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Separation mechanisms underlying vector chromatography in microlithographic arrays
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Micropatterned chips possessing an asymmetric, spatially periodic array of obstacles enable the vector
~directional! chromatographic separation of charged particles animated by an external electric field. We apply
a network theory to analyze the chip-scale (L-scale! transport of finite-size Brownian particles in such devices
and identify those factors that break the symmetry of the chip-scale particle mobility tensor, most importantly
the hydrodynamic wall effects between the particles and the obstacle surfaces. Our analysis contrasts with
prevailing separation theories, which are limited to effectively point-size particles, for which wall effects are
negligible. These theories require a biasing of obstacle-scale (l -scale;l !L) bifurcation branches within the
network. Such bifurcations are shown to constitute but one factor in modeling the vector chromatography of
finite-size particles, and not necessarily the dominant factor.
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The use of microfabricated arrays for the chroma
graphic separation of Brownian particles, such as biom
ecules, proffers great promise as a practical laboratory te
nique @1#. Such devices typically consist of a spatial
periodic, two-dimensional pattern of asymmetrically a
ranged obstacles embossed on a chip. Particle separatio
curs within the solvent-filled channels and their intersectio
For charged particles, the separation is effected by applyi
time-independent electric field oriented at an angle rela
to the lattice axes defining the periodic array@2–4#. On av-
erage, different sized particles pursue chip-scale (L-scale!
linear trajectories at different angles relative to the patte
Simultaneously introducing such particles at the same p
results in their exit at distinctly different locations along t
chip’s periphery. In this paper, we demonstrate that this se
ration arises primarily from the interplay between the pa
cle’s Brownian motion and hydrodynamic wall effects@5#
connected with the finite size of the particles relative to
interstitial (l -scale! spacing between adjacent obstacles.

In an earlier contribution@6# we classified this type o
separation scheme as ‘‘vector’’ chromatography to highli
the crucial importance of the meanL-scaledirection of the
particle trajectory. Conventional ‘‘scalar’’~or ‘‘unidirec-
tional’’ ! chromatography, in contrast, relies solely upon
different L-scale mean particlespeedsachieved through the
sorting device. In the latter case, all particles move on av
age in the same direction, parallel to the animating force

Our analysis focuses upon solute transport in the lo
time limit t@ l 2/uDu, with l a characteristic linear dimensio
of the repetitive unit cell anduDu a suitable norm of the
particle’s l-scale molecular diffusivity tensor@6#. In chips
containing many obstacles@4#, this asymptotic limit is easily
achieved relative to the nominal holdup time,t5L/uŪ* u, of
the particle as it traverses the entire chip, withL a character-
istic linear chip size anduŪ* u the chip-scale particle speed

The proportionality between the applied forceF and a
given particle’s mean chip-scale vector velocityŪ* is ex-
pressed by the relation@6#
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Ū* 5M̄* •F. ~1!

The proportionality coefficientM̄* is the chromatographic
mobility dyadic of that particle, a position- and time
independent constant tensor. For a spherical particle of ra
a @a/ l 5O(1)#, M̄* is a composite phenomenological pro
erty of the particle and the chip, being functionally depe
dent on:~i! the particle radius;~ii ! the solvent viscosity;~iii !
the chip’s lattice axes;~iv! the configuration and orientatio
of the unit cell~relative to the lattice axes!; and~v! the mag-
nitude and orientation of the forceF relative to the lattice.
Additional factors would arise for more complex, nonsphe
cal and/or deformable molecules, such as the spring law
bead-spring polymer model in the latter case@7#.

A directional separation is achieved whenŪ* is not colin-
ear withF, i.e., whenM̄* is anisotropic. To separate differ
ent types of particles, this anisotropy must arise from si
~or charge-! dependent interactions between the Brown
particle and the obstacle surfaces. The extent of vector s
ration is quantified by the relative discrimination angle

(uUF) i 5
def.

cos21(Û̄i* •F̂), of different species i
( i 51,2, . . . ,N). Here, the caret denotes a unit vector, e.

Ūi* 5 Û̄i* uŪi* u. In contrast, scalar chromatography is quan

fied by the differentmagnitudes, uŪi* u, of the respective spe
cies velocities.

Current theories@2,3# for vector separations are restricte
to point-size particles. They postulate a separation mec
nism based solely on the following conception: The parti
trajectory through a unit cell possesses a bifurcation po
which is caused by the asymmetry of the cell geometry a
the particle’s molecular diffusivity. The separation is th
quantitatively rationalized by a particle-specific probabil
distribution function~PDF! for particle i ‘‘choosing’’ a par-
ticular directional bifurcation branch upon exiting a cell a
entering the next cell. The PDF is different for different siz
particles as a consequence of their different molecular di
sivities. Initial announcements@2# of this separation phenom
enon used the name ‘‘rectified Brownian motion’’ t
©2002 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 052103
highlight the dependence of the PDF upon such diffus
effects. However, the assumption of point-size particles
contrary to the experiments@4# originally demonstrating such
vector separations. In fact, the particles occupied a sig
cant fraction of the interstitial space between adjacent
stacles.

To properly account for hydrodynamic effects, consid
the l-scale, interstitial mobility dyadicM „x… of a finite-size
particle, wherex refers to the center of the particle. Th
mobility is both anisotropic and strongly dependent on
instantaneous particle positionx due to wall effects
@5#—even for spherical particles. In what follows, we w
show that such wall-induced effects upon the particle’s m
bility play a crucial role in determiningM̄* anduUF , even
to the extent of permitting vector separations when
choice of bifurcation branch is totally random.

By way of illustration, as in Fig. 1, consider rectangul
obstacles arranged symmetrically in a rectangular ar
Here, the lattice axes, characterized by unit vectorsX̂ andŶ,
coincide with the obstacle axes (x,y). The charged particle
moves through the array under the influence of an exte
force F, which is oriented at an angleuFX relative to theX
axis. Whereas the present analysis explicitly consid
spherical particles and rectangular arrays, our eventual
clusions transcend these restrictions. In particular, the sph
cal particle assumption may be relaxed by employing a m
bility dyadic M (x) valid for more complex molecules@7#.

In general, the chromatographic mobility of a solute p
ticle in a fluid of viscosity h may be expressed a

FIG. 1. Spatially periodic microscale rectangular latticel x

Þ l y) of rectangular obstacles~shown shaded! spaced at interstitia
channel widthsWxÞWy . The position-independent external forc
F is oriented at an angleuFX with respect to thex-lattice vector of
the array. With its center situated at a pointx[(x,y) within a chan-
nel, the sphere moves instantaneously with velocityU(x)
5M (x)•F. The meanl-scale Taylor-Aris particle velocity compo
nents through a channel within a single cell are denoted, res
tively, by Ux and Uy . On the chip scale the particle moves, o

average, across the chip with its (L-scale! velocity vector Ū*
5M̄* •F. This vector is oriented at an angleuUX relative to thex

[X axis. The disparity in angular direction betweenŪ* and F
gives rise to the chip-scale discrimination angleuUF . Notationally,
x5(x,y) are l-scale coordinates (0,x, l x , 0,y, l y), whereas
(X,Y) areL-scale coordinates.
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M̄* /6pha5X̂X̂M̄X* 1ŶŶM̄Y* . ~The Stokes law scaling is
arbitrary.! Here, for a given particle, the~dimensionless! sca-
lar componentsM̄X* and M̄Y* depend functionally on the di
mensionless groups characterizing the transport proce
explicitly, M̄ J* 5M̄ J* (a/Wj ,F j l j /kT,WjU j /uDu, etc.), with
U j @ j 5(x,y)# the Taylor-Arisl-scale average particle spee
through a j-directed channel@8#. Vector separation ensue
whenever the distinctive particle properties appearing in
arguments of these two mobility components result in
inequalityM̄X* ÞM̄Y* for a given particlei.

To computeM̄* , we employ a network theory for gene
alized Taylor-Aris dispersion phenomena, whose details
reported elsewhere@9#. The micropatterned device is repre
sented as a spatially periodic, interconnected network
channels together with their intersections. Classical Tay
Aris particle velocities and dispersivities@10# are used to
quantify the convective-diffusive transport processes occ
ring in these channels. When the particle is present within
intersection, the choice of the particle’s intersection egr
channel is assumed to be furnished by a particle-s
dependent ‘‘mixing rule,’’ which simulates the physic
transport processes occurring within that intersection. In c
trast with prior models@2,3#, this fact is not essential to th
vector separation phenomenon because of our incorpora
of hydrodynamic wall effects. We will focus only on the tas
of establishing thedirection of the particle trajectory, al-
though the general theory@9# permits a complete Taylor-Aris
dispersion analysis, including calculation of the chip-sc
particle velocityŪ* .

The network depicted in Fig. 1 is a so-called ‘‘simp
network’’ @9#, consisting of a single intersection joining to
getherx- andy-directed channels at their openings. The p
ticle’s probability density is trivial—the particle must be lo
cated within the single nodal area contained within the u
cell boundaries. Consequently, computingŪ* simply neces-
sitates defining:~i! the particle’s probability density ‘‘flow
rate’’ Qj within x- andy-directed channels; and~ii ! the prob-
ability ratio K of the particle choosingx- and y-directed
channels at the intersections.

For a given particle, the probability flow rate throug
channelj is given by Qj5m jF jWj , with m j the particle’s
l-scale mean mobility in channelj , F j the component of the
external force along the direction of the channel, andWj the
channel width. Whenl j@Wj , m j possesses its classic
Taylor-Aris dispersion value in the channel@10#, which in-
cludes a Boltzmann bias arising from the action of the tra
verse force:

m j5

E
0

Wj
dxkM j j ~xk!exp~Fkxk /kT!

E
0

Wj
dxk exp~Fkxk /kT!

~ j ,k5x,y; j Þk!,

~2!

whereM j j is the component ofM (x) in the j direction and
kT is the Boltzmann factor. For spherical particles and pla
channel geometries, the pointwise mobility dyadicM (x), in-
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BRIEF REPORTS PHYSICAL REVIEW E 65 052103
cluding wall effects, is available from rigorous hydrod
namic theory@11,12#. For more complex molecules, it re
mains possible to make this calculation using an approxim
hydrodynamic theory@13#. When the chip geometry and/o
the molecular shape exceed computational resources,m j may
be determined from experiments performed using a sin
channel of large aspect ratio,l j@Wj . Equation~2! is a ge-
neric result, rendering later conclusions based uponm j @cf.
Eq. ~3!# independent of our spherical particle assumption

Quantifying K depends upon the particle Peclet numb
Pe, representing the ratio of convective to diffusive transp
rates within the intersection. Perfect mixing@14# is assumed
for diffusion-dominated transport, Pe!1, so that all intersec-
tional egress channels are equally probable. This corresp
to randomizing the choice of bifurcation branch in existi
point-size theories@2,3#. For convection-dominated trans
port, Pe@1, the choice of intersectional egress channe
assumed to be proportional to the channel’s flow rateQj
@15#. Any value of Pe can be encompassed by defining
partition coefficient,K5Prob(y)/Prob(x), with Prob(j ) the
probability of the particle entering channelj upon exiting the
intersection. Consequently,K51 andK5Qy /Qx in the re-
spective low and high Pe´clet number limits.

The preceding analysis, when brought to fruition@9#, en-
ables the particle’s chip-scale velocity componentsŪX* and

ŪY* to be explicitly calculated. The angleuUX formed byŪ*
and theX axis is given by

tanuUX5
def.ŪY*

ŪX*
5mK

Wyl y

Wxl x

Fy

Fx
, ~3!

with m[my /mx . The discrimination angle is then compute
by

uUF5uUX2tan21~Fy /Fx!. ~4!

This analysis also furnishes the componentsM̄X* andM̄Y* of

M̄* , sinceŪX* and ŪY* are related toFx andFy by Eq. ~3!.
Several generic geometric conclusions are apparent f

Eq. ~4!. First, whenF is applied along a symmetry axis of th
array ~the X or Y direction!, the discrimination angleuUF
50 and is independent of the particle properties. Second
point-sized particles and perfect mixing (m5K51), uUF is
characterized exclusively by the symmetry group of
‘‘composite’’ l % L-scale array geometry. Explicitly, the sp
tial arrangement of the obstacles determines theL-scale lat-
tice symmetry, whereas the obstacle’s shape determine
l-scale point-group symmetry class. The symmetry of
compositel % L array consists of common symmetry el
ments, if any, between the respective lattice and obst
point-group rotational symmetries. These symmetries n
not be the same; for example, regular pentagon-shaped
jects in a rectangular array possess no common symm
elements~except for a center of symmetry!, irrespective of
the orientation of the obstacles relative to the lattice.

To clarify the preceding comments, we examine the ar
depicted in Fig. 1. WhenWx5Wy andl x5 l y , the array con-
sists of square obstacles in a square lattice, with coincid
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rotational symmetry axes. The fourfoldl % L composite sym-
metry @16# of this array makesM̄* isotropic anduUF50,
irrespective of the orientation ofF relative to the lattice axes
In contrast, an array withWxÞWy or l xÞ l y represents eithe
square objects in a rectangular array or rectangular objec
a square array. These lattices only possess twofold rotati
symmetry. Second-rank tensors associated with twofold s
metry are anisotropic@17#, so particle motion is no longe
colinear with the force. However, vector separation requi
that the physical attributes of the particles cause the ani
ropy. If the anisotropy is attributable only to the array sym
metry, then all particles will move on average in the sa
direction, albeit in a direction no longer colinear with th
force.

Thus, vector separation is possible only when the para
etersm andK appearing in Eq.~3! differ between particles.
Existing theories@2,3# consider the case whereK ~but notm)
is a function of the particle properties. When wall effects a
substantial, the simplest method for alteringm is to construct
an array with different gap widths, namelyWxÞWy . Vari-
able gap widths have a nonlinear effect upon the chan
particle mobilitiesm j via ~2!, as well as imparting twofold
symmetry to the array. Alternatively, even for fourfold sym
metric arrays, the presence of a strong transverse fo
F j@Fk , in one of the channels biasesm j as a consequenc
of the Boltzmann factor in~2!. In either case, the chromato
graphic mobilityM̄* no longer possesses the fourfold poin
group symmetry characterizing the array geometry. T
symmetry-breaking feature underlies the fundamen
mechanism of vector chromatography.

Consider the explicit example of a square latticel x5 l y
with rectangular obstacles separated by distancesWx
52Wy . The relative widths impart a wall-effect-induce

FIG. 2. Angle uUX formed between the particle’s chip-sca

mean velocity vectorŪ* and theX axis for the conditions indicated
in the inset. Solid and dashed lines correspond to anglesuFX

560° and 30°, respectively, between the applied forceF and theX
axis.
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 052103
preference for particle motion inx direction, as well as im-
posing the inequalitym<1. Figure 2 depicts the angleuUX
as a function ofm, for the limiting cases of both perfec
mixing and convection-dominated transport at the inters
tion. For point-size particles (m51), we see that the two
fold symmetry of the array results inuUXÞuFX . For finite-
size particles, vector chromatography is possible even for
case whereK51, where the bifurcation branch is totall
random. The range of available anglesuUX is small when
applying the force at the angleuFX530°. This makes a vec
o-

e

05210
c-

e

tor separation difficult. In contrast, applying the force at
angleuFX560°—‘‘against’’ the preferred direction—make
for an easier vector separation. This increased efficiency
cords with experimental results@4#, where the greater com
ponent of the force coincided with the narrower channel.

We are grateful to Dr. Sangtae Kim of Eli Lilly and Com
pany for his interest and encouragement in our microflui
analyses and to Professor Howard A. Stone of Harvard
useful discussions.
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