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Discrete four-stroke quantum heat engine exploring the origin of friction
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The optimal power performance of a first-principle quantum heat engine model shows frictionlike phenom-
ena when the internal fluid Hamiltonian does not commute with the external control field. The model is based
on interacting two-level systems where the external magnetic field serves as a control variable.
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I. INTRODUCTION

It is well established that the performance of working h
engines are limited by intrinsic unavoidable irreversibilitie
Maximum power is obtained at the expense of efficien
where the reversible point of maximum efficiency has z
power. This principle has been clearly illustrated by the
doreversible model of Curzon and Ahlborn@1# and summa-
rized by Salamonet al. @2#. Two additional unavoidable
sources of loss are heat leaks which practically eliminate
maximum efficiency adiabatic operation, and internal fricti
which restricts fast operating cycles.

Is this universal performance limitation of heat engin
macroscopic or microscopic? Though the common image
heat engines is of large macroscopic devices, microsc
models based on first-principle quantum mechanics are
ited by the Carnot efficiency@4#, and show a remarkabl
resemblance to their macroscopic analogs when the eng
produce finite power@3#.

In previous studies, both discrete@5–9# and continuous
quantum models@3,10–12# have been scrutinized, which ar
analogous, respectively, to four-stroke engines and turbi
The present study examines a discrete four-stroke quan
engine, comparing it to an engine subject to phenomenol
cal internal friction. It will be demonstrated that the quantu
engines inability to control simultaneously the external a
internal portions of the working fluid Hamiltonian is it
source of friction.

II. BASIC CONSTRUCTION

All working heat engines and all refrigerators operate
the same principle. The engine manipulates the energy
between three reservoirs, a hot reservoir, a cold reser
and a power reservoir, either to extract power from the te
perature difference or to pump heat from the cold to the
reservoir at the expense of external power.

The cycle of operation of the discrete quantum heat
gine is composed of twoadiabatsand twoisochoressimilar
to an Otto cycle. The quantum dynamics are generated
external fields in theadiabatsand by heat flows from hot an
cold reservoirs in theisochores. The working medium is
modeled as a gas of interacting particles with the Ham
tonian

Ĥ5Ĥext1Ĥ int . ~1!

Ĥext5v( iĤ i is the sum of single particle Hamiltonians,v
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5v(t) is the time-dependent external control field, andĤ int

represents the interparticle interaction.
The change in time of an operatorÂ during theadiabatic/

isochorealbranches is described as

Ȧ̂5 i @Ĥ,Â#1 ]Â/]t 1LD~Â!. ~2!

LD represents the Liouville dissipative generator on the i
chore in contact with either the hot or cold bath~units of \

51). ReplacingÂ by Ĥ in Eq. ~2! leads to the power in-
vested in or extracted from the adiabats,

P5v̇(
i

^Ĥi&, ~3!

where ^Ĥi& is the expectation value of the single partic
Hamiltonian. The heat flow is extracted from the energy b
ance on the isochores@3,9#

Q̇h/c5^Lh/c~Ĥ!&. ~4!

For simplicity, the single particle Hamiltonian is chose
as a two-level system~TLS!: Ĥi5ŝz

i . The interaction term is
restricted to coupling of pairs of spin atoms. As a result,
state of the working medium is described by an ensemble
pairs of two-level systems represented by the density op
tor r̂, defined in the tensor product space of the individu
two TLS systems. Expectation values are obtained by
usual definition̂ Â&5tr$Âr̂%. The external Hamiltonian then
becomes

Ĥext5v~ŝz
1

^ Î 21 Î 1
^ ŝz

2!, ~5!

whereÎ j is the single particle identity and the external field
chosen to be in thez direction. The interaction Hamiltonian
is chosen as

Ĥ int5J~ŝx
1

^ ŝx
22ŝy

1
^ ŝy

2!. ~6!

J scales the strength of the interaction. WhenJ→0 the
model approaches the previously studied frictionless mo
@7#. The interparticle interaction term, Eq.~6!, defines a cor-
relation energy between the two single particle spins in thxW

andyW direction. As a result,@Ĥext,Ĥ int#Þ0, since the exter-
nal Hamiltonian is polarized in thezW direction.

III. DYNAMICS OF THE WORKING MEDIUM

The dynamics generated by the Hamiltonian is complet
determined by the algebra of commutation relations of
©2002 The American Physical Society02-1
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set of 16 operators spanning the Hilbert space of the c
bined system. Due to symmetry, the commutation alge
decomposes into subsets of operators with closed comm
tion relations. The subset generated by the operators com
ing the Hamiltonian

B̂15ŝz
1

^ Î 21 Î 1
^ ŝz

2 , B̂25ŝx
1

^ ŝx
22ŝy

1
^ ŝy

2 , ~7!

and B̂352 i /4@B̂1,B̂2# is a closed Lie algebra of the com
bined system. The Hamiltonian expressed in terms of the
of operators becomesĤ5vB̂11JB̂2 .

The commutation relations of the set ofB̂i operators are
isomorphic to the angular momentum commutation relati
when the transformation14 B̂i→ Ĵi is applied. Other single
particle Hamiltonians and interaction can be found wh
lead to the same commutation algebra. This similarity can
exploited to express the expectation values in a Carte
three-dimensional space, where the external field is in theB1

or zW direction, the correlations in theB2 or xW direction andB3

is in theyW direction.
The closed set of operatorsB̂i is sufficient to follow the

changes in energy and to obtain the power consumption.
ing Eq. ~2! and the commutation relations of the set ofB̂i
operators, the Heisenberg equation of motion for this set
comes

d

dt S B1

B2

B3

D 5S 0 0 4J

0 0 24v~ t !

24J 4v~ t ! 0
D S B1

B2

B3

D . ~8!

These equations can be written in matrix form for the exp
tationsbi5^B̂i&5tr$B̂i r̂%,

~d/dt!b¢5A~ t !b¢ . ~9!

Since the matrixA(t) is time dependent, the propagation
broken intoN short time segmentsDt whereNDt5t, and is
solved numerically. The matrixA is diagonalized for each
time step, assuming thatv(t) is constant within the time
period Dt. The corresponding eigenvalues becom
24iV, 0, and 4iV, where V5AJ21v2. The short time
propagator for theadiabatsfrom time t to t1Dt,

Ua~ t,Dt !5eA(t)Dt

5S v21cJ2

V2

vJ~12c!

V2

Js

V

vJ~12c!

V2

J21cv2

V2

2vs

V

2Js

V

vs

V
c
D , ~10!

wherec5cos(4VDt) ands5sin(4VDt).
On the isochores, the system is in contact with a ther

bath which eventually will lead the working fluid to therm
equilibrium with temperatureT,
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r̂eq5e2bĤ/Z ~11!

with b51/kbT and Z5tr$e2bĤ%. The dynamics generate
by the system-bath interaction is described by the dissipa
Liouville operator or the quantum master equationLD ,
which in Lindblad form becomes@13#

LD~X̂!5(
i

F̂iX̂F̂i
†2

1

2
~ F̂iF̂i

†X̂1X̂F̂iF̂i
†!, ~12!

whereF̂i are operators from the Hilbert space of the syste
The operatorsF̂i which control the approach to thermal equ
librium become the transition operators between the ene
eigenstates.

Substituting theB̂i operators into Eq.~12! one gets

LD~B̂1!52GB̂12 ~2v/V! ~k↓2k↑ ! Î ,

LD~B̂2!52GB̂22 ~2J/V! ~k↓2k↑ ! Î , ~13!

LD~B̂3!52GB̂3 ,

whereG5k↓1k↑, and the coefficientsk↓ andk↑ obey de-
tailed balancek↑/k↓5e2b2V, with the bath temperatureb
5kb /Th/c . The kinetic coefficients can be obtained fro
first principles from the bath correlation functions@10#. The
set of B̂i operators and the identity operatorÎ form a closed
set to the application of the dissipative operatorLD .

The relaxation to equilibrium is accompanied by loss
phase. Additional dephasing can be caused by elastic
fluctuations which modulate the systems frequencies. T
pure dephasing conserves the systems energyL D

d (Ĥ)50. It
is obtained by inserting the Hamiltonian in Lindblad’s for
@Eq. ~12!# as one of the operatorsF̂i,

L D
d ~X̂!5g†Ĥ,@Ĥ,X̂#‡. ~14!

Equations of motion for the set ofB̂i operators on the isoch
ore are obtained from Eqs.~13!, ~14!, and~2!:

~d/dt!b¢5Bb¢2c¢, ~15!

where

B5S 2G116gJ2 216gJv 4J

216gvJ 2G116gv2 24v

24J 4v 2G116gV2
D , ~16!

c¢5S 2v

V
~k↓2k↑ !

2J

V
~k↓2k↑ !

0

D .

The solution of Eq.~15! for the isochores becomes

b¢~ t !5UT@b¢~0!2b¢eq#1b¢eq ~17!

whereb¢eq52(1/G)c¢ and
2-2
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UT5e2(G216gV2)tS Xv21cJ2

V2

vJ~X2c!

V2

Js

V

vJ~X2c!

V2

XJ21cv2

V2

2vs

V

2Js

V

vs

V
c

D ,

~18!

whereX5exp(216gV2t), c5cos(4Vt), ands5sin(4Vt).

IV. THE CYCLE OF OPERATION

Figure 1 illustrates the cycle of operation on the plane
the variablesv, the external control, and the projection
the polarization on the energy axisE/V. A different view is
displayed in Fig. 2 showing the cycle trajectory on the v
ume defined by the set of ‘‘polarization’’ coordinates^B̂i&.

FIG. 1. ~Color! The heat engine withJÞ0 in thev, E/V plane.
Th is the hot bath temperature.th is the time allocation when in
contact with the hot bath.Tc andtc represent the temperature an
time allocation for the cold bath.tba represents the time allocatio
for compression~field change fromvb to va) and tab for expan-
sion. The rectangular box which includes pointE on the hot isoch-
ore where the system is in equilibrium withTh , and pointF ~equi-
librium with Tc! on the cold isochore, represents the cycle
maximum work. This cycle spends an infinite amount of time on
branches. The work is the area of the rectangleWmax5(Vb2Va)
•@(Eh /Vb)2(Ec /Va)#. The optimal power cycle is emphasized b
the green shading. The time allocations for this cycle areth

51.705, tba50.4369, tc51.76597321, andtab50.4953. The
cycle depicted in purple is characterized by very short time allo
tions on the adiabats (tba5tab50.00025). The common engin
parameters areva51.794, vb54.239, Th52.5, Tc50.5, J50.6.
Gc5Gh51 with units where\51 andkb51.
05510
f

-

The cycle starts at pointA where the system is in contac
with the hot bath at temperatureTh . The system accumulate
heat for a periodth until it reaches pointB. Point E is the
equilibrium point of the scaled energyE/V at the bath tem-
peratureTh with external field strengthvb . Adiabatic com-
pression fromvb to va follows the trajectory from pointB
to point C for a time durationtba with a constantv̇. The
system is in contact with the cold bath from pointC to point
D for a time durationtc . The cold bath equilibrium point, a
temperatureTc at va , is F. The cycle becomes closed by
compression stage from pointD back to pointA.

For long time duration on the adiabats the cycle of ope
tion is restricted to theB̂1 ,B̂2 plane. For fast motion on the
adiabats the system cannot follow the instantaneous cha
in the direction of the Hamiltonian rotating on theB̂1 ,B̂2

plane. As a result the expectation of theB̂3 operator increases
starting a precession type motion around the temporary
rection of the HamiltonianĤ5v(t)B̂11JB̂2 . This can be
seen clearly in Fig. 2 in the trajectory from pointD to point
A. The precession motion continues on the isochore wh
the Hamiltonian becomes constant~point A to point B). In
addition, due to dephasing, the amplitude of the preces
motion is damped. Part of the dephasing is caused by
energy equilibration with the bath. When pure dephasing
added the precession motion is damped almost instantly~cf.
Fig. 2!. The motion out of theB̂1 ,B̂2 plane causes a bendin
upward in the adiabats as seen in Fig. 1. This bending ca
additional work on the adiabats which is then dissipated
the isochores. This causes a reduction in efficiency fr
hmax512Va /Vb50.5581 which is reached at infinite cycl
times to a lower value at maximum powerhPmax50.495
(hcarnot50.8). The cycle of the engine is completely dete
mined by the external control parametersva ,vb ,Th ,Tc ,
and the time allocations:th ,tc ,tba ,tab . Independent of the
initial condition, the engine settles to a limit cycle after a fe
revolutions with the preset sequence of isochores and a
bats.

The optimization objective is the power of the engi

f
ll

-

FIG. 2. ~Color! The optimal power heat engine cycle corr

sponding to Fig. 1. TheB̂1 coordinate represents the individu

particle polarization, and theB̂2 and B̂3 coordinates represent th
interparticle correlation. The inner cycle with blue isochores is s
ject to strong dephasing (gh520.15 andgc520.5).
2-3
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which is the total work per cycleW divided by the cycle
period t. Work is obtained only on the adiabats and is c
culated by integrating the instantaneous power Eq.~3! for the
adiabat duration:Wba5*0

tbaPdt5*0
tbav̇^B̂1&dt.

The optimization analysis starts by setting the exter
parameters as the extreme field valuesvb ,va and the hot
and cold bath temperatures atTh ,Tc . The performance of
the engine therefore will be determined by the time alloca
to the different segments. By setting the total cycle timet
5tba1tc1tab1th the optimization is carried out by part
tioning the time between the adiabats and isochores. T
splits the allocated time between the hot and cold bath
chores, and splits the allocated time between the comp
sion and expansion adiabats.

In the limiting case of no internal couplingJ50, the cur-
rent model is identical to the noted frictionless one@7,9#. In
this frictionless case the optimal power time allocation on
isochores becomesGhth5Gctc and zero time allocation on
the adiabats. ForJÞ0 the time allocations changes consi
erably. Two limiting cases emerge, the slow limit where m

FIG. 3. ~Color! Power as a function of cycle timet for optimal
time allocation on the four branches for three values of the par
eterJ. The underlying dotted lines are the optimized power out
of an engine with phenomenological internal friction~in black!. A
linear relation betweenJ and the friction parameters fits the data.
The inset shows the maximum power as a function ofJ ~in red! and
s330.
05510
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of the cycle time is allocated to the adiabats, and the fas
sudden limit where most of the time is allocated to the is
chores.

The global power optimum was sought by both a con
gate gradient method and by a random search scrutini
local maxima. The optimal power as a function of the to
cycle time is shown in Fig. 3 for differentJ values. It is clear
that the power has a clear maximum with respect to the cy
period t. The optimal value decreases and cycle time
creases with increasingJ. The maximum power output as
function of J is shown in the insert together with the anal
gous friction case.

Despite the large local fluctuations with respect to tim
allocations the optimal power performance of the quant
engine shows a remarkable overall similarity to the perf
mance of an engine subject to phenomenological friction
studied in Ref.@9#. One expects friction to oppose the fa
motion on the adiabats, therefore the extra power inves
has to be independent of the sign of the change in the con
field. This means that to the lowest order it has to be prop

tional to the square of the time derivative, i.e.,Pf r ic5s2v̇2.
The accumulated extra work is then dissipated on the c
isochore. The engine subject to friction shows performa
curves and optimal time allocations which are very close
the present first principle quantum model. For this case
origin of lost power is the inability of the ‘‘polarization’’ vec-
tor to follow adiabatically the instantaneous Hamiltonia
The resulting precession motion on the isochores then le
to additional dissipation on the cold isochore. To the low
order, the additional power should scale asJ2 which explains
the observed linear relation ofJ with the friction parameter
s.

To conclude, we have found that a quantum heat eng
with an interacting working fluid which is not completel
controllable by the external field shows performance char
teristics which can be mapped into a heat engine subjec
phenomenological friction. The friction observed is the co
bined effect of nonadiabatic dynamics and the relaxation
namics necessary for heat transfer on the isochores.
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