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Attack vulnerability of complex networks
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We study the response of complex networks subject to attacks on vertices and edges. Several existing
complex network models as well as real-world networks of scientific collaborations and Internet traffic are
numerically investigated, and the network performance is quantitatively measured by the average inverse
geodesic length and the size of the largest connected subgraph. For each case of attacks on vertices and edges,
four different attacking strategies are used: removals by the descending order of the degree and the between-
ness centrality, calculated for either the initial network or the current network during the removal procedure. It
is found that the removals by the recalculated degrees and betweenness centralities are often more harmful than
the attack strategies based on the initial network, suggesting that the network structure changes as important
vertices or edges are removed. Furthermore, the correlation between the betweenness centrality and the degree
in complex networks is studied.
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I. INTRODUCTION

Examples of complex networks are abundant in many
ciplines of science and have recently received much atten
@1,2#. Many works have tried to regenerate geometrical s
tistics of real-world networks by generative algorithms th
mimic behaviors found in real-world networks. The stud
along this line have been able to model, e.g., the emerge
of scale-free degree distributions@3# and the high clustering
of social networks@4,5#. Another group of complex network
studies aims to investigate certain dynamical problems
network topologies@5,6#. A third group of works studies how
the geometric characteristics and performances of the
works are affected by the restrictions imposed on netwo
The approach taken by the present paper belongs to the
category as we study the robustness of the network subje
various attack strategies.

Originated from studies of computer networks, ‘‘atta
vulnerability’’ @3# denotes the decrease of network perf
mance due to a selected removal of vertices or edges. In
present study we measure the attack vulnerability of vari
complex network models and real-world networks. We co
pare different ways of attacking the network and use vari
ways of measuring the resulting damage. In general,
gives a measure of the decrease of network functionality
der a sinister attack. The meaningful purpose for attack v
nerability studies is for the sake of protection: If one wants
protect the network by guarding or by a temporary isolat
of some vertices~edges!, the most important vertices~edges!,
breaking of which would make the whole network malfun
tion, should be identified. Furthermore, one can learn how
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build attack-robust networks, and also how to increase
robustness of vital biological networks. Also in a large n
work of a criminal organization, the whole network can
made to collapse by arresting key persons, which can
identified by a similar study. However, the applicability
social networks may not be very high—acquaintance ties
to some extent subjective and time dependent@7#, and when
a social network structure is under attack, the dynam
would probably speed up as the organization tries to pro
itself.

A topic closely related to attack vulnerability is that of th
percolation in complex networks@8#, where all vertices~or
edges! have the equal probability of being disabled. In t
network of computers, this situation corresponds to a rand
breakdown of computers, while in the problem of a disea
spread through a network of people, it corresponds to the
that a randomly chosen set of people are susceptible. On
the key quantities in percolation studies, the size of the la
est connected subgraph, is also used in the present pap
one of the measures of network performance.

This paper is organized as follows: In Sec. II we provi
the definitions of terms and measured quantities. In Sec
various attack strategies are explained. In Sec. IV two re
world networks and several complex network models use
the present paper are briefly described. Sections V, VI,
VII are devoted to the main results, on the relation betwe
degrees and betweenness centralities, on the vulnerab
under vertex attack, and on the vulnerability under edge
tack. Finally, we summarize our results in Sec. VIII.

II. DEFINITIONS OF QUANTITIES

In general, the complex networks—networks of both ra
domness and structure—studied in this article can be re
sented by an undirected and unweighted graphG5(V,E),
whereV is the set of vertices~or nodes! andE is the set of
edges~or links!. Each edge connects exactly one pair of v
tices, and a vertex pair can be connected by maximally
edge, i.e., multiconnection is not allowed. Let, furthermo

ent
-
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N denote the number of verticesN5uVu andL the number of
edgesL5uEu. For a social network@9#, V is a set of persons
~or ‘‘actors’’ in the sociology parlance! and E is the set of
acquaintance ties that links the persons together. In comp
networks V represent the routers or computers andE the
channels for computer communication.

There are several ways of measuring the functionality
networks. One key quantity is the average geodesic lengtl ,
which is sometimes termed ‘‘the characteristic path lengt
defined by

l [^d~v,w!&[
1

N~N21! (
vPV (

wÞvPV
d~v,w!,

whered(v,w) is the length of the geodesic betweenv andw
(v,wPV), i.e., the number of edges in the shortest path c
necting the two, and the factorN(N21) is the number of
pairs of vertices. Ifl is large, the dynamics~of epidemics,
information flow, etc.! is slow in the network. Social net
works are known to have a very short average geod
length,l } ln N, with the ‘‘six degrees of separation,’’l '6,
of the earth’s population as a celebrated example@10#. The
logarithmic increase ofl is also characteristic of compute
networks, andl '17 has been estimated for the ent
world-wide web@3#. As the number of removed vertices o
edges is increased, the network will eventually break i
disconnected subgraphs. The average geodesic length
definition, becomes infinite for such a disconnected gra
and one can instead study the average inverse geod
length,

l 21[ K 1

d~v,w!L [
1

N~N21! (
vPV (

wÞvPV

1

d~v,w!
,

~2.1!

which has a finite value even for a disconnected graph s
1/d(v,w)50 if no path connectsv andw. It should be noted
that the notationl 21 does not mean the reciprocal ofl . The
functionality of the network is then measured byl 21: the
larger l 21 is the better the network functions.

Since subsequent attacks will disintegrate the network,
size of the largest connected subgraph is also an intere
quantity for measuring the functionality of the networks.
social networks, the largest connected subgraph is know
have a size of the order of the entire network, and acco
ingly is called the ‘‘giant component’’@11#. Throughout the
present paper, we denote the size of the giant compone
S, which will be used together withl 21 to study the attack
vulnerability.

In addition to the logarithmically increasing average ge
desic length, social networks are found to have a high lo
transitivity: if $u,v% and$u,w% are two connected pairs, the
v is likely to be connected tow too ~and if it does$u,v,w% is
called a ‘‘triad’’! @12#. The clustering coefficientg ~intro-
duced in Ref.@5#! intends to measure the average degree
the local transitivity in a network: LetuGvuE denote the num-
ber of edges in the neighborhoodGv of vPV, then
05610
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S kv

2 D ~2.2!

is called the local clustering coefficient of the vertexv. Here
the degreekv of v is defined as the number of vertices inGv ,
i.e., kv[uGvu. The ‘‘clustering coefficient’’ is then defined a
the average ofgv ,

g[^gv&[
1

N (
vPV

gv . ~2.3!

An alternative interpretation is thatgv is the fraction of the
number of triads divided by the maximal number of triads.
Fig. 1, we present an illustration to explain the meaning
the local clustering coefficient: The number of edges with
the neighborhooduGvuE55 and the degreekv56 result in
gv51/3 in Fig. 1. Bothgv andg are strictly in the interval
@0,1#, with g51 attained only for a fully connected network
where every vertex is connected to every other vertex w
the total number of edgesL5N(N21)/2.

Removals of important vertices may affect the netwo
significantly. For example, in Ref.@3# only a few removals of
vertices with the highest degrees has been shown to
enough to alter the behaviors of scale-free networks and
average geodesic length has been found to increase dra
cally. In the studies of social networks, centrality is an im
portant concept, which tries to capture the prominence o
person in the embedding social structure. It is natural to
pect that removals of vertices with high centrality w
worsen the functionality of networks more than the remov
by degrees. It should be noted that the vertex with a l
degree can have a high centrality~this will be shown explic-
itly in Sec. V! and thus attacking the network by removin
vertices with high centralities may differ from that by d
grees. Among many centrality measures@14# we focus on the
‘‘vertex betweenness centrality’’CB(v) @15# defined for a
vertexvPV as follows:

CB~v !5 (
wÞw8PV

sww8~v !

sww8

, ~2.4!

wheresww8 is the number of geodesics betweenw and w8
andsww8(v) is the number of geodesics betweenw andw8

FIG. 1. An example of how to calculate the local clusteri
coefficientgv of the vertexv. The closed black circles indicate th
neighborhoodGv of v, and the thick lines are the edges connecti
two vertices withinGv . Since there are five such edges (uGvuE
55) and the degreekv56, we obtaingv51/3 from Eq.~2.2!.
9-2
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ATTACK VULNERABILITY OF COMPLEX NETWORKS PHYSICAL REVIEW E65 056109
that passesv. Similarly, one can define the ‘‘edge betwee
ness centrality’’CB(e) for an edgeePE as

CB~e!5 (
wÞw8PV

sww8~e!

sww8

, ~2.5!

wheresww8(e) is the number of geodesics betweenw and
w8 that includes the edgee. Throughout the present pape
we call CB(v) and CB(e) the vertex betweenness and t
edge betweenness for brevity. For calculations ofCB(v) and
CB(e) we use theO(NL) algorithm presented in Refs
@16,17#.

III. ATTACK STRATEGIES

For the study of attack vulnerability of the network, th
selection procedure of the order in which vertices are
moved is an open choice. One may of course maximize
destructive effect at any fixed number of removed verti
~or edges!. However, this requires the knowledge of th
whole network structure, and pinpointing the vertex to atta
in this way makes a very time-demanding computation
more tractable choice, used in the original study of compu
networks, is to select the vertices in the descending orde
degrees in the initial network and then to remove verti
one by one starting from the vertex with the highest deg
@3#; this attack strategy uses the initial degree distribut
and thus is called ‘‘ID removal’’ throughout the paper. Th
vertices with high betweenness also play important roles
connecting vertices in the network@31#. The second attack
strategy is called ‘‘IB removal’’ and uses the initial distribu
tion of the betweenness. Both ID removal and IB remo
use the information on the initial network. As more vertic
are removed, the network structure changes, leading to
ferent distributions of the degree and the betweenness
the initial ones. The third attack strategy called ‘‘RD r
moval’’ uses the recalculated degree distribution at every
moval step, and the fourth strategy, we call it ‘‘RB remova
is based on the recalculated betweenness at every step
removal has been used in Refs.@18,19#. It should be noted
that ID and RD removals are local strategies, while the ot
two based on the betweenness are global ones, which m
the applications of ID and RDO(N) algorithms, while IB
and RB areO(NL) even with the best known algorithm
@16,17#. The other important difference between the degr
based and the betweenness-based strategies is that the f
concentrate on reducing the total number of edges in
network as fast as possible whereas the latter concentra
destroying as many geodesics as possible. It is not ent
cleara priori which one of these four different attack stra
egies should be more harmful than the others, although
can naively expect that RD and RB are more harmful than
and IB, respectively. It should also be noted that for
strategies based on the recalculated information, the m
harmful sequences for removals ofNrm vertices andNrm8 ver-
tices (NrmÞNrm8 ) might differ significantly even in the early
stage of attacks.

One can also attack edges instead of vertices. In the
work of computers, attacking edges may correspond to
05610
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cutting off of communication cables, while the attacks
vertices can be interpreted as breakdowns of servers by
licious hackers.~The opposite is of course also imaginable
software obstruction of a communication link or a serv
destroyed physically.! The vulnerability of networks unde
edge attacks is also studied by using similar strategies~we
again call them as ID, IB, RD, and RB removals of edge!.
The concept of the edge betweenness was introduced in
II from a straightforward generalization of the vertex b
tweenness. On the other hand, the definition of the ‘‘ed
degree’’ is not so clear. But still it is expected that the im
portance of an edge should be possible to assess by th
grees of the two vertices it connects. In this work we attem
to define the edge degreeke from the local information of the
vertex degrees in several different ways,

ke[kvkw, ~3.1a!

ke[kv1kw , ~3.1b!

ke[min~kv ,kw!, ~3.1c!

ke[max~kv ,kw!, ~3.1d!

where the edgee connects two verticesv andw with vertex
degreeskv andkw , respectively. As will be discussed in Se
V, among the above definitions, we find that Eq.~3.1a! gives
a more reasonable result@a higherCB(e) to ke correlation#
than the others, and thus the ‘‘edge degree’’ defined aske
[kvkw is used for the attack strategies ID and RD ed
removals.

From the definitions, we expect that a vertex with high
degree usually should have higher betweenness in most
world networks. However, the correlation between the ed
degree and edge betweenness is less obvious. This is
pected to show a larger difference between degree-based
betweenness-based attack strategies for edge attacks tha
vertex attack. The four different edge attack strategies
plied to a network generated by Watts and Strogatz’s sm
world network model~see Sec. IV D! is shown in Fig. 2.
Quite soon the original network structure is lost a
procedure-specific structures emerge. For example, the
edge removal concentrates on edges of high betweenn
and thus edges that carry more geodesics are first lost. C
sequently, it is not a surprise that the resulting network str
ture by RB consists of highly connected clusters and verti
with no neighbors. The RD procedure, on the other ha
removes edges connecting vertices with high vertex degr
and, therefore, it is natural that the original network is sp
into many subgraphs of vertices with low~but not zero! de-
grees.

In Secs. VI and VII, we investigate various networks su
ject to the above-mentioned four different attack strateg
ID, IB, RD, and RB, applied for vertex removals and ed
removals. To detect the damages caused by those attack
measure the average inverse geodesic lengthl 21 in Eq.
~2.1! as well as the sizeS of the giant component. As the
vertex attack proceeds, both the remaining number of ve
ces and the average inverse geodesic length decrease, w
9-3
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HOLME, KIM, YOON, AND HAN PHYSICAL REVIEW E 65 056109
from the definition ofl 21, suggests thatl 21 can be both
increasing and decreasing, depending on how much dam
is made by the removals. However, the edge removals do
change the number of vertices in the network and thusl 21

should be a decreasing function of the number of remo
edges. Similarly,S is expected to show different behavio
for vertex and edge removals. For vertex removals,S versus
the number of removed vertices should have a slope of u
in the initial attack stages since the removed vertex proba
belonged to the giant component. On the other hand,
initial edge attacks should not change the size of the g
component, and thusS versus the number of removed edg
should start as a horizontal line.

We conclude the section with some technical details:
any case where two or more vertices~edges! could equally
be chosen by some strategy, the selection is done rando
For the RB strategy, if the betweenness is zero for all ve
ces, i.e., the vertices are either isolated or linked to exa
one neighbor, the vertices withkv51 are attacked before th
meaningless attack of vertices withkv50.

IV. NETWORKS

To study the emergence of different geometrical prop
ties of complex networks such as social networks, pow
grids, metabolic networks, computer networks, and so
different generative algorithms have been proposed@1#.
Among various existing models for generating netwo
similar to real ones, two generic models, the Watts-Strog
~WS! model of the small-world networks@5# and the
Barabási-Albert ~BA! model of the scale-free network@3,20#,
have been widely studied. Both models commonly show
behavior that two arbitrarily chosen vertices are connec
by a remarkably short path. More specifically, the avera
geodesic length has been found to scale logarithmically w
the network size. On the one hand, the WS model does

FIG. 2. Various attack strategies for edge removals applied
realization of the generative algorithm of the Watts-Strogatz mo
of small-world network~see Sec. IV D!. From left to right, the
evolutions of network structures are shown for the edge attack s
egies based on ID~initial degree!, IB ~initial betweenness!, RD
~recalculated degree!, and RB ~recalculated betweenness!, respec-
tively. The initial network structure is displayed at the top left co
ner of each column and the subsequent structures at the next
steps are exhibited~first four steps from top to bottom and then fiv
more steps from top right to bottom right!. For an individual sub-
graph the thickness of the lines is proportional to the between
of the corresponding edge.
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exhibit the power-law distribution of degree, which man
real networks show and the BA model successfully produc
On the other hand, the WS model has high clustering, e
social networks, whereas the BA model has a clustering
efficient that scales toward zero asN→`. There have been
attempts to revise and extend these representative mode
order to produce a network model that can show a sm
average geodesic length, a scale-free degree distribution
high clustering, all at the same time@4,22#. In this work, we
study two real networks, a ‘‘social network’’ constructe
from scientific collaboration data~Sec. IV A! and a ‘‘com-
puter network’’ constructed from computer traffic over th
Internet ~Sec. IV B!, as well as four model networks, th
random network model by Erdo¨s and Re´nyi ~ER!, the WS
model, the BA model, and the clustered scale-free netw
~CSF! model suggested by two of the present authors in R
@4# ~Secs. IV C–IV F!. It should be noted that network mod
els such as those mentioned above model the emergen
structure in networks—structure that can be monitored
certain quantities such as degree distribution, clustering
efficient, and so on. However, they do~probably! not sample
the ensemble of networks defined by specific values of th
quantities uniformly. This is known to be the case for oth
ways of generating random graphs with structural biases
are easier to give a probability-theoretical analysis@23#. That
the sampling is biased makes an inference from the sca
of quantities difficult—if, e.g., one model gives network
with the same values as another except for, say, a sm
clustering coefficient, it is not certain that a different beha
ior under, say, edge removal is due to the lower clusterin

A. Scientific collaboration network from the hep-lat
e-print archive

To obtain a well-defined social network from real-wor
data, we follow Ref.@17# and construct a network of scien
tific collaborations from the the Los Alamos preprint a
chives@24# in the following way: If two scientists wrote an
article together, they are connected by an edge. Accordin
the vertices in the network are scientists, and the edges
resent the collaboration ties. For the attack vulnerability c
culations, the whole Los Alamos e-print archive is too big
be computationally tractable,@32# instead we chose the hep
lat database, which contains preprints about lattice studie
high-energy physics, among various subcategories only
computational convenience. The network used in analy
has N52010 ~the number of vertices! and L56614 ~the
number of edges!, and the size of the giant component isS
51412 and the clustering coefficient isg'0.571. A discus-
sion on the usefulness of collaboration networks as re
world social networks can be found in Ref.@17#.

B. Computer network from Internet traffic

To build the network structure for the computer comm
nications we follow Ref.@20# and use data from the Nationa
Laboratory for Applied Network Research~NLANR! @25#.
Here the network is constructed as follows: Over a period
24 h a number of servers associated to NLANR and ph
cally spread over USA, gather information through compu
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ATTACK VULNERABILITY OF COMPLEX NETWORKS PHYSICAL REVIEW E65 056109
interconnections. For every connection established throu
server the whole path, from the originating vertex to t
requested destination, is added to the network graph. To
more specific, the servers are using the border gateway
tocol ~BGP! to relay connections over Internet’s largest sc
@26#. Vertices are computer networks, or ‘‘autonomous s
tems’’ in BGP nomenclature, interconnected by one or ma
BGP servers. An edge thus represents an established d
connection between two autonomous systems. The data
analyze represent a network withN5S52210, L54334,
andg'0.221.

C. Erdös-Rényi model of random networks

In the ER model@27#, we start fromN vertices without
edges. Subsequently, edges connecting two randomly ch
vertices are added until the total number of edges becomeL.
It generates random networks with no particular structu
bias: The only restriction in the model is that no multip
edges are allowed between two vertices. In this study,
choose the average degree^k&[2L/N as a control paramete
in the ER model. The ER model graphs have a logarith
cally increasingl , a Poisson-type degree distribution, and
clustering coefficient close to zero.

D. Watts-Strogatz model of small-world networks

In the WS model@5# one starts by constructing a regul
one-dimensional network with only local connections
ranger. For example,r 52 means that each vertex is co
nected to its two nearest neighbors and two next nea
neighbors@see Fig. 3~a!#. Then each edge is visited once, a
with the rewiring probabilityP, is detached at the opposit
vertex and reconnected to a randomly chosen vertex form
a ‘‘shortcut.’’ ~See the illustration in Fig. 3.! For P50 the
network is a regular local network, with high clustering, b
without the small-world behavior: The average geode
length in this case grows linearly with the network size.
the opposite limit ofP51, where every edge has been r
wired, the generated random graph has vanishing cluste
but shows a logarithmic behavior of the average geod
length l } ln N. In an intermediate range ofP @typically P

FIG. 3. The Watts-Strogatz~WS! model of small-world net-
works. The starting point is a regular one-dimensional lattice in~a!
with the ranger 52 of the connections. Every edge is visited on
and then with the rewiring probabilityP is rewired to the other
vertex. The WS model can generate~a! the local regular network
whenP50, with high clustering but with a large average geode
length, and~c! the fully random network whenP51, with low
clustering but with a very short geodesic length. In the intermed
region ofP depicted in~b!, the WS model hasboth high clustering
and the small-world behavior~more specifically, the average geo
desic lengthl } ln N for the network with the sizeN).
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;O(1/N)#, the network generated by the WS model displa
both high clustering and small-world behavior—the com
monly found characteristics of real social networks.

E. Barabási-Albert model of scale-free networks

Apart from the average geodesic length and clusteri
the degree distribution is a structural bias that has rece
much attention. Many~but not all! real networks are known
to have a power-law distribution of degrees@3,28#, manifest-
ing a scale-free nature of the network. The BA model o
scale-free network@3,20# is defined by the following ingre-
dients:

~1! Initial condition: To start with the network consists o
m0 vertices and no edges.

~2! Growth: One vertexv with m edges is added ever
time step.

~3! Preferential attachment:An edge is added to an old
vertex with a probability proportional to its degree. Mo
precisely, the probabilityPu for a new vertexv to be at-
tached tou is @33#:

Pu5
ku

(
wPV

kw

. ~4.1!

The growth step is iteratedN2m0 times to construct a net
work with sizeN, for each growth step the preferential a
tachment step is iteratedm times. The above described B
model has been shown to generate scale-free networks
the logarithmically increasing average geodesic length w
the sizeN. However, the original BA model results in ne
works with low clustering.

F. Clustered scale-free network model

In order to incorporate the high clustering of social n
works one can modify the standard BA model by adding o
additional step,

~4! Triad formation: If an edge betweenv and u was
added in the previous step of preferential attachment, t
add an edge fromv to a randomly chosen neighborw of u.
This forms a triad, three vertices connected each othe
there is no available vertex to connect withinGu—do a pref-
erential attachment step instead.

For every new vertex, after an additional preferential
tachment step, the triad formation step is performed wit
probability Pt ~and thus a preferential attachment with t
probability 12Pt). The average number of triad formatio
trials per added vertexmt[(m21)Pt is taken as a contro
parameter in this CSF network model~see Fig. 4!. The scale-
free degree distribution of the original BA model is co
served in the CSF model whose properties have been
lyzed in detail in Ref.@4#. In the limiting case ofmt50, the
original BA network is constructed from the CSF model. T
CSF model has been shown to exhibit high clustering~fur-
thermore, the clustering coefficient is tunable by the con
parametermt), while it still preserves the characteristic
found in the BA model such as the logarithmically increasi
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average geodesic length and the scale-free degree dist
tion.

V. CORRELATION BETWEEN DEGREE
AND BETWEENNESS

For the six different networks described in Sec. IV, w
seek the relation between the degree and the betweenne
vertices and edges. Both the degree and the betweenne
some extent, measure how important the vertex~edge! is.
The natural expectation is that the vertex~edge! with higher
degree should also have higher betweenness. The calcul
of the betweenness is based on the global information
paths connecting all pairs of vertices, while the degree,
definition, is the quantity that depends on only the local
formation. This implies that the identification of the relatio
between the degree and the betweenness can have pra
importance since one can approximately estimate the
tweenness from the degree.

We first show in Fig. 5 scatter plots of the vertex betwee
nessCB(v) versus the vertex degreekv . As expected, net-
works with the scale-free degree distributions,~a! the scien-
tific collaboration network,~b! the computer network,~e! the
BA network, and~f! the CSF network, show clear signs
correlation between the degree and the betweenness. A
scale-free network becomes more clustered~from the BA
model to the CSF model!, the correlation betweenCB(v) and
kv becomes weaker, manifested by more scattered plots i~f!
than ~e!. The ER and the WS models,~c! and ~d!, respec-
tively, are characterized by the absence of vertices with v
high degrees, which makes the correlation betweenCB(v)
andkv rather difficult to observe especially in the region
high degrees. However, notable correlations are evident e
for these networks with an exponential cutoff in degree d
tributions.

For the study of the correlation between the edge deg
ke and the edge betweennessCB(e), we try four different
definitions of the edge degree in Eq.~3.1! with the assump-
tion that the edge degree can be defined by only the deg
of vertices it connects. For all networks, except the scien
collaboration network, we find~at least some! correlation
betweenke andCB(e). This correlation is most evident with

FIG. 4. The construction of the clustered scale-free~CSF! net-
work in Sec. IV F.~a! In the preferential attachment step for th
newly added vertexv ~denoted as closed black circle!, the white
vertex u is chosen with the probability proportional to its degr
~the dashed line represents the new edge!. ~b! In the triad formation
step an additional edge~dashed line! is added to a randomly se
lected vertexw in the neighborhoodGu of the vertexu chosen in the
previous preferential attachment step in~a!. The vertices marked by
3 are not allowed since they are not inGu . Without the triad
formation step, the CSF model reduces to the original BA mode
scale-free networks.
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the definition in Eq.~3.1a!, ke[kvkw , wherekv andkw are
degrees of the verticesv andw that the edgee connects. But
the definitionke[min(kv ,kw), Eq.~3.1c!, also displays a high
correlation betweenke and CB(e). This suggests that the
lower degree of the two vertices an edge connects is m
important for a high edge betweenness than the greater
gree of the two vertices. In other words, this illustrates
quite natural situation that an edge does not necessarily
come central just because it connects to one central ve
rather it has to be a bridge between two central vertices.

For the scientific collaboration network, it turns out th
none of the definitions of edge degree manifest the corr
tion clearly. Figure 6 shows the scatter plots for the ed
degree and the edge betweenness, corresponding to the
works in Fig. 5. Especially, the similarity between the re
network and the model network is evident between the co
puter network and the CSF network@compare~b! and ~f! in

f

FIG. 5. Correlation between the vertex betweennessCB(v) and
the vertex degreekv for ~a! the scientific collaboration network,~b!
the computer network,~c! the ER network with the sizeN5104 and
average degreêk&56, ~d! the WS network withN5104, r 53, and
P50.01,~e! the BA network withN5104, m055, andm53, and
~f! the CSF network withN5104, m055, m53, andmt51.8 ~see
Sec. IV for details of networks!. All are in log-log scales except fo
~c! and ~d!.
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ATTACK VULNERABILITY OF COMPLEX NETWORKS PHYSICAL REVIEW E65 056109
Figs. 5 and 6#, which suggests that the CSF model describ
the network of computers better than the BA model. As far
the edge degree and betweenness are concerned, one ca
argue that none of the existing network models seems
describe the scientific collaboration network properly, a
the origin of the geometric difference in this network st
remains to be studied.

VI. VERTEX ATTACK

In this section, we study the attack vulnerability of s
different complex networks described in Sec. IV by using
vertex attack strategies introduced in Sec. III, i.e., ver
removals using the information on the initial degree~ID!, the
initial betweenness~IB!, the recalculated degree~RD!, and
the recalculated betweenness~RB!. From the observation o
the correlation between the vertex degree and the vertex
tweenness in Sec. V, one expects that both betweenn
based and degree-based attack strategies should res
similar vulnerability behaviors. However, the detailed beh

FIG. 6. Correlation between the edge betweennessCB(e) and
the edge degreeke defined in Eq.~3.1a!. The networks in this figure
are identical to those in Fig. 5. Except~a! for the scientific collabo-
ration network, all networks show clear correlation between the
quantities.
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iors are found to show a variety of interesting differenc
among the networks. Figure 7 summarizes the results for
vertex attack vulnerability measured by the average inve
geodesic lengthl 21 defined in Eq.~2.1! and the sizeSof the
giant component as functions of the numberNrm of removed
vertices.

The two real-world networks, the scientific collaboratio
network and the computer network, show very distinct b
havior: l 21 and S for the latter decay exponentially a
shown in the inset in Fig. 7~b!, whereas in the former net
work @Fig. 7~a!# the decays ofl 21 andS are almost linear.
Another difference between the two real networks is that
the computer network, the degree-based attack strategies~ID
and RD! and the betweenness-based strategies~IB and RB!
are almost equally harmful while the scientific collaborati
network is more vulnerable to betweenness-based strate
@compare the insets of Figs. 7~a! and 7~b!#. This behavior is
somehow expected from the observation in Sec. V since
the region of high degrees~or in the early stage of attack
when most important vertices are removed! the computer
network shows higher correlation betweenkv and CB(v)
than the scientific collaboration network@compare Figs. 5~a!
and 5~b!#. In Fig. 7~a! for the scientific collaboration net
work, as the numberNrm of removed vertices is increased
l 21 for IB increases. This should not be interpreted as
enhancement of network functionality, but as an indicat
that the removed vertices are not the members of the lar
connected subgraph~the giant component!. In Fig. 7~a! the
coherence betweenl 21 and S are also observable: Bot
show the jumps at the same places, when removal of
vertex results in the segmentation of the giant compon
The removal procedures based on the initial network, ID a
IB, are as expected not efficient for largeNrm . At this point
the network structures has changed so much compared t
initial network that the initially important vertices have lo
their significance.

We next compare two model networks, the ER and
WS networks, which have exponential cutoffs in the deg
distributions. For the ER model in Fig. 7~c! the degree-based
attack strategies prevail the betweenness-based ones.
strategies based on recalculated information are, as expe
more harmful than their counterparts based on the initial n
work. The two measured quantitiesl 21 and S rank the re-
moval procedures in the same order. The WS small-wo
network model shows a completely different behavior th
the ER model@see Fig. 7~d!#. For smallNrm the RB proce-
dure is the most harmful, followed by the two degree-bas
strategies. For the removal procedures based on the in
network, the order is reversed—ID is more harmful than
These behaviors persist in the interval 0<Nrm&2rNP,
where 2rNP is the number of end points of rewired edge
and other different behaviors emerge for largerNrm . This
crossover behavior can be explained since whenNrm exceeds
the number of the rewired edge end points, the original W
model topology is lost. For largerNrm , the RB procedure
retains its position as the most harmful procedure, altho
RD almost coincides with RB, forNrm /N*0.5. The ID and
IB procedures are already at an early stage quite harm
compared to RB, asl 21 starts to increase just as for th

o
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FIG. 7. Vertex attack vulnerability is measured by the average inverse geodesic lengthl 21̃ and the size of giant componentS̃ ~see Sec.
II !, normalized by the values for initial networks, for~a! the scientific collaboration network,~b! the computer network,~c! the ER model
with ^k&56, ~d! the WS model withr 53 andP50.01, ~e! the BA model withm53 andm055, and~f! the CSF model withm53, m0

55, andmt51.8. N51500 for~c!–~f!, see Sec. IV for details of networks. Four different attack strategies, each of which are based
initial degrees~ID!, the initial betweenness~IB!, the recalculated degree~RD!, and the recalculated betweenness~RB! are used~see Sec. III!.
Empty symbols representl 21 obtained from attack strategies based on initial information, i.e., open triangles~circles! for ID ~IB!, while
closed symbols are forl 21 from recalculated information, i.e., closed triangles~circles! for RD ~RB!. For model networks~c!–~f!, the error
bars estimated from the calculations for;40 different network realizations are also plotted and they are smaller than the size of sym
Solid line represents RB, dash-dotted line represents RD, dotted line represents ID, and dashed line represents RB. Insets are ma
in the early stages of attacks@note that inset in~b! is in the linear-log scale#.
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scientific collaboration network of Fig. 7~a!. ~A sign that
mostly unimportant vertices are removed.! The most interest-
ing and unexpected behavior occurs in an intermediate
gion aroundNrm /N'0.25. Here the RD is the least harmf
of all four procedures. It is also the only case where a re
culated information based procedure is less harmful than
counterpart based on the initial configuration. This clea
shows that choosing the vertex with the highest degree is
an efficient way to destruct the WS small-world networ
Recall that in the original network the degree is seldom
from 2r .
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The BA model ~reviewed briefly in Sec. IV E! was in
focus in the first study of the vulnerability of scale-free n
works @20#. Scale-free networks are more sensitive to ver
removal than the ER and WS models. This is of course
to the large variation in the importance~measured both by
degree and betweenness! of the vertices, i.e., there exist ver
important vertices, which plays very important roles in t
network functionality. In the ER and WS models the dist
bution of relevant measures of vertex importance, such
degree and betweenness, are restricted by the scale in
model. In the BA model shown in Fig. 7~e!, the differences
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ATTACK VULNERABILITY OF COMPLEX NETWORKS PHYSICAL REVIEW E65 056109
among the removal procedures are not significant in the e
attack stage. However, as the removals proceed, the a
strategies harm the network more in the order RB.RD
.ID.IB ~the inequality RB.RD means that RB is more
harmful than RD!: As expected, strategies with recalculat
degrees and betweennesses are more harmful. One inte
ing observation is the change of order between degree-b
and betweenness-based strategies, i.e., RB.RD versus ID
.IB: This implies that the betweenness distribution chan
more during the removal procedure than the degree distr
tion, which is natural since the betweenness depends on
global network structure, whereas the degree of a vertex
quantity dependent only on its neighborhood.

The CSF network model in Sec. IV F with tunable clu
tering is found to be even more attack vulnerable than
BA model as evident from the comparison of Figs. 7~e! and
7~f!. This can be explained from the finding that for a fix
number of edges, higher clustering makes the network
efficient. In other words, more geodesics go through
same important vertex when the network is highly cluster
making l larger ~or l 21 smaller! @4#, and at the same time
making the network more vulnerable to the removal of
important vertex with many triads attached to it. Unlike t
BA scale-free network model in Fig. 7~e!, in the CSF net-
work, ID is not necessarily less harmful than RD for allNrm .
In other words, the clustering makes the degree less im
tant when assessing the vulnerability of a vertex. This can
explained by configurations such as that in Fig. 8, which a
causes the lower correlation between degree and betw
ness mentioned above in Sec. V.

VII. EDGE ATTACK

In the original study of the attack vulnerability of scal
free networks@20#, only the vertex attacks have been cons
ered, which may be interpreted as intruder-caused bre
downs of servers in computer networks, for instance. In
section, we study the vulnerability of complex networks su
ject to various types of edge attacks~see Sec. III for details
of the edge attack strategies!. For example, in computer ne
works, this can be interpreted as malfunctioning or loss
communication cables. In the context of social networks,
attack on an edge can be interpreted as prohibition of con
between two individuals—a scenario that admittedly
somewhat artificial, but could possibly have practical imp
cations for the prevention of spreading of sexually transm
ted diseases@28#. As long as the network is not segment

FIG. 8. Low degree vertexw taking the load off a highly con-
nected vertexv. It shows how high clustering can make connect
ity less important for the routing of geodesics:v with a high degree
shares many geodesics with its low-degree neighborw. The gray
regions represent the part of the network that is connected tov. The
arrows indicate that those geodesics can be routed by eitherv or w.
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into pieces, the average betweenness increases during
attacks since the reduced number of edges should carry
same number of geodesics. However, this is not necess
true for individual edges as illustrated in Fig. 9.

Figure 10 displays the results for the vulnerability to va
ous edge attacks in six different complex networks. The sy
bols in Fig. 10 have the same meanings as in Fig. 7 in S
VI. Remember the different definitions ofl 21 for vertices
and edges: When edges are removed, the total numberN of
vertices in the denominator in Eq.~2.1! does not change
making l 21 a monotonical decreasing function with th
numberL rm of removed edges.

The two real-world networks behave quite similarly und
edge attacks as shown in Figs. 10~a! and 10~b!, in contrast to
vertex attacks wherel 21 decays linearly for the scientific
collaboration network and exponentially for the compu
network @see Sec. VI and Figs. 7~a! and 7~b!#. For both real
networks the RB procedure is the most destructive, follow
by the IB procedure, in a broad range ofL rm . The degree-
based attack strategies, ID and RD, are found to be no
efficient as the betweenness-based ones, IB and RB~in every
case except largeL rm for the WS mode!, which suggests tha
the edge betweenness is a more suitable quantity than
edge degree to measure the importance of an edge. The
relation between the degree and the betweenness is stro
for vertices than edges~compare Figs. 5 and 6!, which is
related to the above finding that the edge degree fails
capture the importance of edges. We again find the simila
in the behavior ofl 21 andS in Fig. 10~b!: When a large part
of the network becomes disconnected from the giant com
nent, bothS and l 21 show jumps simultaneously. On mo
occasionsS and l 21 show the common features althoug
each measures a distinct aspect of network performance
example, the computer network in Fig. 10~b! at L rm /L'0.5
exhibits the order of destructiveness RB.RD.IB.ID judg-
ing from l 21, whereasS gives the ranking RB.IB.RD
.ID.

The two network models with the degree distributio
characterized by exponential tails~the ER and the WS mod
els! display again quite different vulnerability under edg
attacks. For the ER model, judging froml 21, the two attack
strategies based on recalculated information~RD and RB!
are the most harmful, and RB is clearly more harmful th
all the other three@see Fig. 10~c!#. The RD curve forSdiffers
from the rest:S is almost constant untilL rm reachesL rm /L
'0.7, whereS decreases very rapidly. The reason for th
behavior is that the RD removal cuts edges between vert

FIG. 9. Schematic diagram to show how an edge can lose
increase its betweenness.~a! The edgea has a high betweenness a
a bridge connecting the left and the right part of the network.~b!
When the edgea is removed,e is only a part of the geodesics in th
right-hand side, and thus has lower betweenness than before
removal ofa. On the other hand, if the edgeb had been removed
the betweenness ofe would have increased since all geodesics pa
ing from the left- to the right-hand side would pass throughe.
9-9
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FIG. 10. Edge attack vulnerability for the same networks as in Fig. 7 subject to four different edge attack strategies~see Sec. III!. L rm is
the number of removed edges and the other symbols and notations are the same as in Fig. 7. For the degree-based edge attack s
definition of the edge degree in Eq.~3.1a! has been used.
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that are highly connected, but the bridges—edges tha
removed, would disconnect the graph—are not necess
linking vertices of high degree. Thus the structure emerg
from repeated application of the RD strategy is characteri
by a chainlike structure~low degrees of the vertices but rela
tively large connected subgraphs!. This is also well illus-
trated by Fig. 2, where the maximal degree for the RD
moval iskv52 already atL rm57 ~the same numbers for th
other procedures areL rm59 for ID and RD andL rm510 for
RB!. The graph is also connected longer for the ID and R
strategies than for the betweenness-based strategies.

Just as for the vertex attacks, the WS network mo
again shows a very different behavior@see Fig. 10~d!#. For
the three procedures ID, IB, and RB, the inverse geod
length l 21 decays very rapidly for smallL rm /L&0.07. In
the WS model the rewired edges are carrying a large por
of geodesics@2#. The vertices that are end points of rewire
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edges have a higher vertex degree (^k&11) and accordingly
the edges connected to those end point vertices have a
higher edge degreêk&(^k&11), becoming early targets o
edge attacks. Since there existPL rewired edges, the numbe
of edges with a higher edge degree in the initial network is
course (̂k&11)PL. Consequently, for 0<L rm&(^k&
11)PL (50.07L in our case! the network is very vulnerable
to edge attack—in fact, for these three procedures~ID, IB,
and RB! the WS network is more vulnerable than any oth
network we study. On the other hand, for (^k&11)PL
&L rm the network topology has lost most resemblance to
original network, and in this region the decay ofl 21 is far
less rapid than for smallL rm . The behavior of the RD re-
moval is strikingly different: ForL rm /L&0.01 the decay of
l 21 is as rapid as the other three procedures, but for 0
&L rm /L&0.07 the decay is much slower. That this behav
is relevant in the large-N limit is shown in Fig. 11. If an edge
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ATTACK VULNERABILITY OF COMPLEX NETWORKS PHYSICAL REVIEW E65 056109
e5(v,w) is rewired and there are no other rewired edg
attached tov or w, the edge degree ofe is ke5^k&(^k&
11), which is larger than the averageke5^k&2. The RD
removal will thus first attack the rewired edges, just as the
removal ~and probably IB and RB as well!, but for L rm
*0.01 the RD removal picks less vulnerable edges than
ID strategy. The reason for this behavior can be discusse
the context of Fig. 12, where the edge (w,u) rewired to
(w,v) is the only rewired one: The ID removal will remov
edges in the neighborhoodGv @which haske5^k&(^k&11)#
including the rewired edge first, followed by edges outs
GuøGv ~with ke5^k&2) and at last the edges inGu @with
ke5^k&(^k&21)#. The RD strategy will start by removing
one edge inGv , not necessarily the rewired one. Say (v8,v)
is the first removed edge~wherev8 could be equal tow), the
second edge to be removed can be any one outsideGuøGv8 .
The RD strategy strives to keep the degree uniform, wh
leads to a twofold disadvantage compared to the ID strate
First, after ^k&11 removed edges the rewired edge is
moved with certainty by the ID removal, but only with
probability ;1/(^k&11) by the RD removal. Second, tha

FIG. 11. Average inverse geodesic lengthl 21̃ for edge attack
on the WS small-world network model with sizesN5500, 1000,
and 1500 subject to the RD removal strategy~closed symbols! and

IB removal strategy~open symbols!. As N becomes larger,l 21̃ is
shown to saturate with a remarkable difference between RD and

FIG. 12. RD vs ID strategies on a WS model network w
^k&56. The original configuration is shown in~a!. The vertically
oriented edge in~a! starting atw is rewired fromu to v. In ~a!, the
thicker lines connected tov represent edges with a higher ed
degree, and the thinner lines connected tou represent edges with
lower degree. Typical configurations in the lower part of~a! after
^k&11 ~in this case seven! removed edges are shown in~b! for ID
removal and~c! for RD removal, leading to the prediction that R
is much less harmful than ID as confirmed in Fig. 10~d!.
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the RD strategy keeps the degree uniform is also preven
its efficiency—compare the dashed-dotted~RD! line with the
dashed~ID! line of Fig. 10~d!. The mechanism of this can
also be seen from Figs. 12~b! and 12~c!: With the ID removal
all edges inGv are deleted whenL rm5^k&11 @see Fig.
12~b!#, but for the RD removal this is not the case@see Fig.
12~c!#. The part of the graph shown in Fig. 12~b! can be
disconnected by removing three edges, in Fig. 12~c! the same
number is four, but all of these have a lower degree than
edges not in a neighborhood of a removed edge and will t
be removed later.

To illustrate the effect of the rewiring in the constructio
of the WS network we briefly discuss edge attacks on a re
lar network. For IB removal we note that the betweenness
the initial regular network is increasing rapidly with th
range of the edges. This means that atL rm5(r 21)L/r the
graph will be just a connected ring ofkv52 vertices. After
this it will disintegrate rapidly. As shown in Fig. 13 for th
regular network withr 53, this behavior is seen aroun
L rm52L/3. Since the initial degree of the regular network
uniform, the edges are removed in a completely random
der for the ID procedure. This makes the graph lose its c
nectedness at aroundL rm'L/4. When a regular network is
attacked by the RD procedure, the edge and vertex de
will be kept as uniform as possible. The network will rema
connected until edges of degreeke5(^k&/211)^k&/2 are re-
moved ~since the network cannot be disconnected unl
four vertices of degreêk&/2 exist!. This happens with (1
1^k&/2)N/224 edges left in the system, so in our syste
S51 at least untilL rm /L'0.33. In Fig. 13 this happen
roughly atL rm /L'0.36, which is later than for the ID re
moval ~whereS51 up to L rm /L'0.24). This effect is also
present for the WS model networks~mentioned as our sec
ond point above!. Comparing Fig. 10~d! and Fig. 13 one
notices that the area of rapid decay ofl 21 @0<L rm /L&P
for IB, RB, and RD; and 0<L rm /L&(^k&11)P for ID# is
lacking for the regular network, confirming that the rewire
edges are responsible for this strong vulnerability. Anot
observation is that the cusps arising from the regularity

the network in thel 21̃ curves for IB and RB removal in Fig
13 are gone in Fig. 10~d!. This is of course expected sinc

D.

FIG. 13. Edge attack on a regular one-dimensional network w
connection ranger 53 andN51500. Symbols are the same as
Figs. 7 and 10.
9-11
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TABLE I. The normalized average geodesic lengthl 21̃ and the normalized size of the largest connected componentS̃ computed after

1% of the vertices~edges! are removed. The normalization is made to satisfyl 21̃5S̃51 for the original networks. SC, CN, ER, WS, BA
and CSF denote the scientific collaboration network, the computer network, the random network model by Erdo¨s and Re´ny, the Watts-
Strogatz model of the small-world, the Baraba´si-Albert model of the scale-free network, and the clustered scale-free network model in
@4# ~see Sec. IV for details of networks!.

l̃ 21@S̃# for vertex attack l̃ 21@S̃# for edge attack

Network N ^k& g ID IB RD RB ID IB RD RB

SC 2010 6.6 0.57 0.90@0.96# 0.88 @0.98# 0.89 @0.96# 0.86 @0.98# 0.98 @1.00# 0.92 @0.98# 0.95 @1.00# 0.88 @0.95#
CN 2122 4.1 0.22 0.20@0.62# 0.25 @0.63# 0.20 @0.62# 0.24 @0.66# 0.83 @1.00# 0.74 @0.93# 0.82 @1.00# 0.51 @0.68#
ER 1500 6.0 0.0040 0.98@0.99# 0.98 @0.99# 0.97 @0.99# 0.98 @0.99# 0.99 @0.99# 0.99 @0.99# 0.99 @1.00# 0.99 @1.00#
WS 1500 6.0 0.58 0.82@0.99# 0.85 @0.99# 0.82 @0.99# 0.75 @0.99# 0.89 @1.00# 0.65 @1.00# 0.92 @1.00# 0.54 @1.00#
BA 1500 6.0 0.015 0.88@0.99# 0.88 @0.99# 0.88 @0.99# 0.88 @0.99# 0.98 @1.00# 0.98 @1.00# 0.98 @1.00# 0.98 @1.00#
CSF 1500 6.0 0.54 0.72@0.99# 0.71 @0.99# 0.72 @0.99# 0.70 @0.99# 0.93 @1.00# 0.94 @1.00# 0.93 @1.00# 0.93 @1.00#
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the number of rewired edges is different for different dis
der realizations.

For the case of vertex attack, the two network mod
with scale-free degree distributions display a rather sim
behavior. For edge attack there are larger differences.
seen in Fig. 10~e!, for the BA scale-free network model th
recalculated attack strategies are the most harmful. The
ferences between the four methods are not very large fo
<L rm /L&0.4. This suggests that the characteristic topolo
of the BA scale-free network model is retained for this rath
broad region. Just like for the ER modelS for the RD pro-
cedure decreases very rapidly atL rm /L'0.7, crossing ID
and IB curves. ForL rm /L&0.4, S for ID and IB are actually
even below the RB curve. Similarly to the vertex attack,
CSF model proves to be more vulnerable than the BA mo
@see Fig. 10~d!#. Just like the other networks with high clus
tering ~the scientific collaboration network and the W
model!, the RD procedure is the least harmful for the C
network. For the three unclustered networks, to which
BA mode belongs, the RD strategy is not the worst. On
again this can be explained by the low correlation betw
degree and betweenness for clustered networks~see Sec. V
and Fig. 8!. The most drastic difference between the sca
free network models is the curves for the RB procedu
which is the most harmful selection procedure. Herel 21 for
the CSF network shows the same positive convexity as
scientific collaboration network of Fig. 10~b!. Thel 21 curve
for the IB procedure has, however, a negative convexity
Fig. 10~d!, as opposed to Fig. 10~b!. This could be guesse
from the fact that the maximum betweenness is much hig
for the CSF model@Fig. 6~f!# than the BA model@Fig. 6~e!#.
Our conclusion is that although the CSF model with tuna
clustering shows the closest resemblance to the scientific
laboration network, and this is presumably due to the h
clustering and scale-free degree distribution, there are st
tures governing real-world networks, which are yet to
quantified.

In summary of the different networks under various atta
strategies, measured quantities are shown in Table I.

values ofl 21̃ and S̃ are shown after 1% of the vertices~or
edges! are removed, i.e.,Nrm /N5L rm /L50.01. This is cho-
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sen to be small enough to keep the most original netw
structure, but large enough to display the changes introdu
by various types of attacks. The first criterion obviously fa
for the computer network, but the value 1% is used anyw
for the sake of comparison with other networks.

VIII. SUMMARY AND CONCLUSIONS

We have studied the correlation between degree and
tweenness for both vertices and edges~see Fig. 5!. For vertex
degree and vertex betweenness the correlation is very st
for the ER model and the BA scale-free network, and is a
evident in the WS small-world network model and the sca
free network model with tunable clustering. Of the rea
world networks the Internet traffic network shows a stro
correlation, whereas the scientific collaboration network h
weaker correlation. For edges we define an edge degre
the product of the degrees of the linked vertices. The sim
scatter plots show weaker correlation, a result of the lack
natural generalization of the degree concept from vertice
edges.

The computer network shows a unique behavior wh
subject to vertex attack—the average inverse geodesic le
l 21 clearly shows an exponentially decay in the early sta
of attacks. The scientific collaboration network, in contra
shows a linear decay for the same quantity. For edge at
on real-world networks the recalculated betweenness~RB!
procedure is the most efficient. The difference between
attack strategies based on the initial information and the
calculated information shows that the change of netw
structure during the removal process is substantial. This m
be taken into consideration if one wants to give efficie
protection to a network.

None of the network models shows a behavior very sim
lar to the real-world networks: Even the clustered scale-f
network model with both high clustering and the scale-fr
degree distribution, which are two important characterist
in real-world networks, fails to describe successfully the s
entific collaboration network. This clearly suggests that th
are other structures contributing to the network behavior d
ing vertex attack, and conclusions from model netwo
should be cautiously generalized to real-world situatio
However, it should be emphasized that the CSF model un
9-12
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edge attacks with the RB strategy shows a behavior sim
to the highly clustered scientific collaboration network@com-
pare Figs. 10~a! and 10~f!#, whereas the BA model with very
low clustering in Fig. 10~e! shows clearly different behavio
under the same RB edge attack.

The ER model, which lacks structural bias, is the m
robust of the tested networks. This supports the intuitive i
that building a serverless network would be very robust
attack. Even if the network connections would be fixed in
random pattern this would lead to a tremendous increas
attack robustness of the network~as the ER model shows!.
Wireless and serverless networks, so called ‘‘ad hoc net-
works,’’ are well studied from a theoretical viewpoint@29#.
Most literature on network security concerns software p
tection and prevention of loopholes@30#, rather than the net
work topology. This is of course natural since it is the p
mary defense against computer network attack~along with
locking the computer room!. But as a background protection
an attack-robust network topology can be useful, and thus
believe that the robustness of serverless networks should
courage further research.
-
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A

e
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Lacking in this study, and an interesting area for futu
studies, is an extensive scaling analysis to establish the
ders in parameter space for the different responses to
attack procedures.~We study one case with this metho
when we, from Fig. 11, conclude that the ID strategy is mo
efficient than the RD strategy in theN→` limit.!

Note added in proof: Attacking a network with the RB
strategy for links has been suggested independently a
algorithm for detecting ‘‘community structure’’ in network
@34#.
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Åberg, Nature~London! 411, 907 ~2001!.
@29# See, for example, C. -K. Toh,Wireless ATM and AD-HOC

Networks~Kluwer Academic, Boston, 1997!, and the following
recent articles, and references therein; H. Lim and C. K
Comput. Commun.24, 353 ~2001!; K. Paul, S. Bandyo-
padhyay, A. Mukherjee, D. Saha,ibid. 24, 1828~2001!.

@30# See, for example, J. E. Canavan,Fundamentals of Network
Security ~Artech House, Boston, 2001!; T. A. Waldow, The
05610
,

Process of Network Security~Addison-Wesley, Reading, MA,
2000!; D. Cameron,Global Network Security~Computer Tech-
nology Research Corp., Charleston, SC, 1999!.

@31# Betweenness is one of the centrality measures categorize
Ref. @13#. A centrality concept based on the network’s vulne
ability to a vertex~edges! removal has actually also been pro
posed@21#.

@32# Our data are the same as used in Ref.@17# provided to us by
Professor M. E. J. Newman.N552 908, L5245 300 in the
entire database.

@33# In practice one may usePu5(ku11)/(wPV(kw11) to make it
possible for disconnected vertices to be connected. This d
not change the resultant geometry significantly.

@34# M. Girvan and M.E.J. Newman, e-print cond-mat/0112110.
9-14


