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Improved semiclassical density matrix: Taming caustics
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We present a simple method to deal with caustics in the semiclassical approximation to the thermal density
matrix of a particle moving on the line. For simplicity, only its diagonal elements are considered. The only
ingredient we require is the knowledge of the extrema of the Euclidean action. The procedure makes use of
complex trajectories, and is applied to the quartic double-well potential.
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I. INTRODUCTION The sum runs over all minimg(7) of the actiony z] sat-
isfying the boundary conditiong(0)=x" and z(B8%)=x,
In the path integral formulation of quantum statistical me-and A; denotes the determinant of
chanics, the thermal density matriyp(x,x")=(x|exp

(—BH)|x’) of a system with Hamiltonian o 2 _
FIxl=-m— +V"[x], (5
p? dr?
H= % + V(X) (]_)

the operator of quadratic fluctuations arourdr). (A deri-
vation of this result will be sketched in Sec.)ll.

In previous works[4,5], we presented the explicit con-
struction of the series for the diagonal elements of the den-
sity matrix, p(x,X). For the sake of simplicity, we restricted
our discussion to potentials of the single-well type. The more
intricate case of multiple wells—of which the quartic double
with well, with its many applications of practical importand,

is a paradigm—was left aside, as it requires special treat-
ment. Differently from single wells, for multiple wells the
_ 3) numberN of minima of S depends orx and 8 [7]. On the
frontier separating regions in the,(8) plane with different
values ofN—a caustie—p{X,X) diverges due to the van-
A semiclassical series fQJ’(X,X,) may be obtained from Eq IShlng of the fluctuation determinant around the minimum
(2) through the method of steepest descent. The derivatiofat appears or disappears there. In the present context, this
depends solely on the knowledge of the paths that arélivergence is an artifact of the semiclassical approximation.
minima of the Euclidean actior$ (the Euclidean nature of Thus, a simple manner of eliminating it is certainly called
the path integral allows us to discard saddle poirteey act ~ for; this is the purpose of this paper.
as backgrounds upon which a semiclassical propagator can As the caustic problem appears in other contexts in phys-
be obtained exactly and then used to construct the serids, it is instructive to briefly review how it comes about, and
perturba‘[ive|y_ Its first term is given by how it has been dealt Wlth, for the sake of Comparison. In
optics, caustics occur whenever light rays coalesce. Thus,
N gx1] t_hey separate regio_ns of_ different number of extre(m_hm
pgi)(x,x’)z E exr( _ _C)A,UZ_ (4) light ray9 of the optical dlstanpéthe a.nalog of the action _
=1 h ! In order to go beyond geometrical optics, one has to take into
account fluctuations around these light rays. Just as in the
present case, singularities emerge when we compute qua-
*Email address: aragao@if.ufrj.br dratic fluctuations on caustics. Ways to avoid this have been
"Email address: rmoritz@if.ufrj.br known for some timg¢8-12. Indeed, due to the traditional
*present address: Laboratoire de Physiqueofibae, Universite ~ analogy between wave optics and quantum mechanics, the
Paris—Sud XI, Bament 210, 91405 Orsay Cedex, France; emailtechniques involved are similar to the ones used in deriving
address: fraga@th.u-psud.fr connection formulas for WKB approximatiofis3], and con-
Spresent address: Instituto desien, Universidade Federal do Rio sist essentially in replacing one or more of the Fresnel inte-
de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21945-970, Brgrals that arise in the stationary phase approximation with a
zil; email address: joras@if.ufrj.br so-called diffraction integral, whose form is specified by the

is given by[1-3]

W,

Z(ph)=x
p(x,X’)=f [Dz(7)]exp —
2(0)=x’ h

1 .
Em22+V(z)

S[Z]Zjoﬁﬁdr
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classification of the caustic according to catastrophe theoryesults obtained for the case of the quartic double-well po-
[14,15; in the simplest case it is an Airy-type integral. A tential by using the improved semiclassical approximation,
general procedure has also been developed to deal with caughich are compared to the usual approach. Section IV pre-
tics in the path integral formulation of quantum mechanicssents our conclusions and points out directions for future
[16]. Although this general procedure could, in principle, bework.
adapted to the case at hand, the nature of our problem allows
for simplifications that warrant special treatment. Il. IMPROVING THE SEMICLASSICAL APPROXIMATION

In nonequilibriumquantum statistical mechanics, caustics
are also known to occur in semiclassical descriptions of the
decay of metastable states. The problem here is that of a In order to show how one can improve the semiclassical
particle in a potential that has a local minimum separated bypproximation so as to eliminate the unphysical divergences
a barrier from a region where it is unbounded below, in con-at the caustics, it is convenient to remember how the usual
tact with a thermal reservoir. The phenomenon of causticsemiclassical approximation to a path integral like the one in
has been associated with a transition from the classical to thieg. (2) is derived. Briefly, one has to

A. The “usual” semiclassical approximation

quantum regime of the decay rdte7—19. General prescrip- (a) Solve the Euler-Lagrange equationz=V'(z), sub-
tions for dealing with this phenomenon near the top of thgect to the boundary conditior 8%)=2(0)=x, and deter-
barrier have been given in great defdib-21]. mine, among the solutions, those whigfinimize (globally

The case we shall analyze in this paper differs from theor |ocally) the action. For simplicity, we shall assume for the
one in the previous paragraph in the following aspe@tsve  moment that there is only one such solution, which we de-
discuss a problem iequilibriumquantum statistical mechan- note byx,;
ics; (i) our analysis is global, in the sense that we compute (b) Expand the action arounct.: S[X.+ 7]=[Xc]
the density matrix diagonal for every point on the real axis. It+ s, + 5S, where
also differs from analyses carried out in optics and quantum
mechanics because of the Euclidean nature of the path inte- 1 (sh .
gral: only minima are to be considered; saddle points are SZ:EJO d7n(1)F[xc]7(7), ®)
discarded(This is strictly true only in the “usual” semiclas-
sical approximation. Our “improved” approximation makes o
use of some of the saddle pointén fact, in the specific 59— Z ifﬂﬁdrv(k)[x (D] 74):; )
example we analyzé&he quartic double-well potentjabnly k=3 kl'Jo ¢ ’
one new(local) minimum is introduced in function space

after the various catastrophes that occur as we change tifigjs the operator defined in E¢f), and we are assuming that
temperature; as it appears after the first catastrophe, this \#z) is an analytic function ofz, so that all derivatives
the only one we have to considé¢Again, this is valid only /(K (z) exist;

for the “usual” semiclassical approximation; the improved  (¢) Expand the fluctuationg(7) in terms of the orthonor-

one alsq requires an a_naly5|s of th_e secqnd catas_tr)o'blme. __mal modes of the fluctuation operatefx.]
results in a prescription for dealing with caustics that is

simple and direct. o
P_rewous_ vyorks have studied _the quartic dogble—well po- ()= 2 ajei(7), @)
tential at finite temperature using semiclassical methods j=o
[22,23. Our work complements and extends those studies,
by giving an explicit recipe for dealing with caustics. Varia- Whereligoj(7)=)\jgoj(7), with ¢;(0)= ¢;(B#)=0; then
tional methods have also proven extremely useful in this
problem, and were quite successful in addressing applica- 1>
tions in condensed matter phys[&}]. Combinations of per- S,== >, )\jaj?, (9)
turbation theory with variational techniques have also been 2 ]
recently used[25]. Our contribution to the semiclassical
treatment opens the way for practical calculations, to be
compared with perturbative, variational, and numerical re- 85=2 > "'_20 —C i aia, e, (10
sults. ’
This paper is organized as follows: before introducing the h
improved semiclassical approximation, which will remedyW ere
the problem of spurious divergences, Sec. Il briefly reviews si
the derivation of the usual semiclassical approximation to the cm :J d VO [x(T)]@i (1)@ (7). (11
density matrix. The new method is, then, presented in two o Jo ! "
alternative ways: one has a better physical motivation, and
clearly illustrates the essential ideas, but lacks effectiveness The “usual” semiclassical approximation is obtained by
as a calculational tool; the other provides a general recipe toeglectingssS in the path integral on the right-hand sigs)
perform the calculations in a systematic way, resorting to thef Eq. (2), which, upon the change of variableg(r)
use of complex trajectories. Section Ill describes in detail the—{a;}, becomes a product of Gaussian integrals
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J N S\~
S[;L(] Il 7. (12) p(x,x)~;l ex —#)Ajl’z, (19)

]=0

J' daJ )\Ja]
700 2h

p(X,X)NeX% -

" where S;=S[xgnl+W(ag;) and A;=[V"(ag;)/\o]A. Al-

=N 77 (13 though expressiofil9) is not identical to the “usual” semi-
classical approximatiofEg. (4)], the dominant term in both
sums is the same, namely, ex{f{Xy,l/%)A =2 [recall that
ag;=0, hencel(ay) =0 andV"(agy) =\o]; the other terms

Ix] are exponentially suppressed in the classical lifnit0.

p(X,X) exr{ )A 12 (14 Another point that is important to mention is that one can,

in principle, systematically improve the “improved” semi-

classical approximation, Eq17). To do this, one first de-

whereAzﬂ?‘;O)\j:detfz. (Explicit expressions fol [see ., Hoses the action into three piec&kx...+ n1= S x
Eq. (41) below] were derived in Ref[4], where it was also +S,—ES,, where Piec8BXgm+ 7] =S Xgnl

discussed how to systematically include corrections due to
8S.) If there areN minima, one has to add together their

contributions, thus obtaining E4). slzy(ao)+% E )\jaJ.Z (20)
=1

Hence

B. Taming the caustics
and

When we cross a caustic, a classical trajecteyfyr) is
created or annihilated. Precisely at this point, the lowest ei-

genvalue ofﬁ[xc] vanishes, thus making the integra)
blow up. This problem can be remedied by retaining fluctua-

tions beyond quadratic in the subspace spannegdithe  with §S defined by Eq(10). Applying this decomposition to
eigenmode of associated witfr ), i.e., we replac&, with Eq. (2) (with x’=x) then yields

W(ag) _ * da S
e et e o oS e

where “1 S, \"
Fl

1 Mo Ao !
Wag) = )\OaO+E —C(“) oan. (16)

S)=8S—| V(ap) -

Noa3|, (22)

2

(22

This defines an “improved semiclassical series,” the first
term of which corresponds to EQL7). Higher order terms
We take forM the smalleseveninteger such tha€{¥’ ,is  can be readily computed, as they can be recast as sums of
positive for all values ok, and B; this suffices to make the products of simple integrals. Compared with the “usual”

integral in Eq.(15) finite even whem\ vanishes. semiclassical seriggl], the serieg22) has the disadvantage
As a result, we obtain an improved approximation to thethat integrals involving powers &f; must be computed nu-
density matrix element2), merically. On the other hand, those integrals are finite even at

the caustics, so that the coefficients of the se@@sare well
defined for anyB andx,.

Although the procedure outlined in this section teaches us
how to cross the caustics, it is not very convenient: in order
Here,Xgn is the global minimumof S[x]. to obtain the coefficients of(ay) one has to find\, and

It is important to note that there is a one-to-one correspongo(7). This, in general, is not an easy task, and makes the
dence between the minima 8fx] and the minima oi/(a,). whole procedure very cumbersome. Instead, we shall present
Therefore, it is not necessary to explicitly add their contribu-an alternative way of obtaining those coefficients, which is
tions as in Eq.(4), for they are already included ifl7). based on the one-to-one correspondence between the minima

p(x,x)~exy{ - S[);,L—gm])A‘”Z}". (17)

Indeed, letag,(=0),ap, . . .,80y be the minima ofy. If  of Sand).
they are sufficiently far apart, one may compieising the
steepest descent method, obtaining C. An alternative procedure
N Let us assume thad#l =4 in Eq. (16); this is the case for
f~2 / Ao exr< _ (@) (18) the quartic double-well potential, to be discussed in the fol-
=1 V" (@) h lowing section. Then the “effective action4(ag)= Xgn|

+)W(ay) for the “critical” mode ¢ is a fourth degree poly-
Substituting this into Eq(17) then yields nomial inag.
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Let us also assume for the moment tbta,) has three
extrema: a global minimum &a,=0, a local maximum at
u>0, and a local minimum at>u. This allows us to write
A(ap) as
1

uv a— ag

1 s 1
A(ag)= S[xgm]+a §(u+v)a0+—

4
(23

[one can easily check that’ (0)=.A"(u)=A"(v)=0].

We now have to relater, u, andv to calculable quanti-
ties. We do this by imposing thad(v) = S x;,,] and .A(u)
= Xspl, Wherex;(7) and xg7) are the local minimum
and the lowest saddle point 8f x], respectively. This yields

Sim] ~ S Xgml _ A(v) = A0) _ £3(2-¢)
el ~ SXgml  A(W-A(0)  26-1

where ¢=v/u. It follows from the definition ofxgy, Xim,
and xg, that the left-hand side of Eq24) is in the range
[0,1]. A plot of its rhs shows that Eq24) possesses a unique
real solution, lying in the interval & {<2.

Having determinedt, we can now fix another combina-
tion of parameters, namely,= au*

(24

S Xspl = S[Xgm] = A(u) — A(0) = (26 1. (29
We can then rewrite Eq.(23) as A(ag)=S Xgml
+Vs(ag/u), where

Va(2)=p (26)

1 1 1
T2 T 3, 54
2§z 3(1+§)z +4z

PHYSICAL REVIEW E65 056112

with y=al|w|* and ¢=argWw).
S xq] yields

Identifying .A(w) with

S[Xel~ Sxgml = 75(267 =€), (30
from which we can obtainy and ¢. Finally, identifying
Vi(ag/|w]) with V(ag) yields \ o= x/|w|?, which leads to

/ ~ Vi(ao! |W|)
27Tﬁ|W|2j 920 A
V1(2)
R f dz "( )

In accordance with Ref.7], the solution we have called
Xim(7) is aone saddlethe operator of quadratic fluctuations

around it,F[x,,], has only one negative eigenvalue. At the
second catastrophe, the one saddle becom&goasaddle
(i.e., it becomes unstable in another direction in the func-
tional spacg and two one saddles appear. Having lower ac-
tion than the two saddle, the one saddles have a larger weight
in the partition function. Hence, when the second caustic is
crossed the role of “lowest saddle point” in Eq®4) and

(25) is transferred to one of the newly born one saddles,
namely, the one with the lowest action. The transition is
smooth as all three trajectories coalesce and thus are identi-
cal to each other at the caustic. We also notice that, in spite
of the infinite number of catastrophes, such a change of roles
occurs only once, namely, at the second catastrophe, since
the minima ofS (or zero saddlesand the one saddles do not
take part in the subsequent catastrophes. Indeed, as shown in
Ref. [7] (see also Sec. Il B)5 only (n—1) saddles anadh

(31)

There still remains one parameter to be determined, namelgaddies take part in theth catastrophe.

u. Fortunately, we do not need it in order to compu‘fe
Indeed, identifyingV;(ay/u) with V(a,) yields N o= wé&/u?,

2 (il ﬁU

Changing the variable of integration =a,/u eliminates
the unknown parameterfrom the problem, leaving us with

Vs(ao/u)) 27

an expression fofF that depends only on the calculable pa-

rametersé and

[ mé (=
F= 27 wdzexp{—

(28)

V3(2)>
pal

The case in whicls has only one extremum can be dealt

with similarly. Now A’ (ay) has one real rootap=0), cor-
responding to the minimumiy,(7) of §x], and a pair of
complex conjugate rootsy and w*, corresponding to the
pair of complex conjugate trajectorigg(7) andxz (7). Cor-
respondingly, we havel(ag) = S Xqml + Vi(ao/|w|), where

1
cos¢)z3+ —7*

7 (29

_ 1.2
Vi(2) X22 3(

Ill. APPLICATION: THE QUARTIC DOUBLE-WELL
POTENTIAL

A. Preliminaries

Let us consider the quartic double-well potential, given by

V(o= 3 (-a?)?

(A>0). (32)

In order to simplify notation, it is convenient to replacand
T by q=x/a and 6= w, respectively, withw=(xa%/m)*2.
In the new variables, the equation of motion reagls
=U'(q), whereU(q)=3(g?—1)2. Its first integral is

1'2
5a2=U(a)-U(ay, (33

where g, denotes the turning poirt.e., the point where
=0). This can be further integrated to give us the relation
betweenq, and the initial positiong, for a given “time of
flight” ®=pfw. (As shown in Ref[4], that relation is all
we need in order to compute the “usual” semiclassical ap-
proximation to p(x,x), Eq. (4). The same is true for the
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computation of the improved approximation, Eg7), using
the procedure outlined in Sec. II)CAssuming for the mo-
ment that G=qy<qg;=1, we can write

9_ ay dq
2 Jao\2[U(q)—U(g)]

Inserting the explicit form otJ(q) and changing the integra-
tion variable toz=q/q;, Eq. (34) becomes

(34

dz

1
u= , 35
Jqo/ql\/(l—zz)(l—kzzz) 39
where
O it e
U=5 1—§q, k= (36)

Performing the integratiofiformula (130.13 of Ref. [27]]
and solving forq, finally yields

do=q;cd(u,k), (37

where cd is one of the Jacobian elliptic functions.
The action can be written & x]=(%/9)I[q], whereg
=aNm?w® and

(38)

o [1.
I[0|]=JO do §q2+U(q)}-

Using Eq.(33), we may rewritel[q.] as

l[qc]=®U<qt>+2qu‘dw2[U<q>—U<qt>]. (39
0

The integration can be done with the help of formula

(219.11 of Ref. [27]. After a few algebraic manipulations
one arrives at

1
I[a:]=OU(a) — 3v2q5(a¢ — dg)(2— d — o)

2
—3V2(2=a{(1=a))[K(K)—F(.k)] = E(K)
+E(e. k), (40)

where K, F, and E are elliptic integrals[26,27 and ¢
=arcsinfp/qy).
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FIG. 1. The lower curve in this figure depicts the caustic for the
quartic double-well potential. Below it the action has only one
minimum; above it, the action has two minima. The cusp is located
at the point ¢o,0)=(0,7). A second catastrophe occurs at the
curve in the middle: below itbut above the causdithe action has
a one saddléin addition to the minimg as the curve is crossed, the
one saddle splits into a two saddle and a pair of one saddles, the
latter corresponding to a pair of periodic trajectories. The minimum
of the middle curve is located atif,®)=(0,27). Upon crossing
the upper curve, whose minimum is located@$,@) =(0,3w), the
number of classical trajectories increases by two: the two saddle
splits into a three saddle and a pair of two saddles. Numbered
arrows correspond to the first three subsections of Sec. (TBis
figure corrects Fig. 5 of Ref7].)

Finally, the determinant of the fluctuation operator is
given by[4]

(41)

2[U —U 9
A= amg sqr(do— gy %) (q‘)](ﬁ

U’ (qy) 90t

Q)

We now have all the ingredients to compute the semiclas-
sical approximation tgp(x,x)—both the “usual” and the
“improved” one. Indeed, both the action and the determinant
of fluctuations can be expressed solely in termg,0fThere-
fore, as anticipated, this is the only information we need
from the classical trajectories.

B. Singularities and their removal

As we have already said, the “usual” semiclassical ap-
proximation top(qq,qg) diverges at a caustic because of the
vanishing of the determinant of fluctuatiods around the
minimum of Sthat appears or disappears there. According to
Eqg. (41, there are two waysA may vanish:(i) when
(090/99)9=0; (i) when U(qy)=U(qgy). A qualitative
analysis of the equation of motion shows that, at the bound-

Equations(37) and (40) have been derived under the as- ary between thél=1 and theN=2 regions in the ¢, 0)

sumption thatg, and g, are real and satisfy €q,<q;=<1.

plane,A vanishes according to the first alternatjvg. Solv-

However, since the elliptic functions and integrals are meroing the equation {qo/ddy)e =0 for q; and inserting the re-
morphic functions of their arguments, we can now abandosult q,(®) into Eq. (37), one obtains the lower curve de-

that assumption and trea and g, as complex variables.
[Note, however, thaf g.] is a multivalued function ofj; and

picted in Fig. 1—the caustic.
In what follows we shall examine the behavior of the

so one must be a bit careful when computing it. For instance,usual” semiclassical approximation across the caustic, and

the first square root in Eq40) acquires a minus sign if
—-1<q;<—(o<0.]

compare it with the improved approximatioghll numerical
calculations were performed USINVAPLE.)
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0.5

=15
-1.2

-(;.6 0 0:6 12
q,

FIG. 2. go(9:,0®) [Eqg. (37)] for ®=2.0 (solid ling), O ==
(short-dashed line and® = 4.5 (long-dashed ling For ® < this
function is one to one. Fo® > and|q| sufficiently small there

are threg(or more real values ofj; corresponding to a giveq,.

1. =0, O==

Whengy=0 and® <, the only real solution to Eq37)
is q;=0. It then follows from Eq.(39) thatI[g.]=©/4. In
order to compute\ we needqq(q;,®) for smallg,. Using
Egs. (36) and (37) we find qo~q;cd(®/2,0)=q,;cos®/2);
Eq. (41) then yieldsA =2 g sin® in the limit g,— 0. There-
fore, the “usual” semiclassical approximation te(0,0)
gives

C)
psd0,0~(27g sin@))‘llzex;{—@) (O<m). (42

It diverges like r—0) Y2 as®@— 7.

While for ® < there is only one real solution to the
equationqo(g;,®) =0, for ®> 7 there are threeq,= 0, cor-
responding to the trajectorg(6#)=0 (which is now a 1

saddlg, plus a pair of solutions located symmetrically with
respect to the origin, corresponding to a pair of degenerat

minima of the action(see Fig. 2. The latter can be traced
back to a pair of purely imaginary trajectories fer<<r.
Indeed, makingy;=i¢ in Egs.(36) and (37) and using the
identity cd(u,ik) =cn(uy1+kZ k/\1+k?) [27], we obtain

. &
go=1écn E\/1+ gz’ﬁ .

(43

The rhs of the above equation has an infinite number of zeros

besides the one a&=0 (see Fig. 3. As ® approachesr

from below, the zeros approach the origin and two of them

eventually coalesce there whén= 7, reappearing as a pair
of real solutions to the equatiam(q;,®)=0 for ®> .

In Fig. 4 we show both the usu@Eqg. (4)] and the im-
proved[Eq. (17)] semiclassical approximation &(0,0) for
O~ 1.

PHYSICAL REVIEW E65 056112

FIG. 3. —igy(&,0) [Eq. (43)] for ® =2.0 (solid line), ®=2.5
(short-dashed line and® = 7 (long-dashed ling

2.0=m, g0

When ® = 7, the approximationgy~q;cos@®/2) is not
enough for our purposes. Going to the next nontrivial order
in the Taylor expansion ofjy(q;,7) one obtainsqo~qt3 as
g;— 0. It then follows from Eqgs(4), (40), and(41) that the
usual semiclassical approximation @¢qo,q,) behaves, for
O=m, as

qOHO

T
psdo.bo) ~ gl’zlqul’Sexp(—@)- (44)

Two aspects of this result are worthy of mentign: the
singularity atqy=0 is integrable, hence the semiclassical
partition function is well defined(ii) because of the expo-
nential factor, ifg<<1 one has to be very close to the origin
to “notice” the singularity: for ps{Qdq,0o) to be of order
unity or greatergo must satisfy|qo| =g~ *?exp(3n/4g).
Figure 5 shows both the usual and the improved semiclas-
%ical approximation t@(qg,qg) for @ = 7. In order to make
visible the singular behavior of the former, we have taken
g=0.3. One can notice that far from the caudiie., for
0o=0.2) the two curves are similar, but differ by approxi-

15

FIG. 4. p(0,0) vs® for g=0.3. Usual(dashed ling and im-
proved(solid line) semiclassical approximation.
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0.2 T T T 1

015

0.05

(] 0.5

1
Q

FIG. 5. p(qp,dg) VS qp for ®=4. Usual (dashed ling and
improved (solid line) semiclassical approximation. -1 ' ' ' ' '

01 02 03 04 05 00

mately 10%. This is due to the relatively large valuegof qO
The difference disappears in the classical ligit:0.

FIG. 7. q; vsqo for ®=5.0. If |go| <0, =0.332.. . . ,there are
3.0>%w three real solutions to Eq37) (solid lineg; the upper curve corre-
. ~ . ~ sponds to the global minimum, the lower one to the local minimum,
Expéndlng 9o(q;,®) around Qt£®)’ we obtain go— do and the one in the middle to a one saddle. At the caustic the last two
~(g—0y)?, so thatdqy/dg;~ (g—q,) near the caustic. The coalesce, and reappear at the other side of the cafistic|qo|
other terms in Eq(41) remain finite on it, so that we finally >q,) as a pair of complex conjugate solutions. Their real and
obtain imaginary parts are represented by the long-dashed and short-
dashed lines, respectively.
A2~ |g—q Y%~ |do—dol M (45
with the appearance gieriodic classical trajectories, and the

Figure 6 depicts both the usual and the improved semi- I, — ) -
classical approximation tp(do,do) for ®=5.0. Again we condition g (o determines the amplitud&(®) of these

had to use a relatively large value gfin order to magnify trajectories [A(®) is the positive solution to equation
the “critical” region where the usual semiclassical result di- 9o(0, ©)= —q;, whereqo(q,,0) is defined by Eqs(36)

verges. Note that the divergence occurs only at the twc‘;’md (37)]. It is not difficult to see why a catastrophe occurs

minima side of the caustisee Fig. J, as it is associated when that condition is satisfied: |ifjo| <A(®), there are two

with the coalescence of the local minimum with a saddleperiOdiC trajectories satistying(0)=do, related by time re-

i @)py=qaW(E —
point of the action; the contribution of the global minimum Yersal: 1-€.,ac(0)=dc"(© —¢). If, on the other hand,
remains finite at the caustic. |do/>A(®), no such trajectories existgy|=A(®) thus

marks the boundary between regions with zero and regions
4. 0=2m with two periodic trajectories. This boundary is depicted in
) ) ) _ Fig. 1 (upper curve
As discussed in Ref7], another catastrophe is present if “Ag discussed at the end of Sec. Il C, the procedure for
©=27. This time,A vanishes when the classical trajectory gealing with the caustic outlined in that section is not af-
is such thatJ(qo) =U(qy, or, since the potential is symmet- fected by the appearance of a new catastrophe. What changes
ric about the origing;= —qo. This catastrophe is associated 35 the second catastrophe is crossed is the identity of the
“lower saddle point”: for |go|>A(®), it is to be found
among the solutions of E437); for |qo| <A(®), it is given
by any one of the two periodic trajectories satisfyiqpgO)
=(q (since they have the same actioAs a matter of fact,
since all periodic trajectories with the same amplitided
the same perigdhave the same action, we may pick the one
that satisfies the conditioqp= — q,, for then we can use Eq.
(40) to compute its action.

0.05

0.04 |

0.03 |

0.02

0.01
5 O—x

In the high-temperature limi) — 0, thermal wavelengths
are very small, and the classical limit sets in, as quantum
fluctuations are suppressed. That is the regime where our

FIG. 6. p(Qy,do) VS 0o for ®=5.0 andg=0.3. Usual(dashed  improved semiclassical approximation should work best, as
line) and improvedsolid line) semiclassical approximation. illustrated in Ref[4], since it incorporates quantum fluctua-
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tions in a controlled manner as we lower the temperaturement of the low-temperature limit within the functional for-
and profits from the simplification of having to deal with malism that does not appeal to the dilute-gas approximation.
only one or two minima, as already emphasized. Neverthe-

less, even in the opposite limi® — o, our improved semi-

classical method can be used to reproduce zero temperature IV. CONCLUSION

regults. The secre_t Is to recognize that the variQus saddle- Semiclassical methods are a powerful nonperturbative
points that were discarded for fini& do play a role in such 1,5 tor poth equilibrium and nonequilibrium systems. This
a !Iml'[; |n.fact, taking ther_’n mFo account |s.eqU|va_1Ier.1t to paper, together with Ref§4,5,7], represents a further step
using a dilute-gas approximation, as we will qualitatively {5\ards a systematic semiclassical treatment of quantum sta-
argue. First, however, let us review how the saddle pointsistical mechanics.
emerge. In the present work, we developed a simple procedure to
For a fixedq, in the interval (- 1,+ 1), new saddle points derive the lowest order semiclassical approximation for the
will appear as we increade, following a pattern outlined in  case of multiple-well potentials in equilibrium quantum sta-
Ref.[7]. As a result, the strip of thegg,®) plane defined by tistical mechanics. In order to adequately incorporate new
—1<qgo<+1 and ®=0 may be divided into regions extrema, we kept fluctuations beyond the quadratic level
wherein each y,®) point gives rise to 8+ 1 solutions, along the “unstable” direction in functional space, and relied
n=0,1,2 ..., asshown in Fig. 1. The regions are separatedon our knowledge of the type of catastrophe involved as we
by caustics where instabilities develop: foreven, as we cross a caustic to eliminate spurious singularities in the semi-
cross the caustic between the regions with+2l and 2 classical approximation, obtaining sensible results for the
+3 solutions, an saddle, i.e., a solution witlm negative  density matrix elements for any temperature. This was exem-
eigenvalues, and an¢- 1) saddle appear; for odd valuesmf  plified by the analysis of the quartic double-well potential.
the n saddle in the region with 12+ 1 solutions becomes Our results can possibly be extended to nonequilibrium
unstable, it is replaced, in the region witm2 3 solutions, systems, such as those where a time-dependent potential is
by two n saddles that are periodic, and byra#H1) saddle. coupled to a heat bath, in order to better understand transient
Thus, for a givenn, we end up with arf+1) saddle, ¢  fegimes. Although the physics of nonequilibrium quantum
— 1) pairs ofn saddles witm=n, and a pair of minimatwo statistical mechar_ucs has beep considered in detail in the con-
0 saddles text of semiclassical calculations of the decay rates of meta-

As O the two minima will correspond to solutions stable system§l7-21], a thorough analysis of the various

(6) that s ,end most of their euclideanptirﬂmear aither transient regimes, and of the interplay of their corresponding
e P . . . time scales, is still needed. Here, however, we will no longer
go=—1 orgqy=+1. They both have a single turning point,

and onlv the local minimum will cross the oridiae=0- first profit from the drastic reduction in the number of extrema
Y . gaqr-u: ' that occurs in equilibrium situations, as time evolution forces
at a small value of; and upon returning, at a large value

9—® . The 1 saddl hich iodic. h WO turni us to deal with saddle points and maxima, as well. The sim-
‘9. 1he 1 saddles, which are periodic, have two urnlngpliﬁed methods presented in this paper will still be useful to
points, will also cross the origin twice, but one of the cross-

! . . 72 describe the asymptotic imaginary time evolution corre-
ings will occur at a value of) near®/2. Generalizing this ymp ginary

litati s lude thatsadd] i sponding to equilibrium, but not the real time evolution,
qualrtative analysis, we may conciude addies wi which requires the traditional quantum mechanical treatment.
have (i+ 1) turning points and inner(away from#=0 and

. = . : As for possible extensions to field theories, the methods
¢=0) crossings of the origin. Each of those inner crossinggye\ejoped in Refg4,5] should be applicable to the evalua-
is equivalent to a kink or an antikink, so that a generic o, of the effective potential in the presence of nontrivial
saddle will not differ much from a solution built out of a backgroundgdefects, as long as they depend on only one
superposition of kinks and antikinks in that limit. Typically, .5 dinate. This can be of use in a wealth of possible appli-

the euclidean time width of such kinks should be muchiiqng and should help in the study of phase transitions and
smaller tharj the|r separations, as the solutions tend to Sper&ﬁtical phenomena where such defects play a role. Cases
most of their time neaqy=*1.

. . . ) __such as the ones explored here and in R&f.which involve
Varying the euclidean times where those inner crossingge,era| extrema, still lack a field theoretic treatment.
occur should not alter significantly the action of theaddle

in the ®—co limit, an indication of the existence of a flat
direction in functional space corresponding to that variation.
As flat directions are associated to near-zero eigenvalues, we
claim that the negative eigenvalues that characterizenthe  E.S.F. acknowledges Valerio Tognetti, Ruggero Vaia, and
saddle will approach zero from below @s— o, and that the  Alessandro Cuccoli for their kind hospitality during his visit
euclidean times where the crossings occur should be treated Universitadi Firenze and for fruitful discussions. The au-
as collective coordinatg®8], just as the positions of kinks thors acknowledge support from CNRG.A.A.C., E.S.F.,
and antikinks in the dilute-gas approximation. The contribu-and S.E.J, FUIB/UFRJ(C.A.A.C.), FAPESP and FAPERJ
tions of the various kinks and antikinks can be dealt with in(R.M.C). E.S.F. and S.E.J. were partially supported by the
the usual manner—they add up to an exponential, and repr@J.S. Department of Energy under the Contract Nos. DE-
duce the standard result for the splitting between ground andC02-98CH10886 and DE-FG02-91ER40688 - Task A, re-
first-excited statg¢29]. (See, however, Ref30] for a treat-  spectively.
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