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Discrete four-stroke quantum heat engine exploring the origin of friction
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The optimal power performance of a first-principle quantum heat engine model shows frictionlike phenom-
ena when the internal fluid Hamiltonian does not commute with the external control field. The model is based
on interacting two-level systems where the external magnetic field serves as a control variable.
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I INTRODUCTION =w(t) is the time-dependent external control field, &tht

. . . represents the interparticle interaction.
It is well established that the performance of working heat pTh h . _p ¢ WArduring theadiabatic/
engines are limited by intrinsic unavoidable irreversibilities., '€ change in time of an operat@rduring theadiabatic

Maximum power is obtained at the expense of efficiency'SOChO"ealbran_Ches is described as
where the reversible point of maximum efficiency has zero A=i[H,A]+ dAIdt + Lp(A). 2)
power. This principle has been clearly illustrated by the en-
doreversible model of Curzon and Ahlbdrh] and summa- Lp represents the Liouville dissipative generator on the iso-
rized by Salamonet al. [2]. Two additional unavoidable chore in contact with either the hot or cold bdtmits of#
sources of loss are heat leaks which practically eliminate the-1). ReplacingA by H in Eq. (2) leads to the power in-
maximum efficiency adiabatic Operation, and internal friCtionvested in or extracted from the adiabats,
which restricts fast operating cycles. ) R

Is this universal performance limitation of heat engines 7?=w2 (Hi), 3
macroscopic or microscopic? Though the common image of :
heat engines is of large macroscopic devices, microscopic

models based on first-principle quantum mechanics are ”mwhere(Hi) is the expectation value of the single particle

ited by the Carnot efficiency4], and show a remarkable Hamiltonian.'The heat flow is extracted from the energy bal-
resemblance to their macroscopic analogs when the engin@8ce on the isochorgs,9] A
produce finite powef3]. Onie={(Lpc(H)). (4)

In previous studies, both discref6—9] and continuous o ) ) S
quantum model§3,10—-12 have been scrutinized, which are ~ For simplicity, the smgIeA parAtl_cIe Hamiltonian is chosen
analogous, respectively, to four-stroke engines and turbinegs a two-level systeTLS): H;= o, . The interaction term is
The present study examines a discrete four-stroke quantunestricted to coupling of pairs of spin atoms. As a result, the
engine, comparing it to an engine subject to phenomenologistate of the working medium is described by an ensemble of
cal internal friction. It will be demonstrated that the quantumpairs of two-level systems represented by the density opera-

engines inability to control simultaneously the external andor p, defined in the tensor product space of the individual
internal portions of the WOkang fluid Hamiltonian is its two TLS systems. Expectation values are obtained by the

source of friction. usual definition{A)=tr{Ap}. The external Hamiltonian then
becomes

IIl. BASIC CONSTRUCTION Hey=w(oi®12+ 110 02), ©)

All working heat engines and all refrigerators operate on

the same principle. The engine manipulates the energy ﬂo\xyherefj is the single patrticle identity and the external field is

between three reservoirs, a hot reservoir, a cold reservoiﬁhose” to be in the direction. The interaction Hamiltonian

and a power reservoir, either to extract power from the tem!s chosenas o
perature difference or to pump heat from the cold to the hot Hin=J(0%® 05— 0§® 0‘5)- (6)
reservoir at the expense of external power. . _

The cycle of operation of the discrete quantum heat end Scales the strength of the interaction. Whér-0 the
gine is composed of twadiabatsand twoisochoressimilar ~ Model approaches the previously studied frictionless model
to an Otto cycle. The quantum dynamics are generated by/]- The interparticle interaction term, E(f), defines a cor-
external fields in thediabatsand by heat flows from hot and relation energy between the two single particle spins irxthe
cold reservoirs in thasochores The Working medium is andi; direction. As a resu|m|:|ext,ﬂint];é0, since the exter-

ggiczienlEd as a gas of interacting particles with the Hamll'nal Hamiltonian is polarized in the direction.

A =gt Hint.- (1) Iil. DYNAMICS OF THE WORKING MEDIUM

) ) The dynamics generated by the Hamiltonian is completely
Hev= @ZiH; is the sum of single particle Hamiltonians, = determined by the algebra of commutation relations of the
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set of 16 operators spanning the Hilbert space of the com- ;) —e A7 (11)
bined system. Due to symmetry, the commutation algebra ed

decomposes into subsets of operators with closed commutggip, B=1/k,T and Z=tr{e*/’ﬁ}. The dynamics generated
tion relations. The subset generated by the operators COmpagsy the system-bath interaction is described by the dissipative
ing the Hamiltonian Liouville operator or the quantum master equatidp,

B,=olei?+il®0?, B,=ol®oi— (};®&§, @ which in Lindblad form becomefl 3]

- s o . SV BB T e pt
and B;=—i/4[B,,B,] is a closed Lie algebra of the com- ﬁD(X)—Z FiXF =5 (FF X+ XFF), (12)
bined system. The Hamiltonian expressed in terms of the set
of operators becomés = wB;+JB;. whereF; are operators from the Hilbert space of the system.

The commutation relations of the set Bf operators are  The operators$; which control the approach to thermal equi-
isomorphic to the angular momentum commutation relationsgibrium become the transition operators between the energy
when the transformatio B;—J; is applied. Other single eigenstates.
particle Hamiltonians and interaction can be found which  Supstituting theB; operators into Eq(12) one gets
lead to the same commutation algebra. This similarity can be R . R
exploited to express the expectation values in a Cartesian Lp(By)=—TI'B;1— (20/Q) (k| —kT)I,
three-dimensional space, where the external field is irBthe

or z direction, the correlations in the, or x direction andB;
is in the;? direction. 5D(|§3)= _r|§3’
The closed set of operatoE} is sufficient to follow the

changes in energy and to obtain the power consumption. ugvherel'=k| +kT, ar_ld 'Ehﬁemcoefficientki andkT obey de-
ing Eq. (2) and the commutation relations of the setl%}f tailed balancek(/k| =e , With the bath temperaturg

. : : . =Ky /Th. The kinetic coefficients can be obtained from
operators, the Heisenberg equation of motion for this set bq{irs’cb prirr]1/f:iples from the bath correlation functiofs0]. The

Lp(By)=—TBy— (23/Q) (k| —k T, (13)

comes R N
set of B; operators and the identity operatoform a closed
g B1 0 0 4 B1 set to the application of the dissipative operafgy.
0t B,|=| 0 0 —4o(t) B,|. (8 The relaxation to equilibrium is accompanied by loss of

phase. Additional dephasing can be caused by elastic bath
fluctuations which modulate the systems frequencies. This

These equations can be written in matrix form for the expecpure dephasing conserves the systems en8fgH)=0. It
tationsb-z(é-}ztr{é- ;]} is obtained by inserting the Hamiltonian in Lindblad’s form
| I 1 1

[Eq. (12)] as one of the operatofs,
L£3(X)=~[H,[A,X]]. (14)

B, —4) 4e(t) 0 By

(d/dt)b= A(t)b.

Since the matrixA(t) is time dependent, the propagation is .
broken intoN short time segmentat whereNAt=t, and is  Equations of motion for the set &; operators on the isoch-
solved numerically. The matri¥ is diagonalized for each ore are obtained from Eq§l3), (14), and(2):

time step, assuming thab(t) is constant within the time

period At. The corresponding eigenvalues become (d/dtyb=Bb—c, (15
—4iQ, 0, and 4Q, where Q= J?+ »?. The short time where
propagator for thediabatsfrom timet to t + At,
A -T+16yJ?> —16yJw 4]
Us(t,At)=e At )
B= —16ywd —-I'+16yw —4w . (16
w?+c¥  wd(l-c) Js ~4) 4o ~T'+16y02
0?2 0?2 Q 2
wlJ(l-c) JP+cw?® -ws o (kl—=kT)
= 1 N
QZ QZ QO ) ( 0) P 2] ’ ’
_Js s ] q (KL=KkT)
Q Q 0

) The solution of Eq(15) for the isochores becomes
wherec=cos(42At) and s= sin(4At).

On the isochores, the system is in contact with a thermal b(t) =4[ b(0) — b9 + bed 17)
bath which eventually will lead the working fluid to thermal . .
equilibrium with temperaturd, whereb®l= —(1/T")c and
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FIG. 2. (Color) The optimal power heat engine cycle corre-
sponding to Fig. 1. The3; coordinate represents the individual

particle polarization, and thB, and B; coordinates represent the
interparticle correlation. The inner cycle with blue isochores is sub-
ject to strong dephasingyf,=—0.15 andy.= —0.5).

E,'"r Q The cycle starts at poirk where the system is in contact
) ) ) with the hot bath at temperatufg . The system accumulates
FIG. 1. (Color) The heat engine witd#0 in thew, E/Q) plane. — poqt for 5 periodr, until it reaches poinB. PointE is the
Contact with the ot DAt andy. represen: e temperature and SAUIibriLM poin of the scaled ener@y/€ at the bath tem-
¢ ¢ peratureT,, with external field strengtlwy, . Adiabatic com-

time allocation for the cold bathr,, represents the time allocation ion f t foll the traiect f B
for compressior{field change fromw, to w,) and 7., for expan- pression iromwy, 10 @, Tollows the trajéctory ifrom poin

sion. The rectangular box which includes paibn the hot isoch-  t0 point C for a time durationr,, with a constantw. The

ore where the system is in equilibrium wilh,, and pointF (equi-  System is in contact with the cold bath from po@ito point
librium with T.) on the cold isochore, represents the cycle of D for a time durationr.. The cold bath equilibrium point, at
maximum work. This cycle spends an infinite amount of time on alltemperaturel . at w,, is F. The cycle becomes closed by a
branches. The work is the area of the rectandlg.,= (Q,—Q,) compression stage from poibx back to pointA.

[(En/€2p) —(Ec/Q,)]. The optimal power cycle is emphasized by  For long time duration on the adiabats the cycle of opera-
the green shading. The time allocations for this cycle ae jop js restricted to thé,,B, plane. For fast motion on the

=1.705, 7,=0.4369, 7,=1.76597321, andr,,=0.4953. The  ,iapais the system cannot follow the instantaneous change
cycle depicted in purple is characterized by very short time alloca- . . . ] ) A
tions on the adiabatsrf,= 7,,=0.00025). The common engine N the direction of the Hamiltonian rotating on tti& B,

parameters are,=1.794, w,=4.239, T,=2.5, T,=0.5, J=0.6.  plane. As a result the expectation of Bgoperator increases
I'.=T'y=1 with units wherefi=1 andk,=1. starting a precession type motion around the temporary di-

rection of the HamiltoniarH = w(t)B;+JB,. This can be
seen clearly in Fig. 2 in the trajectory from poibtto point

Xw?+cF wI(X—c) Js A. The precession motion continues on the isochore where
02 02 0 the Hamiltonian becomes constdpbint A to point B). In
addition, due to dephasing, the amplitude of the precession
_—(r-16y02t| @I(X—c) XJI+cw? —ws motion is damped. Part of the dephasing is caused by the
Ur=e 2 > Q ' energy equilibration with the bath. When pure dephasing is
Q Q added the precession motion is damped almost instécitly
—Js S . Fig. 2. The motion out of thé, ,B, plane causes a bending
Q Q upward in the adiabats as seen in Fig. 1. This bending causes

(18 additional work on the adiabats which is then dissipated on
the isochores. This causes a reduction in efficiency from

whereX=exp(-16y€°t), c=cos(4M), ands=sin(40t). max=1—Q,/Q,=0.5581 which is reached at infinite cycle
times to a lower value at maximum powefs .= 0.495
IV. THE CYCLE OF OPERATION (mcarmot=0.8). The cycle of the engine is completely deter-

mined by the external control parametasg,wp, Ty, e,
Figure 1 illustrates the cycle of operation on the plane ofand the time allocationss, , 7. , 7pa . 7an - INdependent of the
the variablesw, the external control, and the projection of jnjitial condition, the engine settles to a limit cycle after a few
the polarization on the energy ax3(). A different view is  revolutions with the preset sequence of isochores and adia-
displayed in Fig. 2 showing the cycle trajectory on the vol-pats.

ume defined by the set of “polarization” coordinaté3;). The optimization objective is the power of the engine
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FIG. 3. (Color) Power as a function of cycle timefor optimal

time allocation on the four branches for three values of the param
eterJ. The underlying dotted lines are the optimized power output

of an engine with phenomenological internal frictin black). A

linear relation betweed and the friction parameter fits the data.
The inset shows the maximum power as a functiod @h red) and
o X% 30.

which is the total work per cycleV divided by the cycle
period 7. Work is obtained only on the adiabats and is cal-
culated by integrating the instantaneous power(Byfor the

adiabat durationWy,,= [ ;>*Pdt= f >*w(B,)dt.
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of the cycle time is allocated to the adiabats, and the fast or
sudden limit where most of the time is allocated to the iso-
chores.

The global power optimum was sought by both a conju-
gate gradient method and by a random search scrutinizing
local maxima. The optimal power as a function of the total
cycle time is shown in Fig. 3 for differedtvalues. It is clear
that the power has a clear maximum with respect to the cycle
period 7. The optimal value decreases and cycle time in-
creases with increasingj The maximum power output as a
function of J is shown in the insert together with the analo-
gous friction case.

Despite the large local fluctuations with respect to time
allocations the optimal power performance of the quantum
engine shows a remarkable overall similarity to the perfor-
mance of an engine subject to phenomenological friction as
studied in Ref[9]. One expects friction to oppose the fast
motion on the adiabats, therefore the extra power invested
has to be independent of the sign of the change in the control
field. This means that to the lowest order it has to be propor-

tional to the square of the time derivative, i By = 02 w?.

The accumulated extra work is then dissipated on the cold
isochore. The engine subject to friction shows performance
curves and optimal time allocations which are very close to
the present first principle quantum model. For this case the
origin of lost power is the inability of the “polarization” vec-

tor to follow adiabatically the instantaneous Hamiltonian.
The resulting precession motion on the isochores then leads

The optimization analysis starts by setting the externato additional dissipation on the cold isochore. To the lowest

parameters as the extreme field valugs, o, and the hot
and cold bath temperatures &}, T.. The performance of

order, the additional power should scaleJasvhich explains
the observed linear relation dfwith the friction parameter

the engine therefore will be determined by the time allocatedy.

to the different segments. By setting the total cycle time
= That Tt Tapt T, the optimization is carried out by parti-

To conclude, we have found that a quantum heat engine
with an interacting working fluid which is not completely

tioning the time between the adiabats and isochores. Thisontrollable by the external field shows performance charac-
splits the allocated time between the hot and cold bath iscteristics which can be mapped into a heat engine subject to
chores, and splits the allocated time between the comprephenomenological friction. The friction observed is the com-

sion and expansion adiabats.
In the limiting case of no internal coupling=0, the cur-
rent model is identical to the noted frictionless di7ed]. In

bined effect of nonadiabatic dynamics and the relaxation dy-
namics necessary for heat transfer on the isochores.
This research was supported by the U.S. Navy under con-

this frictionless case the optimal power time allocation on thetract number N00014-91-J-1498 and the Israel Science Foun-

isochores becomds, 7,=1".7. and zero time allocation on
the adiabats. Fod+#0 the time allocations changes consid-

dation. The authors wish to thank Jeff Gordon for his con-
tinuous help, and Peter Salamon and Lajos Diosi for

erably. Two limiting cases emerge, the slow limit where mostcomments.
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