator that distinguishes be-
choice of the solution, this demonstrates that the multiplgween the two solutions is
solutions under discussion give rise to different correlation
functions in general. In particular note thag=Ay if N is
even andRy=By if N is odd. For the “symmetric solution”
A+ B, hence this correlator changes ®y1) asN goes from

(TrM TrM TrM)=Ry(Sy_1—Sn). (6.1
For the symmetric solutiois,=0 for all n, hence this cor-
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FIG. 7. Eigenvalue distri-
bution for even and oddN:
(@ N=24, symmetric solution;
(b) N=24, asymmetric solution;
(c) N=25, symmetric solution;
(d) N=25, asymmetric solution.

(b)

{c) {d)
relator vanishes. For the asymmetric solut@nis period 2 Further evidence for the effects of multiple solutions
and the correlator changes sign while going from odd to evegomes from correlation functions of the density operator
N. p(X)=1/NTr8(x—M). The explicit expression for the

The orthogonal polynomiaP, can be thought of as a smoothed two-point correlator for a general two-cut solution,
“wave function” of a “state” |n) in the “coordinate basis,” obtained by the method of steepest des¢2ft21] is
i.e., (A\|ny=P,(\)/Vh,e V2V 'where|\) are eigenstates

of the operatoM. The operatoiM is defined in the basis of NP €re,
stategn) as the matrix 4m°N*(p(N)p(p))e=
BNleM Vo)l
S VR 0 , ,
" s ' R oM Fa(p) o' (V=0 (w)
1 S 2 : (6.2 (N—p)? (N—n)
0 VR, S .
+)\2+M2—§()\+M)+2C . (6.3

which follows from the recurrence relation satisfied by the

orthogonal polynomials, Eq.3.7); see Ref.[19] for more 4
details. It can be shown that the density of eigenvalues of Here o(2)=IIi_,(z—&;), s=a;+a,+as+a, (the sup-

this matrix in the largeN limit is preciselyp(\). It is there- ~ Port of the eigenvalues consists of the two segmgafsa |

fore of interest to calculate the eigenvalues of this matrix@nd [8z,84]), e,=+1 for Ae[as,as], e,=—1 for A
Since the matrix elements are given by the recurrence coef [21.82], and3=1,2,4 depending on whethét the ma-
ficients we can determine the eigenvalues numericaige  {rix is real orthqgonal, Hermitian or self-dual quartoni&.
Sec. Il A) from a given solution of the recurrence coeffi- IS @n undetermined constant in this metho_d. It turns out that
cients. The figures show the location of the eigenvalues fof€ same correlator can be calculated using other methods,

the symmetric solution and the maximally asymmetric solu-Which yield different values o. For example inf21] we
tion (see Fig. 7. obtained an asymptotic form d?,(x) for the symmetric

For N even, one half of the eigenva'ues are in one We”double'We” pOtentials fon close toN. USing this form Oan
and the other half in the other well. While this is true for both (Which corresponds to the “symmetric solutionve found
solutions the detailed positions are not the same. Whé  the smoothedpp). given by Eq.(6.3), with C=(—1)N, (the
odd, for the maximally asymmetric solution one extra eigen-origin of this nontrivialN dependence, also observed 22],
value is located in one of the welithe well it is located in is explained in[23]). On the other hand in Ref24], this
depends on the sign &;). For the symmetric solution this correlator was calculated by the loop equation method start-
extra eigenvalue is in the center, thus preserving the symméng from an asymmetri/ and taking the limit of a symmet-
try between both wells. This seems to suggest that the bulkic potential whereC was found to be— 3{(a%?+b?)—(a
effect of the two solutions is the same but they differ by one+ b)?[E(k)/K(k)]}, whereE(k) andK (k) are complete el-
eigenvalue effects. liptic integrals of the first and second kind ank
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=2\ab/(a+b). We conjecture that different values &f
corresond to different solutions of the recurrence coeffi-
cients.

In this section, we have shown the multiple solutions dis-whereE[x]=NZL,V(x;) — 25, ; Injx—x;|
cussed in Sec. IV give rise to different correlation functions.
An interesting feature of the solutions is that there is a non-
trivial N dependence that survives in the lafyeimit. In
particular, for the symmetric solution we have shown a dif-
ference between odd and evidrin the thermodynamic limit.  This potential is similar to that of Eq7.2), in that it has a
This is reminiscent of the behavior in a model for glag€ds  double-well potential involving Ix|. We will show explicitly

that this has multiple solutions. We consider the situation for

z=| [ dx exd —E(x)], (7.9
J

ad

V(x)=N 5

x2—tln|x|). (7.4

t>0.
VIl. THE CONNECTION OF RANDOM MATRIX MODELS .
WITH A SIMPLE MODEL OF STRUCTURAL duc':l':tiorecurrence relations for a general Penner model re-

GLASSES

This section is concerned with building up a connection n_ AN N _ -1
with the study of structural glasses in the high temperature N \/R—”m 1[Vo(M)In) t\/R—”m 1M™n),
phase, starting from the work of Refg2,3]. The Hamil-

tonianH =1/ ,.,(s?- s)P corresponds ta particles mov- 0=(n|V{(N)[n)y—t(n|M~Yn). (7.5
ing in an N-dimensional space, in the limit,N—o. The
coordinates of the particles are*=(si---s3) and a Denoting W, = VRi(n—1|V4(M)n) and Y,

=1---n. In the “spherical caselzt:he particles are con- =(n|V6(I\7I)||n), for the Gaussian Penner modat = xR
and Y,=uS,. We can consider as in Sec. IV, a period-2

ansatz forR, and S,, which leads to four equations but

strained to move on the surfa¢e?|°=N, for all a. In the
“Ising” case they occupy only the vertices of a hypercube

s=x1. again only three independent equations

The  corresponding  partition  function is Z '
=N Try exd — BlaNtr(S'SS'S)], where S is the Nxn C+D=0,
rectangular matrix of elemenss, and Tgg, runs over either
the spherical or the Ising measure. Here aN with a=1. 2X+t
Using the largeN equivalence with the global constraint one A+B-CD= Tk
gets

X(X+1)
) N ,Bu AB= —— (7.6
Zspr~eN J d,uJ IT dx exp —N - ~BEX]|. M
=1
(7.9 Thus there is an infinite class of solutions labeled by one

function ofx in the largeN limit. For the “symmetric solu-
Thex;+/N are the “diagonal” values o8 in its canonical tion,” C=D=0 andA=x/u, B=(x+1t)/u while for the
form and E[X]ENEiN:l\/(Xi)_(1/2,3)2#1. |n|X.-2—X12| where  maximally asymmetric solutiomA=B=(1/u) Vx(x+t) and
X=(Xy,Xa, ... Xy) andV(x) is given by C?=(Lp)[(2x+1t)—2\x(x+1)]. Once again Eq.(7.6)
fixes the same combinations that appear in the generating
1 1 (a—1) function of the Gaussian Penner model. Thus in the |&ige
V(X)=|=x*———x?— In|x]||. (7.2 limit the eigenvalue density and free energy are identical for
a 2a B the full infinite class of solutions satisfying E(.6).
For the symmetric solutiofn|M ~|n)=0 by Z, symme-
This potential has the form of the generalized Penner modetry and S,=0, thus Eq.(7.5) yields R,=n/uN for n even
We show briefly(see Ref.[4]) that a very closely related and R,=n/uN+t/x for n odd. This is an exact solution,
model that can be exactly solved, the Gaussian Penngfence the exact free energy may be found to Dbe
model, has two cuts and multiple solutions. So the above- Esizilk|”[(2k+,u«+1)(2<+#—1)], where t=—1+ u/N.
model, which is a variant of the Penner model with two cuts,expanding in powers of. we get
is also conjectured to have multiple solutions.
The potential for a general Penner model \§M) r=2np+Snw--. (7.7
=Vy(M)—tInM, where Vy is a polynomial. If Vo(M)
=1 uM? the model is the Gaussian Penner model where w#lote that the coefficient of the second termuliis x;= 3,
can rewrite IMVIi=3In M2, This hasZ, symmetry and the po- which corresponds to the first subleading correction
tential is a double well with eigenvalues distributed in dis-in the 1N expansion. For the maximally asymmetric solu-
connected segments. The partition function for the Gaussiation in the double-scaled IimitR,~(I'[1/2(N—n+ u
Penner model in terms of its eigenvalugss [25] +3/2)]/T[1/2(N—n+ u+1/2)]), and the free energy iE
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=SN2 1K In[(2k+u+1/2) (2k+ w—1/2)]+ - - -. On expand-  With gaps. First a simple motivation for the presence of mul-

ing in powers ofu the free energy is tip!e solutions is given anq then it is made more precisg
using the recurrence coefficients of the orthogonal polynomi-
I=lu?lnp—Snu--. (7.8  als of the system. Further, numerical evidence is given for

the existence of multiple solutions in this context. In the

The coefficient of the second term is 5/48. Here in the Gausd@9€N limit the free energy, generating function, and density
ian Penner model we see that though the symmetric an@i’e th_e same. Differences b(_atween the multlple solutlo_ns are
maximally asymmetric solutions give the same result in the>6€N in the free energy at higher orders iN &5 well as in
large N limit, the free energies are very different at higher COIrelation functions.
orders. This establishes that in the Gaussian Penner mode] COnnections with the high temperature phase of structural
multiple solutions are present, which give the same free engla_sses have been made to matrix modgi28). T_hese are a
ergy in the largeN limit but differ at higher orders. As in Sec. variant of the Penner model W'th two cuts. A simpler model, .
VI certain correlation functions will be different for these e Gaussian Penner model, with disconnected segments is
solutions since they depend on the recursion coefficents. SNOWn to have these unusual multiple solutions as well.
The potentialV(x) for the glass model discussed in the Hence the matrix models wth gaps with connections to glass
high temperature region is qualitatively similar to t¢x) models are likely to have this unusual property. The rugged—
for the Gaussian Penner model in that both have doubl8€SS of the landscape needs to be stud.|ed. It would be nice to
wells. This feature is the same for tM* model discussed in € able to cast these models in the replica framework but this

earlier sections. Since these later models, which have twffMains a difficult task_ at th'S. point, as th_e Hubbard-
cuts in their eigenvalue density, have been shown to hav tratanovich t_ransformatlons, WhICh are technically needed
multiple solutions, it is conjectured here that the glass mode!°" the Gaussian random matrix models Rgi7], are not

. . 4 .
described above in the high temperature phase should a@d/aéle]ble here fﬁr the Slmé)|M dand the Gaussélzaln F_Iiir'm.er
have multiple solutions. It would be useful to show this ex-model or any other gapped random matrix models. This Is a
plicitly in the future. future goal in this problem.

More recent work26] suggests that the number of mul-
tiple solutions grows exponentially witk. This gives further
support for glassy behavior in these gapped random matrix | thank E. Brein, R. C. Brower, C. Dasgupta, S. Jain, and
models. C-I Tan for encouragement and collaborations. Thanks are

due to S. Jain for a critical reading of the manuscript. |
VIIl. CONCLUSIONS would like to thank the Raman Research Institute, Santa Fe
Institute, and the Abdus Salam International Center for The-

To conclude, ample evidence has been provided for theretical Physics for hospitality and facilities where part of

existence of multiple solutions in random matrix modelsthis work was done.
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