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N-dimensional nonlinear Fokker-Planck equation with time-dependent coefficients
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An N-dimensional nonlinear Fokker-Planck equation is investigated here by considering the time depen-
dence of the coefficients, where drift-controlled and source terms are present. We exhibit the exact solution
based on the generalized Gaussian function related to the Tsallis statistics. Furthermore, we show that a rich
class of diffusive processes, including normal and anomalous ones, can be obtained by changing the time
dependence of the coefficients.
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Anomalous diffusion processes appear in a large class of F(r,t)=Kky(t) +ko(t)r, 2
systems in several contexts. Some illustrative examples are
diffusion in plasmag1], relative diffusion in turbulent media in the diffusion coefficienf(t) and in the source term(t).
[2], cetyltrimethylammonium bromidéCTAB) micelles dis-  In particular, we consider the case where the space constant
solved in salted watef3], surface growth and transport of term inF(r,t) can be taken with different coefficients. This
fluid in porous medig4], two-dimensional rotating floys],  situation is useful, for example, to study diffusion in the
subrecoil laser cooling6], diffusion on fractal{7], anoma-  gravitational field k; =(0,0k;,)]. The harmonic potential is
lous diffusion at liquid surface$8], diffusion in linear shear considered isotropic.
flows[9], enhanced diffusion in active intracellular transport  The source term in Eq1) can be removed by an appro-
[10], particle diffusion in a quasi-two-dimensional bacterial priate change in the solution
bath[11], and spatiotemporal scaling of solar surface flows
[12], among the others. - t

The existence of the anomalous diffusion and its ubiquity P(r’t):eXF{ - foa(t’)dt'}l)(r’t)- ©)
has motivated, in particular, the analytical study by consid-
ering nonlinear[13—-19 and fractional [20,21] Fokker- T
Planck equations, spatial dependence of the diffusion coeffi-
cient [17,19,22,23 and temporal dependence of the drift
term[18,24). —p(r,t)=D(t)Vp(r,t)]"=V-[F(r,t)p(r,t)], (4

In this paper, we consider aN-dimensional nonlinear at
Fokker-Planck equation incorporating the time dependence . ¢ e e
in every coefficient, where drift-controlletexternal forcg ~ With D(t)=D(t)exf(1—»)/oa(t')dt']. Thus, Eq.(4) has the
and source terms are present. In our exact solution, a richeme structure of Eq1) without the source term, but with
class of anomalous behaviors can arise by choosing appr@? additional time dependence of the diffusion coefficient.
priate time dependence of the coefficients. These results iff2Pserve that this additional time dependenceé¢f) is in-
dicate that the possible anomalies in diffusive processes ca#t/ced by the nonlinear terpr’, disappearing whem=1.
appear as a consequence of different causes. This paper con-In order to obtain an exact solution for E@f) with the
tains, essentially, the main results obtained in Refs€Xternal force term given by E(), we are going to employ

his way, p(r,t) obeys the equation

[13,14,18,23 as special cases. the ansatz
In order to investigate, in an exact way, a large class of 1
anomalous diffusions, let us consider tii@limensional non- _ i1 _ 211/(1-q)
linear Fokker-Planck equation p(r,) Z(t){1 (1= AL =ro(0)]F ®
d A - N if 1—(1—q)B(t)(r—re)?=0 and p(r,t)=0 if 1—(1
— 2 v
SP(LO=DOVp(r,H]"= V- [F(r,H)p(r.1)] —q)B(t)(r—rg)2<0 (cutoff condition. We would like to
A remark that Eq(5) can be justified via dimensional analysis
—a(t)p(r,t), (1)  and related to the renormalization group thel@¥]. Further-

more, this ansatz can also be connected with Tsallis statistics
where we incorporate the time dependence in the externgP6,27. In addition, Eq.(5) reduces to the Gaussian when
force, g—1. In fact, by defining the function ezg(crxz)z[l—(l
- YD jf 1—(1-q)x*=0, and exg(—x*)=0 if 1
—(1—qg)x?<0 as aq Gaussian, we obtain the usual Gauss-
*Electronic address: Icmala@dfi.uem.br ian function by taking the limig— 1. Equation(5) is a so-
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lution of Eq.(4) whenv=2-—q and the time dependence of

B(1), Z(1), andro(t)=2i’\‘:lx0i(t)a are ruled by the follow-
ing system of equations:

1dz

zazZ(Z—q)NDBZ’“q—Nkz, (6)
1d
/—gd—f=—4(2—q)DZ‘1+qB+2k2, )
and
dXo;
ot~ KuikoXoi- (8)

Note that Eqs(6) and(7) are nonlinear, Eq(8) is indepen-

dent of B(t) and Z(t), and k4;(t) does not appear in the

nonlinear coupled differential equations fB(t) and Z(t).

Furthermore, the spatially independent term in the external

force only affects the time dependencexgf. So, Eq.(8)
leads to

Xoi(t) =€~ #O x4;(0) + jotkli(s)efﬂ(s)ds , 9

where u(t)=[tko(s)ds.
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TABLE |. Large time behavior ofa?~f(t)%°1 for a(t)=0,
D(t)=D(t)=Dg, andky(t)=kt™°, wherec;=2+N(1—q)>0.

b k (1) Description

b k=0 t2/et ¢, Diffusive @

b=0 k>0 (1—e ¢kY2e  Ornstein-Uhlenbeck

b=0 k<0 g?lklt Exponentially diffusive

0<b<1 k>0 t2bley ¢, Diffusive

0<b<1 k<0 e2lkit P Less than
exponentially diffusive

b<0 k>0 142Ioles Localized

b<0 k<0 g2kt =P More than
exponentially diffusive

b=1 k>—1/2 t2/et c, Diffusive @

b=1 k=—1/2 (tInt)C1 Log divergent

b=1 k<-—1/2 t2IK Superdiffusive

b>1 k el ¢, Diffusive @

&The process is superdiffusive fap <2, normal forc;=2, and
subdiffusive forc,>2.

The process is superdiffusive fof<2b, normal forc,=2b, and
subdiffusive forc,>2b.

structure of diffusion regime. Here we are going to analyze,

For example, in a three- a5 an illustration, a set of representative kinds of these

dimensional space with the presence of an isotropic timeanomalous behaviors in the asymptotic regime taking some
independent harmonic potential and the gravitational fieldgpecific dependence of the coefficients into account. In this

i.e., ka(t) =k,=const, ky,=k;, =0, andky,(t) =k;=const,
we getxo(t) =xo(0)e*2!, yo(t) =yo(0)e ', and
ekt

k
20(0)+ 1 ("'~ 1)
k2

The solution for the nonlinear coupled equationsZ¢t)
and B(t), [Egs.(6) and(7)] is given by

Ccy N/cq

Z(t)=2, 1_Wf(t) (12)

and

} —2lcy

C1
,B(t)zﬁo[l_ﬁf(t) , (12
with ¢;=2+N(1—-q), Bo=pB(t=0), Z,=2(t=0), and

t
f(t)=e’c1“(‘)xf [NKky(s)
0

—2N(2—-9)BoZd 'D(s)]e*®ds. (13

direction, from Egs.(3) and (5), we investigate the
asymptotic temporal behavior of the variance

f (r=16)2p(r,H)d™r
2:

fﬁ(r,t)d“r

=C(q,N)B™%, (14

o

where C(q,N) is a constant depending only anand N.
Note that the convergence of the integral fpr1 in o2
imposes a restriction over the parameterst N(1—q)
>2(q—1). This implies that, is a positive constant for all
g values.

First, let us consider the case without the source term,
with the diffusion coefficient constant, and with the time
dependence of the harmonic external force givenkpt)
=kt~°. From Eq.(13), we obtain

f(t)~{1—exd —c,kt*"P/(1—b)]}
+{cexd —c k! P/(1-b)]—cst?} (15

for larget and b<1, wherec, and c; are constants that

It is usual to identify a normal diffusion process by a depend onN,k,q, andb. Again, for larget andb=1, we

linear growth in time of the variance?={((r —rg)?). Other

have f(t)~t~2k—c,t2K(t1*2k—1)/(1+2k), and finally,

time dependences arf are commonly related as anomalous for b>1, we getf(t)~t. By using the fact that the mean
diffusion, for instance, superdiffusive, subdiffusive, expo-square displacement is given by?~f(t)?‘1, several
nentially diffusive, and localized. In our study, we obtain aasymptotic behaviors can be obtained. We summarize in
large class of diffusive processes that include these exfable | the possible behaviors related to the above

amples. In additiono?

can have different behaviors for asymptotic results. When we restrict our analysis to the one-

small and large times, enabling the description of a richdimensional linear casevE& 1), this drift-controlled anoma-
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TABLE II. Large time behavior ofo?>~f(t)?°1 for a(t)=0, TABLE Ill. Large time behavior of o~ f(t)%t for a(t)
D(t)=D(t)=D,t?, andk,(t)=0, wherec;=2+N(1—q)>0. = aot?, D(t)=Dg, andk,(t)=0, wherec,=2+N(1—q)>0.
d q a?(t) Description ag a (1) Description
d=0 q=1 t Normal (g—1)ey<O0 a=0 (e(q—l)ﬂot_ 1)2/01 Stationary
= 22+ N(1- )] iffusi _—
P & S |
4<0 =1 (1-1d| Subdiffusive (g—1)ey>0 a=0 (e(q—l)ﬂot_ 1)2/01 Exponentially
d>0 q= titd Superdiffusive @ Dao
d>N(1-q)/2 q 2Ard/2ENA-al  gyperdiffusive diffusive
d<N(1-q)/2 q PN gybdiffusive @ a=-1 t2l@-Dao-1ley ¢ Diffusive
Less than
(g—1)ap>0 —1<a<0 2[(q—LD)ag]t*™¥  exponentially
lous diffusion contains the results given in RE24] as a &P 1+a) o
particular case. Consider now the nonlinear diffusion equa- Jalie diffusive
tion with neither source nor linear external force, but with (9—1)ae<0 —1<a<0 [ ¢, Diffusive
the time dependence of the diffusion coefficient given by . More th?‘“
D(t)=D(t)=Dgt" In this case, for largg Eq.(13) leads to  (a—1)ap>0 a>0 . 2[(q—1)aolt™"7]  exponentially
c,(1+a
F(O)~19* L, (16 @) ifusive
(q—1)ap<0 a>0 t2¥e Localized
Since o2~ f(t)?2*N1-9] there is a competition between a, a<-1 t2les ¢, Diffusive

the parameterq andd to define the diffusion regimes. Table
Il contains a summary of these regimes. Another possibléThe process is superdiffusive foy<2[(q—1)ao—1], normal for
situation is to take the nonlinear diffusion equation with ac;=2[(q—1)a,—1], and subdiffusive foc,>2[(q—1)as—1].
time-dependent source terme(t)=aot?, with time- PThe process is superdiffusive fe;<2|a|, normal forc,=2|a],
independent diffusion constariB)(t)=D,, and without lin-  and subdiffusive foc,>2|a.
ear external forcek,(t)=0. For v=1 (q=1) the source °The process is superdiffusive fa;<2, normal forc;=2, and
term does not affect the diffusion regime. On the other handsubdiffusive forc;>2.
for v#1 (g#1) and large, Eq. (13) gives
lyze diffusion when the gravitational field is relevant. We
f(t)Ntan[{(q_ Dapt"? 17 have showed that a rich class of anomalous behaviors arises
1+a ’ by choosing appropriate time dependence of the coefficients.
These results indicate that the anomaly in diffusive processes
whena>—1. Fora=—1, we havef(t)~t(@"1%"! and  may appear as a consequence of different causes. In particu-
for a<—1, Eq.(13) reduces td (t)~t. Table Ill gives us a lar, the combination of nonlinearity and time dependence of
summary of the above behaviors. To conclude our observahe coefficients can lead to the normal diffusigime linear
tions about the anomalous diffusion induced by the time-growth of the mean square displacemeithis fact implies
dependent coefficients, we stress that the investigation of that the normal diffusion, in general, can not be associated
more complex time dependence of the coefficients can bwith the Gaussian shape of the distributip(r,t), i.e., the
reduced to the analysis of EQL3). linear time increase of variance does not necessarily mean
Summing up, we have investigated &dimensional that we are in the presence of ordinary diffusion. Finally, we
nonlinear Fokker-Planck equation by incorporating the timehope that the results obtained here may be useful to clarify a
dependence of every coefficient, including those of the expossible origin of a large class of different anomalous diffu-
ternal force and the source term. An exact solution is obsive processes in theoretical and experimental contexts.
tained in the case of external force with isotropic spatial
linear term and a possible anisotropic spatial constant term. We thank CAPES, CNPq, and PRONERrazilian agen-
This anisotropic constant term is useful, for instance, to anaeie9 for partial financial support.
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