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Drifting pattern domaingDPDs), i.e., moving localized patches of traveling waves embedded in a stationary
(Turing) pattern background and vice versa, are observed in simulations of a reaction-diffusion model with
nonlocal coupling. Within this model, a region of bistability between Turing patterns and traveling waves arises
from a codimension-2 Turing-wave bifurcatig@WB). DPDs are found within that region in a substantial
distance from the TWB. We investigated the dynamics of single interfaces between Turing and wave patterns.
It is found that DPDs exist due to a locking of the interface velocities, which is imposed by the absence of
space-time defects near these interfaces.
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INTRODUCTION They exist in a broad region of the parameter space embed-
ded in a region of bistability between traveling waves and
Pattern forming processes in nonequilibrium systems cafuring patterns. Similar patterns have been reported in a va-
be classified according to the primary instability of the spaJiety of hydrodynamical experimental systenisee, e.g.,
tially homogeneous state. Referer{dd distinguishes three [11,12) and have been related to secondary instabilifies-
basic types of instability in unbounded systerfisspatially ity breaking of stationary patterngl1,13.
periodic and stationary in timeji) spatially periodic and In this Rapid Communication we show that it is sufficient
oscillatory in time, andiii) spatially homogeneous and os- t0 investigate the dynamics of single interfaces separating
cillatory in time. Within the reaction-diffusion literature, domains of Turing and wave patterns in order to understand

these instabilities are known as Turing, wave, and Hopf b|_the formation of DPDs. The dynamiCS of such interfaces is

furcations, respectively. studied in the framework of amplitude equations and com-
Many chemical and biological patterns are well captureddared to results of numerical simulations in the original

by so called activator-inhibitor modef&] describing the dy- model. The dynamics of interfaces separating small ampli-

namics of two reacting and diffusing substances with twotude patterns is well described by the amplitude equations.

coupled partial differential equations. In such two- FOr large amplitude patterns, an effect arises that we call

component reaction-diffusion models only Turing and Hopfvelocity locking This locking mechanism is responsible for

instabilities are possible. Recently, numerical investigationghe existence of DPDs with constant width.

of chemical reaction-diffusion systems with three compo-

nents[3] and nonlocal coupling4] have yielded the occur- B0

rence of wave instabilities and the corresponding patterns. A (a) r;f;f'//
universal description of patterns near these instabilities is ‘
achieved within the framework of amplitude equati¢hs].
Here, we study a simple FitzHugh-Nagumo model with
inhibitory nonlocal coupling that is obtained as a limiting
case of a three-component reaction-diffusion system. It de-
scribes the interaction of an activator species with an inhibi-
tor. For slow inhibitor diffusion(compared to the activator o

diffusion), the model exhibits a wave instability, while for
fast inhibitor diffusion, a Turing instability is found. The two
instabilities occur simultaneously at a codimension-2 Turing-
wave bifurcation(TWB). Such a situation has been found
earlier within models for binary convectig] and phase
separation in reactive mixturég] and is a generalization of
the well investigated Turing-Hopf instability in reaction-
diffusion systemg8]. The basic properties of a TWB have
been studied theoretically in amplitude equatip@sas well

as experimentally in a one-dimensional gas-discharge system giG. 1. Space-time plots of the fieldin gray scale for three
[10]. In our model, we find a pattern previously unknown in examples of DPDs found in numerical simulations of Hgs. In all
reaction-diffusion systems: drifting pattern doma{BDs,  three case=6.0, and only a part of the system of length
i.e., localized patches of traveling waves embedded in a Tur=409.6 is shown(a) Large DPD withé=0.84.(b),(c) DPDs con-
ing background and vice verdaee Fig. 1 These patches sisting of a single cell of Turing and wave, respectively.(i &
have constant width and mowerift) with constant speed. =0.80 and in(c) §=0.91. For other parameters, 464
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FIG. 2. (a) Critical wave numbeky, against inverse nonlocal 06 0.8 15 12 14

coupling ranger. (b) Real (y) and imaginary part¢) of A (k) at

the TWB. For parameters, Sg&7]. (b)'//// [ (c)
60 60
MODEL EQUATIONS AND LINEAR STABILITY 1 I
We start from the three-variable system 30 _30_
du=au+ Bu?— au®—bv —gw+ d2u, r ]
0 o ‘ ‘ 0

dw=cu—dv + 5d%v, 0 50 100 5 0

TwoiWw=eu—fw+ 78)2(W. FIG. 3. (a) Parameter space-5 near the TWB point(black
circle). The light gray region indicates bistability between the Tur-
These equations are an extension of the FitzHugh-Nagumiog and wave pattern witk$ ,ky, as predicted from Eqs2). Dark
model by a second inhibitav. If the second inhibitor is very gray regions correspond to two examples of locking tongues for an

fast, 7,,= 0, one finds outward interface wittk;=k$ (region OT) and an inward interface
with ky=k{y (region IT). These two tongues are shown only up to
&tu=au+,8u2—au3—bv+&§u a~5.6. The dashed lines show where the selected velocities of
interfaces in Egs(2) coincide withv,c. White circles indicate
tee —olx=x'| , , parameter values of simulations shown(b) and (c). See Fig. 4
TR Cw € u(x’,tydx’, below for a description of the dashed regiofis) and (c) show
space-time plots ofi in gray scale from simulations of Egél)
dw=cu—dv+ 55)2(1). (1) showing outward interfaces fa=5.2. In(b) an example inside the

locking tongue is shown fo=0.80 and in(c) an interface outside
the tongue exhibiting defectginside the white circles for &

Th rameters char rizing the inhibitory nonl |
e parameters characte g the bitory nonlocal cou- — 0.86 is shown.

pling in Egs. (1) are then found ass=f/y and u
=g.e?/yf from the original three-variable model above. 2 Paol(1+9)-
Related three-variable models have been introduced prevFhe faites'; grgm;:t;tmode V(\j”trk&’) | sﬂlal(lﬁ.é limi
ously to describe pattern formation on seashells and in cen‘IOte t .at or bot Oc "fmc o=0 (glo .a coup ng. imiy
biology [14] as well as spot dynamics in gas dischargey ~ the critical wave number iky,=0 [see Fig. 22)]. Similarly,
and concentration patterns in heterogeneous catalysls @ competing Turing |nstab|I|tyc appears for a critical param-
Here, the emphasis is on the onset of pattern formation reeter ar with a wave numbeks, where the leading eigen-
sulting from destabilization of a single homogeneous steadyalue is \(k7)=0. For large enough driving, the wave
state. instability appears for smaly, while for large § the Turing
Equat|ons(1) possess the trivial homogeneous fixed pointinstability destabilizes the homogeneous state. For the cho-
sen parameter values, the system exhibits a TWB [jeig

uo (uo vo) '=(0,0)" for all parameter values. Here, we
consider the regime where this fixed point is the only one;(Ig 3@ and[17]]. For the corresponding (k), see Fig.

present and consider perturbations proportionad 't *(t,
whereh (k) = x(K) +iw(k). The growth rateg (k) are given

by the eigenvalues of the Jacobian. Linear stability analysis WEAKLY NONLINEAR ANALYSIS
reveals that Eqg1) exhibit wave instabilities if the nonlocal def
coupling is of sufficiently long range. Near the TWB, we can writa=(u,v)" as a perturbative

In the following we vary the control parameteasand 5; ~ €xpansion around, using a small parametey, indicating
the “driving force” a represents the kinetics, whereas thethe dlstance to the instability threshold:=uy+ su; + &2u,
ratio of diffusion coefficientss describes the spatial coupling +&3us+ - - -, and use the following multiple scale ansatz:
in the medium. All other parameters of Eq4) have been
fixed [17]. For the wave bifurcation, the critical wave num- u =[A(X, Tl,Tz)UAel(w0t+ka)+ B(X,T;,T,)Uge! (@0t~ KEX)
ber ki, and parameters,y, and 8, are obtained from the
condition A (k) = +iw, where the perturbation witk, is +R(X, Ty, To)Urek™+c.c/2.
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This leads to a set of coupled equations for the amplitédes 8
B, and R for left- and right-going waves and the Turing
pattern that depend on slow time and space variables. The
technical details of the derivation will be presented in a fu- 7
ture publication18]. The resulting equations read

a
OR= R~ |RI*R+ £7R— LA+ B[R, "
IA+CydxA= pA+(1+ic)dZA—(1—ics)|AlPA
—g(1—ic,)|B|2A—v(1—ik)|R|?A, 5
9B—cy0B=pB+(1+ic,)d2B—(1—ics)|B|?B mopatem T
t gx p ( 1) ( 3)| | 0.6 0.8 8 1 1.2

—g(1-icy)|AI’2B—v(1—ik)|R|?B. (2

FIG. 4. The region of existence of DPDs obtained in simulations
For the detailed values of all coefficients, $&6]. Note that  of Eq. (1) in the a-5 parameter space is shown dashed. The light
the nonlocal term of Eqg1) enters into the diffusion coef- gray area corresponds to the bistable region between the critical
ficients of Eqs(2) but does not give rise to nonlocal terms in wave and Turing patterns as calculated from the amplitude equa-
Egs. (2). Knowledge of the coefficients of Eq&2) allows tions (3). In regionB DPDs of any size exist; the size being deter-
analytical predictions of the pattern dynamics. Here, travelmined only by the initial condition. In regio@ small domains of
ing waves are always preferred over standing wagesX, wave patches traveling in a Turing background_are found. In region
see[1]) and bistability between wave and Turing patterns isA only Tgrlng drqplets are stable. T_he _three circles correspond to
found (»¢>1). In this bistability region in parameter space € locations of simulations shown in Fig. 1.
[see Fig. 8)], a family of stable Turing patterns and two
families of stable left- and right-traveling waves param- ) el ¢ ) ) ] .
etrized by their corresponding wave numbers coexist. To get@l one, i.e.ky"=kz, while for invading waves typically
further insight, we take a closer look at the dynamics ofki #Kkj, and thereforew®®'# wq. This is valid for both in-
single interfaces separating domains of Turing and wave paward and outward interfaces. Thus, we typically have two
terns. one-parameter families of interfaces for a given point in pa-
rameter space. Near the TWB, these results coincide quanti-
tatively with numerical simulations of the nonlocal model
(D).

With suitable initial conditions, a moving interface be-  Far away from the TWB, simulations of interfaces in Egs.
tween Turing and wave patterns will be formed in simula-(1) show qualitatively similar behavior with respect to the
tions of Egs.(1). Near the interface that joins both patterns selected wave numbers. In addition, interfaces far away from
together, the maxima of the concentrations of activatand  the TWB may exhibit a locking mechanism, where the se-
inhibitor v are typically not conserved. As a consequencelected velocity is determined by the absence of defects at the
space-timedefectsare produced by coalescence of maximainterface. For geometrical reasons an interface without de-
and minima[see Fig &)]. fects, which connects a wave state with wave nunideand

There are two types of interface depending on whether th&equency w and a Turing state withky, has a speed
phase velocity of the waves points toward the interface ofvy. | = w/(kt—ky). This velocity locking mechanism is
away from it. This classification is independent of the direc-found for both types of interface. The dark gray areas OT
tion in which the interface is moving. In the following, we and IT in Fig. 3a show the regions in parameter space
will call the first typeinward interfacesand the secondut-  where velocity locking occurocking tonguekin the origi-
ward interfacesFigures 8b) and 3c) show examples of the nal reaction-diffusion equationd) for outward and inward
latter type. interfaces, respectively.

Near the TWB, we have studied general properties of In contrast, there are no locking tongues in the corre-
such interfaces in the amplitude equati¢Bswithin a set of  sponding amplitude equatiorig) because the rapidly vary-
ordinary differential equations obtained from a coherenting space and time scales have been factored out. However,
structure ansatz in the comoving frarfg. Since the inter- on aline in the parameter spgdeee dashed line in Fig(8],
face typically moves, we can distinguish an invading and arthe velocity of interfaces in Eq$2) coincides with the ve-
invaded domain. The wave numbers of Turing or wave patiocity prescribed by the locking mechanism. An example of a
terns are not unique, since there exist sidebands of wavdecked outward interface in Eq€l) is displayed in Fig. @).
lengths around the respective critical wave numbers. Neve@utside the corresponding tongue the outward interfaces dis-
theless, an interface will typically select a particular waveplay phase slipgsee Fig. &)]. The location of the locking
number for the invading domain, while the initial wave num- tongues depends only weakly on the interface free parameter
ber of the invaded state is a free paramgi@®]. The velocity  (kyy, for inward andk for outward interfaces Note that the
of the interface is a function of this parameter. For invadinglocking tongues open at a substantial distance from the
Turing patterns the selected wave number is always the critf WB. The locking mechanism arises when the characteristic

SINGLE INTERFACE DYNAMICS
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width of the interfaces is of the same order as the charactes single Turing cell is lef{see Fig. 1b)]. In regionC, the

istic length scale of the patterns.

DPDs AND THEIR PHASE DIAGRAM

outward interface selects k¢’ that would be unstable

against Turing patterns in an infinite domain. Therefore, the

wave domain forming the DPD is mostly replaced by a Tur-

ing pattern. However, small DPDs with a few wavelengths of

The locking mechanism found for single interfaces allows, ye pattern are still encountered. At the outer boundary of

us to understand the existence of DPDs. Indeed, as can

li’@gionC, only DPDs with a single wave cell are found to be

seen in Fig. 1, DPDs do not show defects. Large DPDs argiaple[see Fig. 1)].

composed of an inward and an outward interffsee Fig.

1(a)], which are both subject to interface locking. This im-
plies that the velocities of both interfaces have equal magni-

CONCLUSION

tude|v oc but opposite signs. Therefore, the DPDs maintain

constantbut arbitrary width. Furthermore, the region of pa-

We found drifting pattern domains in a reaction-diffusion

rameter space where large DPDs exist starts to open whereodel with nonlocal coupling. Their ingredients include a
the locking tongues for both interface types begin to overlagbistability between wave and Turing patterns near a

[see Fig. 8)]. This is the case foa=5.7. Above that value,

DPDs spontaneously form from a variety of initial condi-

codimension-2 point as well as absence of defects at the
interface. They exist as robust patterns only in a finite dis-

tions. We have determined the parameter region where thetance to the onset of pattern formation as a consequence of
propagate with constant width and drift speed, from extenvelocity locking of the constituting interfaces. We expect that

sive simulations in systems with sizes>400 and periodic

such a locking mechanism is not limited to the reaction-

boundary conditions. The results are shown in the phase diakffusion model studied here and should carry over to other

gram of Fig. 4.
We can distinguish three different subregions. In redon

physical systems with competing patterns. Altogether, DPDs
and their constituting interfaces represent a generalization of

DPDs of any size, with two locked interfaces traveling at thesimpler structures such as fronts and pulses in bistable

same speed, are fouhske Fig. 1a)]. In regionA, the inward

reaction-diffusion systems, which do not simply combine

interface is no longer locked and its speed is smaller thatwo homogeneous states, but, instead, select their constitu-

|viockl- Therefore, large domains of Turingvave patterns
contract(expand in size until only a stable DPD containing

ents from whole families of possible traveling or stationary
periodic patterns.
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