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Attack vulnerability of complex networks
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We study the response of complex networks subject to attacks on vertices and edges. Several existing
complex network models as well as real-world networks of scientific collaborations and Internet traffic are
numerically investigated, and the network performance is quantitatively measured by the average inverse
geodesic length and the size of the largest connected subgraph. For each case of attacks on vertices and edges,
four different attacking strategies are used: removals by the descending order of the degree and the between-
ness centrality, calculated for either the initial network or the current network during the removal procedure. It
is found that the removals by the recalculated degrees and betweenness centralities are often more harmful than
the attack strategies based on the initial network, suggesting that the network structure changes as important
vertices or edges are removed. Furthermore, the correlation between the betweenness centrality and the degree
in complex networks is studied.
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I. INTRODUCTION build attack-robust networks, and also how to increase the

robustness of vital biological networks. Also in a large net-

Examp|es of Comp|ex networks are abundant in many disWOfk of a criminal Organization, the whole network can be
ciplines of science and have recently received much attentioff@de to collapse by arresting key persons, which can be

[1,2]. Many works have tried to regenerate geometrical staldentified by a similar study. However, the applicability to

tistics of real-world networks by generative algorithms thattsg(;'oarlnréeethgﬁts Q%yegg\t/gzxg?ilrglegze_ae%%[%%ltnatlﬁgcv?/;fr? are
mimic behaviors found in real-world networks. The studies J P

along this line have been able to model, e.g., the emergen(% social network structure is under attack, the dynamics
RN N . ould probably speed up as the organization tries to protect
of scale-free degree distributioh3] and the high clustering P y sp P g P

. itself.
of social networkg4,5]. Another group of complex network A yopic closely related to attack vulnerability is that of the

studies aims to. mvestlgatg certain dynamical prqblems OBercolation in complex network], where all verticegor
network topo_log|e$5,6]. A third group of works studies how  gqges have the equal probability of being disabled. In the
the geometric characteristics and performances of the nefetwork of computers, this situation corresponds to a random
works are affected by the restrictions imposed on networkspreakdown of computers, while in the problem of a disease
The approach taken by the present paper belongs to the thiggread through a network of people, it corresponds to the fact
category as we study the robustness of the network subject that a randomly chosen set of people are susceptible. One of
various attack strategies. the key quantities in percolation studies, the size of the larg-
Originated from studies of computer networks, “attack est connected subgraph, is also used in the present paper as
vulnerability” [3] denotes the decrease of network perfor-one of the measures of network performance.
mance due to a selected removal of vertices or edges. In the This paper is organized as follows: In Sec. Il we provide
present study we measure the attack vulnerability of varioughe definitions of terms and measured quantities. In Sec. IlI
complex network models and real-world networks. We com-various attack strategies are explained. In Sec. IV two real-
pare different ways of attacking the network and use variou¥vorld networks and several complex network models used in
ways of measuring the resulting damage. In general, thile present paper are briefly described. Sections V, VI, and
gives a measure of the decrease of network functionality unVIl are devoted to the main results, on the relation between

der a sinister attack. The meaningful purpose for attack vuld€drees and betweenness centralities, on the vulnerability

nerability studies is for the sake of protection: If one wants toNder vertex attack, and on the vulnerability under edge at-

protect the network by guarding or by a temporary isolationtaCk' Finally, we summarize our results in Sec. VIII.
of some verticegsedge$, the most important verticéedges,
breaking of which would make the whole network malfunc-
tion, should be identified. Furthermore, one can learn how to In general, the complex networks—networks of both ran-
domness and structure—studied in this article can be repre-
sented by an undirected and unweighted grgph(),£),
*Electronic address: holme@tp.umu.se whereV is the set of verticesor nodes and € is the set of
"Electronic address: kim@tp.umu.se Present address: Departmegtiges(or links). Each edge connects exactly one pair of ver-
of Molecular Science and Technology, Ajou University, Suwon 442-tices, and a vertex pair can be connected by maximally one
749, Korea. edge, i.e., multiconnection is not allowed. Let, furthermore,

II. DEFINITIONS OF QUANTITIES
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N denote the number of verticés=|)| andL the number of
edges. =|£|. For a social network9], V is a set of persons
(or “actors” in the sociology parlangeand € is the set of v
acquaintance ties that links the persons together. In compute
networks ) represent the routers or computers ahdhe
channels for computer communication.
There are several ways of measuring the functionality of
networks. One key quantity is the average geodesic lerigth

which is sometimes termed “the characteristic path length,” FIG. 1. An example of how to calculate the local clustering
defined by coefficienty, of the vertexv. The closed black circles indicate the

neighborhood”, of v, and the thick lines are the edges connecting
1 two vertices withinT',. Since there are five such edgdd
/=(d(v,w))= E 2 d(o,w), =5) and the degrek,=6, we obtainy,=1/3 from Eq.(2.2).
N(N_l) veV w#veV

|FU|S
=— 2.2
whered(v,w) is the length of the geodesic betweemandw Yo k, 2.2
(v,weV), i.e., the number of edges in the shortest path con- 2

necting the two, and the fact®d(N—1) is the number of

pairs of vertices. It/ is large, the dynamicéof epidemics, s called the local clustering coefficient of the vertexHere
information ﬂOW, etC) is slow in the network. Social net- the degregv of v is defined as the number of Verticeﬁ]n,

works are known to have a very short average geodesite, k =|I',|. The “clustering coefficient” is then defined as
length,/«In N, with the “six degrees of separations"~6,  the average ofy, ,

of the earth’s population as a celebrated examp@. The

logarithmic increase of” is also characteristic of computer 1
networks, and/~17 has been estimated for the entire Y=(Vu =N > Y- (2.3
world-wide web[3]. As the number of removed vertices or vey
edges is increased, the network will eventually break int

d|sgqnnected subgra}phs_. The average .geodesm length, RUmber of triads divided by the maximal number of triads. In
definition, becomes infinite for such a disconnected graphl,_.. . : : :
-ig. 1, we present an illustration to explain the meaning of

and one can instead study the average inverse geode%he local clustering coefficient: The number of edges within

O@n alternative interpretation is that, is the fraction of the

length, the neighborhoodI',|s=5 and the degre&,=6 result in
v,=1/3 in Fig. 1. Bothy, and y are strictly in the interval
e 1 _ 1 S S 1 [0,1], with y=1 attained only for a fully connected network,
d(v,w)/ N(N—-1) 2wty dv,w)’ where every vertex is connected to every other vertex with

(2.1 the total number of edgds=N(N—1)/2.
Removals of important vertices may affect the network
C%igniﬁcantly. For example, in Reff3] only a few removals of
vertices with the highest degrees has been shown to be
enough to alter the behaviors of scale-free networks and the
average geodesic length has been found to increase dramati-
cally. In the studies of social networks, centrality is an im-

Since subsequent attacks will disintegrate the network, thgortant concept, which tries to capture the prominence of a

size of the largest connected subgraph is also an interestirgrson in the embedding social structure. It is natural to ex-

. . : : p%ct that removals of vertices with high centrality will
quantity for measuring the functionality of the net_works. Inworsen the functionality of networks more than the removals
social networks, the largest connected subgraph is known t8

have a size of the order of the entire network, and accordy) degrees. It shoul_d be noted t.hat .the vertex with a low
degree can have a high centralitiis will be shown explic-

ingly is called the “giant compo'nent[ll]. Throughout the it]by in Sec. V) and thus attacking the network by removing
present paper, we denote the size of the giant component a

. ! ) vertices with high centralities may differ from that by de-
\?ulvr\:zlgg)i\lli\gl/l be used together with ™~ to study the attack grees. Among many centrality measuf&4] we focus on the

In addition to the logarithmically increasing average geo- vertex betweenness centralityCg(v) [15] defined for a

desic length, social networks are found to have a high local€MeXv €V as follows:

transitivity: if {u,v} and{u,w} are two connected pairs, then

v is likely to be connected ta too (and if it does{u,v,w} is Colv)= S T (V) 2.4
“ . ” . . . . B 1 .

called a “triad”) [12]. The clustering coefficient (intro- wEw eV Oww

duced in Ref[5]) intends to measure the average degree of

the local transitivity in a network: Lef", | denote the num- where o, is the number of geodesics betwesrand w’

ber of edges in the neighborhodg of v € V, then and o, (v) is the number of geodesics betwegrandw’

which has a finite value even for a disconnected graph sin
1/d(v,w) =0 if no path connects andw. It should be noted
that the notation” ! does not mean the reciprocal 6f The
functionality of the network is then measured By !: the
larger /1 is the better the network functions.
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that passes. Similarly, one can define the “edge between- cutting off of communication cables, while the attacks on

ness centrality’Cg(€e) for an edgeee £ as vertices can be interpreted as breakdowns of servers by ma-
licious hackers(The opposite is of course also imaginable: a
oww () software obstruction of a communication link or a server
Cole)= > ———, (2.9 destroyed physically.The vulnerability of networks under

wAw eV Tww edge attacks is also studied by using similar stratefyies

where o,/ (€) is the number of geodesics betweenand again call them as ID, IB, RD, and RB rempvals of edges
w’ that includes the edge Throughout the present paper, The concept of the edge betweenness was introduced in Sec.
we call Cg(v) and Cg(e) the vertex betweenness and the !l from a straightforward generalization of the vertex be-
edge betweenness for brevity. For calculation€gfv) and ~ Weenness. On the other hand, the definition of the “edge

Cg(e) we use theO(NL) algorithm presented in Refs. degree” is not so clear. But still it is_expected that the im-
[16,17). portance of an edge should be possible to assess by the de-
grees of the two vertices it connects. In this work we attempt
Il ATTACK STRATEGIES to define the edge degrkgfrqm the local information of the

’ vertex degrees in several different ways,

For the study of attack vulnerability of the network, the

selection procedure of the order in which vertices are re- ke=K,Ku, (3.1a
moved is an open choice. One may of course maximize the

destructive effect at any fixed number of removed vertices ke=k,+ Ky, (3.1b
(or edges However, this requires the knowledge of the

whole network structure, and pinpointing the vertex to attack ke=min(k, ,ky), (3.109
in this way makes a very time-demanding computation. A

more tractable choice, used in the original study of computer ke=maxk, k), (3.19

networks, is to select the vertices in the descending order of

degrees in the initial network and then to remove verticesyhere the edge connects two vertices andw with vertex
one by one starting from the vertex with the highest degregjegrees, andk,,, respectively. As will be discussed in Sec.
[3]; this attack strategy uses the initial degree distributiony, among the above definitions, we find that E8.1a gives
and thus is called “ID removal” thrOUghOUt the paper. Thea more reasonable res[ﬂﬂ higherCB(e) to ke Corre|ati0d
vertices with high betweenness also play important roles iRhan the others, and thus the “edge degree” definekas

connecting vertices in the netwofB1]. The second attack = k, is used for the attack strategies ID and RD edge
strategy is called “IB removal” and uses the initial distribu- removals.

tion of the betweenness. Both ID removal and IB removal From the definitions, we expect that a vertex with higher
use the information on the initial network. As more Verticesdegree usua"y Should have h|gher betweenness in most rea|_
are removed, the network structure changes, leading to difyorld networks. However, the correlation between the edge
fel’ent diStributionS Of the degree al’ld the betWeenneSS thqj’égree and edge betweenness is less obvious. This is ex-
the initial ones. The third attack strategy called “RD re- pected to show a larger difference between degree-based and
moval” uses the recalculated degree distribution at every repetweenness-based attack strategies for edge attacks than for
moval step, and the fourth strategy, we call it “RB removal,” yertex attack. The four different edge attack strategies ap-
is based on the recalculated betweenness at eVery Step. Fy.ped to a network generated by Watts and Strogatz’s Sma”_
removal has been used in Ref$8,19. It should be noted world network model(see Sec. IV Dis shown in Fig. 2.

that ID and RD removals are local strategies, while the otheuite soon the original network structure is lost and
two based on the betweenness are global ones, which makggycedure-specific structures emerge. For example, the RB
the applications of ID and RID(N) algorithms, while 1B edge removal concentrates on edges of high betweenness,
and RB areO(NL) even with the best known algorithm and thus edges that carry more geodesics are first lost. Con-
[16,17. The other important difference between the degreesequently, it is not a surprise that the resulting network struc-
based and the betweenness-based strategies is that the formge by RB consists of highly connected clusters and vertices
concentrate on reducing the total number of edges in thjth no neighbors. The RD procedure, on the other hand,
network as fast as possible whereas the latter concentrate @8moves edges connecting vertices with high vertex degrees,
destroying as many geodesics as possible. It is not entirelynd, therefore, it is natural that the original network is split

cleara priori which one of these four different attack strat- into many subgraphs of vertices with loflvut not zero de-
egies should be more harmful than the others, although ongrees.

can naively expect that RD and RB are more harmful than ID |n Secs. VI and VII, we investigate various networks sub-
and IB, respectively. It should also be noted that for theject to the above-mentioned four different attack strategies,
strategies based on the recalculated information, the mogp, |B, RD, and RB, applied for vertex removals and edge
harmful sequences for removalsif,, vertices andN/, ver-  removals. To detect the damages caused by those attacks, we
tices (N,m# N/) might differ significantly even in the early measure the average inverse geodesic lengt in Eq.
stage of attacks. (2.2) as well as the siz& of the giant component. As the
One can also attack edges instead of vertices. In the netertex attack proceeds, both the remaining number of verti-
work of computers, attacking edges may correspond to thees and the average inverse geodesic length decrease, which,
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exhibit the power-law distribution of degree, which many
real networks show and the BA model successfully produces.
On the other hand, the WS model has high clustering, e.g.,
social networks, whereas the BA model has a clustering co-
efficient that scales toward zero Bs—. There have been
attempts to revise and extend these representative models in
order to produce a network model that can show a small
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% ‘x. average geodesic length, a scale-free degree distribution, and
° e ° e high clustering, all at the same tinié,22]. In this work, we
ID removal  IB removal RD removal = RB removal study two real networks, a “social network” constructed

FIG. 2. Various attack strategies for edge removals applied to ;rom scientific collaboration datéSec. IV A) and _a ‘com-
realization of the generative algorithm of the Watts-Strogatz modePuter network” constructed from computer traffic over the
of small-world network(see Sec. IV From left to right, the Internet(Sec. IV B), as well as four model networks, the
evolutions of network structures are shown for the edge attack strafandom network model by Efdoand Reyi (ER), the WS
egies based on IDinitial degree, 1B (initial betweennegs RD ~ Model, the BA model, and the clustered scale-free network
(recalculated degrgeand RB(recalculated betweenngssespec- (CSPH model suggested by two of the present authors in Ref.
tively. The initial network structure is displayed at the top left cor- [4] (Secs. IV C—IV B. It should be noted that network mod-
ner of each column and the subsequent structures at the next nids such as those mentioned above model the emergence of
steps are exhibite(irst four steps from top to bottom and then five structure in networks—structure that can be monitored by
more steps from top right to bottom righFor an individual sub-  certain quantities such as degree distribution, clustering co-
graph the thickness of the lines is proportional to the betweennessfficient, and so on. However, they dorobably not sample
of the corresponding edge. the ensemble of networks defined by specific values of these

guantities uniformly. This is known to be the case for other
from the definition of/ 1, suggests that’ ! can be both ways of generating random graphs with structural biases that
increasing and decreasing, depending on how much damagée easier to give a probability-theoretical analy28]. That
is made by the removals. However, the edge removals do ndiie sampling is biased makes an inference from the scaling
change the number of vertices in the network and #us  of quantities difficult—if, e.g., one model gives networks
should be a decreasing function of the number of removetvith the same values as another except for, say, a smaller
edges. SimilarlyS is expected to show different behaviors clustering coefficient, it is not certain that a different behav-
for vertex and edge removals. For vertex removalgersus  ior under, say, edge removal is due to the lower clustering.
the number of removed vertices should have a slope of unity
in the initial attack stages since the removed vertex probably  A. Scientific collaboration network from the hep-lat
belonged to the giant component. On the other hand, the e-print archive
initial edge attacks should not change the size of the giant

component, and thuS versus the number of removed edges .
P versu u v 9 data, we follow Ref[17] and construct a network of scien-

should start as a horizontal line. i laborati f the the Los Al int
We conclude the section with some technical details: In''c cotiaborations from the he Los Alamos preprint ar-

any case where two or more verticesiges could equally Cht'.v‘?sEZA'] l[?] theihfollowmg way- tlf(;vz)o smen(;usts eroteda_m |
be chosen by some strategy, the selection is done random Icle together, they ar€ connected by an edge. Accordingly,

For the RB strategy, if the betweenness is zero for all verti- € vertlr?es ITl tge ngtwo.rk are Sc'ﬁm'StS’ Sndlthe egj_lges re;p—
ces, i.e., the vertices are either isolated or linked to exactl)réiT:t?é;Se t(k:lce) @hgiztfgstzz}foosré Sr;tttz(;ch\?\eeniesr?oéIggc?o-
?nneeagﬁ\lglhebszr'attrt]aecvkecr)?f/i?t\igfg ;viltbz%attacked before the be computationa_lly tractat_JI@SZ] ins_tead we chos_e the hep- _
' lat database, which contains preprints about lattice studies in
high-energy physics, among various subcategories only for
IV. NETWORKS computational convenience. The network used in analysis
. . has N=2010 (the number of verticgsand L=6614 (the
To study the emergence of different geometrical Proper \mber of edges and the size of the giant componentSs
ties of complex networks such as social networks, POWeL ; 415 anq the clustering coefficientjs=0.571. A discus-
gr|ds, metabolic .”etWOkaz computer networks, and so %Nsion on the usefulness of collaboration networks as real-
different generative algorithms have been propo$éd world social networks can be found in RE17]
Among various existing models for generating networks '
similar to real ones, two generic models, the Watts-Strogatz
(WS) model of the small-world networkg5] and the
Barabai-Albert (BA) model of the scale-free netwofR,20), To build the network structure for the computer commu-
have been widely studied. Both models commonly show thanications we follow Ref[20] and use data from the National
behavior that two arbitrarily chosen vertices are connectedlaboratory for Applied Network ReseardNLANR) [25].
by a remarkably short path. More specifically, the averagédere the network is constructed as follows: Over a period of
geodesic length has been found to scale logarithmically witl24 h a number of servers associated to NLANR and physi-

the network size. On the one hand, the WS model does natally spread over USA, gather information through computer

To obtain a well-defined social network from real-world

B. Computer network from Internet traffic
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() (b) © ~O(1/N)], the network generated by the WS model displays
both high clustering and small-world behavior—the com-
monly found characteristics of real social networks.

E. Barabasi-Albert model of scale-free networks

Apart from the average geodesic length and clustering,

FIG. 3. The Watts-StrogatgWsS) model of small-world net-  he degree distribution is a structural bias that has received
Wprks. The starting point is a regglar one-dlmenS|onaI I.aFtcha)n much attention. Manybut not al) real networks are known
with the ranger =2 of the connections. Every edge is visited once ;) pove 4 power-law distribution of degre@28], manifest-
and then with the rewiring probability? is rewired to the other ing a scale-free nature of the network. The E;A model of a
vertex. Ihe WS ”.‘Ode' can _genere(n)_the local regular network . scale-free network3,20] is defined by the following ingre-
whenP =0, with high clustering but with a large average geodesmdiems_
length, and(c) the fully random network wherP=1, with low s s . .
clustering but with a very short geodesic length. In the intermediate ) Ir_"t'al condition: To start with the network consists of
region of P depicted in(b), the WS model haboth high clustering M0 vertices ar.1d no edges. . .
and the small-world behavidimore specifically, the average geo-  (2) Growth: One vertexv with m edges is added every
desic length/’In N for the network with the sizé\). time step. _ '

(3) Preferential attachmentAn edge is added to an old
interconnections. For every connection established through YE"€x With a probability proportional to its degree. More
server the whole path, from the originating vertex to thePT€cisely, the prc.)bab|I|t)Pu for a new vertexv to be at-
requested destination, is added to the network graph. To &ched touis [33]:

more specific, the servers are using the border gateway pro- K

tocol (BGP) to relay connections over Internet’s largest scale P,= € (4.1
[26]. Vertices are computer networks, or “autonomous sys- 2 K

tems” in BGP nomenclature, interconnected by one or many wey

BGP servers. An edge thus represents an established direct

connection between two autonomous systems. The data Wighe growth step is iteratel — m, times to construct a net-
analyze represent a network witd=S=2210,L=4334,  work with sizeN, for each growth step the preferential at-

and y~0.221. tachment step is iteratem times. The above described BA
model has been shown to generate scale-free networks with
C. Erdés-Renyi model of random networks the logarithmically increasing average geodesic length with

the sizeN. However, the original BA model results in net-

In the ER mode[27], we start fromN vertices without . .
works with low clustering.

edges. Subsequently, edges connecting two randomly chos
vertices are added until the total number of edges becames
It generates random networks with no particular structural F. Clustered scale-free network model
bias: The only restriction in the model is that no multiple

) : In order to incorporate the high clustering of social net-
edges are allowed between two vertices. In this study, we : .
_ works one can modify the standard BA model by adding one
choose the average degrde=2L/N as a control parameter

. - .additional step,
in the ER model. The ER model graphs have a logarithmi- (4) Triad formation: If an edge betweew and u was

cally increasing”, a Poisson-type degree distribution, and 4added in the previous step of preferential attachment, then

clustering coefficient close to zero. add an edge fromn to a randomly chosen neighbuar of u.
This forms a triad, three vertices connected each other. If
there is no available vertex to connect withip—do a pref-

In the WS mode[5] one starts by constructing a regular erential attachment step instead.
one-dimensional network with only local connections of For every new vertex, after an additional preferential at-
ranger. For exampley =2 means that each vertex is con- tachment step, the triad formation step is performed with a
nected to its two nearest neighbors and two next nearegtrobability P, (and thus a preferential attachment with the
neighborgsee Fig. 8)]. Then each edge is visited once, and probability 1— P;). The average number of triad formation
with the rewiring probabilityP, is detached at the opposite trials per added vertern,=(m—1)P, is taken as a control
vertex and reconnected to a randomly chosen vertex formingarameter in this CSF network modske Fig. 4. The scale-
a “shortcut.” (See the illustration in Fig. BFor P=0 the free degree distribution of the original BA model is con-
network is a regular local network, with high clustering, butserved in the CSF model whose properties have been ana-
without the small-world behavior: The average geodesidyzed in detail in Ref[4]. In the limiting case ofm;=0, the
length in this case grows linearly with the network size. Inoriginal BA network is constructed from the CSF model. The
the opposite limit ofP=1, where every edge has been re-CSF model has been shown to exhibit high clustefiig-
wired, the generated random graph has vanishing clusteringhermore, the clustering coefficient is tunable by the control
but shows a logarithmic behavior of the average geodesiparameterm;), while it still preserves the characteristics
length Z«InN. In an intermediate range d¥ [typically P found in the BA model such as the logarithmically increasing

D. Watts-Strogatz model of small-world networks
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~~__V
(a) @

FIG. 4. The construction of the clustered scale-ff€SP net-
work in Sec. IV F.(a) In the preferential attachment step for the
newly added vertex (denoted as closed black cirglehe white
vertex u is chosen with the probability proportional to its degree
(the dashed line represents the new g¢dge In the triad formation

step an additional edg@ashed lingis added to a randomly se- " " " ; —— ;
lected vertexv in the neighborhood , of the vertexu chosen in the 3k - qr 7
previous preferential attachment stegah The vertices marked by S 16
X are not allowed since they are not Ify,. Without the triad = ‘;' - . 41 =
formation step, the CSF model reduces to the original BA model of 5 2r i; L 1 g
scale-free networks. - . I! N A S S
2 4L “' 1 t, S
average geodesic length and the scale-free degree distribu- . ll . :
tion. :il'l . .(C) ': i . (d)._
%5 10 15 4 5 6 7 8°
V. CORRELATION BETWEEN DEGREE ky k,
AND BETWEENNESS : : - : .
E . 1107
For the six different networks described in Sec. IV, we i f" 1§106
seek the relation between the degree and the betweenness for  10° ot 110
vertices and edges. Both the degree and the betweenness, to _ i . ‘;105/\
some extent, measure how important the veredge is. %105 3 | ! ‘;104%
The natural expectation is that the veriexdge with higher O , ||| 3 110%0
degree should also have higher betweenness. The calculation 10 H i" 1102
of the betweenness is based on the global information on s (e) i (f),; 10
paths connecting all pairs of vertices, while the degree, by L SO 11 NS 1
5 10 50100 5 10 50100

definition, is the quantity that depends on only the local in-
formation. This implies that the identification of the relation
between the degree and the betweenness can have practicalp|g. 5. Correlation between the vertex betweenr@s&) and
importance since one can approximately estimate the bene vertex degrek, for (a) the scientific collaboration networky)
tweenness from the degree. the computer networkg) the ER network with the siz=10* and

We first show in Fig. 5 scatter plots of the vertex between-average degregk)=6, (d) the WS network wittN=10%, r=3, and
nessCg(v) versus the vertex degrde . As expected, net- P=0.01,(e) the BA network withN=10*, my=5, andm=3, and
works with the scale-free degree distributiofe, the scien-  (f) the CSF network wittN=10%, my=5, m=3, andm,=1.8 (see
tific collaboration network(b) the computer networkg) the  Sec. IV for details of networksAll are in log-log scales except for
BA network, and(f) the CSF network, show clear signs of (c) and(d).
correlation between the degree and the betweenness. As the
scale-free network becomes more cluste(@dm the BA  the definition in Eq.3.19, k.=k,k,,, wherek, andk,, are
model to the CSF modglthe correlation betwee@g(v) and  degrees of the verticasandw that the edge connects. But
k, becomes weaker, manifested by more scattered pl¢f$ in the definitionk,=min(k, ,k,), Eq.(3.10), also displays a high
than (e). The ER and the WS model&;) and (d), respec-  correlation betweerk, and Cg(e). This suggests that the
tively, are characterized by the absence of vertices with verjower degree of the two vertices an edge connects is more
high degrees, which makes the correlation betw€giv) important for a high edge betweenness than the greater de-
andk, rather difficult to observe especially in the region of gree of the two vertices. In other words, this illustrates the
high degrees. However, notable correlations are evident eveguite natural situation that an edge does not necessarily be-
for these networks with an exponential cutoff in degree dis-come central just because it connects to one central vertex,
tributions. rather it has to be a bridge between two central vertices.

For the study of the correlation between the edge degree For the scientific collaboration network, it turns out that
k. and the edge betweenneSg(e), we try four different none of the definitions of edge degree manifest the correla-
definitions of the edge degree in E®.1) with the assump- tion clearly. Figure 6 shows the scatter plots for the edge
tion that the edge degree can be defined by only the degreeggree and the edge betweenness, corresponding to the net-
of vertices it connects. For all networks, except the scientifiavorks in Fig. 5. Especially, the similarity between the real
collaboration network, we findat least somecorrelation network and the model network is evident between the com-
betweerk, andCg(e). This correlation is most evident with puter network and the CSF netwdrgompare(b) and (f) in

ke ky
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; "3 10° iors are found to show a variety of interesting differences
10° F ] among the networks. Figure 7 summarizes the results for the
10° 710t vertex attack vulnerability measured by the average inverse

_10% k 1 geodesic length’ ! defined in Eq(2.1) and the siz&S of the
%103 108 giant component as functions of the numbgf, of removed
I ] © vertices.
10 7107 The two real-world networks, the scientific collaboration
10 ¢ network and the computer network, show very distinct be-
L otz 10 havior: ~/~! and S for the latter decay exponentially as
10° 10° 10 shown in the inset in Fig. (B), whereas in the former net-
‘ work [Fig. 7(a)] the decays o~ and S are almost linear.
L Another difference between the two real networks is that for
14 the computer network, the degree-based attack stratdfies
. and RD and the betweenness-based strategji@sand RB
© . 43 © are almost equally harmful while the scientific collaboration
S . S network is more vulnerable to betweenness-based strategies
T {12 T [compare the insets of Figs(af and 7b)]. This behavior is
- -| 13 - somehow expected from the observation in Sec. V since in
i:(d) the region of high degree®r in the early stage of attacks
Jd By when most important vertices are remoydade computer
k40 50 network shows higher correlation betwe&p and Cg(v)
¢ than the scientific collaboration netwofgompare Figs. &)
7106 and §b)]. In Fig. 7@ for the scientific collaboration net-
work, as the numbeN,,, of removed vertices is increased,
10° 110° /~1 for IB increases. This should not be interpreted as an
1104 enhancement of network functionality, but as an indication
%104 §103$ﬂ that the removed vertices are not the members of the largest
3 connected subgrapfthe giant componentin Fig. 7(a) the
_ 1100 coherence betweer ' and S are also observable: Both
103 F 110 show the jumps at the same places, when removal of one
el el e RN vertex results in the segmentation of the giant component.
100 k103 104 100 i03 10* The removal procedures based on the initial network, 1D and

IB, are as expected not efficient for larbk,,. At this point
FIG. 6. Correlation between the edge between@sie) and  (he network structures has changed so much compared to the

the edge degrele, defined in Eq(3.1a. The networks in this figure  INitial network that the initially important vertices have lost
are identical to those in Fig. 5. Exce@) for the scientific collabo-  their significance.

ration network, all networks show clear correlation between the two \We next compare two model networks, the ER and the
quantities. WS networks, which have exponential cutoffs in the degree

distributions. For the ER model in Fig(¢j the degree-based
Figs. 5 and § which suggests that the CSF model describedttack strategies prevail the betweenness-based ones. The
the network of computers better than the BA model. As far astrategies based on recalculated information are, as expected,
the edge degree and betweenness are concerned, one can asie harmful than their counterparts based on the initial net-
argue that none of the existing network models seems twork. The two measured quantities ! and S rank the re-
describe the scientific collaboration network properly, andnoval procedures in the same order. The WS small-world
the origin of the geometric difference in this network still network model shows a completely different behavior than
remains to be studied. the ER model[see Fig. 7d)]. For smallN,,, the RB proce-
dure is the most harmful, followed by the two degree-based
strategies. For the removal procedures based on the initial
network, the order is reversed—ID is more harmful than IB.

In this section, we study the attack vulnerability of six These behaviors persist in the intervakB,,<2rNP,

different complex networks described in Sec. IV by using thewhere 2ZNP is the number of end points of rewired edges,
vertex attack strategies introduced in Sec. lll, i.e., vertexand other different behaviors emerge for lar@&f,. This
removals using the information on the initial degfd®), the  crossover behavior can be explained since wkgnexceeds
initial betweennessIB), the recalculated degrd®D), and  the number of the rewired edge end points, the original WS
the recalculated betweennd$B). From the observation of model topology is lost. For largeN,,,, the RB procedure
the correlation between the vertex degree and the vertex beetains its position as the most harmful procedure, although
tweenness in Sec. V, one expects that both betweennes®D almost coincides with RB, foN,,,/N=0.5. The ID and
based and degree-based attack strategies should result IB procedures are already at an early stage quite harmless
similar vulnerability behaviors. However, the detailed behav-compared to RB, ag’~ ! starts to increase just as for the

VI. VERTEX ATTACK
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FIG. 7. Vertex attack vulnerability is measured by the average inverse geodesic /€ngénd the size of giant componest(see Sec.
11, normalized by the values for initial networks, f@ the scientific collaboration networkb) the computer networkc) the ER model
with (k)=6, (d) the WS model withr =3 andP=0.01, (e) the BA model withm=3 andmy=5, and(f) the CSF model wittm=3, m,
=5, andm,=1.8. N=1500 for(c)—(f), see Sec. IV for details of networks. Four different attack strategies, each of which are based on the
initial degreegID), the initial betweenneg$B), the recalculated degréBD), and the recalculated betweenné2B) are usedsee Sec. Il
Empty symbols represent ! obtained from attack strategies based on initial information, i.e., open triatajieles for ID (IB), while
closed symbols are fof ~* from recalculated information, i.e., closed trianglescles for RD (RB). For model networksgc)—(f), the error
bars estimated from the calculations ferl0 different network realizations are also plotted and they are smaller than the size of symbols.
Solid line represents RB, dash-dotted line represents RD, dotted line represents ID, and dashed line represents RB. Insets are magnifications
in the early stages of attacksote that inset inb) is in the linear-log scale

scientific collaboration network of Fig.(&. (A sign that The BA model(reviewed briefly in Sec. IV Ewas in
mostly unimportant vertices are removetihe most interest- focus in the first study of the vulnerability of scale-free net-
ing and unexpected behavior occurs in an intermediate reworks[20]. Scale-free networks are more sensitive to vertex
gion aroundN,,,/N~0.25. Here the RD is the least harmful removal than the ER and WS models. This is of course due
of all four procedures. It is also the only case where a recalto the large variation in the importan¢measured both by
culated information based procedure is less harmful than itdegree and betweenngss the vertices, i.e., there exist very
counterpart based on the initial configuration. This clearlyimportant vertices, which plays very important roles in the
shows that choosing the vertex with the highest degree is natetwork functionality. In the ER and WS models the distri-
an efficient way to destruct the WS small-world network. bution of relevant measures of vertex importance, such as
Recall that in the original network the degree is seldom fadegree and betweenness, are restricted by the scale in the
from 2r. model. In the BA model shown in Fig.(&), the differences
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@ ® .
S0 bé 2 b
FIG. 9. Schematic diagram to show how an edge can lose or
. ) increase its betweennesa) The edgea has a high betweenness as
FIG. 8. Low degree vertew taking the load off a highly con- 5 prigge connecting the left and the right part of the netwék.
nected vertex . It shows how high clustering can make connectiv- when the edge is removedg is only a part of the geodesics in the
ity less important for the routing of geodesieswith a high degree  (jght-hand side, and thus has lower betweenness than before the
shares many geodesics with its low-degree neighiofhe gray  yemoval ofa. On the other hand, if the edgehad been removed,

regions represent the part of the network that is connectedT@e  he petweenness efwould have increased since all geodesics pass-
arrows indicate that those geodesics can be routed by eithew. ing from the left- to the right-hand side would pass throegh

among the removal procedures are not significant in the earlynto pieces, the average betweenness increases during edge
attack stage. However, as the removals proceed, the attagktacks since the reduced number of edges should carry the
strategies harm the network more in the order>RBD  same number of geodesics. However, this is not necessarily
>|D>IB (the inequality RB>RD means that RB is more true for individual edges as illustrated in Fig. 9.
harmful than RD: As expected, strategies with recalculated Figure 10 displays the results for the vulnerability to vari-
degrees and betweennesses are more harmful. One interestis edge attacks in six different complex networks. The sym-
ing observation is the change of order between degree-basédls in Fig. 10 have the same meanings as in Fig. 7 in Sec.
and betweenness-based strategies, i.e>>RB versus ID  VI. Remember the different definitions of ! for vertices
>|B: This implies that the betweenness distribution changesand edges: When edges are removed, the total nuilwér
more during the removal procedure than the degree distriburertices in the denominator in E¢2.1) does not change,
tion, which is natural since the betweenness depends on theaking ~~ ! a monotonical decreasing function with the
global network structure, whereas the degree of a vertex is aumberL ,,, of removed edges.
guantity dependent only on its neighborhood. The two real-world networks behave quite similarly under
The CSF network model in Sec. IV F with tunable clus- edge attacks as shown in Figs(d0and 1@b), in contrast to
tering is found to be even more attack vulnerable than theertex attacks where’~! decays linearly for the scientific
BA model as evident from the comparison of Figée)7and  collaboration network and exponentially for the computer
7(f). This can be explained from the finding that for a fixed network[see Sec. VI and Figs.(& and 7b)]. For both real
number of edges, higher clustering makes the network lessetworks the RB procedure is the most destructive, followed
efficient. In other words, more geodesics go through theby the IB procedure, in a broad range lof,. The degree-
same important vertex when the network is highly clusteredpased attack strategies, ID and RD, are found to be not as
making/ larger (or /! smalley [4], and at the same time efficient as the betweenness-based ones, IB andR@ery
making the network more vulnerable to the removal of ancase except large,, for the WS modg which suggests that
important vertex with many triads attached to it. Unlike thethe edge betweenness is a more suitable quantity than the
BA scale-free network model in Fig.(g), in the CSF net- edge degree to measure the importance of an edge. The cor-
work, ID is not necessarily less harmful than RD for g}, . relation between the degree and the betweenness is stronger
In other words, the clustering makes the degree less impofer vertices than edge&compare Figs. 5 and)6which is
tant when assessing the vulnerability of a vertex. This can beelated to the above finding that the edge degree fails to
explained by configurations such as that in Fig. 8, which als@apture the importance of edges. We again find the similarity
causes the lower correlation between degree and betweein-the behavior o ! andSin Fig. 10b): When a large part
ness mentioned above in Sec. V. of the network becomes disconnected from the giant compo-
nent, bothS and/~* show jumps simultaneously. On most
occasionsS and /! show the common features although
each measures a distinct aspect of network performance: For
In the original study of the attack vulnerability of scale- example, the computer network in Fig.(bpatL,,,/L~0.5
free networkg20], only the vertex attacks have been consid-exhibits the order of destructiveness RBRD>IB>ID judg-
ered, which may be interpreted as intruder-caused breakng from /1, whereasS gives the ranking RB IB>RD
downs of servers in computer networks, for instance. In this>ID.
section, we study the vulnerability of complex networks sub- The two network models with the degree distributions
ject to various types of edge attactsee Sec. Il for details characterized by exponential taithe ER and the WS mod-
of the edge attack strategje§or example, in computer net- els) display again quite different vulnerability under edge
works, this can be interpreted as malfunctioning or loss ofttacks. For the ER model, judging froii %, the two attack
communication cables. In the context of social networks, thestrategies based on recalculated informati®®dD and RB
attack on an edge can be interpreted as prohibition of contaeire the most harmful, and RB is clearly more harmful than
between two individuals—a scenario that admittedly isall the other threg¢see Fig. 1(c)]. The RD curve foiSdiffers
somewhat artificial, but could possibly have practical impli-from the rest:Sis almost constant until,,, reached_,,/L
cations for the prevention of spreading of sexually transmit=~0.7, whereS decreases very rapidly. The reason for this
ted diseasef28]. As long as the network is not segmented behavior is that the RD removal cuts edges between vertices

VII. EDGE ATTACK
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FIG. 10. Edge attack vulnerability for the same networks as in Fig. 7 subject to four different edge attack stiseegse. 1. L, is
the number of removed edges and the other symbols and notations are the same as in Fig. 7. For the degree-based edge attack strategies, tl
definition of the edge degree in E@.13 has been used.

that are highly connected, but the bridges—edges that, i€dges have a higher vertex degrék)( 1) and accordingly
removed, would disconnect the graph—are not necessarilihe edges connected to those end point vertices have also a
linking vertices of high degree. Thus the structure emergindiigher edge degreék)((k)+1), becoming early targets of
from repeated application of the RD strategy is characterizeedge attacks. Since there exdt rewired edges, the number
by a chainlike structurfow degrees of the vertices but rela- of edges with a higher edge degree in the initial network is of
tively large connected subgraph&his is also well illus- course (k)+1)PL. Consequently, for &L,,<((k)
trated by Fig. 2, where the maximal degree for the RD re-+1)PL (=0.07L in our cas¢the network is very vulnerable
moval isk,=2 already aL,,,=7 (the same numbers for the to edge attack—in fact, for these three procedutBs IB,
other procedures ale,,=9 for ID and RD and_,,=10 for  and RB the WS network is more vulnerable than any other
RB). The graph is also connected longer for the ID and RDnetwork we study. On the other hand, fotk{+1)PL
strategies than for the betweenness-based strategies. =<L,, the network topology has lost most resemblance to the

Just as for the vertex attacks, the WS network modebriginal network, and in this region the decay 6t ! is far
again shows a very different behavimee Fig. 1d)]. For  less rapid than for small,,,. The behavior of the RD re-
the three procedures ID, IB, and RB, the inverse geodesimoval is strikingly different: Fol,,/L=<0.01 the decay of
length ~~* decays very rapidly for small,,,/L<0.07. In /"' is as rapid as the other three procedures, but for 0.01
the WS model the rewired edges are carrying a large portioesL,,,/L=<0.07 the decay is much slower. That this behavior
of geodesic$2]. The vertices that are end points of rewired is relevant in the larg&¥ limit is shown in Fig. 11. If an edge
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FIG. 11. Average inverse geodesic Iengff\ﬁi for edge attack FIG. 13. Edge attack on a regular one-dimensional network V\_/ith
on the WS small-world network model with sizés=500, 1000, ~connection range =3 andN=1500. Symbols are the same as in
and 1500 subject to the RD removal stratégipsed symbolsand ~ Figs. 7 and 10.

IB removal strategyopen symbols As N becomes larger; " ? is
shown to saturate with a remarkable difference between RD and IDthe RD strategy keeps the degree uniform is also preventing
its efficiency—compare the dashed-dot{&D) line with the
e=(v,w) is rewired and there are no other rewired edgesiashed(ID) line of Fig. 1Qd). The mechanism of this can
attached tov or w, the edge degree of is k§=(k>(<k> also be seen from Figs. @8 and 1Zc): With the ID removal
+1), which is larger than the averagg=(k)“. The RD  all edges inI', are deleted when ,=(k)+1 [see Fig.
removal will thus first attack the rewired edges, just as the ID12(h)], but for the RD removal this is not the casee Fig.
removal (and probably 1B and RB as wallbut for Ly, 12(c)]. The part of the graph shown in Fig. (12 can be
=0.01 the RD removal picks less vulnerable edges than thgjsconnected by removing three edges, in Figclthe same
ID strategy. The reason for this behavior can be discussed ifymper is four, but all of these have a lower degree than the
the context of Fig. 12, where the edgw,() rewired 10 g4geg not in a neighborhood of a removed edge and will thus
(w,v) is the only rewired one: The ID removal will remove " omoved later.
gdges_ in the ne|g'hborhoddj LWh'Ch haske= (k)((k) +1)] . To illustrate the effect of the rewiring in the construction
including t_he reW|red2 edge first, followed by edges QUtS'deof the WS network we briefly discuss edge attacks on a regu-
I,UT, (with ke=(k)%) and at last th.e edges i, [W'th lar network. For IB removal we note that the betweenness of
ke=(k)((k)—1)]. The RD strategy will start by removing -— o . . .
/ . . the initial regular network is increasing rapidly with the
one edge il",, not necessarily the rewired one. Say v) range of the edges. This means thaLat=(r — 1)L/r the
is the first removed edgevherev’ could be equal tav), the . . ' : :
graph will be just a connected ring &f =2 vertices. After

second edge to be removed can be any one oulgjdd”,, . S . A
The RD strategy strives to keep the degree uniform, Whicﬁh's it will disintegrate rapidly. As shown in Fig. 13 for the

leads to a twofold disadvantage compared to the ID strategy€9ular network withr=3, this behavior is seen around
First, after(k)+1 removed edges the rewired edge is re-Lrm=2L/3. Since the initial degree of the regular network is

moved with certainty by the ID removal, but only with a uniform, the edges are removed in a completely random or-

probability ~1/((k)+ 1) by the RD removal. Second, that der for the ID procedure. This makes the graph lose its con-
nectedness at around.,~L/4. When a regular network is

attacked by the RD procedure, the edge and vertex degree
will be kept as uniform as possible. The network will remain
connected until edges of degrkg= ((k)/2+ 1)(k)/2 are re-
moved (since the network cannot be disconnected unless
four vertices of degreék)/2 exish. This happens with (1
+(k)/2)N/2—4 edges left in the system, so in our system
S=1 at least untilL,,,/L~0.33. In Fig. 13 this happens
roughly atL,,/L~0.36, which is later than for the ID re-
moval (whereS=1 up toL,,/L~0.24). This effect is also
_ ~ present for the WS model networksientioned as our sec-
FIG. 12. RD vs ID strategies on a WS model network with 5,4 point above Comparing Fig. 1@)) and Fig. 13 one
(k)=6. The original configuration is shown i@. The vertically notices that the area of rapid decay6f! [0<L,,/L<P
oriented edge irfa) starting atw is rewired fromutov. In (@), the ¢ "\5" B a0d RD: and &L IL=((k)+1)P fcr)n; ID] is
thicker lines Conne.Cted to represent edges with a higher gdge Iackin,g for, the reguiar networrlrz confirming that the rewired
degree, and the thinner lines connecteditepresent edges with edges are responsible for this strong vulnerability. Another

lower degree. Typical configurations in the lower part(af after . . .
(K)+1 (in this case sevememoved edges are shown () for ID observation is that the cusps arising from the regularity of

removal andc) for RD removal, leading to the prediction that RD the network in the”~* curves for IB and RB removal in Fig.
is much less harmful than ID as confirmed in Fig(d)0 13 are gone in Fig. 1@). This is of course expected since
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TABLE I. The normalized average geodesic Ienﬁ1 and the normalized size of the largest connected comp@henmputed after
1% of the verticesedges are removed. The normalization is made to satiéfyt=5=1 for the original networks. SC, CN, ER, WS, BA,
and CSF denote the scientific collaboration network, the computer network, the random network modelswrigrd®ay, the Watts-
Strogatz model of the small-world, the Barabalbert model of the scale-free network, and the clustered scale-free network model in Ref.
[4] (see Sec. IV for details of networks

7 ~Y[S] for vertex attack 7/ ~[S] for edge attack

Network N (k) 0 ID 1B RD RB ID B RD RB

SC 2010 6.6 057 0.9M.96 0.88[0.98 0.89[0.96] 0.86[0.98 0.98[1.00] 0.92[0.98 0.95[1.00] 0.88[0.95]
CN 2122 41 022 0.2(0.62 0.25[0.63 0.20[0.62 0.24[0.66] 0.83[1.00] 0.74[0.93] 0.82[1.00] 0.51[0.68]
ER 1500 6.0 0.0040 0.9®.99 0.98[0.99 0.97[0.99] 0.98[0.99 0.99[0.99 0.99[0.99] 0.99[1.00] 0.99[1.00]
WS 1500 6.0 0.58 0.8f0.99 0.85[0.99 0.82[0.99 0.75[0.99 0.89[1.00] 0.65[1.00] 0.92[1.00] 0.54[1.00]
BA 1500 6.0 0.015 0.880.99 0.88[0.99 0.88[0.99] 0.88[0.99 0.98[1.00] 0.98[1.00] 0.98[1.00] 0.98[1.00]
CSF 1500 6.0 0.54 0.7D.99 0.71[0.99 0.72[0.99 0.70[0.99 0.93[1.00] 0.94[1.00] 0.93[1.00] 0.93[1.00]

the number of rewired edges is different for different disor-sen to be small enough to keep the most original network
der realizations. structure, but large enough to display the changes introduced
For the case of vertex attack, the two network modelddy various types of attacks. The first criterion obviously fails
with scale-free degree distributions display a rather similafor the computer network, but the value 1% is used anyway
behavior. For edge attack there are larger differences. Af9r the sake of comparison with other networks.
seen in Fig. 1(®), for the BA scale-free network model the
recalculated attack strategies are the most harmful. The dif-
ferences between the four methods are not very large for 0 Wwe have studied the correlation between degree and be-
<L,n/L=0.4. This suggests that the characteristic topologytweenness for both vertices and ed¢gee Fig. 5. For vertex
of the BA scale-free network model is retained for this ratherdegree and vertex betweenness the correlation is very strong
broad region. Just like for the ER modglfor the RD pro-  for the ER model and the BA scale-free network, and is also
cedure decreases very rapidly lat,/L~0.7, crossing ID evident in the WS small-world network model and the scale-
and IB curves. Fot ,,/L=0.4, Sfor ID and IB are actually free network model with tunable clustering. Of the real-
even below the RB curve. Similarly to the vertex attack, theworld networks the Internet traffic network shows a strong
CSF model proves to be more vulnerable than the BA modetorrelation, whereas the scientific collaboration network has
[see Fig. 1(d)]. Just like the other networks with high clus- Weaker correlation. For edges we define an edge degree as
tering (the scientific collaboration network and the WS the product of the degrees of the I|_nked vertices. The similar
mode), the RD procedure is the least harmful for the csEScatter plots sh_ow .weaker correlation, a result of the I_ack of
network. For the three unclustered networks, to which thdatural generalization of the degree concept from vertices to
BA mode belongs, the RD strategy is not the worst. Onc&d9es:

again this can be explained by the low correlation between N€ COMPuter network shows a unique behavior when
subject to vertex attack—the average inverse geodesic length
degree and betweenness for clustered netw(@&s Sec. V

; o 7/~ clearly shows an exponentially decay in the early stages
and Fig. 8. The most _drastlc difference between the SCale'of attacks?lThe scientificpcollaborgtion nt)a/twork, in cgntragst,
free network models is the curves for the RB proceduregyqs 4 finear decay for the same quantity. For edge attack
which is the most harmful selection proc;gdure. Hére_1L for on real-world networks the recalculated betweenr(&s)
the CSF network shows the same positive convexity as thgy,ceqyre is the most efficient. The difference between the
scientific collaboration network of Fig. 1. The/™" curve  yack strategies based on the initial information and the re-
for the 1B procedure has, however, a negative convexity in.aicyjated information shows that the change of network
Fig. 10d), as opposed to Fig. 10). This could be guessed q,ctyre during the removal process is substantial. This must
from the fact that the maximum betweenness is much high&ge taxen into consideration if one wants to give efficient
for the CSF mode]Fig. 6(f)] than the BA modelFig. 6(e)]. rotection to a network.
Our conclusion is that although the CSF model with tunablep None of the network models shows a behavior very simi-
clustering shows the closest resemblance to the scientific colz; 5 the real-world networks: Even the clustered scale-free
laboration network, and this is presumably due to the highenyork model with both high clustering and the scale-free
clustering and scale-free degree distribution, there are struggree gistribution, which are two important characteristics
tures governing real-world networks, which are yet 0 b&j, vea).\orld networks, fails to describe successfully the sci-
quantified. _ , entific collaboration network. This clearly suggests that there
In summary of the different networks under various attack, o other structures contributing to the network behavior dur-
strategies, measured quantities are shown in Table I. The,y yertex attack, and conclusions from model networks
values of/~ andS are shown after 1% of the verticésr  should be cautiously generalized to real-world situations.
edges are removed, i.eN,,/N=L,,/L=0.01. This is cho- However, it should be emphasized that the CSF model under

VIIl. SUMMARY AND CONCLUSIONS
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edge attacks with the RB strategy shows a behavior similar Lacking in this study, and an interesting area for future

to the highly clustered scientific collaboration netwptkm-  studies, is an extensive scaling analysis to establish the bor-

pare Figs. 1() and 1Qf)], whereas the BA model with very ders in parameter space for the different responses to the

low clustering in Fig. 10e) shows clearly different behavior attack procedures(We study one case with this method

under the same RB edge attack. when we, from Fig. 11, conclude that the ID strategy is more
The ER model, which lacks structural bias, is the mostefficient than the RD strategy in thé—c limit.)

robust of the tested networks. This supports the intuitive idea Note added in proofAttacking a network with the RB

that building a serverless network would be very robust tQg¢rateqy for links has been suggested independently as an
attack. Even if the network connections would be fixed in 81

i i gorithm for detecting “community structure” in networks
random pattern this would lead to a tremendous increase 4]
attack robustness of the netwofks the ER model shows '
Wireless and serverless networks, so calledt “hoc net-
works,” are well studied from a theoretical viewpoif9].
Most literature on network security concerns software pro-
tection and prevention of loophol&30], rather than the net-
work topology. This is of course natural since it is the pri- ~ The authors would like to thank Professor M. E. J. New-
mary defense against computer network attéedlong with man for providing the scientific collaboration data and Dr.
locking the computer roomBut as a background protection, M. Ozana for discussions. P.H. and B.J.K. acknowledge sup-
an attack-robust network topology can be useful, and thus wport by the Swedish Natural Research Council through Con-
believe that the robustness of serverless networks should etract Nos. F 5102-659/2001 and E 5106-1643/1999. C.N.Y.
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