
2

RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 65, 055205~R!
Fractal analysis of chaotic classical scattering in a cut-circle billiard with two openings
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We investigate the fractal behavior of the transmission of a classical particle through a circular billiard with
a straight cut and two openings. As the size of the cut varies, the phase space of the closed billiard shows a full
range of dynamical behavior, including integrable behavior, soft chaos~mixed phase space!, and hard chaos
~ergodic and mixing!. For an open billiard, we numerically find the exit opening as a function of the incident
angle. When the billiard is chaotic, the result shows self-similarity and infinite complexity. We calculate the
fractal dimension of this structure using a box-counting method when two parameters, the size of the cut and
the size of the openings, are varied.
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Billiards have special advantages for studying class
chaos and its manifestations in semiclassical and quan
mechanics@1#. The shape of the walls largely determin
dynamical behavior, and therefore numerical calculations
relatively easy. Classically the dynamics of billiard syste
exhibits one of the three types of behavior:~1! integrable
~regular!, ~2! soft chaos ~characterized by mixed phas
spaces that have both regular and chaotic regions!, and ~3!
hard chaos~ergodic and mixing! @2#. Billiards that exhibit
chaotic behavior caused by the walls have been built in
laboratory. One example is the two-dimensional~2D! semi-
conductor heterostructure in theballistic regime. In these
nanoscale structures, the magnetoconductance through
structure fluctuates in different ways, depending on whet
the classical dynamics of the billiard is regular or chaotic@3#.

Fractal behavior has been observed in several aspec
billiard dynamics. In Refs.@4–8#, quantum conductanc
fluctuations are shown to exhibit self-similarity up to a ce
tain scale, and it is argued that this self-similar structure
induced by fractal structures in the underlying classi
mixed phase space. The scattering of classical particle
open billiards has also been shown to have fractal beha
@9–11#, for example, in the number of collisions with th
walls as a function of the incident angle.

In this Rapid Communication, we numerically investiga
the fractal dimension of the transmission of a classical p
ticle through a circular billiard with a straight cut and tw
openings~see Fig. 1!. There are five parameters that affe
the dynamics:~1! the maximum widthW in the direction
perpendicular to the cut,~2! the radiusR of the circle,~3! the
angular widthD of the openings,~4! the orientation angleV
of the cut relative to the first opening, and~5! the position of
the second opening relative to the first opening as meas
by the angleg. We can scale the widthW by R so w
[W/R, and thereby reduce the number of independent
rameters to four:w, D, V, andg. For all subsequent discus
sions, we setV5135° andg5270°. This leaves two param

*Electronic address: suhan@kongju.ac.kr
1063-651X/2002/65~5!/055205~4!/$20.00 65 0552
l
m

re
s

e

the
er

of

-
is
l
in
or

r-

t

ed

a-

eters that control the system,w and D. When there is no
opening (D50), w is the only parameter that controls th
dynamical behavior of this cut-circle billiard. In Ref.@12#, it
has been proved that the phase space is mixed~soft chaos!
when 0,w,1, and the phase space is fully chaotic~hard
chaos! when 1,w,2. The system is integrable whenw
51 and 2. Numerical studies of classical chaos for
closed cut-circle billiard and its quantum manifestations, a
the Landauer-Bu¨ttiker conductance for the quantum cu
circle billiard with two conical leads have been discussed
Refs.@13# and @14#, respectively.

We inject a particle from the center of the opening I~see
Fig. 1! with an anglef ~‘‘the incident angle,’’2p/2,f
,p/2). By following the trajectories for this initial condi
tion, one can calculate several quantities, including the nu

FIG. 1. The geometry of the system. A cut-circle billiard has tw
openings, I and II. The size of the straight cut is given by the wi
W. The width of two openings isD, and the position of the cut and
the second opening,V andg, are measured from the first openin
A particle is injected from the center of the opening I with an an
f.
©2002 The American Physical Society05-1
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ber of collisions before the particle exits, the length of t
path, the opening from which the particle exits~‘‘the exit
opening’’!, and also the statistics of this data. Such quanti
have been computed for the 2D cross junction@10# and the
2D ripple channel@11#. Here we focus on the simplest ou
come, the incident anglef vs the exit opening, for givenD
and w. From the deterministic classical dynamics, we c
obtain a functionTD,w, which maps the incident angle i
opening I to one of the two values, I and II, depending
whether the particle exits from opening I~reflection! or
opening II ~transmission!. For someD and w values,TD,w

has an infinitely fine structure. We will representTD,w by
means of a graph with black and white bars. A bar is bla
for a range off in which the particle transmits~exits from
II !, and a bar is white for a range off in which the particle
reflects~exits from I!. There are series of ‘‘transmission win
dows’’ ~black! separated by ‘‘reflection windows’’~white!, in
the range,2p/2,f,p/2. The resolutionDf of f is given
by

Df[
p

Np
, ~1!

where NP is the number of incident angles. The incide
angles $f i u i 51, . . . ,NP% are uniformly distributed in the
given range,

f i52
p

2
1

ip

NP11
~ i 51, . . . ,NP!. ~2!

When the size of a transmission~or reflection! window is
smaller thanDf, there is a chance of missing it in numeric
simulations. Thus, we can only see the structure up t
given resolution off. WhenTD,w has an infinitely fine struc-
ture, the number of windows found numerically will increa
as NP increases. This relationship between the number
windows found andNP will later be used to calculate th
fractal dimension—a quantitative measure of this infin
complexity.

In Fig. 2, the behavior ofTD,w(f), calculated numeri-
cally, is shown for severalw values whenD510°. We ob-

FIG. 2. Graphs of the exit opening vs the incident anglef.
Black bars represent transmission windows, and white bars re
sent reflection windows. The resolutionDf is p/5000. As w is
varied from 0.5 to 2, we observe increased complexities.
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serve some big transmission windows, which are calledgeo-
metrical channels@10#, and they play an important role in
real systems because trajectories in these windows usu
have only few collisions with the boundary. We also obse
that, for cases of soft chaos~when w,1), regions of big
windows and regions of small windows coexist. On the oth
hand, for cases of hard chaos~when 1,w,2), very small
windows tend to be populated throughout the whole regi
Regular cases~when w51,2) also look complex at firs
glance. In Fig. 3, we zoom in for three different cases, a
we can clearly see the difference. Whenw50.7 @Fig. 3~a!#
andw51.5 @Fig. 3~b!#, we see smaller windows again coe
isting with larger windows. But whenw52 @Fig. 3~c!#, we
no longer see small windows. In general, the larger the w
dow, the less the number of collisions with the bounda
This fractal structure is a signature of chaos.

In Fig. 4, we examine the behavior of the transmiss
whenw51.01 ~nearly integrable!. In Fig. 4~a!, we look at a
small interval of size 1022 ~rad!. In Fig. 4~b!, we magnify a
small interval of Fig. 4~a! by a factor of 100. Similarly, in
Fig. 4~c! @4~d!#, we magnify a small interval of Fig. 4~b!
@4~c!# by a factor of 100. We still observe windows muc
smaller than 1028 ~rad!. Figure 4~e! shows the trajectory
with the incident angle very close to the center of this reg
(f is 4.385 9424°). The injected particle bounces close t
the ~1,2! orbit for a long time~about 150 bounces!, and fi-
nally exits to the opening II after 207 collisions with th
walls. We expect that all trajectories associated with this
gion stay close to the~1,2! orbit for many bounces@15# For
this reason, an orbit like this~1,2! orbit is calledthe strange
repeller @10,16,17#. These strange repellers seem to ma
transmission windows around them infinitely small, and th
cause this infinite complexity. For cases with hard cha
there exist many unstable periodic orbits acting as stra
repellers, while for integrable cases there is no unstable o
For cases with soft chaos, the positions of the initial con
tions relative to the mixed phase spaces determine the be
ior of trajectories.

We have so far observed qualitative aspects of s
similarity. Now we focus on a quantitative analysis of th
observed complexity. We can regard these transmission w
dows as a set of ranges embedded inside an one-dimens
set, (2p/2,p/2). One useful measure describing such a s
similar set is the fractal dimension@18#. But, unlike common
fractals such as the Cantor set, this set has nonzero Lebe
measure, and, as a result, the fractal dimension of this s
the same as that of the underlying space, which is one. T

e-

FIG. 3. Zoomed-in graphs for three different cases. In Fig.
these cases are pointed by arrows, and they all have the rang
one degree.~a! w50.7 ~soft chaos!, ~b! w51.5 ~hard chaos!, and
~c! w52 ~regular!.
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kind of fractals are calledfat fractals@19–21#. ~And fractals
with zero Lebesque measure are calledthin fractals instead.!
Several scaling exponents are defined for fat fractals,
since the boundary of a fat fractal is a thin fractal@9#, we will
calculate the fractal dimension of the boundary ofTD,w,
]TD,w, instead. In other words, our quantitative measure
self-similarity in our system is the fractal dimension of t
set of boundaries of transmission windows. Here the fra
dimensiondf will be a continuous function ofD andw. For
calculations of the fractal dimension, a box-counting meth
is simple to apply. From Eq.~1!, there areNP boxes of width
Df for a given resolution off. @Note that the numerica
error should be much smaller thanDf. In our numerical
calculations fordf , double-precision numbers with 15 sig
nificant digits were used, andDf was at least 1027 ~rad!, to
get reliable results.# The number of boxes containing the s
]TD,w is represented by the number of transmission w
dows,NB , for givenNP . ~Precisely the number is 2NB , but
a constant factor can be ignored for calculations of the fra
dimension.! The fractal dimensiondf for given D andw is

df5 lim
NP→`

log10

log10

NB

NP
. ~3!

FIG. 4. Self-similarity whenw51.01. We zoom in by 100 times
for each successive range:~a! 4.099 461 5°,f,4.672 419 2°,
~b! 4.383 075 6°,f,4.388 805 1°, ~c! 4.385 911 7°,f
,4.385 969 0°,~d! 4.385 942 1°,f,4.385 942 6°.~e! The trajec-
tory when the incident anglef is given at 4.385 942 4°. The par
ticle is injected at the center of the opening I, and exits from
opening II.
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In Fig. 5, we fix the widthw at 1.5~hard chaos!, and vary
the opening size,D. Here we calculatedf by finding the
slope of a line fitting the linear part of the graph of log10 NB
vs log10 NP using the ordinary least-square fit. AsD ap-
proaches zero, the size of transmission windows become
finitely small, and, as a result,df approaches one~it may not
approach one in other cases!. Also asD increases,df de-
creases and eventually reaches zero. Thus forw51.5, when
D;68°, df becomes zero and the scattering dynamics
longer exhibits infinite complexity. This result implies tha
for this case, the global chaos of the closed billiard dis
pears in classical mechanics when the opening size reach
certain critical value.

In Fig. 6, we fix the opening sizeD at 5°, and vary the
width w. We observe that there is a clear distinction betwe
soft and hard chaotic regions in the graph ofdf vs w. For
regular cases (w51,2), df is zero. In the soft chaotic region
(w,1), df fluctuates withw, but in the hard chaotic region
(1,w,2), it has a smooth plateau. In the soft chaotic
gion, the fluctuation occurs due to nonuniform mixed pha
spaces, since relative positions of openings relative to ph

e

FIG. 5. Graphs of log10 NP vs log10 NB when w51.5 and the
opening sizeD is varied.NP is the number of total boxes andNB is
the number of transmission windows for the given resolution. T
inset shows how the fractal dimensiondf changes asD varies.

FIG. 6. Graphs of log10 NP vs log10 NB when the opening size
D55° andw is varied. The inset shows how the fractal dimensi
df changes asw varies.
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space structures varies asw changes.~We can do the same
fractal analysis on a set of singularities of a graph of
number of collisionsNS vs the incident anglef. But df

values are the same as those from Figs. 5 and 6, becau
chaotic regionsNS will be proportional toNB for givenNP .)

To summarize, we have numerically observed the s
similarities and infinitely hierarchical structures in the tran
mission of a classical particle that scatters through a cha
billiard. This fractality comes from the chaotic nature of t
underlying closed billiard, and also from the presence
openings. The graph used for the fractal analysis is a
fractal, and boundaries of our fat-fractal sets have been u
for the calculations of the fractal dimension. When the op
a

cs

s,

lly

.P

ys
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ing size approaches zero, the fractal dimension approa
the highest possible value for a given billiard~one, in our
example!. And when the opening size reaches a cert
value, the fractal dimension becomes the lowest poss
value~zero, in our example!. We have also observed that th
behavior of the fractal dimension is different for soft an
hard chaos when the parameter that controls the degre
chaos is varied.
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