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Packing-limited growth
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We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres
meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically
in d dimensions and via simulation ind52, 3, and 4. We show how a broad class of such models exhibit
distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal
structure of these models to the decay of their pore space, a theory that we confirm via numerical simulations.
The scaling theory also predicts an upper bound for the universal exponent and is in exact agreement with
numerical results ford54.
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I. INTRODUCTION

The dynamic packing of objects is an often overlook
variation on the theme of static packing. Given a mechan
for the creation, growth, movement, and interaction of li
objects in a given dimension, what structures result? H
we find universal features of a simple yet broad class of s
mechanisms falling under the rubric ‘‘packing-limite
growth’’ ~PLG!. A PLG mechanism entails objects bein
seeded randomly, growing according to a rule that may
specific to each object, and stopping when a part of th
boundary hits that of another object. A motivating physic
example of this kind of pattern formation may be found
the competition between tree crowns in dense forests@1,2#,
the structure of porous media@3–5#, and the generalized
problem of dense packings@6#.

A simple model of PLG has previously been studied
Andrienko, Brilliantov, and Krapivsky@7,8# ~the ABK
model!. In their setting, spheres are seeded randomly
space and time. A sphere’s radius increases linearly w
time, halting when another sphere is touched. This mode
amenable to an approximate analysis ford.1 @8# and has an
exact solution ind51. In this present work, we are inte
ested in the limiting distribution of radii,N(r ). For PLG
models, we expectN(r )}r 2a for small r. Note that the frac-
tal dimensionD of the set comprising all sphere cente
which is often measured instead ofa, is related toa as D
5a21 @9#. In d51, the exact solution givesa51, which
corresponds toD50 ~meaning the number of centers d
verges logarithmically! @8#. For d52, Andrienkoet al. @7#
report thatD.1.75 and hencea.2.75 based on numerica
evidence. Elsewhere, the same authors@8# determine numeri-
cally thata.2.53.

We claim that the actual value ofa is essentially indepen
dent of the specifics of the growth dynamics. To see why,
examine a relatedd52 random packing model due to Mann
@9#. The packing process begins in a finite-sized volume~or
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alternatively with an initial population of fixed radius disks!.
New disks are added one at a time by randomly choosin
point in the packing’s pore space and centering there
largest possible nonoverlapping disk. Manna findsa.2.62
anda.2.64 for two example packings.

We refer to the Manna model as ‘‘random Apollonia
packing’’ ~RAP! since it may be seen as a variation of t
well known Apollonian packing@10#. For thed52 version
of the latter, pore spaces are always formed by three d
each touching the other two and disks are added so as t
the pore space fully~i.e., the inserted disk touches all three
its surrounding neighbors!. Numerics givea.2.31 for Apol-
lonian packing in agreement with analytically derive
bounds @11#. Aste @12# has shown for static polydispers
packings that are space filling, Apollonian packing provid
the lowest bound ona while the upper bound isa5d11.

There are two important observations to make here. F
as noted by Brilliantovet al. @8#, the RAP model is the ABK
model in the case of infinitely fast growth: as soon as
sphere is nucleated, it instantaneously expands to hit
nearest sphere boundary. Second, for general PLG mo
pore spaces evidently increase in number and decreas
size with time. This means that the likelihood of two sphe
nucleating in the same pore space also decreases. Even
the mechanism of the RAP model must take over, and
collisions will be between a growing sphere in a pore sp
and a ‘‘stuck’’ sphere forming part of the pore space boun
ary. Thus, the RAP model is not just a curious end point
the ABK model but, in fact, entails the sole mechanism d
scribing how small radius spheres pack. We suggest then
measurements ofa in the ABK model should coincide with
revised estimates from simulations of the RAP model. In
remainder of the paper, we describe a general class of P
models for whicha is invariant, provide a simple solution
for thed51 problem, develop a scaling theory that describ
how the radii distribution and volume of pore space evo
with time, and provide results from extensive numeric
simulations.

II. GENERAL MODEL OF PACKING-LIMITED GROWTH

For our general conception of PLG we taked-dimensional
spheres growing in a volumeV. Spheres are nucleated ra
©2002 The American Physical Society08-1
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domly in space at a ratek per unit volume surviving only if
they are injected into the unoccupied pore space. All sph
stop growth upon contact with a neighboring sphere. Fig
1 provides a visual context for the dynamics explained
low. The i th sphere, which is initiated att i , grows at a rate
Gi(t2t i) giving the radiusr i(t) as

r i~ t !5E
0

t2t i
Gi~u! du, ~1!

for t>t i . We assume the weak requirement that each sp
grows in a strict monotonic fashion, i.e., for eachi, Gi(t
2t i)>e.0. The model is thus one of arbitrary individu
growth limited solely by packing. The dynamics continue
the above fashion until the volumeV is completely filled and
a final jammed state is reached.

Consider an individual poreG of diameterl ~i.e., the
maximum separation of two boundary points that can
joined by a line contained entirely within the pore!. The rate
n at which spheres nucleate inG ~excluding growth for the
moment! is given by

n.kVdld, ~2!

whereVd is the volume ofd-dimensional sphere of unit ra
dius. The typical timet between nucleations inG is, there-
fore,

t51/n.k21Vd
21l2d. ~3!

FIG. 1. The dynamics and limiting states of PLG models.In~a!
and ~b!, collisions between centers are marked with lines while
~c! and~d!, the regions occupied by spheres are black and the p
space is left white. All four pictures come from the same simu
tion, ~a! and ~c! depict the condition of a subsection of a syste
packed with 500 spheres,~b! and ~d! depict the same subsectio
after 2000 spheres have been packed.
05610
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On the other hand, if spherei nucleates inG, it will jam in a
time t jam that can be no greater than the time it takes for
radius to reachl/2. Together with the assumption thatGi(t
2t i)>e.0, this gives

t jam&l/2e. ~4!

So whent jam!t, i.e., when

Vdld11k/2e!1, ~5!

we expect the packing mechanism to be the same as the
model—all spheres will be stopped by an existing stopp
sphere and never by another moving sphere. Growth r
therefore, becomes irrelevant as far as the final packin
concerned. From Eq.~5!, we see that the general model r
duces to the RAP model when the maximum pore sizelmax
satisfies

lmax!~2e/Vdk!1/(d11). ~6!

Sincelmax steadily decreases witht ~i.e., space fills up! this
condition will always be eventually satisfied.

III. EXACT dÄ1 SOLUTION

As we have noted, the ABK model has been solved
actly in the d51 case@8# with the outcome beinga51.
Here, we achieve the same result with a considerably sim
calculation. Since we have posited thata is a universal ex-
ponent for a general class of packing-limited growth mode
we may choose the straightforward example of thed51
RAP model. We take the unit interval@0,1# as the initial
vacant pore space. Spheres are now line segments an
limited either on the left or right as they are added with t
points 0 and 1 providing initial boundaries. Thus, the u
interval is filled in from each end with the one solitary po
space diminishing in the middle. Writing the length of th
nth line segment asl n we have

l n5zn21S 12 (
i 51

n21

l i D , ~7!

wherezi is a random number uniformly distributed on th
unit interval andl 15z0. In other words, each new line seg
ment is a random fraction of the current pore space. Ite
tively solving Eq.~7! gives

l n5zn21)
i 50

n22

~12zi !. ~8!

We can in principle find the distributions of thel i but for our
present purposes their means are sufficient and we have

^ l n&522n. ~9!

We, therefore, expect the typical number of line segme
with l 8> l 522n to be

N~ l 8> l 522n!5n52
ln l

ln 2
. ~10!
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Since this is the cumulative frequency distribution, i.
N( l 8> l )5* l

`N( l 8)dl 8, we find the frequency distribution
N( l ) must behave as

N~ l !.
1

ln 2
l 21, ~11!

yielding, as expected,a51.

IV. DESCRIPTION OF INSERTION PROBABILITY
AND PORE SPACE VOLUME

We next investigate the form ofPins(r ;n), the probability
distribution of the (n11)th sphere’s radius to be inserte
into a packing. In addition, we characterizeP(r ;n), the
probability distribution of sphere radii aftern spheres have
been packed. Note that since we have shown that a gen
class of PLG models reduce to the RAP model, we now
the number of spheresn rather than timet to index our quan-
tities.

We first note that the distributionP(r ;n) fills in from the
right with increasingn. As the packing fills in space, th
maximum pore size either decreases or does not change
so does the maximum size of any sphere that may be ad
We write the radius of this largest sphere asr c . We observe
that to a first approximation,P(r ;n) above this cutoff scale
r c follows its limiting power law form while below the dis
tribution it is essentially flat~see Fig. 2!. For the purposes o
estimation, we assume this form exactly as

P~r ;n!5H a21

a
r c

21 for r ,r c

a21

a
r c

21S r

r c
D 2a

for r>r c .

~12!

FIG. 2. P(r ;n) for a d52 RAP simulation withn5106. The
inset distribution isPins(r ;n), which is obtained by simulating the
RAP procedure for another 106 disks without actually inserting any
of them into the pore space. The dashed line in the inset fig
corresponds to the theoretical predictionPins(0;n)5S(n)/F(n).
05610
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The corresponding frequency distribution isN(r ;n)
}P(r ;n). Since the tail ofN(r ;n) remains fixed asn in-
creases, we can obtain the scaling ofr c with n. From Eq.
~12!, the tail ofN(r ;n) behaves as

N~r ;n!5
a21

a
nrc

a21r 2a5kr2a, ~13!

for r .r c . Since the prefactork must be constant, we have

r c5S a21

ak
nD 21/(a21)

}n21/(a21). ~14!

The uniformity ofP(r ;n) for r ,r c closely relates to the
form of Pins(r ;n). It is possible to write down an exact ex
pression forPins(r ;n), that is,

Pins~r ;n!5

E dVd@Dn~xW !2r #

E dV

, ~15!

where the integrals are over the pore space, andDn(xW ) is the
distance from the pointxW to the closest pore space bounda
after n spheres have been inserted. This integral may
solved exactly in the limit of very small radii,

lim
r→0

Pins~r ;n!5
S~n!

F~n!
, ~16!

whereS(n) andF(n) are the surface area and available po
space of the existingn packed spheres. This means that t
region of pore space available for insertion of an infinite
mal sphere is proportional to the surface area of the ex
packing. Assuming that this holds approximately for
spheres below the cutoff, the full distributionPins(r ;n) may
be modeled as a purely flat distribution,

Pins~r ;n!5H r c
21 for r ,r c

0 for r>r c .
~17!

Good agreement with this approximation is shown in t
inset of Fig. 2. Comparing Eq.~16! with Eq. ~17!, we see that
r c5F(n)/S(n). We calculateS(n) andF(n) usingN(r ;n),

S~n!5
kaVd

a2d
r c

2(a2d) , ~18!

and

F~n!5
kaVd

~d11!~d112a!
r c

d112a , ~19!

where as beforeVd is the volume of a unit radius sphere ind
dimensions. Note thatS(n)→` andF(n)→0 asn→`.

Using Eqs.~18! and ~19!, and the resultr c5F(n)/S(n),
we find an estimate ofa as

re
8-3
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â5d1
d11

d12
. ~20!

In contrast, a modified calculation for the ABK model find
@8#

amf511dS 11expF22
2d1222

d12 G D . ~21!

Note thatâ must be an upper bound on the true value ofa
for normal Apollonian packing. Furthermore, due to the n
ture of the approximations made in formingPins(r ;n) and
P(r ;n), â is also an upper bound for the exponent of t
RAP model. As we show in the following section when w
consider our numerical results, both of these predictions oa
appear to hold for certain~mutually exclusive! ranges ofd.

Using Eqs.~14!, ~18!, and ~19!, we are able to find the
scalings of surface area and pore space volume withn,

S~n!}n2g}n(a2d)/(a21), ~22!

and

F~n!}n2b}n2(d112a)/(a21). ~23!

These relations provide us with further methods for de
mining a and for testing scaling relations between the ite
tive and structural nature of the packing. Equation~23!, in
particular, affords a more robust measurement rather t
obtaininga directly fromP(r ;n), and we employ this fact in
our numerical investigations.

Note that for comparison between the current theory
that of ABK we must convert scaling predictions that depe
on time to those that depend on sphere number. Specific
the ABK theory predicts F(t)}t2A, where A5exp@2
2(2d1222)/(d12)#. Because the ABK model can be seen
a RAP model with infinite growth velocity, the time betwee
events is inversely proportional to the pore space availa
~given a uniform rate for attempted nucleationk). So the
result for the decay of pore space from ABK may be rew
ten asFABK(n)}n2b8, where

tn5
1

k (
i 51

n
1

FABK~ i !
. ~24!

TABLE I. Scaling relations between exponents for various p
rameters valid for general packing-limited growth models:P(r ) is
the probability distribution of radii,r c is the radius of the typica
largest sphere that may be inserted,S(n) is the surface area ofn
packed spheres, andF(n) is the pore space volume. All exponen
are given in terms ofa and the dimensiond.

Relation Exponent

P(r )}r 2a a
r c(n)}n2d d5d112a
S(n)}ng g5(a2d)/(a21)

F(n)}n2b b5(d112a)/(a21)
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This implies thattn}n11b8. So if ABK predictsF(t)}t2A,
this is equivalent to writingFABK(n)}n2A(11b8). Equating
the two forms leads to the conclusion that

b85
A

12A
. ~25!

This will be useful in the following section when the scalin
of pore space decay is examined. Finally, key scaling re
tions are summarized in Table I.

V. NUMERICAL RESULTS

The numerical procedure for all variants of PLG schem
obey the same basic algorithm. Spheres are seeded acco
to a Poisson distribution, with ratek and only grow within
the pore space. Once injected, spheres grow accordin
model rules ~linear velocity, heterogeneous, exponenti
etc.! until they collide and are jammed. In the case of t
RAP model, only one sphere is allowed to nucleate and
pand at any given point in the simulation. Using this eve
driven procedure we are able to calculate limiting states

-

TABLE II. Simulation details for four different PLG models.k
is the sphere nucleation rate per unit volume,Gi(t2t i) is the
growth rate of theith sphere, which is nucleated at timet i , Ns is the
number of simulations,Ntot is the total number of spheres place
and r is the approximate limiting density of each simulation. T
sphere radii distributions for these models are shown in Fig. 4.

RAP Heterogeneous Exponential Linear

k n/a 10 10 1025

Gi(t2t i) ` 0.2–2.0 et2t i 0.2
Ns 50 48 10 1
Ntot 2.53106 2.33106 5.43105 3.43105

r 0.97 0.96 0.91 0.97

FIG. 3. A random Apollonian packing initially seeded with tw
circles after 104 circles have been placed. The density of the syst
is r.0.94.
8-4
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determine improved estimates of the universal value ofa for
d52, 3, and 4. All packings are simulated on a unit hyp
cube with periodic boundary conditions. Figure 3 shows
example packing using the RAP model ind52. It is clear
that the number of spheres will increase without bound
that the pore space ultimately vanishes. The associat
with the Apollonian case are visually evident.

To demonstrate the universality ofa, we consider four
different PLG models ind52 with a variety of initial con-
ditions, the details of which are given in Table II. The fr
quency distributionN(r ) for these four PLG models is
shown in Fig. 4. The main plot shows the distributions
centered using their respective means. The recentered d
butions are indistinguishable to the eye clearly indicat
that the specifics of the growth mechanisms are irrelev
and that the exponenta is a universal one.

The scaling theory developed in the preceding section
lates the structure of a packing~its fractal dimension! to the

TABLE III. Estimates ofa using various numerical method
and comparisons to theory. All numerical results are from simu
tions containing 53106 spheres. Parentheses indicate 95% co
dence intervals on the last digit.

d52 d53 d54

F(n) 2.564~1! 3.733~2! 4.833~2!

F(r ) 2.58 3.73 4.83
S(r ) 2.55 3.74 4.86
N(r ) 2.53 3.70 4.79

â5d1@(d11)/(d12)# 2.75 3.8 4.83333

ABK theory 2.55374 3.94505 4.99904

FIG. 4. The form ofN(r ) for four models: random Apollonian
packing~circles!, heterogeneous linear growth rates~diamonds!, ex-
ponential growth rates~triangles!, and linear growth rates~squares!.
Simulation details are contained in the text. The inset doub
logarithmic plot showsN(r ) vs r for each model shifted horizon
tally for the purpose of illustration. The slope of the solid straig
line indicates thed52 universal exponenta.2.56 ~see Table III!.
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change of basic elements~critical radius, surface area, vo
ume, etc.! as a function of iteration. In order to test the sca
ing theory, as well as the specific predictionâ5d1(d
11)/(d12) in higher dimensions, we now examine iter
tive and structural scalings of the RAP model ind52, 3, and
4.

We estimatea using a variety of means and the results a
summarized in Table III. The agreement between the p
dicted value ofa calculated usingF(n) and that calculated
directly from the geometry of the packing provides furth
proof that the scaling theory outlined in the preceding sect
is valid, regardless of the specific value ofa. The current
theory appears to improve with increasing dimensio
whereas the approximate theory of ABK only holds ind
52.

Both the current theory and that of ABK predict the sc
ing of pore space as a function of iteration or time. Evalu
ing the pore space decayF(n) in d52 suggests that the
agreement with ABK is most likely coincidental. As ev
denced by the data in Fig. 5 we are able to establish 9
confidence intervals that exclude the predictions of ABK
d52. This is not altogether surprising as ABK is an appro
mate theory describing the collision of moving spher
whereas in the RAP procedure all collisions are betwee
sphere and the presently jammed state. In higher dimens
the theory of ABK fails, and the current theory becom
increasingly appropriate, falling within the numerically d
-
- TABLE IV. The predicted exponent for the decline of volum
fraction F(n)}n2b. The numerical estimates ofb are taken from
simulations containing 53106 spheres. The decay of pore space
a function of iteration can be seen in Fig. 5. Parentheses indi
error on estimation of the last digit.

d52 d53 d54

b 0.278~1! 0.0975~2! 0.0434~2!

Current theory~23! 0.1429 0.07143 0.04348
ABK theory ~25! 0.2872 0.01832 2.40431024

-

t

FIG. 5. The decay of pore space volumeF(n) in d52, 3, and 4
correspond to the solid, dashed, and dot-dashed lines, respect
The fits to the power law decays are summarized in Table IV.
8-5
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fined confidence intervals forb in d54. The results are sum
marized in Table IV.

VI. CONCLUSION

The iterative nature of the random Apollonian packi
model and its simple prescription for packing spheres s
gests that at sufficiently small scales, the structure
packing-limited growth models is essentially unaffected
initial conditions or dynamics. The scaling of pore spa
surface area, number, and critical radiusr c are all interrelated
and can be expressed in terms of simple power laws u
only the dimensiond and the exponenta. Extensive numeric
simulations demonstrate the validity of the predicted up
bound â. Although â appears to be an overestimate of t
s

d
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actual value ofa in d52 andd53, it agrees with simula-
tions ind54, and presumably beyond. A refined approxim
tion of the insertion probabilityPins(r ;n) seems to be the
best approach to improve the estimate ofa. The applicability
of predictions of the present model and its relevance
physical and biological problems may lie in the process
balancing the idea of packing-limited growth with other d
namical possibilities such as aggregation, competition,
death.

ACKNOWLEDGMENT

This work was supported in part by the NSF throu
Grant No. EAR-9706220.
.

.

@1# H. S. Horn,The Adaptive Geometry of Trees~Princeton Uni-
versity Press, Princeton, NJ, 1971!.

@2# K. Takahashi, Ann. Bot.~London! 77, 159 ~1996!.
@3# D. Turcotte,Fractals and Chaos in Geology and Geophysic,

2nd ed.~Cambridge University Press, New York, NY, 1997!.
@4# S.C. van der Marck, Phys. Rev. Lett.77, 1785~1995!.
@5# C. Hecht, Pure Appl. Geophys.157, 487 ~2000!.
@6# J. Conway and N. Sloane,Sphere Packings, Lattices an

Groups, 3rd ed.~Springer-Verlag, New York, 1999!.
@7# Y.A. Andrienko, N.V. Brilliantov, and P.L. Krapivsky, J. Stat
Phys.75, 507 ~1994!.

@8# N.V. Brilliantov, P.L. Krapivsky, and Y.A. Andrienkov, J. Phys
A 27, L381 ~1994!.

@9# S.S. Manna, Physica A187, 373 ~1992!.
@10# B.B. Mandelbrot,The Fractal Geometry of Nature~Freeman,

San Francisco, 1983!.
@11# S. Manna and H. Hermann, J. Phys. A24, L481 ~1991!.
@12# T. Aste, Phys. Rev. E53, 2571~1996!.
8-6


