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Separation mechanisms underlying vector chromatography in microlithographic arrays
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Micropatterned chips possessing an asymmetric, spatially periodic array of obstacles enable the vector
(directiona) chromatographic separation of charged particles animated by an external electric field. We apply
a network theory to analyze the chip-scaleqcale transport of finite-size Brownian particles in such devices
and identify those factors that break the symmetry of the chip-scale particle mobility tensor, most importantly
the hydrodynamic wall effects between the particles and the obstacle surfaces. Our analysis contrasts with
prevailing separation theories, which are limited to effectively point-size particles, for which wall effects are
negligible. These theories require a biasing of obstacle-stadeale;l <L) bifurcation branches within the
network. Such bifurcations are shown to constitute but one factor in modeling the vector chromatography of
finite-size particles, and not necessarily the dominant factor.
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The use of microfabricated arrays for the chromato- U*=M*.F. 1)
graphic separation of Brownian particles, such as biomol-
ecules, proffers great promise as a practical laboratory tech- .
nique _[1]. Such devices typically consist of a spatially The proportionality coefficienM* is the chromatographic
periodic, two-dimensional pattern of asymmetrically ar-mobility dyadic of that particle, a position- and time-
ranged obstacles embossed on a chip. Particle separation aGdependent constant tensor. For a spherical particle of radius
curs within the solvent-filled channels and their intersections,, [a/l=0(1)] M* is a composite phenomenological prop-
For charged particles, the separation is effected by applying g1y ¢ the particle and the chip, being functionally depen-
:?]ti_elng?t?c?engigts %l:ggi'ﬁ f'ﬁ:g ogﬁggeig grt'[gl En%kre‘ g\a/l_"’mv%ent on:(i) the particle radius(ii) the solvent viscosity(iii )
erage, different sized pa?ticlesppursue chip-scélueoﬁale) the chip’s lattice axedjv) the configuration and orientation
linear trajectories at different angles relative to the patternf){tg:ji uanr']tdcglrligﬁl:g\éi tgftthheel?ct)tr'gg zgﬁegdtg)tﬁzegﬁfé
Simultaneously introducing such particles at the same poi dditional factors would arise for more complex nonsphéri-

results in their exit at distinctly different locations along the | and/or def bl lecul h h ing law i
chip’s periphery. In this paper, we demonstrate that this sepd:2 2nd/or deformable molecules, such as the spring law In a
ead-spring polymer model in the latter ca3é

ration arises primarily from the interplay between the parti- i)
cle’s Brownian motion and hydrodynamic wall effec{&] A directional Separition is achieved wheh is not colin-
connected with the finite size of the particles relative to theear withF, i.e., whenM* is anisotropic. To separate differ-
interstitial (-scalg spacing between adjacent obstacles.  ent types of particles, this anisotropy must arise from size-

In an earlier contributior{6] we classified this type of (or charge} dependent interactions between the Brownian
separation scheme as “vector” chromatography to highlightparticle and the obstacle surfaces. The extent of vector sepa-
the crucial importance of the meanscaledirection of the  ration is quantified by the relative discrimination angles,
particle trajectory. Conventional “scalar{or “unidirec- def. -
tional”) chromatography, in contrast, relies solely upon the(6,g); = cos }(U} -F), of  different  species i
different L-scale mean particlepeedsachieved through the (i=1,2,... N). Here, the caret denotes a unit vector, e.g.,
sorting device. In t_he Igtter case, all particlqs move on avergi* :GNUH- In contrast, scalar chromatography is quanti-
age in the same direction, parallel to the animating force. _ . ) — .

Our analysis focuses upon solute transport in the longfied by the differentagnitudes|Uf|, of the respective spe-
time limit t>12/|D|, with | a characteristic linear dimension Ccl€S velocities. . .
of the repetitive unit cell andD| a suitable norm of the Cu.rrenf[ theorle_$2,3] for vector separations are .restrlcted
particle’s I-scale molecular diffusivity tensdi6]. In chips to point-size particles. They po;stulate a separation mepha—
containing many obstaclgd], this asymptotic limit is easily ?'S_m tbaset% SOIeE/ on thte follllowmg conceptlt??: Thf partlc_lt?t
achieved relative to the nominal holdup times L/|U*|, of rajectory Througn a Linit et possesses a biureation point,

th ticl it t th tire chio. with ch ¢ which is caused by the asymmetry of the cell geometry and
€ particle as [t traverses the entire chip, character- the particle’s molecular diffusivity. The separation is then

istic linear chip size anflU*| the chip-scale particle speed. quantitatively rationalized by a particle-specific probability
The proportionality between the applied forfeand a  distribution function(PDP for particlei “choosing” a par-
given particle’'s mean chip-scale vector velocit§f is ex- ticular directional bifurcation branch upon exiting a cell and
pressed by the relatidif] entering the next cell. The PDF is different for different sized
particles as a consequence of their different molecular diffu-
sivities. Initial announcemenfg] of this separation phenom-
*Email address: hbrenner@mit.edu. enon used the name “rectified Brownian motion” to
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M* /6 pa=XXM%+YYM?% . (The Stokes law scaling is
arbitrary) Here, for a given particle, th@imensionlesssca-
lar componentd} and M3 depend functionally on the di-

% 7777/ WW mensionless groups characterizing the transport process—
/%/////l%///// explicitly, M% =M% (a/W; ,Fjl;/kT,W,U;/|D|, etc.), with
///% /%/% % U; [j=(x,y)] the Taylor-Arisl-scale average particle speed
through aj-directed channel8]. Vector separation ensues
7 7 7 G
// //% W% arguments_of th_ese two mobility components result in the
//////% inequalityM¥ # MY for a given particle.

Intersection alized Taylor-Aris dispersion phenomena, whose details are
FIG. 1. Spatially periodic microscale rectangular lattidg ( reported elsewherf9]. The micropatterned device is repre-
channel widthsW,#W, . The position-independent external force Ch.annels. tOQether,With their i_merse,Ct,ian' Classical Taylor-

F is oriented at an anglé, with respect to theclattice vector of ~ AriS particle velocities and dispersivitidd 0] are used to
nel, the sphere moves instantaneously with velocltfx) ring in these channels. When the particle is present within an
=M(x)-F. The meari-scale Taylor-Aris particle velocity compo- intersection, the choice of the particle’s intersection egress
tively, by U, and U,. On the chip scale the particle moves, on dependent “mixing rule,” which simulates the physical
average, across the chip with itd-6cale velocity vector U* transport processes occurring within that intersection. In con-
=X axis. The disparity in angular direction betwed and F vector separation phenomenon because of our incorporation
gives rise to the chip-scale discrimination and|g . Notationally, of hydrodynamic wall effects. We will focus only on the task
(X,Y) areL-scale coordinates. though the general theof9] permits a complete Taylor-Aris
dispersion analysis, including calculation of the chip-scale

effects. However, the assumption of point-size particles is 1he Tetwork depicted in Fig. 1 is a so-called “simple
contrary to the experimenfd] originally demonstrating such network” [9], consisting of a single intersection joining to-
cant fraction of the interstitial space between adjacent obfiCle's probability density is trivial—the particle must be lo-
stacles. cated within the single nodal area contained within the unit
the I-scale, interstitial mobility dyadit(x) of a finite-size ~ sitates defining(i) the particle’s probability density “flow
particle, wherex refers to the center of the particle. This rate” Q; within x- andy-directed channels; ar(d) the prob-
instantaneous particle positiox due to wall effects channels at the intersections. N
[5]—even for spherical particles. In what follows, we will ~ For a given particle, the probability flow rate through
bility play a crucial role in determining!* and 6,g, even I-scale mean mobility in chanr_lg'aj F; the component of the
to the extent of permitting vector separations when the€xternal force along the direction of the channel, sidthe

By way of illustration, as in Fig. 1, consider rectangular Taylor-Aris dispersion value in the chanr{dl0], which in-
obstacles arranged symmetrically in a rectangular arraysludes a Boltzmann bias arising from the action of the trans-
coincide with the obstacle axes,f). The charged particle W
moves through the array under the influence of an external f dxMjj (X ) exp(F i /KT)
0

o
g
T whenever the distinctive particle properties appearing in the
o " 3
To computeM*, we employ a network theory for gener-
#1,) of rectangular obstaclgshown shadedspaced at interstitial sented as a spatially periodic, interconnected network of
the array. With its center situated at a poist (x,y) within a chan-  quantify the convective-diffusive transport processes occur-
nents through a channel within a single cell are denoted, respe€hannel is assumed to be furnished by a particle-size-
=M*-F. This vector is oriented at an anglgy relative to thex ~ trast with prior modelg2,3], this fact is not essential to the
x=(x,y) are l-scale coordinates (@x<l,, 0<y<l,), whereas of establishing thedirection of the particle trajectory, al-
highlight the dependence of the PDF upon such diffusivé®@rticle velocityU*.
vector separations. In fact, the particles occupied a signifidétherx- andy-directed channels at their openings. The par-
To properly account for hydrodynamic effects, considercell boundaries. Consequently, computidyy simply neces-
mobility is both anisotropic and strongly dependent on theability ratio K of the particle choosing- and y-directed
show that such wall-induced effects upon the particle’s mochannelj is given by Q;= u;F;W;, with u; the particle’s
choice of bifurcation branch is totally random. channel width. Whenl;>W;, y; possesses its classical
Here, the lattice axes, characterized by unit vectomndY,  ©'°¢ force:
force F, which is oriented at an anglé-y« relative to theX

axis. Whereas the present analysis explicitly considers J i extl Fuxe /KT

spherical particles and rectangular arrays, our eventual con- 0 k EXP(FiXc /KT)

clusions transcend these restrictions. In particular, the spheri- 2
cal particle assumption may be relaxed by employing a mo-

bility dyadic M (x) valid for more complex moleculds]. whereMj; is the component of(x) in thej direction and

In general, the chromatographic mobility of a solute par-kT is the Boltzmann factor. For spherical particles and planar
ticle in a fluid of viscosity » may be expressed as channel geometries, the pointwise mobility dyalli¢x), in-
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cluding wall effects, is available from rigorous hydrody- 45°
namic theory[11,12. For more complex molecules, it re- = Pe<<1
mains possible to make this calculation using an approximate ~ § I, =1,
hydrodynamic theory13]. When the chip geometry and/or E :. W, =2W,.
the molecular shape exceed computational resourgesay ﬁ g r
be determined from experiments performed using a single g ¢ 30°7
channel of large aspect ratig>W; . Equation(2) is a ge- % g i e S 1
neric result, rendering later conclusions based upgrcf. 23 rx =60y 1€
Eq. (3)] independent of our spherical particle assumption. $ =
e . P L Pe<<1

Quantifying K depends upon the particle Peclet number, S . g .
Pe, representing the ratio of convective to diffusive transport < § 157
rates within the intersection. Perfect mixifitd] is assumed ) = I
fpr diffusion-dominated transport, Rel, so that a!l intersec- = 8 A \_ o Pe>>1
tional egress channels are equally probable. This corresponds & £ X = &
to randomizing the choice of bifurcation branch in existing 0 s W T

point-size theoried2,3]. For convection-dominated trans-
port, Pe>1, the choice of intersectional egress channel is
assumed to be proportional to the channel's flow 1@te Ratio of channel mobilities,
[15]. Any value of Pe can be encompassed by defining the o
partition coefficient,K =Prob(y)/Prob(x), with Prob() the FIG. 2. Angle fyx formed between the particle’s chip-scale
probability of the particle entering chanrjaipon exiting the mean vglocny vegtoU* and theX axis for the conditions indicated
intersection. Consequentlit =1 andKZQy/QX inthe re- 1N th:e inset. oSolld anq dashed lines corres_pond to anglss
spective low and high et number limits. =(_50 and 30°, respectively, between the applied fdf@nd theX
The preceding analysis, when brought to fruiti@i, en- axis.

ables the particle’s chip-scale velocity compone@% and

U3 to be explicitly calculated. The angl formed byU*  rotational symmetry axes. The fourfald L composite sym-

and theX axis is given by metry [16] of this array makesv* isotropic andéyr=0,
irrespective of the orientation &f relative to the lattice axes.
&) In contrast, an array witkV,# W, or I, #1, represents either
square objects in a rectangular array or rectangular objects in
a square array. These lattices only possess twofold rotational
with u= u,/u,. The discrimination angle is then computed symmetry. Second-rank tensors associated with twofold sym-
by metry are anisotropi¢17], so particle motion is no longer
colinear with the force. However, vector separation requires
Our= Oux—tan Y(Fy/F,). (4)  that the physical attributes of the particles cause the anisot-
_ _ ropy. If the anisotropy is attributable only to the array sym-
This analysis also furnishes the componevits andM¥ of metry, then all particles will move on average in the same
M* sinceU§‘< andU$ are related td/, andF, by Eq. (3. direction, albeit in a direction no longer colinear with the
Several generic geometric conclusions are apparent frof®rce. o )
Eq. (4). First, whenF is applied along a symmetry axis of the ~ Thus, vector separation is possible only when the param-
array (the X or Y direction, the discrimination angle -  €tersu andK appearing in Eq(3) differ between particles.
=0 and is independent of the particle properties. Second, fdeXisting theorie$2,3] consider the case wheke(but noty.)
point-sized particles and perfect mixing €K=1), 6, is 1Sa funcyon of th_e particle properties. W_he_n wall effects are
Characterized exc|usive|y by the Symmetry group Of thesubstan“al, the SlmpleSt method for altermgs to construct
“composite” | & L-scale array geometry. Explicitly, the spa- an array with different gap widths, name¥y,#W, . Vari-
tial arrangement of the obstacles determineslttseale lat- able gap widths have a nonlinear effect upon the channel
tice symmetry, whereas the obstacle’s shape determines ti@rticle mobilitiesu; via (2), as well as imparting twofold
I-scale point-group symmetry class. The symmetry of theSymmetry to the array. Alternatively, even for fourfold sym-
compositel L array consists of common symmetry ele- metric arrays, the presence of a strong transverse force,
ments, if any, between the respective lattice and obstaclE;>F«. in one of the channels biasgs as a consequence
point-group rotational symmetries. These symmetries nee@lf the Boltzmann factor irf2). In either case, the chromato-
not be the same; for example, regular pentagon-shaped olgraphic mobilityM* no longer possesses the fourfold point-
jects in a rectangular array possess no common symmetgroup symmetry characterizing the array geometry. This
elements(except for a center of symmeiryirrespective of symmetry-breaking feature underlies the fundamental
the orientation of the obstacles relative to the lattice. mechanism of vector chromatography.
To clarify the preceding comments, we examine the array Consider the explicit example of a square lattige- 1,
depicted in Fig. 1. WhelV,=W, andl,=1,, the array con-  with rectangular obstacles separated by distanvés
sists of square obstacles in a square lattice, with coincident 2W, . The relative widths impart a wall-effect-induced

0.0 0.2 04 0.6 08 1.0

def 3, W,l, F

Y y'y'y

tanfyx == =pK = =,
Ty W Ry
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preference for particle motion ir direction, as well as im- tor separation difficult. In contrast, applying the force at an
posing the inequalitye<1. Figure 2 depicts the angl®;x ~ angle 8-x=60°—"against” the preferred direction—makes
as a function ofu, for the limiting cases of both perfect for an easier vector separation. This increased efficiency ac-
mixing and convection-dominated transport at the interseceords with experimental resulfd], where the greater com-
tion. For point-size particlesy{=1), we see that the two- ponent of the force coincided with the narrower channel.
fold symmetry of the array results ié\,x# 6gx . For finite-

size patrticles, vector chromatography is possible even for the We are grateful to Dr. Sangtae Kim of Eli Lilly and Com-
case whereK=1, where the bifurcation branch is totally pany for his interest and encouragement in our microfluidic
random. The range of available anglégy is small when analyses and to Professor Howard A. Stone of Harvard for
applying the force at the anglg-x=30°. This makes a vec- useful discussions.
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