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Packing-limited growth
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We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres
meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically
in d dimensions and via simulation =2, 3, and 4. We show how a broad class of such models exhibit
distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal
structure of these models to the decay of their pore space, a theory that we confirm via numerical simulations.
The scaling theory also predicts an upper bound for the universal exponent and is in exact agreement with
numerical results fod=4.
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[. INTRODUCTION alternatively with an initial population of fixed radius digks
New disks are added one at a time by randomly choosing a
The dynamic packing of objects is an often overlookedpoint in the packing’s pore space and centering there the
variation on the theme of static packing. Given a mechanisnfargest possible nonoverlapping disk. Manna finds 2.62
for the creation, growth, movement, and interaction of likeand a=2.64 for two example packings. _
objects in a given dimension, what structures result? Here, e refer to the Manna model as “random Apollonian
we find universal features of a simple yet broad class of sucRacking” (RAP) since it may be seen as a variation of the
mechanisms falling under the rubric “packing-limited Well known Apollonian packing10]. For thed=2 version
growth” (PLG). A PLG mechanism entails objects being ©f the latter, pore spaces are always formed by three disks
seeded randomly, growing according to a rule that may b ach touching the qther two and dISKS are added so as to fill
specific to each object, and stopping when a part of thei e pore space fullyi.e., the inserted disk touches all three of

boundary hits that of another object. A motivating phy:sicalIts surrounding neighborsNumerics giver=2.31 for Apol-

example of this kind of pattern formation may be found inlonian packing in agreement with analytically derived
the competition between free crowns in dense forks, bounds[11]. Aste [12] has shown for static polydisperse

. ackings that are space filling, Apollonian packing provides
the structure of porous medi8-5], and the generalized Fhe Iovx?est bound Og{ while tr?e ugper boun%l i&=gf1.
problem of dense packing$]. _ _ There are two important observations to make here. First,

A simple model of PLG has previously been studied by,g noted by Brilliantoet al. [8], the RAP model is the ABK
Andrienko, Brilliantov, and Krapivsky[7,8] (the ABK  model in the case of infinitely fast growth: as soon as a
mode). In their setting, spheres are seeded randomly isphere is nucleated, it instantaneously expands to hit the
space and time. A sphere’s radius increases linearly withearest sphere boundary. Second, for general PLG models,
time, halting when another sphere is touched. This model ipore spaces evidently increase in number and decrease in
amenable to an approximate analysisdor1 [8] and has an  size with time. This means that the likelihood of two spheres
exact solution ind=1. In this present work, we are inter- nucleating in the same pore space also decreases. Eventually
ested in the limiting distribution of radiiN(r). For PLG  the mechanism of the RAP model must take over, and all
models, we expedti(r)or ¢ for smallr. Note that the frac-  collisions will be between a growing sphere in a pore space
tal dimensionD of the set comprising all sphere centers,and a “stuck” sphere forming part of the pore space bound-
which is often measured instead of is related tow asD ~ @ry- Thus, the RAP model is not just a curious end point of
—a—1[9]. In d=1, the exact solution givea=1, which  the ABK model but, in fact, entails the sole mechanism de-
corresponds td=0 (meaning the number of centers di- scribing how small_radlus spheres pack. We suggest the_:n that
verges logarithmically[8]. For d=2, Andrienkoet al.[7] ~ Measurements af in the ABK model should coincide with
report thatD=1.75 and hence=2.75 based on numerical revised estimates from simulations of the RAP model. In the
evidence. Elsewhere, the same authi8isletermine numeri- remainder of the paper, we descnbe_ a gen(_aral class O.f PLG
cally that =2.53. models for whichea is invariant, provide a simple solution

for thed=1 problem, develop a scaling theory that describes

ow the radii distribution and volume of pore space evolve

with time, and provide results from extensive numerical
simulations.

We claim that the actual value of is essentially indepen-
dent of the specifics of the growth dynamics. To see why, w
examine a related= 2 random packing model due to Manna
[9]. The packing process begins in a finite-sized volyore

Il. GENERAL MODEL OF PACKING-LIMITED GROWTH

*Electronic address: dodds@Ideo.columbia.edu For our general conception of PLG we tadkelimensional
"Electronic address: jsweitz@segovia.mit.edu spheres growing in a volum¥. Spheres are nucleated ran-
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SNCSNA time 7j,, that can be no greater than the time it takes for its
' radius to reach\/2. Together with the assumption th@t(t

—t;)=¢€>0, this gives

«:mrfﬂwJ On the other hand, if sphereucleates id’, it will jam in a

Tjams N\/2e. (4)

So when7j;,<7, i.e., when

Vgh 9t 1k/2e<1, (5)

we expect the packing mechanism to be the same as the RAP
model—all spheres will be stopped by an existing stopped
sphere and never by another moving sphere. Growth rate,
therefore, becomes irrelevant as far as the final packing is
concerned. From Ed5), we see that the general model re-
duces to the RAP model when the maximum pore &izg,
satisfies

Amax<(2€/ V) Y@+, (6)

Sincel 5 Steadily decreases with(i.e., space fills upthis
condition will always be eventually satisfied.

FIG. 1. The dynamics and limiting states of PLG modelgdn
and (b), collisions between centers are marked with lines while in lll. EXACT d=1 SOLUTION
© and.(d)l’ ]tcthe L?tg'o':ﬁ ?CCUP'.e? by Sphere? are gjaCk and the plore As we have noted, the ABK model has been solved ex-
space is left white. Al four pictures come from the same simula-p "0 the 4~ 1 case[8] with the outcome beinge=1.

tion, (a) and (c) depict the condition of a subsection of a system . . . :
. : .~ Here, we achieve the same result with a considerably simpler
packed with 500 spheres¢h) and (d) depict the same subsection . . . . .
after 2000 spheres have been packed calculation. Since we have posited thatis a universal ex-
' ponent for a general class of packing-limited growth models,
we may choose the straightforward example of thel

domly in space at a rate per unit volume surviving only if o o
y P P g ony SRAP model. We take the unit interv@D,1] as the initial

they are injected into the unoccupied pore space. All spher

; : ; ; t pore space. Spheres are now line segments and are
stop growth upon contact with a neighboring sphere. Figur jacant p ; .
1 provides a visual context for the dynamics explained be_|m|ted either on the left or right as they are added with the

low. Theith sphere, which is initiated at, grows at a rate points 0 and 1 providing initial boundaries. Thus, the unit
Gi(t—t,) giving the radiug(t) as interval is filled in from each end with the one solitary pore
I I |

space diminishing in the middle. Writing the length of the
t—t; nth line segment ak, we have
ri(t):J Gi(u) du, (1) -
0
In—znl(l—_E Ii), (7)
for t=t;. We assume the weak requirement that each sphere =1
grows in a strict monotonic fashion, i.e., for eaghG;(t
—1;)=¢€>0. The model is thus one of arbitrary individual
growth limited solely by packing. The dynamics continue in
the above fashion until the voluméis completely filled and
a final jammed state is reached.
Consider an individual poré’ of diameter\ (i.e., the n-2
maximum separation of two boundary points that can be li=z,_11] (1-2). )
joined by a line contained entirely within the par&he rate 1=0
v at which spheres nucleate In (excluding growth for the
momenj is given by

where z; is a random number uniformly distributed on the
unit interval andl;=z,. In other words, each new line seg-
ment is a random fraction of the current pore space. Itera-
tively solving Eq.(7) gives

We can in principle find the distributions of thebut for our
present purposes their means are sufficient and we have

v=rkV\Y, ) (Iy=2"" 9

whereVy is the volume ofd-dimensional sphere of unit ra- e, therefore, expect the typical number of line segments
dius. The typical timer between nucleations iR is, there- withI'=1=2"" to be
fore,
, h Inl
T:j_/v:KflVd*l)\fd. (3) N(| =[=2 )ZHZ*H. (10)
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The corresponding frequency distribution idl(r;n)

IR «P(r;n). Since the tail ofN(r;n) remains fixed as in-
creases, we can obtain the scalingrefwith n. From Eq.
-l l (12), the tail of N(r;n) behaves as
.‘. a— o B
N(r;n)= nrer “=kr ¢, (13
~ -1 ‘e
= -3 .
E: _zﬁ “““ . for r>r.. Since the prefactok must be constant, we have
) £.-3 : . ] a1 |- a-1)
I : ., rc=< n) o M), (14)
4 . . ak
.
-5 The uniformity of P(r;n) for r<r. closely relates to the
st 3 -6 -4 -2 . 1 . . .
log, ) r ., form of Pj4(r;n). It is possible to write down an exact ex-
, , R pression forP;,(r;n), that is,
-6 -5 -4 -3
log, o )
| avaip,-r1
FIG. 2. P(r;n) for ad=2 RAP simulation withn=1C°. The Pins(r;n)= , (15
inset distribution isP;,(r;n), which is obtained by simulating the f dv
RAP procedure for another $@isks without actually inserting any

of them into the pore space. The dashed line in the inset figure .
corresponds to the theoretical predictiBps(0;n)=S(n)/d(n). where the integrals are over the pore space,Rg) is the
distance from the poirif to the closest pore space boundary

'after n spheres have been inserted. This integral may be
solved exactly in the limit of very small radii,

S(n)

Since this is the cumulative frequency distribution, i.e.
N(I'=1)=["N(1")dl’, we find the frequency distribution
N(l) must behave as

1 limPg(r;n) = —— (16)
~_ |1 ins\ s )
N(h=751"" (10 0 ®(n)
yielding, as expectedy=1. whereS(n) and®(n) are the surface area and available pore
space of the existing packed spheres. This means that the
IV. DESCRIPTION OF INSERTION PROBABILITY region of pore space available for insertion of an infinitesi-
AND PORE SPACE VOLUME mal sphere is proportional to the surface area of the extant

packing. Assuming that this holds approximately for all
We next investigate the form ¢%,s(r;n), the probability  spheres below the cutoff, the full distributiéh,(r;n) may
distribution of the 6+1)th sphere’s radius to be inserted he modeled as a purely flat distribution,
into a packing. In addition, we characteri®(r;n), the

probability distribution of sphere radii after spheres have rc_l for r<r,

been packed. Note that since we have shown that a general Ping(r;n)= 0 ; _ a7
class of PLG models reduce to the RAP model, we now use or r=re.

:ir:ieegumber of spheresrather than time to index our quan- Good agreement with this approximation is shown in the

. S R inset of Fig. 2. Comparing Eq16) with Eq.(17), we see that
We first note that the distributioR(r;n) fills in from the — . :

right with increasingn. As the packing fills in space, the o= ®(n)/S(n). We calculateS(n) and®(n) usingN(r;n),

maximum pore size either decreases or does not change and

so does the maximum size of any sphere that may be added. S(n)= kaVq ro (e ), (19
We write the radius of this largest sphereras We observe a—d
that to a first approximatior?(r;n) above this cutoff scale
r. follows its limiting power law form while below the dis- 2"
tribution it is essentially flatsee Fig. 2. For the purposes of Y
estimation, we assume this form exactly as d(n)= *Vd pdti-a (19)
(d+1)(d+1-a) € '
a—1 _,
P for r<r where as befor¥, is the volume of a unit radius spheredn
P(r;n)= —a (120  dimensions. Note the®(n)—« and®(n)—0 asn— .
Ercl(L) for r=r.. U_'sing Eqs.(_18) and(19), and the result,=®(n)/S(n),
a c we find an estimate o& as
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TABLE I. Scaling relations between exponents for various pa-
rameters valid for general packing-limited growth modét¢r) is
the probability distribution of radiir.. is the radius of the typical
largest sphere that may be insert&dn) is the surface area of
packed spheres, anbl(n) is the pore space volume. All exponents
are given in terms of and the dimensionl.

Relation Exponent
P(r)ocr—« a
ro(n)en=? S=d+1-a
S(n)e=n” y=(a—d)/(a—1)
d(n)cn=# B=(d+1-a)/(a—1)
- d+1 20
a= +d+—2. (20

In contrast, a modified calculation for the ABK model finds

(8]
-2
o)

2d+2

Amnf= 1+d (21)

1+ex;{2—

Note thata must be an upper bound on the true valuexof

PHYSICAL REVIEW &5 056108

FIG. 3. Arandom Apollonian packing initially seeded with two
circles after 1 circles have been placed. The density of the system
is p=0.94.

This implies thatt,<n**#". So if ABK predicts® (t)oct A,
this is equivalent to writingb xg(n)cn~ A+’ Equating

for normal Apollonian packing. Furthermore, due to the na-the two forms leads to the conclusion that

ture of the approximations made in formirigj,(r;n) and

P(r:n), a is also an upper bound for the exponent of the

RAP model. As we show in the following section when we
consider our numerical results, both of these predictions of
appear to hold for certaitmutually exclusiveé ranges ofd.
Using Egs.(14), (18), and(19), we are able to find the
scalings of surface area and pore space volume myith

S(n)ecn~ Yeenle=d/a-1), (22)

and
q)(n)ocn*ﬁocnf(d+lfa)/(afl). (23)

These relations provide us with further methods for deter
mining « and for testing scaling relations between the itera
tive and structural nature of the packing. Equat{@s), in

particular, affords a more robust measurement rather thal

obtaininga directly fromP(r;n), and we employ this fact in
our numerical investigations.

,3 = m (25)
This will be useful in the following section when the scaling
of pore space decay is examined. Finally, key scaling rela-
tions are summarized in Table .

V. NUMERICAL RESULTS

The numerical procedure for all variants of PLG schemes
obey the same basic algorithm. Spheres are seeded according
to a Poisson distribution, with rate and only grow within
the pore space. Once injected, spheres grow according to
model rules (linear velocity, heterogeneous, exponential,
etc) until they collide and are jammed. In the case of the
RAP model, only one sphere is allowed to nucleate and ex-

and at any given point in the simulation. Using this event
riven procedure we are able to calculate limiting states and

TABLE Il. Simulation details for four different PLG models.

Note that for comparison between the current theory angy 4o sphere nucleation rate per unit volun@(t—t,) is the

that of ABK we must convert scaling predictions that dependy oy th rate of théth sphere, which is nucleated at timeN, is the
on time to those that depend on sphere number. Specificalljymper of simulationsiNy, is the total number of spheres placed,

the ABK theory predicts®(t)xt™#, where A=exd2

and p is the approximate limiting density of each simulation. The

—(2%2-2)/(d+2)]. Because the ABK model can be seen assphere radii distributions for these models are shown in Fig. 4.

a RAP model with infinite growth velocity, the time between
events is inversely proportional to the pore space availabl
(given a uniform rate for attempted nucleatia). So the

result for the decay of pore space from ABK may be rewrit-

ten as® og(n)cn#’, where
(24)

05610

e RAP Heterogeneous Exponential Linear
K n/a 10 10 10°

i _ti) e} 0.2-2.0 et_ti 0.2
Ng 50 48 10 1
Niot 2.5x10° 2.3x10° 5.4x10°  3.4X10°
p 0.97 0.96 0.91 0.97
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—4 -3 -2 -1 FIG. 5. The decay of pore space voludén) ind=2, 3, and 4
loglo r correspond to the solid, dashed, and dot-dashed lines, respectively.

The fits to the power law decays are summarized in Table IV.
FIG. 4. The form ofN(r) for four models: random Apollonian
packing(circle, heterogeneous linear growth rafdi&amonds, ex- change of basic elementsritical radius, surface area, vol-
ponential growth rate@riangles, and linear growth rate@quares ume, eto). as a function of iteration. In order to test the scal-

Simu_latio_n details are contained in the text. Thg inset _double-mg theory, as well as the specific predicti(fﬂ:d+(d
'Oﬁar;thr?r'lc plot Showg;'_(ﬁ) ‘t’S { for ?E‘Ch {ﬂOdelfStEIﬂedl_f:jOfltZOD-ht+1)/(d+2) in higher dimensions, we now examine itera-
tally for the purpose of illustration. e Sslope O € Solid straig . . .
line indicates thel=2 universal exponent=2.56 (see Table lIJ. ﬂve and structural scalings of the RAP modetin 2, 3, and
We estimatex using a variety of means and the results are
summarized in Table 1ll. The agreement between the pre-
dicted value ofa calculated usingb(n) and that calculated
hHirectly from the geometry of the packing provides further
roof that the scaling theory outlined in the preceding section
valid, regardless of the specific value @f The current
eory appears to improve with increasing dimension,
whereas the approximate theory of ABK only holdsdn

determine improved estimates of the universal value &r
d=2, 3, and 4. All packings are simulated on a unit hyper-
cube with periodic boundary conditions. Figure 3 shows a
example packing using the RAP modeldr=2. It is clear
that the number of spheres will increase without bound an
that the pore space ultimately vanishes. The associatioqﬁ
with the Apollonian case are visually evident.

To demonstrate the universality of, we consider four
different PLG models ird=2 with a variety of initial con-
ditions, the details of which are given in Table Il. The fre-
qguency distributionN(r) for these four PLG models is

Both the current theory and that of ABK predict the scal-
ing of pore space as a function of iteration or time. Evaluat-

N . R ing the pore space decal(n) in d=2 suggests that the
shown in Fig. 4. The main plot shows the distributions re'agreement with ABK is most likely coincidental. As evi-

centered using their respective means. The recentered diStH'enced by the data in Fig. 5 we are able to establish 95%

tbhuatltotnhi asree'c?f?ézt'g?l#]zha?:;v:ﬁ ?:cﬁgﬁisﬂ]esagel?rdrggg% onfidence intervals that exclude the predictions of ABK in
P g =2. This is not altogether surprising as ABK is an approxi-

and that the exponenit is a universal one. - L .
The scaling theory developed in the preceding section rer_nate theory describing the coliision of moving spheres

lates the structure of a packiriiss fractal dimensionto the whereas in the RAP procedure all collisions are between a
P g sphere and the presently jammed state. In higher dimensions,

the theory of ABK fails, and the current theory becomes

TABLE Ill. Estimates of @ using various numerical methods . . . - oy .
. . . increasingly appropriate, falling within the numerically de-
and comparisons to theory. All numerical results are from simula-

tions containing 5 10f spheres. Parentheses indicate 95% confi-

) Y TABLE IV. The predicted exponent for the decline of volume
dence intervals on the last digit.

fraction ®(n)ocn~A. The numerical estimates ¢f are taken from
simulations containing & 10° spheres. The decay of pore space as

d=2 d=3 d=4 a function of iteration can be seen in Fig. 5. Parentheses indicate
®(n) 25641) 3.7332) 4.8332) error on estimation of the last digit.
d(r) 2.58 3.73 4.83
S(r) 255 3.74 4.86 d=2 d=3 d=4
N(r) 2.53 3.70 4.79 B 0.2781)  0.097%2) 0.04342)
a=d+[(d+1)/(d+2)] 2.75 3.8 4.83333  Current theory(23) 0.1429 0.07143 0.04348
ABK theory 2.55374 3.94505 4.99904 ABK theory (25 0.2872 0.01832 2.404x10*
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fined confidence intervals f@ in d=4. The results are sum- actual value ofa in d=2 andd=3, it agrees with simula-

marized in Table IV. tions ind=4, and presumably beyond. A refined approxima-
tion of the insertion probability?;,((r;n) seems to be the
VI. CONCLUSION best approach to improve the estimatexofThe applicability

The iterati ¢ f th q Apolloni ki of predictions of the present model and its relevance to
d Ie |eor|a_t|ve_na lure 0 _et_ranfom pkc_> On'a?] packing physical and biological problems may lie in the process of
model and Its Simple prescription for packing spheres SugEaIancing the idea of packing-limited growth with other dy-

gests th:_at_at sufficiently sma]l scalesz the structure o amical possibilities such as aggregation, competition, and
packing-limited growth models is essentially unaffected bydeath

initial conditions or dynamics. The scaling of pore space,
surface area, number, and critical radigsre all interrelated
and can be expressed in terms of simple power laws using
only the dimension and the exponent. Extensive numeric
simulations demonstrate the validity of the predicted upper This work was supported in part by the NSF through
bound a. Although & appears to be an overestimate of theGrant No. EAR-9706220.
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