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Suppression and enhancement of diffusion in disordered dynamical systems
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The impact of quenched disorder on deterministic diffusion in chaotic dynamical systems is studied. As a
simple example, we consider piecewise linear maps on the line. In computer simulations we find a complex
scenario of multiple suppression and enhancement of normal diffusion, under variation of the perturbation
strength. These results are explained by a theoretical approximation, showing that the oscillations emerge as a
direct consequence of the unperturbed diffusion coefficient, which is known to be a fractal function of a control
parameter.
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Recently there has been growing interest in the field olated static randomness enables to study in which way these
disordered dynamical systepthus trying to bring together dynamical correlations survive, or are getting destroyed, as a
two, at first view, very different directions of reseaffdh2]:  function of the perturbation strength, and to which extent
Diffusion on disordered lattices with quenchéstatio ran-  simple random walk theory may still be applicable for un-
domness is a traditional problem of statistical physics, whictflerstanding perturbed chaotic diffusion. .
can be studied by probabilistic methods being developed in The unperturbed model is defined by the equation of mo-
the theory of stochastic procesg@s-5|. However, diffusion  tlon
can also be generated from deterministic chaos in nonlinear
equations of motioj6,7] making it possible to assess cha- Xn+1=Ma(Xp), (1)
otic and fractal properties of diffusion by methods of dy-
namical systems theorj8—10. Hence, understanding the whereae R is a control parameter ang is the position of a
dynamics of disordered dynamical systems poses the chapoint particle at discrete time. M ,(x) is continued periodi-
lenge of suitably combining these different concepts andally beyond the intervgl—1/2,1/2) onto the real line by a
ideas. To our knowledge, only very few cases of respectivdift of degree 1, M, (X+1)=M_,(x)+1. We assume that
models have been studied so far. Examples include randoi ,(x) is antisymmetric with respect tx=0, M,(X)=
Lorentz gases for which Lyapunov exponents have been cal- M 4(—x). The map we study as an example is defined by
culated by means of kinetic theory and by computer simulaM ,(x) =ax, where the uniform slopa serves as a control
tions [10,11, numerical studies of diffusion on disordered parameter. The Lyapunov exponent of this map is given by
rough surfaces and in disordered deterministic ratcfiefs A (a)=Ina implying that fora>1 the dynamics is chaotic.
as well as numerical and analytical studies of chaotic mapsve now modify this system by adding a random variable
on the line with quenched disordgz,13]. Aa(i), ieZ, to the slope on each intervil—1/2, +1/2)

In this work we will focus on the most simple example in yielding M{(x) =[a+ Aa(i)]x. We assume that the random
the latter class of models, which are piecewise linear mapgariablesAa(i) are independent and identically distributed
on the line. In case of mixing dynamics, unperturbed maps okccording to a distributioy,,(Aa), wherea is again a con-
this type exhibit normal diffusiofi7,14—17. However, add-  trol parameter. In the following we will consider two differ-
ing quenched disorder in the form of a local bias with glo-ent types of such distributions, namely, random variables dis-
bally vanishing drift profoundly changes the dynamics, lead+ributed uniformly over an interval of side- a, ],
ing to subdiffusion in a complicated potential landscape
[2,13]. Here we will consider a different type of static ran- _
domness, which is multiplicative, preserves the local symme- Xo(A2)=0O(atA2)O(a=Ad)/(2a), @)
try of the model, and is not related to Levy distributidd8], 514 dichotomous os-distributed random variables,
thus not resulting in anomalous diffusion. Consequently, here
we denote with suppression and enhancement of diffusion,
the variation of thenormaldiffusion coefficient. Another im- Xo(Aa)=[(a+Ad)+s(a—Aa)]/2. ()
portant aspect is that in previous work the disordered map
were always exhibiting the Bernoulli propeift®,13], there-
fore the diffusive properties were in agreement with expec
tations from stochastic theory. In our case we start from a . I o \ .
unperturbed model that is known to exhibit strong dynamicaPenCe of any b'ag’ the diffusion coefficient is defined as
correlations, resulting in a fractal diffusion coefficient as aP (& @) =lm,__(x7)/(2n), where the brackets denote an
function of the control paramet¢i5-17. Adding uncorre- ensemble average over moving particles for a given configu-

ration of disorder. An additional disorder average is not nec-
essary because of self-averagiify. Note that for locally
*Electronic address: rklages@mpipks-dresden.mpg.de symmetric quenched disorder and—{«a)>2, there is no

§ince|Aa|sa, we denoter as the perturbation strength. As
an example, we sketch in Fig. 1 the map resulting from the
r(;ﬁsorder of Eq.(2) as applied to the slopa=3. In the ab-
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FIG. 1. Diffusion coefficientD(a,«) for the piecewise linear
map shown in the figure. The slopds perturbed by static disorder
of maximum strengthr as defined in Eq(2). The bold black line
depictsD(a,0). The symbols represent computer-simulation results 1
for >0, the corresponding lines are obtained from the theoretical
approximation, Eq(5). The parameter values are=0.1 (circles,
a=0.4 (squarel anda=1.0 (diamonds.

physical mechanism leading to infinitely high reflecting bar-
riers as they are responsible for Golosov localizafid].
Thus diffusion must be normal, as is confirmed by computer
simulations. Hence, the central question is what happens to (g5
the parameter-dependent diffusion coefficiBr{l, @) under
variation of the two control parameteasand «.

For the unperturbed case=0, the diffusion coefficient
has been computed in Ref&5,16 showing thaD(a,0) is a
fractal function of the slop@ as a control parameter. This
function is depicted in Fig. 1, as well as results from com-
puter simulations for different values of the perturbation
strengtha in case of uniform disorddr9]. As expected, this
irregular structure gradually disappears by increasing

However, it is remarkable that even for large perturbation o o o )
strengthe, oscillations are still visible as a function af naturally leads to a vanishing diffusion coefficient. This sce-

indicating that the underlying dynamical correlations arehario is translated to the map under cqnsideration as.follows:
very robust against this type of perturbation. Note, further-E£9: (1) can be understood as a time-discrete Langevin equa-
more, the nonanalytical behavior 6f(a,a) for >0 and 10N, Xp+1=Xa— dV(Xn)/ X, [2,7]. Under proper integration
small a, thus indicating the existence of a dynamical phasef M%(x) the corresponding potentiai(x) is reminiscent
transition, which was not present in the unperturbed case. Of @ random barrier model with the perturbation strength
Before we proceed to more detailed simulation results wéletermining the highest barriers. Hence, simple random-walk
briefly repeat what is known for diffusion in lattice models theory predicts suppression of diffusion for the chaotic map,
with random barrier§3—5,20. In the most simple version, Viz., D(a,a) being a monotonical decreasing functioncof
the quenched disorder is defined on a one-dimensional peri- To check this hypothesis, we choose fixed valuesaof
odic lattice with transition rates between neighboring sites corresponding to the two extreme situations of starting from
and i+1 having the symmetnyl’; ;. ,=T;,,,=I for a @ local maximum or minimum, respectively, of the unper-
given random distribution of . In this situation an exact turbedD(a,0) in Fig. 1. We first focus on the local minimum

expression for the stochastic diffusion coefficient has beedta=6 for a<0.5 with uniform and dichotomous disorder,
derived reading5,20] see Fig. 2. In sharp contrast to the prediction of the simple

random-walk theory outlined above, in both cases we ob-
serve enhancement of diffusion as a functiorroMoreover,
d={1r} 12, (4 this enhancement does not appear in the form of a simple

functional dependence oa: In (a), smoothed-out oscilla-
with the brackets defining the disorder averaf®T'} tions are visible on smaller scales, whereaghinthe result-
=1/} 1T at chain lengthN and for a distancé be-  ing function is clearly nonmonotonic and wildly fluctuating,
tween sites. The double-inverse demonstrates that the highessthibiting multiple suppression and enhancement in different
barriers dominate diffusion in one dimension, thidg—0 parameter regions. Results on larger scales afe depicted

0.9

FIG. 2. Diffusion coefficientD(a,«) as a function of the per-
turbation strengtly at slopea==6: (a) disorder distribution, Eq2),
(b) disorder distribution, Eq(3). The circles represent results from
computer simulations, the lines are obtained from the approxima-
tion, Eq.(5).
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1.5F ' i ' ' ' ' — parameter-dependent diffusion coefficidiif) in case of de-
o terministic dynamics? Here we propogeidentify the func-
K o, o 1 tion d(a) with the exact, unperturbed deterministic diffusion
p o {b° coefficientpreviously defined a®(a,0). Providing this in-

1 °°°° 0P o . formation, the exact formula, E@4), for stochastic dynam-
=5 °°°o° oo°° ° ics becomes aapproximationthat can straightforwardly be
gﬁ mi o’ °° . applied to deterministic dynamics in disordered systems. If

oy 4o 111 the disorder distributiong,,(Aa) are bounded by the pertur-
0.5r : o . bation strengthy, and by taking the continuum limit for the
%‘*’4 random variable, our final result reads
@ .
o+ W Dapp(a, ) = fa daa) XA g
() 1 2 3 4 appt @)= D(a+Aa,0| °
o
2 - — - - This expression represents the central formula of our paper.
e . | The results obtained from it are depicted in Figs. 1 to 3 in the
0° form of lines. For small enouglr the agreement between
1.5F * & - theory and simulations is excellent, thus confirming the va-
°°°°°o°wo° al %00 ° lidity of this equation. For larget our theory still correctly
5 . o © { °o°°° | predicts the oscillations generated from dichotomous disor-
& 1F ° % i der; however since Ed5) is approximate it should not be
A ., surprising to detect quantitative deviations.
o ¢ 3 1 We now show that this formula provides a physical expla-
05k % | nation for the complex dependence of the diffusion coeffi-
°, cient on the perturbation strength. Fer 0, Taylor expan-
b) S sion leads to
% )
o Dapp(a,a)zf d(Aa)y,(Aa)D(a+Aa,0). (6)

FIG. 3. Diffusion coefficientD(a,«) as a function of the per-
turbation strengthy for dichotomous disorder, Eq3), at two dif-
ferent slopesa: (@) a=6, (b) a=7. The circles represent results
from computer simulations, the lines are obtained from the approxi
mation, Eq.(5).

We remark that Eq6) can be proven without advocating Eq.
(5), by starting from the definition of the diffusion coefficient
[22]. In this limit the perturbed diffusion coefficient reduces
to an average of the exact diffusion coefficient over the
neighborhood a— a,a+ a] weighted by the respective dis-
in Fig. 3 for dichotomous disorder. Figuréb3 shows that order distributiony,(Aa). Consequently, i1 is chosen at a
choosinga at a local maximum oD (a,0) leads to suppres- local minimum, the result must be the enhancement of dif-
sion of diffusion forae<1.0, whereas a local minimum gen- fusion by increasingr and suppression at a local maximum,
erates enhancement in the same parameter region We  respectively23]. On these grounds it is clear that the fractal
emphasize that in both cases the diffusion coefficient deparameter dependence Bfa,0) must reappear in the per-
creases on a very coarse scale by increasinthus recov- turbed diffusion coefficient, hence leading to multiple sup-
ering qualitative agreement with the simple random-walkpression and enhancement on all scales.

prediction, Eq.4) [21]. Indeed, for &— a)— 2, barriers are We conclude with a few remarks.
formed that a particle cannot cross anymore implying the (a) It would be important to have a proof of E¢p) for
existence of localization. dynamical systems, as well as to obtain higher-order correc-

To theoretically explain the simulation results, we modify tions for explaining the deviations between simulation and
Eqg.(4) in a straightforward way such that it can be applied totheory as visible in Fig. 3.
our disordered deterministic map under consideration. We (b) Our results might be important to understand diffusion
first note that for uniform transition rate$;,=const., it on a stepped surface with a disordered arrangement of
is d(I'y,l)=T"I2. Using this familiar expression for the Ehrlich-Schwoebel barriers, as has been analyzed on the ba-
random-walk diffusion coefficient on the unperturbed lattice,sis of a random trap/random barrier modig#]. Our map
we rewrite Eq.(4) asd={1/d(I',1)} 1. In the case of our provides a generalization of such a model in terms of corre-
map, the transition rates and the distance between sites adated random walks and thus enables to study the impact of
both somewhat combined in the action of the slgpas a memory effects on surface diffusion.
control parameter. Therefore, the unperturbed diffusion coef- (c) One could think of applying our approach to systems
ficient is correctly rewritten by replacing(I'y,l)=d(a). such as those studied in Rg1L2], or to the periodic Lorentz
The key question is: What function shall be used for thegas[8—10], which is a model close to experiments on antidot
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lattices[25]. Knowing the density-dependent diffusion coef- The author wishes to thank Professor K.W. Kehr for
ficient in the unperturbed cade6] leads us to predicting pointing out the existence of Ed4). The author is also
local and global suppression of the diffusion coefficient ingrateful to G. Radons, H. van Beijeren, J. R. Dorfman, and T.
this model in case of static density fluctuations. Tel for helpful discussions.
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