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Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings
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We investigate the fractal behavior of the transmission of a classical particle through a circular billiard with
a straight cut and two openings. As the size of the cut varies, the phase space of the closed billiard shows a full
range of dynamical behavior, including integrable behavior, soft ckmbsed phase spageand hard chaos
(ergodic and mixing For an open billiard, we numerically find the exit opening as a function of the incident
angle. When the billiard is chaotic, the result shows self-similarity and infinite complexity. We calculate the
fractal dimension of this structure using a box-counting method when two parameters, the size of the cut and
the size of the openings, are varied.
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Billiards have special advantages for studying classicakters that control the system; and A. When there is no
chaos and its manifestations in semiclassical and quantuwpening A=0), w is the only parameter that controls the
mechanicg[1]. The shape of the walls largely determinesdynamical behavior of this cut-circle billiard. In R¢.2], it
dynamical behavior, and therefore numerical calculations arbas been proved that the phase space is migett chao$
relatively easy. Classically the dynamics of billiard systemswhen O<w<1, and the phase space is fully chaati@rd
exhibits one of the three types of behavi¢t) integrable chao$ when 1<w<2. The system is integrable whem
(regulay, (2) soft chaos(characterized by mixed phase =1 and 2. Numerical studies of classical chaos for the
spaces that have both regular and chaotic regjansd (3)  closed cut-circle billiard and its quantum manifestations, and
hard chaos(ergodic and mixing [2]. Billiards that exhibit ~the Landauer-Bttiker conductance for the quantum cut-
chaotic behavior caused by the walls have been built in theircle billiard with two conical leads have been discussed in
laboratory. One example is the two-dimensiof2D) semi-  Refs.[13] and[14], respectively.
conductor heterostructure in tHmallistic regime. In these We inject a particle from the center of the openingée
nanoscale structures, the magnetoconductance through tRég. 1) with an angle¢ (“the incident angle,” — m/2<¢
structure fluctuates in different ways, depending on whethex 77/2). By following the trajectories for this initial condi-
the classical dynamics of the billiard is regular or chaf8ic  tion, one can calculate several quantities, including the num-

Fractal behavior has been observed in several aspects of
billiard dynamics. In Refs[4-8|, quantum conductance
fluctuations are shown to exhibit self-similarity up to a cer-
tain scale, and it is argued that this self-similar structure is
induced by fractal structures in the underlying classical
mixed phase space. The scattering of classical particles in
open billiards has also been shown to have fractal behavior
[9-11], for example, in the number of collisions with the
walls as a function of the incident angle.

In this Rapid Communication, we numerically investigate
the fractal dimension of the transmission of a classical par-
ticle through a circular billiard with a straight cut and two
openings(see Fig. 1 There are five parameters that affect
the dynamics:(1) the maximum widthW in the direction
perpendicular to the cut?) the radiusk of the circle,(3) the
angular widthA of the openings(4) the orientation anglé€)
of the cut relative to the first opening, af®) the position of w=W/R (0<w<?2)
the second opening relative to the first opening as measured Omax =cos'(1-w) .
by the angley. We can scale the widthWW by R so w % irjecrion anigle ( -20< 9 <907
=WI/R, and thereby reduce the number of IndepenFient P& FIG. 1. The geometry of the system. A cut-circle billiard has two
rameters to fourw, A, Q, andy. For all subsequent discus- gpenings, | and Il. The size of the straight cut is given by the width
sions, we sef) =135° andy=270°. This leaves two param- \, The width of two openings i, and the position of the cut and

the second opening) andy, are measured from the first opening.
A particle is injected from the center of the opening | with an angle
*Electronic address: suhan@kongju.ac.kr .
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FIG. 2. Graphs of the exit opening vs the incident angle ~ Metrical channelq10], and they play an important role in
Black bars represent transmission windows, and white bars repré€al systems because trajectories in these windows usually
sent reflection windows. The resolutiahg is 7/5000. Asw is  have only few collisions with the boundary. We also observe
varied from 0.5 to 2, we observe increased complexities. that, for cases of soft chadsvhenw<1), regions of big

windows and regions of small windows coexist. On the other
ber of collisions before the particle exits, the length of thehand, for cases of hard chadshen 1<w<?2), very small
path, the opening from which the particle exitshe exit = windows tend to be populated throughout the whole region.
opening”), and also the statistics of this data. Such quantitieRegular casegwhen w=1,2) also look complex at first
have been computed for the 2D cross juncti®f] and the glance. In Fig. 3, we zoom in for three different cases, and
2D ripple channe[11]. Here we focus on the simplest out- we can clearly see the difference. Whem= 0.7 [Fig. 3@)]
come, the incident anglé vs the exit opening, for gived andw=1.5[Fig. 3b)], we see smaller windows again coex-
and w. From the deterministic classical dynamics, we canisting with larger windows. But whew=2 [Fig. 3(c)], we
obtain a functionT"%, which maps the incident angle in no longer see small windows. In general, the larger the win-
opening | to one of the two values, | and Il, depending ondow, the less the number of collisions with the boundary.
whether the particle exits from opening (teflectior) or  This fractal structure is a signature of chaos.
opening Il (transmission For someA andw values, T4 In Fig. 4, we examine the behavior of the transmission
has an infinitely fine structure. We will represéft"’ by ~ whenw=1.01 (nearly integrable In Fig. 4a), we look at a
means of a graph with black and white bars. A bar is blacksmall interval of size 10? (rad). In Fig. 4b), we magnify a
for a range of¢ in which the particle transmitgexits from  small interval of Fig. 4a) by a factor of 100. Similarly, in
II), and a bar is white for a range ¢gf in which the particle Fig. 4(c) [4(d)], we magnify a small interval of Fig.(8)
reflects(exits from |). There are series of “transmission win- [4(c)] by a factor of 100. We still observe windows much
dows” (black separated by “reflection windowstwhite), in ~ smaller than 108 (rad). Figure 4e) shows the trajectory
the range,— 7/2< ¢<m/2. The resolutiom\ ¢ of ¢ is given  with the incident angle very close to the center of this region
by (¢ is 4.3859421°). Theinjected particle bounces close to
the (1,2 orbit for a long time(about 150 bouncesand fi-
nally exits to the opening Il after 207 collisions with the
walls. We expect that all trajectories associated with this re-
gion stay close to thél,2) orbit for many bouncegl5] For
where Np is the number of incident angles. The incident this reason, an orbit like thi€l,2) orbit is calledthe strange

Ad oY)

T
Ny’

angles{¢;li=1,... Np} are uniformly distributed in the repeller [10,16,17. These strange repellers seem to make
given range, transmission windows around them infinitely small, and they
) cause this infinite complexity. For cases with hard chaos,

T I . there exist many unstable periodic orbits acting as strange

¢|:—E+NP+1 (|:1,,Np) (2)

repellers, while for integrable cases there is no unstable orbit.
For cases with soft chaos, the positions of the initial condi-
When the size of a transmissidor reflection window is  tions relative to the mixed phase spaces determine the behav-
smaller tham\ ¢, there is a chance of missing it in numerical ior of trajectories.
simulations. Thus, we can only see the structure up to a We have so far observed qualitative aspects of self-
given resolution ofp. WhenT*'" has an infinitely fine struc- similarity. Now we focus on a quantitative analysis of this
ture, the number of windows found numerically will increase observed complexity. We can regard these transmission win-
as Np increases. This relationship between the number oflows as a set of ranges embedded inside an one-dimensional
windows found and\p will later be used to calculate the set, (— 7/2,77/2). One useful measure describing such a self-
fractal dimension—a quantitative measure of this infinitesimilar set is the fractal dimensiga8]. But, unlike common
complexity. fractals such as the Cantor set, this set has nonzero Lebesque
In Fig. 2, the behavior off®"%(¢), calculated numeri- measure, and, as a result, the fractal dimension of this set is
cally, is shown for several values whemA=10°. We ob- the same as that of the underlying space, which is one. This
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FIG. 4. Self-similarity wherw=1.01. We zoom in by 100 times
for each successive rangéa) 4.0994615% $<4.6724192°,
4.3859117%¥ ¢
<4.3859690°(d) 4.385942 1% $<4.385942 6°(e) The trajec-

4.3830756%¢$<4.3888051°, (c)
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FIG. 5. Graphs of logyNp vs log,o Ng whenw=1.5 and the
opening siz&\ is varied.Np is the number of total boxes amd}; is
the number of transmission windows for the given resolution. The
inset shows how the fractal dimensidp changes aa varies.

In Fig. 5, we fix the widthw at 1.5(hard chaog and vary
the opening sizeA. Here we calculated; by finding the
slope of a line fitting the linear part of the graph of {jgdNg
vs logg Np using the ordinary least-square fit. As ap-
proaches zero, the size of transmission windows become in-
finitely small, and, as a resull; approaches ongt may not
approach one in other casedlso asA increasesd; de-
creases and eventually reaches zero. Thusvferl.5, when
A~68°, di becomes zero and the scattering dynamics no
longer exhibits infinite complexity. This result implies that,
for this case, the global chaos of the closed billiard disap-
pears in classical mechanics when the opening size reaches a

tory when the incident anglé is given at 4.3859424°. The par- certain critical value.

ticle is injected at the center of the opening |, and exits from the

opening 1.

kind of fractals are calleéat fractals[19—-21]. (And fractals
with zero Lebesque measure are callieish fractals instead.
Several scaling exponents are defined for fat fractals, byt <w<2),
since the boundary of a fat fractal is a thin fra¢@j, we will
caIAcuIate the fractal dimension of the boundary T6¥Y,
gTAY

, instead. In other words, our quantitative measure of
self-similarity in our system is the fractal dimension of the T R —
set of boundaries of transmission windows. Here the fractal
dimensiond; will be a continuous function oA andw. For i
calculations of the fractal dimension, a box-counting method 507
is simple to apply. From Ed1), there aréNp boxes of width
A ¢ for a given resolution ofg. [Note that the numerical
error should be much smaller thang. In our numerical
calculations ford;, double-precision numbers with 15 sig-
nificant digits were used, anil¢ was at least 10’ (rad), to
get reliable result$. The number of boxes containing the set )
dTA"W is represented by the number of transmission win-

dows,Ng, for givenNp. (Precisely the number isNg;, but

a constant factor can be ignored for calculations of the fractal ' ' '
dimension) The fractal dimensiowl; for given A andw is

)

In Fig. 6, we fix the opening siz4 at 5°, and vary the
width w. We observe that there is a clear distinction between
soft and hard chaotic regions in the graphdgfvs w. For
regular casesw=1,2), ds is zero. In the soft chaotic region
w<1), d; fluctuates withw, but in the hard chaotic region

it has a smooth plateau. In the soft chaotic re-
gion, the fluctuation occurs due to nonuniform mixed phase
spaces, since relative positions of openings relative to phase-

6 |-
dy

cw=0.5,dy
cw=0.7,d;=0.84
cw=1,di=0
tw=1.5d;=094
1 tw=2,ds=0
1 Il 1
2 6 7

4 5
log, (Np)
FIG. 6. Graphs of logy Np vs log,o Ng when the opening size

A=5° andw is varied. The inset shows how the fractal dimension
d; changes aw varies.
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space structures varies aschanges(We can do the same ing size approaches zero, the fractal dimension approaches
fractal analysis on a set of singularities of a graph of thethe highest possible value for a given billiafane, in our
number of collisionsNg vs the incident anglep. But d; ~ €xample. And when the opening size reaches a certain
values are the same as those from Figs. 5 and 6, becauseV@lue, the fractal dimension becomes the lowest possible
chaotic regiondNs will be proportional toNg for givenNp.)  value(zero, in our example We have also observed that the

To summarize, we have numerically observed the Se”_behawor of the fractal dimension is different for soft and
similarities and infinitely hierarchical structures in the trans—hﬁ;(isc?sasgri‘zgen the parameter that controls the degree of
mission of a classical particle that scatters through a chaoti€ '

billiard. This fractality comes from the chaotic nature of the s R. wishes to thank Kongju National University for sup-
underlying closed billiard, and also from the presence ofport of this work. L.E.R. wishes to thank the Welch Founda-
openings. The graph used for the fractal analysis is a fafion, Grant No. F-1051, NSF Grant No. INT-9602971, and
fractal, and boundaries of our fat-fractal sets have been usddOE Contract No. DE-FG03-94ER14405 for partial support
for the calculations of the fractal dimension. When the openeof this work.
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