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Halting viruses in scale-free networks
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The vanishing epidemic threshold for viruses spreading on scale-free networks indicate that traditional
methods, aiming to decrease a virus’ spreading rate cannot succeed in eradicating an epidemic. We demonstrate
that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite
epidemic threshold and potentially eradicate a virus. We find that the more biased a policy is towards the hubs,
the more chance it has to bring the epidemic threshold above the virus’ spreading rate. Furthermore, such
biased policies are more cost effective, requiring less cures to eradicate the virus.
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While most diffusion processes of practical interest, rang-ber of nodes, and are therefore easily infected. Once infected,
ing from the spread of computer viruses to the diffusion ofthey pass on the virus to a significant fraction of the nodes in
sexually transmitted diseases, take place on complex nethe system.
works, the bulk of diffusion studies have focused on model The finding that the epidemic threshold vanishes in scale-
systems, such as regular lattices or random netwdrk8].  free networks has a strong impact on our ability to control
A series of recent results indicate, however, that real netyarious virus outbreaks. Indeed, most methods designed to
works significantly deviate from the structure of these modekradicate viruses—biological or computer based—aim at re-
systems[4}—deviations that have a strong impact on theqycing the spreading rate of the virus, hoping that ifalls
diffusion dynamics as well. In particular, the networks re-ynqer the critical thresholdl,, the virus will die out natu-
sponsible for the spread of computer viruses, such as theyy with a zero threshold, while a reduced spreading rate
Internet{5] or th? email network6], have a spak_e-fr(_ae topol- il decrease the virus’ prevalence, there is little guarantee
ogy [7], exhibiting a power-law degree distributio(k) ¢ it will eradicate it. Therefore, from a theoretical perspec-

~k™7 imi
tk d ,il\’llv(;}er?‘y r?rr]]gtefhbetweieT g z/r\;dri.rsmlolﬁgiyt’)lg ;g(r:i?]ttive viruses spreading on a scale-free network appear unstop-
study cates that the social nhetwork resp able. The question is, can we take advantage of the in-

spread of sexually transmitted diseases, such as AIDS, alsg . f b
exhibits a scale-free structuf8]. The topology of scale-free creased knowledge accumulated in the p.aSt ewyears a out
networks fundamentally deviate from the topology of bothnetwork topology to underste_md the conditions in which one
regular lattices and random networf@], differences that Can successfully eradicate viruses? _ _
impact the network’s robustness and attack tolerd6¢or Here we study the spreading of a virus to which there is a
the dynamics of synchronizatidii1]. It is not unexpected, CUre eradmatmg the virus from the node to which it is ap-
therefore, that the broad degree distribution leads to unesRlied to, but which does not offer a permanent protection
pected diffusion properties as wéll2). against the virus. If such a cure is available to all nodes,
A Simp|e model often used to Study the generic features otreating simultaneously all infected nodes will inevitably
virus spreading is the susceptible-infected-suscept®l§)  wipe the virus out. However, due to economic or policy con-
model. In this model an individual is represented by a nodesiderations the number of available cures is often limited.
which can be either “healthy” or “infected.” Connections This applies to AIDS, for which relatively effective but pro-
between individuals along which the infection can spread aréibitively expensive cures are available, unable to reach the
represented by links. In each time step a healthy node imost affected segments of population due to economic con-
infected with probabilityv if it is connected to at least one siderations[13]. But it also applies to computer viruses,
infected node. At the same time an infected node is curedvhere only a small fraction of users commit the time and
with probability 8, defining an effective spreading rake investment to update regularly their virus protection system.
=/ § for the virus. We show that distributing the cures randomly in a scale-free
The behavior of the SIS model is well understood if thenetwork is ineffective, being unable to alter the fundamental
nodes are placed on a regular lattice or a random networgroperties of the threshold-free diffusion process. However,
[1]. Diffusion studies indicate that viruses whose spreadingven weakly biased strategies, that discriminating between
rate exceeds a critical threshald will persist, while those the nodes, curing with a higher probability the hubs than the
under the threshold will die out shortly. Recently, however,less connected nodes, can restore the epidemic threshold. We
Pastor-Satorras and Vespignani have shd@g| that for  find that such hub-biased policies are more cost effective as
scale-free networks withy=<3 the epidemic threshold van- well, requiring fewer cures than those distributing the cures
ishes, i.e.A.=0. This finding implies that on such networks indiscriminately.
even weakly infectious viruses can spread and prevail. This Curing the hubsThe vanishing epidemic threshold of a
vanishing threshold is a consequence of the hubs—nodesrus spreading in a scale-free network is rooted in the infi-
with a large number of links encoded by the tail of powernite variance of the degree distributiqd2]. Indeed, the
law P(k). Indeed, the hubs are in contact with a large num-threshold\ . depends on the variance as
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FIG. 1. The epidemic threshold as a functionkgf FIG. 2. Prevalence measured as the fraction of infected nodes

in function of the effective spreading rate for a=0(0O),
_ (k) (1) 0250). 0.501%), 0.75(0), and 1(), as predicted by Monte
¢ (k2> ' Carlo simulations using the SIS model on a scale-free network with
N=10000 nodes.
On a regular lattice the degree distribution i dunction,
while on a random network it follows a Poisson distribution, administering a cure to an infected node witHinks in a
in both cases resulting in a fini(dx2>, and therefore nonzero given time frame depends on the node’s degrele*asvhere
N¢. In contrast, if the virus spreads on a scale-free networkg characterizes the policy’s ability to identify hubs. In this
for which P(k) follows a power law withy=<3, the variance framework =0 corresponds to random cure distribution,
is infinite and the epidemic thresholds= 0. Therefore, to  which is expected to have zero epidemic threshold while
restore a finite epidemic threshold, which would allow the=02c corresponds to an optimal policy that treats all hubs with
infection to die out, one needs to induce a finite variance. Aslegree larger thark,. Within the framework of the SIS
the origin of the infinite variance is in the tail of the degree model we assume that each node is infected with probability
distribution, dominated by the hubs, one expects that curing, but each infected node is cured with probabiligy
all hubs with degree larger than a given degkgewould = §yk®, again becoming susceptible to the disease. We define
restore a finite variance and therefore a nonzero epidemite spreading rate as=v/§,. As each healthy node is sus-
threshold. Indeed, if on a scale-free network nodes with deeeptible again to the disease, a node can get multiple cures
greek>k, are always healthy, the epidemic threshold is fi-during a simulation.
nite and has the valud 4] We place the nodes on a scale-free netwdi and ini-
tially infect half of them. After a transient regime the system
B & _ko—m ( Inﬁ) -t reaches a steady state, characterized by a constant average
k3 kem | "m]

)

density of infected nodeg, which depends on both the

spreading raté and« (Fig. 2). The =0 limit corresponds

This expression indicates that the more hubs we ¢uee ~ to random immunization in which case the epidemic thresh-

the smallek, is), the larger the value of the epidemic thresh-old is zero. As treating only the hubs will restore the nonzero

old (Fig. 1) [15]. Therefore, the most effective policy against epidemic threshold, for=% we expect a nonzerp, . Yet,

an epidemic would be to cure as many hubs as economicallne numerical simulations indicate that we have a finite

viable. The problem is that in most systems of interest we davell before theaw=< limit. Indeed, as Fig. 2 shows, is

not have detailed network maps, thus we cannot effectivelglearly finite fora=1 and so is for smaller value af as

identify the hubs. Indeed, we do not know the number ofwell. The numerical simulations do not give an unambiguous

sexual partners for each individual in the society, thus weanswer to the crucial question: Is there a critical value aft

cannot identify the social hubs that should be cured if in-which a finite\. appears, or for any nonzeww we have a

fected. Similarly, on the email network we do not know finite \.?

which email accounts serve as hubs, as these are the onesMean-field theoryTo interpret the results of the numeri-

that, for the benefit of all email users, should always carrycal simulations we studied the effect of a biased policy using

the latest antivirus software. the mean-field continuum approadii,12]. Denoting by
Short of a detailed network map, no method aiming top,(t) the density of infected nodes with connectivkythe

identify and cure the hubs is expected to succeed at its gogime evolution ofp,(t) can be written a§12]

of finding all hubs with degree larger than a givkp Yet,

policies designed to eradicate viruses could attempt to iden- Aipi(t) = — Spkpi(t) + v[1—p (1) JKO(N). 3

tify and cure as many hubs as possible. Such biased policy

will inevitably be inherently imperfect, as it might miss some The first term in the right-hand sidens) describes the prob-

hubs, and falsely identify some smaller nodes as hubs. Thebility that an infected node is cured, and it is therefore pro-

guestion is, however, would a policy biased towards curingportional to the number of infected nodegt) and the prob-

the hubs, without a guarantee that it can identify all of themability dok® that a node withk links will be selected for a

succeed at restoring the epidemic threshold? cure. The second term is the probability that a healthy node
To investigate the effect of incomplete information aboutwith k links is infected, proportional to the infection rate)(

the hubs we assume that the likelihood of identifying andthe number of linksK), the number of healthy nodes wikh
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links [1— p(t)], and the probabilityg(\) that a given link
points to an infected node. The probabili#f\) is propor-
tional tokP(k), therefore, it can be written as

kP(Kk)
—

> sP(s)

S

0(>\)=Ek (4)

Using A = v/ 5 and imposing the),p,(t) =0 stationary con-
dition we find the stationary density as

NO(N)

ST ©

Pk

Combining Eqs(4) and(5) and using the fact that the con-
nectivity distributionP(k) =2m?/k 2 for the scale-free net-
work [7], we obtain

A f i dk 1 ©)
m =
mk2 (k¥ T4+ NO(N)]
The average density of infected nodes is given by
(=3 P(kp(k) =2mrony) [ o
= =2m .
p : P m k3K 1+ NN ]
(7

Equations(6) and(7) allow us to calculate the average den-

sity of infected nodes for any value @f. For «a=0 they
reduce to the case studied in REE2] giving A;=0. For«
=1 we can solve Eq6), and using Eq(7) we obtain

)\ ’

N
p()\)|a:1: (8)
which indicates that fow=1 the epidemic threshold is fi-
nite, having the valua .(e=1)=1 [15].

To determine the epidemic threshold as a functionxof
we need to solve the(\) =0 equation. While we cannot get
p(\) for arbitrary values ofe, we can solve Eq(6) in \
using that at the threshobd=\. we haved(\.)=0. In this
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FIG. 3. The dependence of the epidemic threshqldn o as
predicted by our calculation&ontinuous ling based on the con-
tinuum approach, and by the numerical simulations based on the
SIS model(boxes. The small deviation between the numerical re-
sults and the analytical prediction is due to the uncertainty in deter-
mining the precise value of the threshold in Monte Carlo simula-
tions.

virus to die out naturally. To test the validity of predicti(®)

we determined numerically the(«) curve from the simula-
tions shown in Fig. 2. As Fig. 3 shows, we find excellent
agreement between the simulations and the analytical predic-
tion (9).

Cost effectivenesA major criteria for any policy de-
signed to combat an epidemic is its cost effectiveness. Sup-
plying cures to all nodes infected by a virus is often prohibi-
tively expensive. Therefore, policies that obtain the largest
effect with the smallest number of administered cures are
more desirable. To address the cost effectiveness of a policy
targeting the hubs we calculated the number of cures admin-
istered in a time step per node for different valuesaof
Figure 4 indicates that increasing the policy’s bias towards
the hubs by allowing a higher value far decreases rapidly
the number of necessarily cures. Therefore, policies that dis-
tribute the cures mainly to the nodes with more links are
more cost effective than those that spread the cures ran-
domly, blind to the node’s connectivity. We can understand
the origin of the rapid decay in(«) by noticing that the
number of cures administered per unit time is proportional to
the density of infected nodes. From Fig. 2 we see that for a
given value of the spreading rate the prevalence is decreasing
asa increases, decreasing the number of necessary cures as
well.

case Eq(6) predicts that the epidemic threshold depends on

a as 0.4
Ae=am® 1 9) 03
For a=0 we recoven =0, confirming that random immu- © 02
nization cannot eradicate an infectious disease ool Eq. ol .
(9) predicts that the epidemic thresholdNs=1, in agree- ' . .
ment with Eq.(8). Most important, however, Eq9) indi- 0 ® o o+ =
cates that\. is nonzero for any positive, i.e., any policy 0 0z 04 06 08 1
that is biased towards curing the hubs can restore a finite «

epidemic threshold. Furthermore, policies with largeare

FIG. 4. The number of cures administered in a unit time per

expected to be more likely to lead to the eradication of the,oge for different values of. The rapidly decaying indicates that

virus, as they result in largex. values. Therefore, Eq9)

the more successful a policy is in selecting and curing Klarger

indicates that a potential avenue to eradicating a virus is tgs «), the fewer the cures are required for a fixed spreading rate
increase the effectiveness of identifying and curing the hubg:\ =0.75). For =0 the number of cures is calculated Iy

Indeed, if the virus has a fixed spreading rate, increaaing
could increase\. beyond\, thus making it possible for the

=vl(v+6)=N/(1+\) which givesc=0.43, which value is in
good agreement with the numerical results.
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In summary, our humerical and analytical results indicatethe higher are its chances of eradicating the virus. Finally,
that targeting the more connected infected nodes can restotlee simulations show that a biased treatment policy is
the epidemic threshold, therefore making possible the eradiRrot only more efficient but it is also less expensive
cation of a virus. Most important, however, is the finding than random immunization. These results, beyond improving
that even moderately successful policies with small our understanding of the basic mechanisms of virus
can lead to a nonzero epidemic threshold. As the magnitudgpreading, could also offer important input into designing
of \. rapidly decreases witky, the more effective a policy effective policies to eradicate computer or biological infec-
is at identifying and curing the hubs of a scale-free networktions.
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