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Directed random walks in continuous space
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The investigation on diffusion with directed motion in a two-dimensional continuous space is completed by
using the model of the continuous directed random walks. The average square end-to-end (Ra@hpe
~12” is calculated. The results show that this type of walks belongs asymptotically to the samewclass (
=1.0) as the ballistic motions. For short time, we observe a crossover from purely random wal@$) to
ballistic motions ¢=1.0). The dependence of the crossover on the direction paramésestudied. There
exists a scaling relation of the fortR?(t))~tf(t/6~2). The return probabilitPP(t) is also investigated and
the scaling form similar tgR?(t)) is obtained.
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In the past few decades, based on simple Brownian mothe walker can perform any number of time steps or walk
tion, various models of random walkBW) with memory or  any distance of length. Therefore, no finite-size effects exist
interaction have been studied in order to account for distinctn the simulations. _
features of physical, chemical, and biological systems, Inthe CDRW model the walker moves on a continuous
whose complexity goes beyond what can be obtained frorPlane and has a preferential directiort X axis herg. The
the simple random walk picturfl—8]. The standard RW, moving direction of the walker can be determined as follows.
with isotropic diffusion, is a powerful tool for studying sev- The direction parameter is introduced via an an@léirst
eral physical processes such as diffusion, transportfépn W€ draw the extension against the preferential direction. This

aggregation, structure formatiga0,11, and diffusion con- extension is considered to be the dichotomy of the new angle
trolled reacti,ons{12]. o 6, i.e., an angle o®/2 is formed above the extension, and

0/2 below it. Then, we make the supplementary angle
(=2m7—0) of §, and take a random direction in thjsangle

s the moving direction of the walker for the next step. Such
a schematic diagram is shown in Fig. 1, where 90° and
g= 270°. It is obvious that a8+ 0 the motion of the walker

IS anisotropic. The larger the is, the stronger is the anisot-
ropy of motion.

Recently, the RW with anisotropy have extensively at-
tracted a great deal of attentiph3—15. This type of aniso-
tropic systems is very common in nature, such as the poro
reservoir rocks[16], the epoxy-graphite disk composites
[17], etc. The directed polymers have also been investigate.
[18,19 because of their versatile applications ranging from

growing interface to spin glasses and to fI_u>_< lines in Nigh Monte Carlo(MC) simulations have been used to study
superconductorf0]. The directed self-avoiding walk model o moyement of the walker. In the simulations the reduced

in lattice space has been used for studying directed polymetgits were used. The MC step is taken as the time unit, and
[21,22. Because the model introduces a global bias in geome walker moves a unit length for each step. To investigate
metrical models it leads to novel anisotropic critical behavioripe effect of direction parameter on the motion of the walker,
[14]. Asymptotically, it is found for the two-dimensional case the average square end-to-end distafR&t)) is calculated
that the displacement§Ryy)~(R{)Y?>~N and (R?\)?  for a series of¢ values in the interval0°,360°. It is ex-
~N¥2 whereN is the number of steps in the walk, ahdnd  pected that this quantity scales with tirhas
L refer to projections of the displacement parallel and per-
pendicular to the preferred axis of the walk, respectively 5 2y
[14]. The biased diffusion in anisotropic disordered systems (RE(t) ~t, @
has been investigated, which mimics a particle moving on an
anisotropic amorphous materig23]. It shows a transition
from pure to drift diffusion when the bias reaches a thresh-
old.
Previous RW with anisotropy have been studied on regu-
lar or fractal discrete latticgsl3—15,18,20—2B The walker
has only several discrete moving directions. In fact, the
walking space is not discrete and is continuous. In this paper
we present a continuous-space directed random walk g 1. A pictorial of directed motion in two-dimensional con-
(CDRW) model in order to extend these anisotropic motionsinyous space. The preferential direction is chosen asxthgs.
in discrete space to continuous space. For the present modgjaw the extension against the preferential directidashed ling
before each step. To regard the extension as the dichotomy form the
angle 8. Then make its supplementary angleby the relationship
* Author to whom correspondence should be addressed. Email ads=27— 6. Take a random direction insidg angle as the walking
dress: xwzou@whu.edu.cn direction.

X axis
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. FIG. 3. The proportional constai ((J) and crossover timg,
FIG. 2. The average square end-to-end distafR¥t)) as a (O) as a function of the direction angke The symbols are the

function of time t for several ¢ values. From left to rightd g ation results. The solid and dashed lines are the plots of Egs.
=360°, 100°, 50°, 20°, 10°, 5°, 2°, and 1°. The symbols are the(lo) and(12), respectively.

simulation results and the lines are the plots of the analytic expres-
sion Eq.(8). I - .
Or = 6X+ 8y=cos¢+sin g, 4
where(: --) is the average over independent walk realiza- here ¢ is the angle between the moving direction of the
tions. To reduce the effect of the fluctuation on calculated” 9 g

results, at least 1000 independent realizations were pe}(yalker and preferential direction. Therefore, the transition
formed’ for eachy probabilities can be expressed in termsgofs

Figure 2 shows théR?(t)) as a function oft with 6
ranging from 1° to 360°. It can be seen that whn360°,
the movement of the walker corresponds to the ballistic moand
tion, and the(R?)-t relation can be described by a straight
line with a slope of 2.0, as expected. It is also noted that Px—=—(COSH)|cos <0 (5b)
when =0 the present motion reduces to purely RW with ) i . )
2v=1.0. When 0% #<360°, a crossover appears and there(- - -) means the averaging over all possible moving direc-
exists a crossover timg . As t<t,, the slopes of curves are tions, and the subscript expressions represent the limiting

approximately equal to 1.0, and &st., the curves all bend conditions. Combining Eq<3) and (5), the field strengttB

toward the slope of 2.0. This asymptotic behavior is in agree€an Pe expressed as

ment with the results for latticd45,21,23:

px+:<cos¢>|cos¢>o (58

B=(cos¢). (6)

Calculating(cos¢) in the range of¢ from — (27— 6)/2 to
(27— )12, we obtain{cos¢)=sin(4/2)/(=— 6/2). Combin-
ing this relation with Eq(6) we get

(R2(t))=At? t—o. 2

It shows that as the timeapproaches infinity, the average
square end-to-end distance is proportionatavith a pro-
portional constanfA. Therefore, the CDRW belongs to the sin( 6/2)
same university class as the simple ballistic motion. The di- B= . 7
rection factorA and the crossover timg, are related to the 7= 612
direction angled. From Fig. 2 we can obtain the values/f
andt. for each#. Figure 3 shows the plots & andt. as a
function of 6. fi
Figures 2 and 3 can be explained as follows. We regargi
the CDRW as the motion in an invariant external field, which
provides a preferential direction for the walker. Let the di-
rection of the external field parallel ta axis. The field
strengthB, being O<B=<1, can be given by the step prob- (R(t))=(1—B2)t+ B2 (8)
abilities inx direction as

It can be seen from Ed7) that asf#=0, the field strength
B=0 and the model reduces to purely RW; &s 360°, the

eld has the largest strengtB=1 and the model corre-
ponds to the ballistic motion. By using stochastic methods,
the analytic expression ¢R?) as functions of andB can be
obtained as follow$24]:

Combining Egs(7) and(8), we can calculate the time evo-
B=Px+ = Px-» (3 lution of (R?) for given # values. These calculated results
are also shown in Fig. 2. As shown in the figure, the simu-
wherep,, andpy_ are the transition probabilities moving to |ation results are very good in agreement with the theoretical
positive and negativex directions, respectively. Thus, the yalues of Eq(8).

displacement of the walkefr in a step can be expressed by  When the timeg—c, Eq. (8) becomes
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FIG. 4. Scaling plots of the average square end-to-end distance FIG. 5. The return probabilit?o(t) as a function of time for
ap ge sq 0
(R%(t)). The data are quoted from Fig. 2. The scaling exponentsa set ofg values. These data are averages ¢f rE@lizations.

v.=1/2 anda=—2.

(R3(1))=B%%. C)
It is just the case of ballistic motion. Combining E@®), (7),
and(9), we obtain

H 2
( sin( 6/2)) ' 10

T 012

The theoretical results & from Eq.(10) are plotted in Fig.
3. It is evident that the simulation results Afare in good
agreement with the prediction of E(L0).

According to Eq.(8), one can also find that as the field
strengthB<1 (@ is very smal), the coefficients (*+ B?)
>B2. For short time the linear term (1B?)t controls the
dynamics of CDRW comparing with the quadratic dr&?,
and the curves have the slopes af=21.0. While the time
t—oo, the quadratic ternB?t? is dominant, and the curves
have the slopes ofi2=2.0 for all § values, as expectddee

CDRW falls into the same universality class as the ballistic
motion. Guided by Fig. 2, it is expected that there exists the
scaling relation of the form

(RA(t))~t2vef (t/t,), (139

where

te~ (60— 00)°, (13b)
and v, is the so-called critical exponent witlR?(t))~t2"
for =6, [8]. It is easy to obtain the critical exponenf
=0.5. The exponent has to be determined numerically. As
t. is the only relevant time scale, the scaling functions bridge
the short time and the long time regime. To match both re-
gimes, the scaling functiorf(x) has the form off(x)
=const forx<1, andf(x)~x?"2" for x>1.

To test the scaling relatiol3) and to determine the ex-
ponenta, we plotted(R?(t))/t?"c as a function ot/t, for a

Fig. 2. As these two terms are comparable to each other, thget of g values. Ata=—2 the best data collapse is obtained
crossover occurs. Therefore, one can estimate the CroSSOVEAhd is shown in F|g 4. The excellent data C0||apse Strong|y

time t, by taking (1- B?)t,=B??, i.e.,

1-B?
BZ

(11)

te

Substituting Eq(7) into Eq. (11), the cross-over timé. can
be expressed in terms @éfas

(= 012)>—sir(612)
- Sir?(6/2)

12

c

The calculated -6 relation is drawn in Fig. 3. This figure
shows that the simulation result &f is in excellent agree-
ment with the analytic values of E¢L2) in the whole range
of 6.

Going a step further, to understand the crossover behavior
of (R?(t)) we suggest the following scaling approach. As

supports the above scaling assumptions.
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seen from above, the scaling behaviors of CDRW show a FIG. 6. Scaling plots of the return probabiliB(t) for a set of

phase transition at the critical poif.=0. As 6= 6, the
CDRW belongs to the purely RW class, and @&s 6, the

0 values. The data are taken from Fig. 5. The scaling exponents

Ae=—1 anda=-2.
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We also investigated the scaling behavior of the returdimit g(x)=const forx<1. However, the argument @f(x)
probability Pog(t), which is the probability of the walker should have the same form as that fffk) in Eq. (13),
returning to the original site. For the CDRW the walker can-namelyx=t/#®. Figure 6 shows the scaling plots Bf(t)
not return to the origin (0,0) exactly, so we make a rule thafor severald values. It will be seen from this that the scaling
if the walker enters the area limited by=0.5+0.5), this  expressiorn(14) is suitable forPy(t).
walker is regarded as that returning to the original site. To |5 summary, we present a method to investigate the di-
get accurate average valueRfy(t) we have used fOreal-  rected random walks in continuous space. Using the method
izations for eachy. For each simulation, fOtime steps are the average square end-to-end dista(R&t))~1t2” is cal-
taken. ots th I . 0 val culated. The scaling behavior of present motions belongs as-

Figure 5 plots the results ¢o((t) for severa_a values. It ymptotically to that of ballistic motions. For short time, a
can be seen that for a small valuesbihe behavior OPOO(;[\) crossover from purely RWu(=0.5) to ballistic motions #
bears analogy with the case of purely RW, iloy(t) ~t"c =1.0) is observed. The scaling relation of the form

with A= =1, and for large, Poo(t) decays exponentially. (R%(t))~tf(t/6?) is obtained. Analogous scaling relation

»{Sl;rmn"srrotboagiﬂi;gz(’)(?) scaling expression is valid for the re- is also found for the return probabilityqq(t).

Poo(t)~theg(x), (14) . . .
This work was supported by the National Natural Science
whereg(x) is a rapidly decaying scaling function with the Foundation of China.
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