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Improved semiclassical density matrix: Taming caustics
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We present a simple method to deal with caustics in the semiclassical approximation to the thermal density
matrix of a particle moving on the line. For simplicity, only its diagonal elements are considered. The only
ingredient we require is the knowledge of the extrema of the Euclidean action. The procedure makes use of
complex trajectories, and is applied to the quartic double-well potential.
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I. INTRODUCTION

In the path integral formulation of quantum statistical m
chanics, the thermal density matrixr(x,x8)5^xuexp
(2bH)ux8& of a system with Hamiltonian

H5
p2

2m
1V~x! ~1!

is given by@1–3#

r~x,x8!5E
z(0)5x8

z(b\)5x

@Dz~t!#expS 2
S@z#

\ D , ~2!

with

S@z#5E
0

b\

dtF1

2
mż21V~z!G . ~3!

A semiclassical series forr(x,x8) may be obtained from Eq
~2! through the method of steepest descent. The deriva
depends solely on the knowledge of the paths that
minima of the Euclidean actionS ~the Euclidean nature o
the path integral allows us to discard saddle points!. They act
as backgrounds upon which a semiclassical propagator
be obtained exactly and then used to construct the se
perturbatively. Its first term is given by

rsc
(1)~x,x8!5(

j 51

N

expS 2
S@xc

j #

\ DD j
21/2. ~4!
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The sum runs over all minimaxc
j (t) of the actionS@z# sat-

isfying the boundary conditionsz(0)5x8 and z(b\)5x,
andD j denotes the determinant of

F̂@xc
j #[2m

d2

dt2
1V9@xc

j #, ~5!

the operator of quadratic fluctuations aroundxc
j (t). ~A deri-

vation of this result will be sketched in Sec. II.!
In previous works@4,5#, we presented the explicit con

struction of the series for the diagonal elements of the d
sity matrix,r(x,x). For the sake of simplicity, we restricte
our discussion to potentials of the single-well type. The m
intricate case of multiple wells—of which the quartic doub
well, with its many applications of practical importance@6#,
is a paradigm—was left aside, as it requires special tre
ment. Differently from single wells, for multiple wells th
numberN of minima of S depends onx and b @7#. On the
frontier separating regions in the (x,b) plane with different
values ofN—a caustic—rsc(x,x) diverges due to the van
ishing of the fluctuation determinant around the minimu
that appears or disappears there. In the present context
divergence is an artifact of the semiclassical approximati
Thus, a simple manner of eliminating it is certainly calle
for; this is the purpose of this paper.

As the caustic problem appears in other contexts in ph
ics, it is instructive to briefly review how it comes about, a
how it has been dealt with, for the sake of comparison.
optics, caustics occur whenever light rays coalesce. Th
they separate regions of different number of extrema~the
light rays! of the optical distance~the analog of the action!.
In order to go beyond geometrical optics, one has to take
account fluctuations around these light rays. Just as in
present case, singularities emerge when we compute
dratic fluctuations on caustics. Ways to avoid this have b
known for some time@8–12#. Indeed, due to the traditiona
analogy between wave optics and quantum mechanics,
techniques involved are similar to the ones used in deriv
connection formulas for WKB approximations@13#, and con-
sist essentially in replacing one or more of the Fresnel in
grals that arise in the stationary phase approximation wit
so-called diffraction integral, whose form is specified by t
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classification of the caustic according to catastrophe the
@14,15#; in the simplest case it is an Airy-type integral.
general procedure has also been developed to deal with c
tics in the path integral formulation of quantum mechan
@16#. Although this general procedure could, in principle,
adapted to the case at hand, the nature of our problem al
for simplifications that warrant special treatment.

In nonequilibriumquantum statistical mechanics, caust
are also known to occur in semiclassical descriptions of
decay of metastable states. The problem here is that
particle in a potential that has a local minimum separated
a barrier from a region where it is unbounded below, in co
tact with a thermal reservoir. The phenomenon of caus
has been associated with a transition from the classical to
quantum regime of the decay rate@17–19#. General prescrip-
tions for dealing with this phenomenon near the top of
barrier have been given in great detail@19–21#.

The case we shall analyze in this paper differs from
one in the previous paragraph in the following aspects:~i! we
discuss a problem inequilibriumquantum statistical mechan
ics; ~ii ! our analysis is global, in the sense that we comp
the density matrix diagonal for every point on the real axis
also differs from analyses carried out in optics and quan
mechanics because of the Euclidean nature of the path
gral: only minima are to be considered; saddle points
discarded.~This is strictly true only in the ‘‘usual’’ semiclas
sical approximation. Our ‘‘improved’’ approximation make
use of some of the saddle points.! In fact, in the specific
example we analyze~the quartic double-well potential! only
one new~local! minimum is introduced in function spac
after the various catastrophes that occur as we change
temperature; as it appears after the first catastrophe, th
the only one we have to consider.~Again, this is valid only
for the ‘‘usual’’ semiclassical approximation; the improve
one also requires an analysis of the second catastrophe.! This
results in a prescription for dealing with caustics that
simple and direct.

Previous works have studied the quartic double-well
tential at finite temperature using semiclassical meth
@22,23#. Our work complements and extends those stud
by giving an explicit recipe for dealing with caustics. Vari
tional methods have also proven extremely useful in t
problem, and were quite successful in addressing app
tions in condensed matter physics@24#. Combinations of per-
turbation theory with variational techniques have also b
recently used@25#. Our contribution to the semiclassica
treatment opens the way for practical calculations, to
compared with perturbative, variational, and numerical
sults.

This paper is organized as follows: before introducing
improved semiclassical approximation, which will reme
the problem of spurious divergences, Sec. II briefly revie
the derivation of the usual semiclassical approximation to
density matrix. The new method is, then, presented in
alternative ways: one has a better physical motivation,
clearly illustrates the essential ideas, but lacks effectiven
as a calculational tool; the other provides a general recip
perform the calculations in a systematic way, resorting to
use of complex trajectories. Section III describes in detail
05611
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results obtained for the case of the quartic double-well
tential by using the improved semiclassical approximati
which are compared to the usual approach. Section IV p
sents our conclusions and points out directions for fut
work.

II. IMPROVING THE SEMICLASSICAL APPROXIMATION

A. The ‘‘usual’’ semiclassical approximation

In order to show how one can improve the semiclass
approximation so as to eliminate the unphysical divergen
at the caustics, it is convenient to remember how the us
semiclassical approximation to a path integral like the one
Eq. ~2! is derived. Briefly, one has to

~a! Solve the Euler-Lagrange equation,mz̈5V8(z), sub-
ject to the boundary conditionsz(b\)5z(0)5x, and deter-
mine, among the solutions, those whichminimize~globally
or locally! the action. For simplicity, we shall assume for th
moment that there is only one such solution, which we
note byxc ;

~b! Expand the action aroundxc : S@xc1h#5S@xc#
1S21dS, where

S25
1

2E0

b\

dth~t!F̂@xc#h~t!, ~6!

dS5 (
k53

`
1

k! E0

b\

dtV(k)@xc~t!#hk~t!; ~7!

F̂ is the operator defined in Eq.~5!, and we are assuming tha
V(z) is an analytic function ofz, so that all derivatives
V(k)(z) exist;

~c! Expand the fluctuationsh(t) in terms of the orthonor-
mal modes of the fluctuation operatorF̂@xc#

h~t!5(
j 50

`

ajw j~t!, ~8!

whereF̂w j (t)5l jw j (t), with w j (0)5w j (b\)50; then

S25
1

2 (
j 50

`

l jaj
2 , ~9!

dS5 (
n53

`

(
i 150

`

••• (
i n50

`
1

n!
Ci 1i 2••• i n

(n) ai 1
ai 2

•••ai n
, ~10!

where

Ci 1••• i n
(n) 5E

0

b\

dtV(n)@xc~t!#w i 1
~t!•••w i n

~t!. ~11!

The ‘‘usual’’ semiclassical approximation is obtained b
neglectingdS in the path integral on the right-hand side~rhs!
of Eq. ~2!, which, upon the change of variablesh(t)
→$aj%, becomes a product of Gaussian integrals
2-2
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IMPROVED SEMICLASSICAL DENSITY MATRIX: . . . PHYSICAL REVIEW E 65 056112
r~x,x!'expS 2
S@xc#

\ D )
j 50

`

Ij , ~12!

Ij5E
2`

` daj

A2p\
expS 2

l jaj
2

2\ D 5l j
21/2. ~13!

Hence

r~x,x!'expS 2
S@xc#

\ DD21/2, ~14!

where D5) j 50
` l j5detF̂. ~Explicit expressions forD @see

Eq. ~41! below# were derived in Ref.@4#, where it was also
discussed how to systematically include corrections due
dS.! If there areN minima, one has to add together the
contributions, thus obtaining Eq.~4!.

B. Taming the caustics

When we cross a caustic, a classical trajectoryxc(t) is
created or annihilated. Precisely at this point, the lowest
genvalue ofF̂@xc# vanishes, thus making the integralI0
blow up. This problem can be remedied by retaining fluct
tions beyond quadratic in the subspace spanned byw0 ~the
eigenmode ofF̂ associated withl0), i.e., we replaceI0 with

Ĩ05E
2`

` da0

A2p\
expS 2

V~a0!

\ D[l0
21/2F, ~15!

where

V~a0!5
1

2
l0a0

21 (
n53

M
1

n!
C00•••0

(n) a0
n . ~16!

We take forM the smallesteveninteger such thatC00•••0
(M ) is

positive for all values ofx0 andb; this suffices to make the
integral in Eq.~15! finite even whenl0 vanishes.

As a result, we obtain an improved approximation to t
density matrix element~2!,

r~x,x!'expS 2
S@xgm#

\ DD21/2F. ~17!

Here,xgm is theglobal minimumof S@x#.
It is important to note that there is a one-to-one corresp

dence between the minima ofS@x# and the minima ofV(a0).
Therefore, it is not necessary to explicitly add their contrib
tions as in Eq.~4!, for they are already included in~17!.
Indeed, leta01(50),a02, . . . ,a0N be the minima ofV. If
they are sufficiently far apart, one may computeF using the
steepest descent method, obtaining

F;(
j 51

N A l0

V 9~a0 j !
expS 2

V~a0 j !

\ D . ~18!

Substituting this into Eq.~17! then yields
05611
to
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r~x,x!'(
j 51

N

expS 2
Sj

\ D D̃ j
21/2, ~19!

where Sj[S@xgm#1V(a0 j ) and D̃ j[@V 9(a0 j )/l0#D. Al-
though expression~19! is not identical to the ‘‘usual’’ semi-
classical approximation@Eq. ~4!#, the dominant term in both
sums is the same, namely, exp(2S@xgm#/\)D21/2 @recall that
a0150, henceV(a01)50 andV 9(a01)5l0#; the other terms
are exponentially suppressed in the classical limit\→0.

Another point that is important to mention is that one ca
in principle, systematically improve the ‘‘improved’’ sem
classical approximation, Eq.~17!. To do this, one first de-
composes the action into three pieces:S@xgm1h#5S@xgm#
1SI1SII , where

SI5V~a0!1
1

2 (
j 51

`

l jaj
2 ~20!

and

SII5dS2FV~a0!2
1

2
l0a0

2G , ~21!

with dS defined by Eq.~10!. Applying this decomposition to
Eq. ~2! ~with x85x) then yields

r~x,x!5expS 2
S@xgm#

\ D E )
j 50

`
daj

A2p\
expS 2

SI

\ D
3 (

n50

`
1

n! S 2
SII

\ D n

. ~22!

This defines an ‘‘improved semiclassical series,’’ the fi
term of which corresponds to Eq.~17!. Higher order terms
can be readily computed, as they can be recast as sum
products of simple integrals. Compared with the ‘‘usua
semiclassical series@4#, the series~22! has the disadvantag
that integrals involving powers ofa0 must be computed nu
merically. On the other hand, those integrals are finite eve
the caustics, so that the coefficients of the series~22! are well
defined for anyb andx0.

Although the procedure outlined in this section teaches
how to cross the caustics, it is not very convenient: in or
to obtain the coefficients ofV(a0) one has to findl0 and
w0(t). This, in general, is not an easy task, and makes
whole procedure very cumbersome. Instead, we shall pre
an alternative way of obtaining those coefficients, which
based on the one-to-one correspondence between the mi
of S andV.

C. An alternative procedure

Let us assume thatM54 in Eq. ~16!; this is the case for
the quartic double-well potential, to be discussed in the f
lowing section. Then the ‘‘effective action’’A(a0)[S@xgm#
1V(a0) for the ‘‘critical’’ mode w0 is a fourth degree poly-
nomial in a0.
2-3



e

-

e

a-

alt

s
e

nc-
ac-
ight
is

es,
is

enti-
pite
oles
ince
t

wn in

by

ion

p-

de CARVALHO, CAVALCANTI, FRAGA, AND JORÁS PHYSICAL REVIEW E65 056112
Let us also assume for the moment thatA(a0) has three
extrema: a global minimum ata050, a local maximum at
u.0, and a local minimum atv.u. This allows us to write
A(a0) as

A~a0!5S@xgm#1aF1

2
uv a0

22
1

3
~u1v !a0

31
1

4
a0

4G
~23!

@one can easily check thatA8(0)5A8(u)5A8(v)50#.
We now have to relatea, u, andv to calculable quanti-

ties. We do this by imposing thatA(v)5S@xlm# and A(u)
5S@xsp#, where xlm(t) and xsp(t) are the local minimum
and the lowest saddle point ofS@x#, respectively. This yields

S@xlm#2S@xgm#

S@xsp#2S@xgm#
5

A~v !2A~0!

A~u!2A~0!
5

j3~22j!

2j21
, ~24!

wherej[v/u. It follows from the definition ofxgm, xlm ,
and xsp that the left-hand side of Eq.~24! is in the range
@0,1#. A plot of its rhs shows that Eq.~24! possesses a uniqu
real solution, lying in the interval 1<j<2.

Having determinedj, we can now fix another combina
tion of parameters, namely,m[au4

S@xsp#2S@xgm#5A~u!2A~0!5
m

12
~2j21!. ~25!

We can then rewrite Eq. ~23! as A(a0)5S@xgm#
1V3(a0 /u), where

V3~z![mF1

2
jz22

1

3
~11j!z31

1

4
z4G . ~26!

There still remains one parameter to be determined, nam
u. Fortunately, we do not need it in order to computeF.
Indeed, identifyingV3(a0 /u) with V(a0) yields l05mj/u2,
so that

F5A mj

2p\u2E2`

`

da0 expS 2
V3~a0 /u!

\ D . ~27!

Changing the variable of integration toz5a0 /u eliminates
the unknown parameteru from the problem, leaving us with
an expression forF that depends only on the calculable p
rametersj andm

F5A mj

2p\E2`

`

dzexpS 2
V3~z!

\ D . ~28!

The case in whichS has only one extremum can be de
with similarly. Now A8(a0) has one real root (a050), cor-
responding to the minimumxgm(t) of S@x#, and a pair of
complex conjugate roots,w and w* , corresponding to the
pair of complex conjugate trajectoriesxct(t) andxct* (t). Cor-
respondingly, we haveA(a0)5S@xgm#1V1(a0 /uwu), where

V1~z![xF1

2
z22

2

3
~cosf!z31

1

4
z4G , ~29!
05611
ly,

with x[auwu4 and f[arg(w). Identifying A(w) with
S@xct# yields

S@xct#2S@xgm#5
x

12
~2e2if2e4if!, ~30!

from which we can obtainx and f. Finally, identifying
V1(a0 /uwu) with V(a0) yields l05x/uwu2, which leads to

F5A x

2p\uwu2E2`

`

da0 expS 2
V1~a0 /uwu!

\ D
5A x

2p\E2`

`

dzexpS 2
V1~z!

\ D . ~31!

In accordance with Ref.@7#, the solution we have called
xlm(t) is a one saddle: the operator of quadratic fluctuation
around it,F̂@xlm#, has only one negative eigenvalue. At th
second catastrophe, the one saddle becomes atwo saddle
~i.e., it becomes unstable in another direction in the fu
tional space!, and two one saddles appear. Having lower
tion than the two saddle, the one saddles have a larger we
in the partition function. Hence, when the second caustic
crossed the role of ‘‘lowest saddle point’’ in Eqs.~24! and
~25! is transferred to one of the newly born one saddl
namely, the one with the lowest action. The transition
smooth as all three trajectories coalesce and thus are id
cal to each other at the caustic. We also notice that, in s
of the infinite number of catastrophes, such a change of r
occurs only once, namely, at the second catastrophe, s
the minima ofS ~or zero saddles! and the one saddles do no
take part in the subsequent catastrophes. Indeed, as sho
Ref. @7# ~see also Sec. III B 5!, only (n21) saddles andn
saddles take part in thenth catastrophe.

III. APPLICATION: THE QUARTIC DOUBLE-WELL
POTENTIAL

A. Preliminaries

Let us consider the quartic double-well potential, given

V~x!5
l

4
~x22a2!2 ~l.0!. ~32!

In order to simplify notation, it is convenient to replacex and
t by q[x/a andu[vt, respectively, withv[(la2/m)1/2.
In the new variables, the equation of motion readsq̈
5U8(q), whereU(q)[ 1

4 (q221)2. Its first integral is

1

2
q̇25U~q!2U~qt!, ~33!

whereqt denotes the turning point~i.e., the point whereq̇
50). This can be further integrated to give us the relat
betweenqt and the initial positionq0 for a given ‘‘time of
flight’’ Q[b\v. ~As shown in Ref.@4#, that relation is all
we need in order to compute the ‘‘usual’’ semiclassical a
proximation to r(x,x), Eq. ~4!. The same is true for the
2-4
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computation of the improved approximation, Eq.~17!, using
the procedure outlined in Sec. II C.! Assuming for the mo-
ment that 0<q0<qt<1, we can write

Q

2
5E

q0

qt dq

A2@U~q!2U~qt!#
. ~34!

Inserting the explicit form ofU(q) and changing the integra
tion variable toz5q/qt , Eq. ~34! becomes

u5E
q0 /qt

1 dz

A~12z2!~12k2z2!
, ~35!

where

u[
Q

2
A12

1

2
qt

2, k2[
qt

2

22qt
2

. ~36!

Performing the integration@formula ~130.13! of Ref. @27##
and solving forq0 finally yields

q05qt cd~u,k!, ~37!

where cd is one of the Jacobian elliptic functions.
The action can be written asS@x#5(\/g)I @q#, whereg

[\l/m2v3 and

I @q#5E
0

Q

duF1

2
q̇21U~q!G . ~38!

Using Eq.~33!, we may rewriteI @qc# as

I @qc#5QU~qt!12E
q0

qt
dqA2@U~q!2U~qt!#. ~39!

The integration can be done with the help of formu
~219.11! of Ref. @27#. After a few algebraic manipulation
one arrives at

I @qc#5QU~qt!2
1

3
A2q0

2~qt
22q0

2!~22qt
22q0

2!

2
2

3
A2~22qt

2!$~12qt
2!@K~k!2F~w,k!#2E~k!

1E~w,k!%, ~40!

where K, F, and E are elliptic integrals@26,27# and w
5arcsin(q0 /qt).

Equations~37! and ~40! have been derived under the a
sumption thatq0 and qt are real and satisfy 0<q0<qt<1.
However, since the elliptic functions and integrals are me
morphic functions of their arguments, we can now aband
that assumption and treatq0 and qt as complex variables
@Note, however, thatI @qc# is a multivalued function ofqt and
so one must be a bit careful when computing it. For instan
the first square root in Eq.~40! acquires a minus sign if
21,qt,2q0,0.#
05611
-
n

e,

Finally, the determinant of the fluctuation operator
given by @4#

D54pg sgn~q02qt!
A2@U~q0!2U~qt!#

U8~qt!
S ]q0

]qt
D

Q

. ~41!

We now have all the ingredients to compute the semic
sical approximation tor(x,x)—both the ‘‘usual’’ and the
‘‘improved’’ one. Indeed, both the action and the determina
of fluctuations can be expressed solely in terms ofqt . There-
fore, as anticipated, this is the only information we ne
from the classical trajectories.

B. Singularities and their removal

As we have already said, the ‘‘usual’’ semiclassical a
proximation tor(q0 ,q0) diverges at a caustic because of t
vanishing of the determinant of fluctuationsD around the
minimum ofS that appears or disappears there. According
Eq. ~41!, there are two waysD may vanish: ~i! when
(]q0 /]qt)Q50; ~ii ! when U(q0)5U(qt). A qualitative
analysis of the equation of motion shows that, at the bou
ary between theN51 and theN52 regions in the (q0 ,Q)
plane,D vanishes according to the first alternative@7#. Solv-
ing the equation (]q0 /]qt)Q50 for qt and inserting the re-
sult q̃t(Q) into Eq. ~37!, one obtains the lower curve de
picted in Fig. 1—the caustic.

In what follows we shall examine the behavior of th
‘‘usual’’ semiclassical approximation across the caustic, a
compare it with the improved approximation.~All numerical
calculations were performed usingMAPLE.!

FIG. 1. The lower curve in this figure depicts the caustic for t
quartic double-well potential. Below it the action has only o
minimum; above it, the action has two minima. The cusp is loca
at the point (q0 ,Q)5(0,p). A second catastrophe occurs at th
curve in the middle: below it~but above the caustic! the action has
a one saddle~in addition to the minima!; as the curve is crossed, th
one saddle splits into a two saddle and a pair of one saddles
latter corresponding to a pair of periodic trajectories. The minim
of the middle curve is located at (q0 ,Q)5(0,2p). Upon crossing
the upper curve, whose minimum is located at (q0 ,Q)5(0,3p), the
number of classical trajectories increases by two: the two sa
splits into a three saddle and a pair of two saddles. Numbe
arrows correspond to the first three subsections of Sec. III B.~This
figure corrects Fig. 5 of Ref.@7#.!
2-5
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1. q0Ä0, QÉp

Whenq050 andQ,p, the only real solution to Eq.~37!
is qt50. It then follows from Eq.~39! that I @qc#5Q/4. In
order to computeD we needq0(qt ,Q) for small qt . Using
Eqs. ~36! and ~37! we find q0'qt cd(Q/2,0)5qt cos(Q/2);
Eq. ~41! then yieldsD52pg sinQ in the limit qt→0. There-
fore, the ‘‘usual’’ semiclassical approximation tor(0,0)
gives

rsc~0,0!'~2pg sinQ!21/2expS 2
Q

4gD ~Q,p!. ~42!

It diverges like (p2Q)21/2 asQ→p2.
While for Q,p there is only one real solution to th

equationq0(qt ,Q)50, for Q.p there are three:qt50, cor-
responding to the trajectoryqc(u)[0 ~which is now a 1
saddle!, plus a pair of solutions located symmetrically wi
respect to the origin, corresponding to a pair of degene
minima of the action~see Fig. 2!. The latter can be trace
back to a pair of purely imaginary trajectories forQ,p.
Indeed, makingqt5 i j in Eqs. ~36! and ~37! and using the
identity cd(u,ik)5cn(uA11k2,k/A11k2) @27#, we obtain

q05 i j cnS Q

2
A11j2,

j

A2~11j2!
D . ~43!

The rhs of the above equation has an infinite number of ze
besides the one atj50 ~see Fig. 3!. As Q approachesp
from below, the zeros approach the origin and two of th
eventually coalesce there whenQ5p, reappearing as a pa
of real solutions to the equationq0(qt ,Q)50 for Q.p.

In Fig. 4 we show both the usual@Eq. ~4!# and the im-
proved@Eq. ~17!# semiclassical approximation tor(0,0) for
Q'p.

FIG. 2. q0(qt ,Q) @Eq. ~37!# for Q52.0 ~solid line!, Q5p
~short-dashed line!, andQ54.5 ~long-dashed line!. For Q,p this
function is one to one. ForQ.p and uq0u sufficiently small there
are three~or more! real values ofqt corresponding to a givenq0.
05611
te
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2. QÄp, q0É0

When Q5p, the approximationq0'qt cos(Q/2) is not
enough for our purposes. Going to the next nontrivial ord
in the Taylor expansion ofq0(qt ,p) one obtainsq0;qt

3 as
qt→0. It then follows from Eqs.~4!, ~40!, and~41! that the
usual semiclassical approximation tor(q0 ,q0) behaves, for
Q5p, as

rsc~q0 ,q0! ;

q0→0

g21/2uq0u21/3expS 2
p

4gD . ~44!

Two aspects of this result are worthy of mention:~i! the
singularity at q050 is integrable, hence the semiclassic
partition function is well defined;~ii ! because of the expo
nential factor, ifg!1 one has to be very close to the orig
to ‘‘notice’’ the singularity: for rsc(q0 ,q0) to be of order
unity or greater,q0 must satisfyuq0u&g23/2exp(23p/4g).

Figure 5 shows both the usual and the improved semic
sical approximation tor(q0 ,q0) for Q5p. In order to make
visible the singular behavior of the former, we have tak
g50.3. One can notice that far from the caustic~i.e., for
q0*0.2) the two curves are similar, but differ by approx

FIG. 3. 2 iq0(j,Q) @Eq. ~43!# for Q52.0 ~solid line!, Q52.5
~short-dashed line!, andQ5p ~long-dashed line!.

FIG. 4. r(0,0) vs Q for g50.3. Usual~dashed line! and im-
proved~solid line! semiclassical approximation.
2-6
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mately 10%. This is due to the relatively large value ofg.
The difference disappears in the classical limitg→0.

3. QÌp

Expandingq0(qt ,Q) around q̃t(Q), we obtain q02q̃0

;(qt2q̃t)
2, so that]q0 /]qt;(qt2q̃t) near the caustic. The

other terms in Eq.~41! remain finite on it, so that we finally
obtain

D21/2;uqt2q̃tu21/2;uq02q̃0u21/4. ~45!

Figure 6 depicts both the usual and the improved se
classical approximation tor(q0 ,q0) for Q55.0. Again we
had to use a relatively large value ofg in order to magnify
the ‘‘critical’’ region where the usual semiclassical result d
verges. Note that the divergence occurs only at the
minima side of the caustic~see Fig. 7!, as it is associated
with the coalescence of the local minimum with a sad
point of the action; the contribution of the global minimu
remains finite at the caustic.

4. QÐ2p

As discussed in Ref.@7#, another catastrophe is present
Q>2p. This time,D vanishes when the classical trajecto
is such thatU(q0)5U(qt), or, since the potential is symme
ric about the origin,qt52q0. This catastrophe is associate

FIG. 5. r(q0 ,q0) vs q0 for Q5p. Usual ~dashed line! and
improved~solid line! semiclassical approximation.

FIG. 6. r(q0 ,q0) vs q0 for Q55.0 andg50.3. Usual~dashed
line! and improved~solid line! semiclassical approximation.
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with the appearance ofperiodicclassical trajectories, and th
conditionqt52q0 determines the amplitudeA(Q) of these
trajectories @A(Q) is the positive solution to equatio
q0(qt ,Q)52qt , where q0(qt ,Q) is defined by Eqs.~36!
and ~37!#. It is not difficult to see why a catastrophe occu
when that condition is satisfied: ifuq0u,A(Q), there are two
periodic trajectories satisfyingqc(0)5q0, related by time re-
versal, i.e., qc

(2)(u)5qc
(1)(Q2u). If, on the other hand,

uq0u.A(Q), no such trajectories exist.uq0u5A(Q) thus
marks the boundary between regions with zero and reg
with two periodic trajectories. This boundary is depicted
Fig. 1 ~upper curve!.

As discussed at the end of Sec. II C, the procedure
dealing with the caustic outlined in that section is not
fected by the appearance of a new catastrophe. What cha
as the second catastrophe is crossed is the identity of
‘‘lower saddle point’’: for uq0u.A(Q), it is to be found
among the solutions of Eq.~37!; for uq0u,A(Q), it is given
by any one of the two periodic trajectories satisfyingqc(0)
5q0 ~since they have the same action!. As a matter of fact,
since all periodic trajectories with the same amplitude~and
the same period! have the same action, we may pick the o
that satisfies the conditionqt52q0, for then we can use Eq
~40! to compute its action.

5. Q\`

In the high-temperature limit,Q→0, thermal wavelengths
are very small, and the classical limit sets in, as quant
fluctuations are suppressed. That is the regime where
improved semiclassical approximation should work best,
illustrated in Ref.@4#, since it incorporates quantum fluctua

FIG. 7. qt vs q0 for Q55.0. If uq0u,q* 50.3332 . . . , there are
three real solutions to Eq.~37! ~solid lines!; the upper curve corre-
sponds to the global minimum, the lower one to the local minimu
and the one in the middle to a one saddle. At the caustic the last
coalesce, and reappear at the other side of the caustic~i.e., uq0u
.q* ) as a pair of complex conjugate solutions. Their real a
imaginary parts are represented by the long-dashed and s
dashed lines, respectively.
2-7
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tions in a controlled manner as we lower the temperatu
and profits from the simplification of having to deal wi
only one or two minima, as already emphasized. Never
less, even in the opposite limit,Q→`, our improved semi-
classical method can be used to reproduce zero temper
results. The secret is to recognize that the various sad
points that were discarded for finiteQ do play a role in such
a limit; in fact, taking them into account is equivalent
using a dilute-gas approximation, as we will qualitative
argue. First, however, let us review how the saddle po
emerge.

For a fixedq0 in the interval (21,11), new saddle points
will appear as we increaseQ, following a pattern outlined in
Ref. @7#. As a result, the strip of the (q0 ,Q) plane defined by
21,q0,11 and Q>0 may be divided into regions
wherein each (q0 ,Q) point gives rise to 2n11 solutions,
n50,1,2, . . . , asshown in Fig. 1. The regions are separat
by caustics where instabilities develop: forn even, as we
cross the caustic between the regions with 2n11 and 2n
13 solutions, an saddle, i.e., a solution withn negative
eigenvalues, and a (n11) saddle appear; for odd values ofn,
the n saddle in the region with 2n11 solutions becomes
unstable, it is replaced, in the region with 2n13 solutions,
by two n saddles that are periodic, and by a (n11) saddle.
Thus, for a givenn̄, we end up with a (n̄11) saddle, (n̄
21) pairs ofn saddles withn<n̄, and a pair of minima~two
0 saddles!.

As Q→`, the two minima will correspond to solution
qc(u) that spend most of their euclidean timeu near either
q0521 or q0511. They both have a single turning poin
and only the local minimum will cross the originq50: first,
at a small value ofu; and upon returning, at a large valu
u;Q. The 1 saddles, which are periodic, have two turn
points, will also cross the origin twice, but one of the cro
ings will occur at a value ofu nearQ/2. Generalizing this
qualitative analysis, we may conclude thatn saddles will
have (n11) turning points andn inner~away fromu50 and
u5Q) crossings of the origin. Each of those inner crossin
is equivalent to a kink or an antikink, so that a genericn
saddle will not differ much from a solution built out of
superposition of kinks and antikinks in that limit. Typicall
the euclidean time width of such kinks should be mu
smaller than their separations, as the solutions tend to sp
most of their time nearq0561.

Varying the euclidean times where those inner crossi
occur should not alter significantly the action of then saddle
in the Q→` limit, an indication of the existence of a fla
direction in functional space corresponding to that variati
As flat directions are associated to near-zero eigenvalues
claim that the negative eigenvalues that characterize thn
saddle will approach zero from below asQ→`, and that the
euclidean times where the crossings occur should be tre
as collective coordinates@28#, just as the positions of kinks
and antikinks in the dilute-gas approximation. The contrib
tions of the various kinks and antikinks can be dealt with
the usual manner—they add up to an exponential, and re
duce the standard result for the splitting between ground
first-excited state@29#. ~See, however, Ref.@30# for a treat-
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ment of the low-temperature limit within the functional fo
malism that does not appeal to the dilute-gas approximati!

IV. CONCLUSION

Semiclassical methods are a powerful nonperturba
tool, for both equilibrium and nonequilibrium systems. Th
paper, together with Refs.@4,5,7#, represents a further ste
towards a systematic semiclassical treatment of quantum
tistical mechanics.

In the present work, we developed a simple procedure
derive the lowest order semiclassical approximation for
case of multiple-well potentials in equilibrium quantum st
tistical mechanics. In order to adequately incorporate n
extrema, we kept fluctuations beyond the quadratic le
along the ‘‘unstable’’ direction in functional space, and reli
on our knowledge of the type of catastrophe involved as
cross a caustic to eliminate spurious singularities in the se
classical approximation, obtaining sensible results for
density matrix elements for any temperature. This was ex
plified by the analysis of the quartic double-well potentia

Our results can possibly be extended to nonequilibri
systems, such as those where a time-dependent potent
coupled to a heat bath, in order to better understand trans
regimes. Although the physics of nonequilibrium quantu
statistical mechanics has been considered in detail in the
text of semiclassical calculations of the decay rates of m
stable systems@17–21#, a thorough analysis of the variou
transient regimes, and of the interplay of their correspond
time scales, is still needed. Here, however, we will no lon
profit from the drastic reduction in the number of extrem
that occurs in equilibrium situations, as time evolution forc
us to deal with saddle points and maxima, as well. The s
plified methods presented in this paper will still be useful
describe the asymptotic imaginary time evolution cor
sponding to equilibrium, but not the real time evolutio
which requires the traditional quantum mechanical treatm

As for possible extensions to field theories, the metho
developed in Refs.@4,5# should be applicable to the evalua
tion of the effective potential in the presence of nontriv
backgrounds~defects!, as long as they depend on only on
coordinate. This can be of use in a wealth of possible ap
cations, and should help in the study of phase transitions
critical phenomena where such defects play a role. Ca
such as the ones explored here and in Ref.@7#, which involve
several extrema, still lack a field theoretic treatment.
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Kléman, and J.-P. Poirier~North-Holland, Amsterdam, 1981!.

@12# M. V. Berry and C. Upstill, inProgress in Optics XVIII, edited
by E. Wolf ~North-Holland, Amsterdam, 1980!.

@13# R. Balian and C. Bloch, Ann. Phys.~N.Y.! 63, 592 ~1971!; 85,
514 ~1974!.

@14# R. Thom,Structural Stability and Morphogenesis~Benjamin,
Reading, MA, 1975!.
05611
.

.

.

@15# T. Poston and I. N. Stewart,Catastrophe Theory and its Appli
cations~Pitman, London, 1978!.

@16# G. Dangelmayr and W. Veit, Ann. Phys.~N.Y.! 118, 108
~1979!.

@17# I. Affleck, Phys. Rev. Lett.46, 388 ~1981!.
@18# E. M. Chudnovsky, Phys. Rev. A46, 8011~1992!.
@19# U. Weiss, Quantum Dissipative Systems~World Scientific,

Singapore, 1993!.
@20# J. Ankerhold and H. Grabert, Physica A188, 568 ~1992!.
@21# F. J. Weiper, J. Ankerhold, and H. Grabert, Physica A223, 193

~1996!.
@22# B. J. Harrington, Phys. Rev. D18, 2982~1978!.
@23# L. Dolan and J. Kiskis, Phys. Rev. D20, 505 ~1979!.
@24# For a review, see A. Cuccoli, R. Giachetti, V. Tognetti, R. Va

and P. Verrucchi, J. Phys.: Condens. Matter7, 7891~1995!, see
also Ref.@3#.

@25# M. Bachmann, H. Kleinert, and A. Pelster, Phys. Rev. A60,
3429 ~1999!.

@26# I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series
and Products~Academic Press, New York, 1965!.

@27# P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals
for Engineers and Physicists~Springer-Verlag, Berlin, 1954!.

@28# J. L. Richard and A. Rouet, Nucl. Phys. B185, 47 ~1981!.
@29# S. Coleman,Aspects of Symmetry~Cambridge University

Press, Cambridge, 1985!, Chap. 7.
@30# G. C. Rossi and M. Testa, Ann. Phys.~N.Y.! 148, 144 ~1983!.
2-9


