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Analytical characterization of spontaneous firing in networks
of developing rat cultured cortical neurons
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We have used a multiunit electrode array in extracellular recording to investigate changes in the firing
patterns in networks of developing rat cortical neurons. The spontaneous activity of continual asynchronous
firing or the alternation of asynchronous spikes and synchronous bursts changed over time so that activity in
the later stages consisted exclusively of synchronized bursts. The spontaneous coordinated activity in bursts
produced a variability in interburst interval~IBI ! sequences that is referred to as ‘‘form.’’ The stochastic and
nonlinear dynamical analysis of IBI sequences revealed that these sequences reflected a largely random process
and that the form for relatively immature neurons was largely oscillatory while the form for the more mature
neurons was Poisson-like. The observed IBI sequences thus showed changes in form associated with both the
intrinsic properties of the developing cells and the neural response to correlated synaptic inputs due to inter-
action between the developing neural circuits.
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I. INTRODUCTION

Spontaneous electrical activity that is correlated acr
large numbers of neurons occurs in the brain. It has b
suggested that such correlated activity plays critical role
sleeping and waking@1#, in the planning and performance o
motor actions@2,3#, and in the formation of the neural cir
cuits of developing sensory systems@4,5#. Several authors
have reviewed the issues of correlated activity across n
rons for neural network operation, in particular, at the co
cal level~for example, Fujiiet al. @6# and references within!
and in the visual system@7,8#. Although such spontaneou
coordinated activity may have physiological importanc
little is known about its dynamics.

The fine structure of spatiotemporal activity in the inta
brain is not, however, easy to measure. To characteriz
system, one generally needs a long-term recording of its
tionary state, and external stimuli and interactions of conn
tivity with other regions of the brain can make it hard
obtain such a recordingin vivo. Neural network models sub
jected to biological constraints of structural and dynami
plausibility have extensively been constructed and can s
light on the ways a complex assembly of units behaves~see,
for example, several relevant books@9–11#!. However, most
such studies have relied on theoretical models that mi
some of the known properties of neurons. One may t
question the extent to which such models may be relied u
to provide a sufficiently realistic representation of correla
activity in networks of large numbers of neurons.

The similarity between the pharmacological effects on
citability and synaptic transmission that are observed in c
tures and the effects observed in cortical slice prepara
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and in vivo suggests that the preparation of a cultured n
work provides a reasonable model system for examining
work activity @12–14#. Cultures of neurons thus provide
useful approximation of such truly physiological prepar
tions as slices and intact cortices. Rather than rely on th
retical models of neural networks, we have here used
works of rat cortical neurons cultured on the surface o
multielectrode array.

A dissociated neural culture should also be useful
studying the electrical activity associated with the develo
ment of a neural network. Immature dissociated neurons
connect in a seemingly random fashion and reconstruct
works. Even in a culture, however, the structure a
connectivity of a network as a whole are hard to estimate
this study, the spread of neurite as measured was sev
hundreds of micrometers and the density of neurons in
cultures was less than several hundreds of cells/mm2. Our
estimate was that it was possible for each single neuron t
connected to approximately 600 others~see Sec. II for more
details!.

Recent work in dynamical analysis has provided ma
ematical tools that are capable of evaluating nonlinear de
ministic properties in time series of recorded data. Investi
tors have applied such tools to finding nonlinear structure
the time series of neurophysiological data@15–19#. To what
extent does firing in a network behave the way a determ
istic process behaves or to what extent does it behave a
effectively stochastic process? This has been a basic que
in such studies. Evidence from electroencephalogram~EEG!
and single-unit cross-correlation studies suggests that coo
nated activity may involve a nonlinear determinism of lo
dimension@20,21#. However, the relatively few observation
of in vitro neural preparations have tended to show cl
evidence of nonlinear deterministic mechanisms@15–19#.

Both linear and nonlinear analyses of neurobiologi
time series have provided useful insights into the possib
ties for synaptic cording. In recent studies, in particular, S
gundo and co-workers have applied nonlinear analysis to
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-
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sequences of interspike intervals in spike trains recor
from synaptically inhibited crayfish pacemaker neuro
@22,23#. Different postsynaptic spike-train ‘‘forms,’’ each o
which denotes a set of timings with shared properties,
generated by varying the average rate and/or dispersio
the intervals of presynaptic spike trains. They reported tha
was possible to characterize each form in terms of its dim
sion, nonlinearity, and predictability. They indicated that d
ferent dimensions, nonlinearities, and predictabilities w
classified as forms that pertain to universal behavior cate
ries and assigned names to these forms, for exam
‘‘noisy,’’ ‘‘periodic,’’ ‘‘quasiperiodic,’’ and ‘‘intermittent’’
@24,25#. These methods of linear and nonlinear analyses
broadly applicable to any train of spikes that may be
scribed as an ordered set of intervals, including those fr
synaptic arrangements, which are composed of sets of
merous weakly convergent terminals.

In this study, we started by observing the spatial ‘‘p
terns’’ of the spontaneous activity that arises in cultured n
works of developing cells. This observation was conc
trated on whether or not there were correlations between
activities. Here, a spatial ‘‘pattern’’ is taken to imply syn
chrony or asynchrony of the electrical activity of cells. W
then characterized the ‘‘forms’’ of burst sequences, wher
burst denotes a tendency for firing within a group of cells
be clustered in time. We use forms to imply types of bur
interval dispersions and sequences of bursts, which are i
pendent of overall averages. These were much like the fo
of spike trains, such as ‘‘periodic,’’ ‘‘bursting,’’ and
‘‘Poisson-like’’ used by, for example, Segundoet al. @26# and
Tuckwell @27#. To find out whether the firing ‘‘timings’’~de-
scriptions of bursts as a point process! generated in a popu
lation of neurons are distinguishable from a random proc
we statistically evaluated the burst-sequence data. We
applied nonlinear analysis to find out if some form of no
linear determinism was present and to obtain some mea
of complexity for the sequences.

Neurons themselves are complex systems with a phys
structure that indicates many variables. At the cellular lev
for instance, these include the conductances of the ion c
nels, the postsynaptic potentials, and the release of
rotransmitters. Networks of neurons are, of course, e
more complex. The experiments in this study demonstra
that a variety of characteristic forms are imposed on the t
ing of bursts of neural activity. We have used the approac
outlined above to address the changes in form that arise
ing the concerted activity seen in the development of la
numbers of cells to form networks and discuss the unde
ing physiological factors.

This paper is organized as follows. The materials a
methods we used are described in Sec. II. One cluster
cess and the way we treated the recorded data in which it
apparent are described in Sec. III. The spatial ‘‘patter
observed in the earlier developmental stage of the ne
networks are described in the first part of Sec. IV A. T
characteristics of the burst sequences observed in the
works of their more mature stages are then explained,
histograms of interburst intervals, autocorrelation his
grams, and power spectra are used to classify the seque
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into three forms~Sec. IV B!. Nonlinear analysis is then use
to detect the nonlinear determinism and to estimate comp
ity measures of the sequences, such as correlation dim
sions and degrees of nonlinear prediction error~Sec. IV C!.
We conclude in Sec. V with a discussion of our results.

II. MATERIALS AND METHODS

A. Cell culture

We used a slight modification of the cell-culture meth
used by Muramotoet al. @28#. The cortices of 17-day-old
Wistar rat embryos were chopped into small pieces, diges
in 0.02% papain~Boehringer!, and then mechanically disso
ciated by trituration. The cells were then resuspended in D
becco’s modified Eagle’s medium~Sigma! supplemented by
5% heat-inactivated fetal bovine serum~HyClone!, 5% heat-
inactivated horse serum~Gibco!, 2.5 mg/ml of insulin
~Sigma!, and penicillin-streptomycin~5–40 U/ml, Sigma!.
Electrode arrays that had been coated with poly-D-lysine
~Sigma! and laminin~Sigma! were then plated with the cells
These neurons were then cultured in an incubator at 37
with an H2O-saturated atmosphere, consisting of 90% air a
10% CO2.

B. Estimation of connectivity

The degree of connectivity in an intact cortex is high a
it is estimated that each neuron makes several thousand
connections to other neurons@29#. Unlike a cortexin vivo,
however, a cultured cortical network is intrinsically loca
ized. It is thus difficult to precisely characterize connectiv
within a particular preparation. We estimated cell connec
ity in the following way. First, we administered an intrace
lular injection of Lucifer Yellow~Sigma! and then measured
the arborization of the neurons by visual inspection;
found this to be 1.260.5 mm2 @mean6SD ~standard devia-
tion!, n512 neurons#. The densityD of our cultures was
1.460.63102 neurons/mm2 (n512 cultures). We then
used the following method to infer the number of ce
(Ncell) that may be connected to a given cell. We assume
two neurons are, respectively, located on disks of radiusr 1
andr 2 and that the disks have a dense covering of axons
dendrites. If the distancel between the centers of the tw
disks is less thanr 11r 2 ~i.e., l ,r 11r 2), a connection be-
tween the neurons is possible. Furthermore, if the axons
dendrites of every neuron in the culture are assumed to h
exactly the same length (2r ), it is then possible for each
neuron to have connections with all other neurons that h
centers within a circle of radius 2r around the center of the
first neuron’s disk. As a result,Ncell54pr 2D provides an
estimate of the number of connections per cell. It would th
be possible for each neuron of the cultures in this study to
connected to about 633 (1.22p31.43102) other neurons.

C. Recording

We used an electrode-array substrate@30–32# that had 64
recording sites within a 1.631.3-mm2 area to make extracel
lular recordings of the activity of neurons in 44 culture
4-2
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ANALYTICAL CHARACTERIZATION OF SPONTANEOUS . . . PHYSICAL REVIEW E 65 051924
Each recording site covered an area of 30330mm2, and the
distance between the centers of adjacent sites was 180mm
@33# @Fig. 1~c!#. For this experiment, we used a special inc
bator with a measuring system of the same design as one
had been built by Jimboet al. @33#.

Recording sessions lasted for 5–8 h during which
cells were kept at 37 °C, and the session took place after
cells had been cultured for 3–65 daysin vitro ~DIV !. The
day before each recording session, the culture medium
exchanged for a medium that contained neither insulin
penicillin-streptomycin, but was otherwise the same. A di
tal signal processor stored the amplitudes and widths of th
spikes where the recorded signal rose above a threshold s
five times the standard deviation of the baseline noise.
amplitudes and widths recorded at each of the 64 measu

FIG. 1. Spontaneous synchronized firing in a culture at 25 d
in vitro ~DIV !. ~a! Action potentials of a cell under a whole-ce
voltage clamp to the resting level (265 mV). ~b! Extracellular
voltages recorded at four sites, along with the simultaneously
corded whole-cell voltage.~c! The four selected recording sites.
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sites were sorted and classified by using the hierarch
clustering method@34# and then converted into pulse train
each of which was assumed to represent the response
single cell@35#. Trains of spikes identified in this way exhib
ited autocorrelation functions with low values around t
origin: this is compatible with their having been generated
individual cells that become refractory after firing.

Standard single-cell statistics such as average interv
standard deviations, coefficients of variation, histograms,
average firing rates were also routinely computed. We p
cipally used these, however, to assist in the interpretation
the other measures. Basic statistics~i.e., sample sizes, aver
age intervals, standard deviations, and coefficients of va
tion! for spike trains of individual neurons obtained fro
nine cultures are shown in Table I and the sets of spike tra
are labeled as neuron number 1–9.

D. Detecting bursts

We identified bursts in each spike train by applying t
method described in Sec. III. Each was considered as
individual event; a series of bursts was considered to b
realization of a point process with a timing that was d
scribed by the sequences of interburst intervals. In short,
diagnosis of a train as ‘‘bursty’’ is based on the predom
nance of two clearly different time scales in the intersp
intervals~ISIs!, which in turn led to clearly separate mode
in the ISI histogram~not shown here!. We took the longer of
the intervals or the sum of the intervals as the interbu
intervals. Figure 1~b! shows the synchronization of firing be
tween cells in a culture at 25 DIV.

III. THE CONCEPT OF THE CLUSTER PROCESS

In this study, bursts imply tendencies to fire synchr
nously and in mathematical parlance constitute ‘‘cluste
@36,37#. Clusters are used to indicate a set of firing eve
that are closely spaced in time. Our method for identifyi
clusters~bursts! in each of the spike trains we analyzed
explained bellow. Each cluster was taken to be an individ
event; each series of clusters was considered to be the
ization of a point process with a timing described by t

s

e-

TABLE I. Summary of statistics on spike trains.

Statistics on spike trains

Neuron
no.

Days
in vitro

Sample
size

Average
interval ~s!

Standard
deviation~s!

Coefficient
of

variation

1 5 5949 22.0 83.1 3.77
2 7 4753 4.58 7.18 1.57
3 12 10092 3.53 5.03 1.42
4 15 3888 11.3 14.6 1.29
5 16 7197 10.1 15.7 1.56
6 17 8214 3.43 11.3 3.29
7 28 6447 2.42 5.49 2.27
8 30 6582 2.25 2.66 1.18
9 58 5578 3.72 7.55 2.03
4-3
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TAKASHI TATENO, AKIO KAWANA, AND YASUHIKO JIMBO PHYSICAL REVIEW E 65 051924
sequences of intercluster intervals~ICIs! or interburst inter-
vals ~IBIs!. In such a cluster process, a primary process
termines the timing of the clusters. Each of the prima
events triggers a secondary series. Figure 2~a! is a simple
illustration of a cluster process.

Grüneiset al. have proposed a method for estimating t
statistical parameters of a cluster process when the prim
process is a Poisson process@37#. In the paper presente
here, we have adopted their model as a framework. We
by applying their parameter-estimation method for a Pois
cluster process to the experimental data. After that, we e
mated the times at which the primary process had cre
events.

Here is a brief explanation of the model. Suppose t
Ntot(t) is a stochastic variable that denotes the numbe
events in a time interval@0,t#. Let ^nc& denote the mean rat
of the primary process~Poisson process!. The cluster con-
sists of N random events whereN is a stochastic variable
with the distribution functionpm5Prob$N5m%. The model
assumes that the clustered distribution is described by

pm5mzY (
m̂51

N0

m̂z ~m51, . . . ,N0!, ~1!

wherez is a real number. The functionpm is called a clus-
tered distribution andm takes on values in the rang
1,2, . . . ,N0, whereN0 is the maximum value ofm. The time
interval between thekth and (k11)th events in the cluster i

FIG. 2. ~a! Illustration of a cluster process. In such a proce
each of a series of primary events is assumed to form a so-c
renewal process. Each of the primary events triggers a secon
series of events. Each series of secondary processes is ca
‘‘cluster.’’ ~b! The variance/mean~Fano factor! curve for numbers
of spikesN(t) versus period of observationt ~s! on a log vs log
scale. The experimental parameters (Tmin , Tmax, VM0, andme)
that are derived from the curve are indicated. The culture had b
17 DIV. The neuron is listed as neuron number 6 in Tables I and
05192
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denoted bylk . As a definition, the first event in the cluste
to be considered is called the primary event. A cluster c
taining i events thus exhibits (i 21) intervals and the time
over whichi successive events occur is

L i5 (
k51

i 21

lk ~ i 52,3, . . .!. ~2!

The distribution ofL i is expressed as

Fi 21~ t !5Prob$L i<t% ~ i 52,3, . . .!. ~3!

In this study, the intervals between events within the clust
are assumed to be (nth order! gamma distributed with a dis
tribution density function expressed as

w1~l!5
nb

~n21!
~nbl!n21exp~2nbl! ~n51,2, . . .!,

~4!

where b5E@l#21 and E@•# represents expectation. Whe
n51, the process is Poissonian and the intervals are ex
nentially distributed. We thus have the probability distrib
tion function of the intervalst of i successive events

wi 21~ t !5
nb

$n~ i 21!21%
~nbt !n( i 21)21exp~2nbt !

~ i 52,3, . . .!. ~5!

The distribution ofL i is given by

F0~ t !51, ~6!

Fi 21~ t !512 (
k51

i 21

wk~ t ! ~ i 52,3, . . .!. ~7!

We then obtain

Prob$Ntot~ t !> i %5Prob$Ntot~ t !. i 21%Prob$L i<t%

5RN~ i 21!Fi 21~ t ! ~ i 52,3, . . .!,
~8!

where

RN~ i !5Prob$Ntot~ t !. i %5 (
m5 i 11

N0

pm . ~9!

Since the cluster constitutes a renewal process~Poisson pro-
cess!, we obtain the following expression for the probabili
density ofNtot(t):

Prob$Ntot~ t !5 i %5Prob$Ntot~ t !> i %2Prob$Ntot~ t !> i 11%

5RN~ i 21!Fi 21~ t !2RN~ i !Fi~ t !

~ i 52,3, . . .!. ~10!

Next, we briefly explain the procedure we followed to
the data to the model. The Poisson cluster process with
tervalsl that are exponentially distributed is sufficiently d
scribed by four parameters:z, N0 , ^nc&, andb. The addi-
tional parametern is needed when the intervals are gamm

,
ed
ry

d a

en
I.
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ANALYTICAL CHARACTERIZATION OF SPONTANEOUS . . . PHYSICAL REVIEW E 65 051924
distributed. We assumed that the intervals were exponent
distributed and that it was, in fact, possible to approxim
the distribution functions of the intervals in our recorded d
by assumingn51. We thus have to derive four paramete
from the experimental data. For this purpose, we used co
ing statistics on the Poisson cluster process. That is, the n
ber of events@Ntot(t)# counted in a time intervalt is used as
a random variable in obtaining the estimate. The variance
mean values~also known as a Fano factor curve! for Ntot(t)
were then calculated and plotted on a log vs log graph
obtain the variance/mean curve. As is shown in Fig. 2~b!,
parametersTmin , Tmax, andVM0 are readily obtained from
such a plot, whereVM0 is the saturated value of th
variance/mean curve. In addition, a redundant paramete

me5
log10~VM0!

log10~Tmax/Tmin!
~11!

is used to represent the line of fit to the slopem of the
variance/mean curve under the condition thatE@N2#/E@N#
5VM0. If this condition is satisfied, the value ofm depends
on two parameters,N0 andz. Best-fit values forN0 andz are
thus obtained form'me . In practice, sinceN0 is an integer
andz is a real number, it is convenient to start by findingN0
first and then obtainz. We obtainb by comparing eitherTmin
or Tmax with the abscissa of the variance/mean curve.
nally, we derive^nc& from ^nc&5E@Ntot#/E@N#, where the
expectationE@N# of N is calculated from known valuesN0
and z. Examples of parameters estimated from the exp
mental data are given in Table II.

We now estimate the timing of the primary process. S
pose thatNW(t) is a stochastic variable that denotes the nu
ber of events in some time interval@ t,t1W#(t,W>0) within
the cluster. The probability density of the number of spik
in that interval is then given by

Prob$NW~ t !5m%5Prob$Ntot~ t1W!2Ntot~ t !5m%

5Prob$Ntot~W!2Ntot~0!5m%

5Prob$Ntot~W!5m%

5RN~m21!Fm21~W!2RN~m!Fm~W!

TABLE II. Poisson cluster-process parameters. The number
square brackets denote powers of 10.

Neutron no. ^Nc& ^N& ^l& ~s! N0 z
b ~units of

1/^l&)

1 9.63@-3# 4.74 8.09@-1# 5 6.31 1.23
2 2.55@-2# 8.56 4.15@-2# 18 22.18 2.40
3 2.94@-2# 9.62 2.16 45 21.05 0.464
4 6.04@-2# 2.36 5.89@-2# 10 22.81 17.0
5 2.97@-3# 3.34 1.39@-2# 14 22.13 72.2
6 1.24@-1# 2.35 3.23@-2# 8 21.43 31.0
7 1.82@-1# 2.27 1.50@-1# 15 21.89 6.68
8 2.20@-1# 2.03 1.72@-2# 48 22.30 58.0
9 8.97@-2# 2.88 2.02@-1# 15 21.57 4.96
05192
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~m52,3, . . .!, ~12!

becauseNtot(t) is stationary and Prob$N(0)50%51. Thus,
we estimated the timing of the primary process in the follo
ing way. If the total recording timeT is divided into small
bins, each with a time width ofDt, the number of spikes
within each bin obeys the probability distributio
Prob$NDt(t)5m% under the condition that no two seconda
series overlap. The number of spikes,UDt( i )( i 51, . . . ,M ),
in each bin was then counted andUDt( i ) was smoothed by
using a Hanning window. In practice, bins with widths fro
20 ms to 100 ms were used. The times at which local
trema exceeded a threshold were regarded as indica
events of the primary process. The threshold was se
^NDt&2s, where ^NDt& and s are, respectively, the mea
and standard deviation ofNDt .

IV. RESULTS

A. Spontaneous firing patterns in networks of developing
cortical neurons

The cultures on the electrode arrays had areas in the ra
from 10 to 50 mm2 and contained 4000–10 000 cells. Spo
taneous activity varied from culture to culture and accord
to the stage of development. Some typical spontaneous fi
patterns were, however, apparent:~i! continual asynchronous
firing of cells, ~ii ! alternation between asynchronous spik
and synchronous bursts~local synchronization!, and~iii ! ex-
clusively synchronized bursts@14#.

Figure 3 shows how the spike-train patterns observed
one culture changed from 3 to 7 DIV. At 3 DIV, both asy
chronous firing and locally synchronized bursts with a lo
spike-propagation delay (3 –5 ms/mm) are visible. At 5
DIV, globally synchronized bursts with a shorter spik
propagation delay represent the dominant pattern of activ
At 7 DIV, the spike trains observed at all sites of the ele
trodes show a much tighter coincidence than they did a
DIV. Average numbers of spikes within each of the bur
recorded at each electrode had also increased.

It was not possible to discern any changes in spatial p
terns of firing by naked-eye observation after synchroniz
firing had begun to occur. The average SD and coefficien
variation (C) of ICI ~IBI ! sequences for 176 cells from all 4
cultures are shown in Fig. 4. Both the average and SD of
ICIs decreased as the number of daysin vitro increased,
while theC values varied greatly from culture to culture an
showed no tendency to change.

Since some of the analysis in this section involves
assumption that the process is stationary, it is desirable
start by verifying that the sequences of clusters are stat
ary. A point process is~strictly! stationary according to the
mathematical definition when the joint distribution of th
number of events in anyk fixed intervals is invariant unde
translation@38#, that is, when the distribution is the same
any pair of intervals. However, it is difficult to use the e
perimental data to satisfy this strict definition. A more pra
tical definition ~i.e., of weak stationarity! requires only that
certain first- and second-order statistical properties rem
invariant. In practice, some criteria that discriminate one d

in
4-5
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FIG. 3. Changes in spontaneous firing~spike trains! in a developing culture at~a! 3 DIV, ~b! 5 DIV, and ~c! 7 DIV. ~i! Spatial
configuration of electrodes by which signals were detected.~ii ! Spontaneous firing over 40 min.~iii ! An expanded view of the 3-s perio
marked with an asterisk in~ii !.
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set from another are necessary in order to recognize sta
arity. In the present work, stationarity was equated with fr
dom from trends. This was judged by Kendall ran
correlation tests, a practical application of the Kend
coefficient t @39#. The tests~used at the 0.05 confidenc
level! measure the correlation between the orders and m
nitudes of the values. In particular, the results of the tests
the ‘‘Poisson’’ form are discussed in Sec. IV B 2.
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B. Stochastic analysis of cluster sequences

In this section, we investigate the ‘‘forms’’ of the serie
produced by the cluster process~primary process! during the
development of cultured neural networks. This is based
analysis of the ‘‘forms’’ as stochastic point processes. It
possible to deduce many forms on ana priori basis, and the
main idea of doing so is that the formal features of ea
would carry implications as to the subjacent physiology. A
4-6
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cording to Tuckwell’s classification@27#, it is possible to
distinguish ten different major types of ISI distribution fo
sequences of spike trains. Here, three forms found for
densities in the experimental data were used. Distribution
ICIs that are close to a quite narrow Gaussian, bimodal~or
multimodal!, and exponential distribution are referred to
‘‘delta-like’’ ~periodic!, ‘‘bimodal’’ ~bursting!, and ‘‘Poisson’’
forms, respectively@27#. Bursting as used here refers to
burst of clusters~e.g., a doublet, triplet, or short train o
high-frequency clusters! and this differs from our usage else
where in this paper. Figure 5A shows typical examples of
three types of ICI histograms.

In this study, however, ‘‘classification’’ indicates genera
zations found by study of the cluster sequences. Most hi
grams of ICIs are clearly of one type or another, but
separation of types is not absolute. The Poisson proces
for instance, a theoretical construct, so we do not intend
strictly verify that a cluster sequence is produced by a P
son process, but rather to find a form that we refer to
‘‘Poisson-like.’’ Even though the separation of types is n
always absolute and there is a continuous gradation from
type to another, we need some criteria for classification
the types in order to characterize the forms of the clus
sequences. Thus, in identifying the Poisson-like form,
example, the relevant comparison is with a flat autocorre

FIG. 4. Statistics on sequences of intercluster intervals~ICIs! for
176 cells from the 44 cultures, at 7–65 days in vitro~DIV !. ~a!
Average ICI versus DIV.~b! Standard deviation of ICIs versus DIV
~c! Coefficient of variation versus DIV.
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tion histogram of ICIs and an autocorrelation function of t
Poisson point process.

1. Tendencies to periodicity in cluster sequences

First, we were interested in finding tendencies for ICIs
repeat periodically. This was important for th
‘‘delta-like’’ form, so we explored and measured the corre
tional properties of the series. A typical way of evaluati
repetition is to compute the correlation functions or his
grams ~CFs! for series of events. The CFs for the clust
series were calculated on the basis of the methods desc
by Bryantet al. @40#. In particular, the autocorrelation histo
gram or autocorrelogram provides an estimate of the m
probability of firing ~or a cluster in this study! for a neuron
as a function of time subsequent to the beginning of a sp
~cluster!. Since autocorrelation histograms~autocorrelo-
grams! are symmetrical and always have a peak at a lag
zero, we have only plotted the values for positive time a
thus excluded the uninteresting delta-like function at the o
gin ~Fig. 5B!.

The ‘‘delta-like’’ histogram for one set of ICIs that i
shown in Fig. 5A~a! has a single sharp mode with a sma
amount of spread in both directions. Figure 5B~a! shows that
the corresponding autocorrelation histogram is highly ‘‘pe
odic’’ with several modes at integer multiples of the ICI hi
togram’s mode and that such modes extend throughout
range of the autocorrelation histogram. Figure 5B~b! shows
an ‘‘early mode’’ type, which has an obvious peak that c
responds to the modal value of the ICI histogram@Fig.
5A~b!#. Such peaks are occasionally followed by addition
and smaller peaks. This type suggests a weak tendenc
ward periodic firing in clusters or bursting-type firing. Th
third is a ‘‘flat’’ type of autocorrelation histogram@Fig.
5B~c!# that shows only small deviations from the avera
value. This indicates that the firing times are independen
each other, except, of course, for the early effect of the
fractory period of the cells. Thus, the ICI histogram is
special type of asymmetrical histogram in which the mode
close to the extreme left of the range and the decay to
right is nearly exponential, as is suggested by Fig. 5A~c!.

Another way of evaluating the correlational properties
a series is to compute its power spectrum. This is gener
achieved by estimating the power spectrum of the corre
tional properties across different shifts of time lags. We us
this standard method to estimate the power spectrum@41#
and found tendencies to periodicity in the cluster sequen
that were within the criteria for assigning significance. Th
was achieved by testing whether or not deviations of
oscillatory components from the average of the power sp
trum were statistically significant. Power spectra of the cl
ter sequences are plotted in Fig. 6 and the three types~i.e.,
periodic, bursting, and Poisson forms! shown are the same a
those in Fig. 5.

The criterion used was three times the standard devia
(3s) from the average on a logarithmic scale. If the oscil
tory components in the frequency domain are beyond
criterion ~the dashed lines shown in Fig. 6!, we regarded the
sequences as having a strong tendency to repeat periodi
@e.g., Fig. 6~a!# and classified the sequence as being of
4-7
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FIG. 5. Intercluster interval~ICI! histograms
~A! and autocorrelation histograms~B, autocorre-
lograms! for single cells. For the ICI histogram
and autocorrelograms, 1-s and 2-s bin widt
were, respectively, used.~a! A culture at 12 DIV.
Nc51395, mc517.3 (s), sc52.64 (s), and
Cc50.1524. ~b! At 18 DIV. Nc52676, mc

516.4 (s), sc513.9 (s), andCc50.852.~c! At
58 DIV. Nc52283, mc57.76 (s), sc

57.58 (s), andCc50.977. Nc is the number of
clusters andmc , sc , andCc are the ICI mean,
standard deviation, and coefficient of variatio
respectively.
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delta-like’’ form. Oscillatory tendencies were visible in th
cluster sequences from many neurons at 15–20 DIV. H
ever, the number of neurons that exhibit no oscillatory t
dency increases at above 21 DIV. All of the results are su
marized in Table III.

2. Tests of ICI series to identify the Poisson-like form

In this section, we investigate the characteristics of
cluster sequences in terms of the Poisson process. We in
tigated the ‘‘delta-like’’ ~periodic! form of the cluster se-
quences in the preceding section. Discriminating the ‘‘Po
son’’ and ‘‘bursting’’ forms from each other in a way tha
may be inferred from the recorded data, in particular, tu
out to be the main issue in this section. However, as sta
earlier, verifying the Poisson property of an actually record
sequence generally requires that many tests verifying
property must be satisfied; we are thus seeking a form
call Poisson-like, rather than the actual Poisson form, in
cluster sequences. Thus, to investigate whether or not clu
sequences displayed a ‘‘Poisson-like’’ form, we tested~i! the
goodness of the fit of the distribution function and~ii ! the
independence of the intervals, on the basis of the metho
nonparametric statistical inference@39#.

If N sample observations are the values of a random v
able, a comparison of the observed and expected cumula
relative frequencies is possible for each of the different
served values. Hence, for a givenN-sample observation, sev
eral statistical measures~tests! of goodness of the fit are
functions of the deviation of the observed cumulative dis
bution~empirical distribution! from the corresponding cumu
lative probability as expected under the null hypothesis
05192
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variety of functions of the deviations are used in such te
We have used the Kolmogorov-Smironov one-sample sta
tic, which we briefly explain below.

We let FX(x) be an unknown cumulative distributio
function andSN(x) be the empirical distribution function o
FX(x). In practice,SN(x) is calculated as the sample repa
tition of ICI sequences$I i% ( i 51, . . . ,N). That is, it is the
proportion of sample observations that are less than or e
to x for some real numberx,

SN~x!5
~number ofI i<x!

N
. ~13!

Let F0(x)512exp(2lx) be the cumulative distribution
function of a Poisson process that has a ratel
51/(( i 51

N I i /N). The null hypothesisH0 we tested was thus

H0 : FX~x!5F0~x! for all x, ~14!

which is called a two-sided test of goodness of the fit.SN(x)
is the statistical image of the distribution produced byFX(x).
If the null hypothesis is true, there should be little differenc
beyond sampling variation, betweenSN(x) and F0(x), for
any x. To test the empirical distribution function for a Poi
son process, we used the two-sided Kolmogorov-Smirn
~KS! statisticsDN ,

DN5sup
x

uSN~x!2FX~x!u. ~15!

This statistics is based on the maximal absolute measur
the ‘‘distance’’ betweenFX(x) @F0(x) under the null hypoth-
4-8



t
o

tics

nd

and
er
or
on

al
ic
pe

a

-

ac-
a

ely.
an

d

se-
n-

er
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esis# and the empirical distribution functionSN(x). In gen-
eral, the distribution ofDN is not asymptotically normal, bu
a convenient approximation to the sampling distribution
DN has been derived@39,38#. Let dN,a be a value such that

Prob$DN.dN,a%5a. ~16!

FIG. 6. Power spectra of cluster sequences. The abscissa sc
cycles per second~Hz! and the ordinate is power, on a logarithm
scale. The horizontal solid and dashed lines on each plot, res
tively, indicate the mean power and the mean6 three standard
deviations, in logarithmic form. The original data are the same
shown in Fig. 5, and the plots in~a!, ~b!, and ~c! similarly corre-
spond to the ‘‘periodic,’’ ‘‘bursting,’’ and ‘‘Poisson’’ forms, respec
tively.

TABLE III. Tendencies to periodicity displayed by the clust
sequences.

Number of cells ~%!

Days in vitro Over 2s Over 3s Sample number

1–10 6 ~21.4! 4 ~14.3! 28 ~100!
11–20 25 ~41.7! 11 ~18.3! 60 ~100!
21–40 13 ~32.5! 0 ~0! 40 ~100!
41–65 2 ~4.17! 0 ~0! 48 ~100!

Total 46 ~26.1! 15 ~8.52! 176 ~100!
05192
f

The two-sided test of goodness of the fit using the statis
DN then rejects the null hypothesis at a levela if the ob-
served value ofDN is greater thandN,a . We used the 95%
confidence level:a50.05. The hypothesisH0 was rejected if
the empirical distribution function passed outside the ba
bounded above by the smaller ofSN(x)1dN,a and 1 and
bounded below by the larger ofSN(x)2dN,a and 0.

Figure 7 shows the empirical distribution functionsSN(x)
and the corresponding Poisson distribution functionsF0(x).
In Fig. 7~a!, there is a good match between the observed
expected distributions of ICIs from a cell cultured for ov
45 DIV. In Fig. 7~b!, the sequences from a cell cultured f
18 DIV deviate markedly from the corresponding Poiss

e is

c-

s

FIG. 7. Results of testing distributions for Poisson-like char
teristics.~a! Comparison, for data on ICI sequences from a cell in
culture at 45 daysin vitro ~DIV !, of the empirical distribution func-
tion SN(x) with the expected Poisson distribution functionFN(x).
The basic statistics:N53183, m57.56 (s), s57.43 (s), and
C51.02. N is the number of clusters andm, s, andC are the ICI
mean, standard deviation, and coefficient of variation, respectiv
~b! A similar comparison for the data on sequences from a cell in
18-DIV culture. The basic statistics:N52676, m516.4 (s), s
513.9 (s), and C50.852. ~c! Ratios between the two-side
Kolmogorov-Smirnov~KS! statisticsDN and dN,a versus DIV for
161 cells from 41 cultures. The data sets excluded those ICI
quences classified as being of the ‘‘delta-like’’ form. The 95% co
fidence level is used in the test:a50.05.
4-9
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process. The results of the KS statisticsDN for all of the data
sets, except for those cluster sequences classified as bei
the ‘‘delta-like’’ form, are summarized in Fig. 7~c!. In the
plot, the ordinate represents the ratio ofDN to dN,a . Small
values of the ratio~less than 1! indicate good agreemen
between the distributions of the sequences and those
duced by Poisson processes. In terms of the distributions
proportion of data sets with cluster sequences of the ‘‘P
son’’ form increases with the number of daysin vitro.

The statistical test of the independence of ICI sequen
$I i% that we have used here is based on Sperman’s coeffic
of rank correlation@39#. Let us draw a sample ofn pairs
$(I i ,I i 1k)% ( i 51, . . . ,n) for some positive integerk and
denote the respective ranks of the variables in the samp

Ui5rank~ I i ! and Vi5rank~ I i 1k! ~ i 51, . . . ,n!,

~17!

where rank(Xi)5 j if the i th elementXi is the j th smallest in
the sample. The derived sample observations ofn pairs are
thus $(ui ,v i)% and ui ,v i51, . . . ,n for i 51, . . . ,n. The
(kth-order! Sperman’s coefficientRk of rank correlation is
defined as

Rk5

12(
i 51

n

~ui2Ū !~v i2V̄!

n~n221!
, ~18!

where

Ū5V̄5
n11

2
. ~19!

RkAn21 is known to be asymptotically normal, i.e., to a
proach a normal distribution whenn is large (n.10). Inde-
pendence of the intervals is thus tested by a null hypoth
H0(k): Rk50 (k51,2, . . . ). Thehypothesis is rejected a
the confidence levela (a50.05) if uRkuAn21.za/2 ,
whereza/2 is read from a standardized normal table@42#.

Values of the first-order and second-order Sperman’s
efficients of rank correlationR1 and R2 are plotted agains
DIV in Fig. 8. At 10–13 and 21–40 DIV, the values are
good agreement with the hypothesis. The values ofRk for
higher values ofk show similar tendencies to those shown
Rk for k51 and 2. Furthermore, the absolute values ofRk for
values ofk greater than 8 are all less thanza/2 and are thus
not significantly different from 0. All results of testing fo
goodness of the fit to the distribution function and the ind
pendence of the intervals are summarized in Table IV. D
viations from the null hypothesis are visible in most of t
R1 and R2 values for data sets at 14–20 DIV~the result is
not shown here because the values are scattered over a
range of scale than those for 10–13 and 21–40 DIV!. These
negative results for the null hypothesis are easily explai
by the oscillatory tendencies of the data sets of ICI sequen
from cultures at 14–20 DIV, as was discussed in the prec
ing section.

In some sets of the ICI sequences we found a trend, wh
was practically determined to exist by Kendall ran
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correlation tests using the Kendall coefficientt @39#. The
tests ~administered at the 0.05 confidence level! measured
the correlation between the orders and the magnitudes o
ICI sequences. In such cases, we were unable to trea
data as representing a homogeneous Poisson process,
repeatedly divided such data sets into two sets, up to a m
mum of four times~as a result, 2–16 subsets of the origin
data were obtained!. We then tested the null hypothesis o
the subsets thus obtained.

C. Nonlinear analysis of ICI series

Although linear modeling techniques are only able to p
tially represent the underlying system because they do
take the nonlinear contribution into account, they do allow
to deal with simplified forms of problems. A large number
nonlinear algorithms for characterizing real-valued data h
thus been developed@43#. In the work reported on in this
section, we used correlation dimensions and a method
nonlinear forecasting.

In general, the dynamics of a system are simplified c
siderably when it is sufficiently stationary to be governed
its attractor. The trajectory of the state point in phase spac

FIG. 8. Results for independence of the test of the ICI
quences. Values of the first-order and second-order Sperman’s
efficients of rank correlationR1 andR2 are plotted against DIV.~a!
The first-order Sperman’s coefficients of rank correlationR1. For
comparison, sinceRkAn21 (k51,2, . . . ) approaches an asymp
totically normal distribution for increasingly large values ofn, the
values are multiplied by a constantAn21, wheren is the length of
each data set.~b! The second-order correlation coefficientR2. Inde-
pendence of the intervals is thus tested against a null hypoth
H0(k): Rk50 (k51,2, . . . ). Thehypothesis is rejected at th
confidence levela (a50.05) if uRkuAn21.za/2 , whereza/2 is
read from a standardized normal table andza/2'3.481.
4-10
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able to portray the essential features of the system’s dyn
ics as long as it provides a good approximation of the attr
tor. Grassberger and Procaccia have described a metho
using correlation integrals to determine the attractor’s co
lation dimension in a simple way@44#. These correlation
integrals seem to be a good tool, since they are effective
their calculation usually requires fewer data points than ot
methods. We begin in the usual way by constructing a de
embedding of the data. Thet-dimensional embedding yield
vectors of the formxt( i )5(I i , . . . ,I i 2t11). In the Grass-
berger and Procaccia~GP! method, we start by counting th
normalized number C(r ,t) of pairs of vectors in
t-dimensional phase space that have vector differences
thanr. For small values ofr, the correlation integral function
C(r ,t) is known to behave according to a power law,

C~r ,t!}r n. ~20!

If the correlation exponentn approaches some limitd ast
is increased, the correlation dimension of the attractor isd.
Although the correlation dimensiond is defined in terms of a
limit as the radiusr approaches zero, it is in practice nume
cally estimated from the slope of the curve of the log of t
correlation integral versus the log of radius. If the graph
log10C(r ,t) versus log10 r has an apparently linear region
this is called the scaling region. In the GP method, it
assumed that most of the information about dimension
contained in this scaling region. We estimated the slope
the curve by a least-squares fit of a straight line to points
the curve. Eckmann and Ruelle have shown that we n
more than 10d/2 data points to accurately estimate the cor
lation dimensiond from the GP algorithm@45#. Since there
were 1000–3500 points in each data set of this work,
results of estimation are only accurate if the correlation
mension is less than the Eckmann-Ruelle boundda57.09.

The correlation integrals of a data set of ICIs at 30 D
are shown in Fig. 9~a!. When the slopes of the curves a
plotted against the embedding dimensiont, they seem to
converge to a value (d56.82) ast increases@Fig. 9~b!#. All
of the results are summarized in Table V. In the immat
stages~1–10 DIV!, the correlation dimensions are quite un
formly scattered over the interval from 1 to 7. At the mo
mature stages~21–65 DIV!, however, few correlation di-
mensions below 4 appear. The number of higher-orderd
>5) correlation dimensions correspondingly increases.

TABLE IV. Results of tests for Poisson processes.

Days
in vitro

Number
of cells

~i!
No

trend

~ii !
KS
test

~iii !
Independence

~i!, ~ii !,
and ~iii !

1–10 24 21 15 12 10 ~41.7%!

11-20 49 45 19 14 7 ~14.3%!

21–40 40 38 25 32 20 ~50.0%!

41–65 48 45 36 29 27 ~56.3%!

Total 161 149 95 87 64 ~39.8%!
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For the data we used, however, to obtain the values of
dimension less than the boundda , we need to go to embed
ding dimensions of 20 or more before they start seein
saturation as shown in Fig. 9~b!. This is even beyond the
conservative embedding dimension limit of 2D11 @46#,
which should be about 14–15 if the dimensionD is really
around 7. This by itself suggests that the data are high
mensional, or that the low dimensionality cannot be resolv
with these small data sets.

To confirm this suspicion, therefore, for those data sets
ICI sequences that have correlation dimensions belowda ,
we applied surrogate data analysis. That is, to test the
hypothesis (H0) that our results are explicable as the res
of nondeterministic~linear stochastic! processes, we com
pared the data with sets of mathematical controls@47,48# that
are called ‘‘surrogate data.’’ Following the method propos
by Theileret al. @47#, we selected the residual probabilitya
~0.04! of a false rejection, corresponding to a level of signi
cance of (12a)3100% (96%). For a two-sided test, w
then generateM52/a21 (M549 whena50.04) surrogate
sequences, resulting in a probability ofa that the original
data would give either the smallest or largest value of
correlation dimension. We thus used two methods to makM
sets of surrogates for each testing setT: one~i! was a phase-
randomized method based on the discrete Fourier transfo

FIG. 9. ~a! Correlation integrals for a data set from a culture
31 DIV. The basic statistics: N52487, m517.6 (s), s
514.3 (s), andC50.812. N is the number of clusters andm, s,
andC are the ICI mean, standard deviation, and coefficient of va
tion, respectively.~b! Slope of the curve of the correlation integrald
versus the embedding dimensiont.
4-11
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TABLE V. Summary of the results for estimated correlation dimension.

Number of cells~%!

Days in vitro d,3 3<d,4 4<d,5 5<d,6 6<d,7 d.7 Total

1–10 4 5 5 7 4 3 28
~10.7! ~17.9! ~17.9! ~25.0! ~14.3! ~10.7! ~100!

11–20 3 4 10 12 18 13 60
~5.0! ~6.7! ~16.7! ~20.0! ~30.0! ~21.7! ~100!

21–40 0 8 7 10 8 7 40
~0! ~20.0! ~17.5! ~25.0! ~20.0! ~17.5! ~100!

41–65 0 4 11 9 7 17 48
~0! ~8.3! ~22.9! ~18.8! ~14.6! ~35.4! ~100!

Total 7 21 33 38 38 30 176
~4.0! ~11.9! ~18.8! ~21.6! ~26.7! ~17.1! ~100!
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while the other~ii ! was a random-shuffle method@47#. The
same procedure as outlined above was used to calculat
correlation integrals of the original and surrogate data.
thus obtained the correlation dimensionsd0 for the original
data andd1 , . . . ,dM for the surrogates. Figure 10A show
the results of analysis using surrogate data produced by
phase-randomized method to check the null hypothesis (H0)
for those examples of ICI sequences, where the correla
dimensions of the original data sets are less thanda . The
analysis gave the negative result that the null hypoth
(H0) should not be rejected for four@Figs. 10A~a!, 10A~c!,
10A~f!, and 10A~g!# of the seven data sets. However, a
though we rejected the hypothesisH0 for three of the data
sets@Figs. 10A~b!, 10A~d!, and 10A~e! we note that the cor-
relation dimensionsd0 ~longer vertical lines marked with
circles! of the original data sets for which there were positi
results are very close to those of the corresponding su
gates~shorter vertical line without a circle!. Analysis using
the random-shuffle surrogate method also showed the n
tive result that the null hypothesis (H0) should not be re-
jected, as plotted in Figs. 10B~a! and 10B~f!.

We also used a nonlinear forecasting method origina
developed by Sugihara and co-worker@49,50# and extended
by Sauer@51,52#. Sauer showed that a determinism that u
derlies sequences of neurophysiological data may be
tected by analyzing the interspike intervals in the data. Si
this method is capable of detecting a weak determinism
has been used to evaluate many neurophysiological data
@15–18#.

In nonlinear forecasting, we divided each data set i
halves, one of which was the training setD, while the other
provided the testing setT. After selecting an intervalI i in T
as an index point, thek nearest neighbors of the relate
t-dimensional vectorxt(mj )( j 51, . . . ,k) in D, wherek is
3% of all embedded vectors, were found. Future sequen
I i 1h , h steps ahead of the index pointI i , were estimated by
averaging the sequencesh steps ahead of thek nearest neigh-
bors I mj 1h . HereI m1h denotes the estimated value ofI i 1h .
The accuracy of the prediction was evaluated by compu
anh-step normalized prediction error~NPE! as the square o
all prediction errors averaged over the whole testing seT
and then dividing this mean square by the variance of the
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sequence of the mean (I mean) of the predicted series,

NPE~h!5

(
i 51

NT
~ I i 1h2I m1h!2/NT

(
i 51

NT
~ I i 1h2I mean!

2/NT

, ~21!

whereNT is the number of elements in the testing setT. A
normalized prediction error of less than 1 means that i
possible to predict the series with an accuracy beyond tha
the baseline prediction by the mean interval of the
quences. To test the null hypothesis that our results w
explicable as having been produced by nondeterministic~lin-
ear stochastic! processes, we again applied surrogate ana
sis. We used the same two methods as we had in testing
correlation integrals to make 49 sets of surrogates for e
testing setT. The same procedure was again used to calcu
the NPEs of the original and surrogate data.

Figures 11~a! and 11~b! show the NPE as obtained b
forecasting the ICI sequences of a culture at 17 DIV. T
one-step-ahead NPEs of the original data~thick lines! are
less than 1 and are apparently separated from the surro
data ~thin lines! generated by both the phase-randomiz
@Fig. 11~a!# and random-shuffle@Fig. 11~b!# methods. How-
ever, a value of the one-step-ahead NPE, near 1.0, means
the degree of predictability is small and that this method
prediction is almost the same as substituting the original v
ues with the mean value of the intervals in the sequen
These randomly shuffled and phase-randomized surrog
are not well suited for surrogate data analysis in these c
because NPEs greater than 1 imply that the algorithm p
vides a poorer prediction than the prediction from the me
value of the data set. This often happens with interval d
so that we have to be careful with the interpretation of
results as was mentioned by Schreiber and Schmitz@53#.
There is, moreover, no clear difference between predicti
more than two steps ahead from the original and from
surrogate data. The one- and two-step-ahead NPEs of
sequences from all of the data sets are shown in Figs. 1~c!
and 11~d!. The variance of the NPEs decreases as DIV
creases, and most of the two-step-ahead NPEs are gr
4-12
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than 1. Thus, for two-step-ahead prediction, the determini
hypothesis for the corresponding sequences was reje
This implies that there is no two-step predictability of t
sequences. Furthermore, no predictability may be expe
for higher-order forecasting.

V. DISCUSSION

The role of spontaneous activity in the configuring of o
erative circuits has recently been recognized@54#. A typical
example of this is the activity-dependent process involved
the establishment of cortical columns@8#. The spatiotempora
properties of spontaneous firing in networks of develop
neurons undergo large changes, but little is known about
rules for evolution over time that govern these changes~i.e.,

FIG. 10. Surrogate data tests of the seven data sets liste
Table I ~for neuron numbers 2, 4, 5, 6, 7, 8, and 9!. The correlation
dimensions of the selected seven data sets are less thanda

(57.09) while those of the other two~neuron numbers 1 and 3! are
greater thanda . Longer lines with circles indicate correlation d
mensions (d0) of the original data sets and shorter lines indica
those of the corresponding surrogates (d1 , . . . ,d49), as calculated
by using the phase-randomized~A! and random shuffle~B! meth-
ods. For~a! neuron number 2 listed in Table I,d056.98,~b! number
4, d055.92, ~c! number 5,d053.48, ~d! number 6,d054.25, ~e!
number 7,d055.63, ~f! number 8,d056.82, and~g! number 9,
d054.78.
05192
ic
ed.

ed

-

n

g
e

about their dynamics!. As for spatial ‘‘patterns,’’ some neura
groups, in the early stages of their development, of the c
tured cortical networks examined in this work were seen
form small groups in which activity was synchronized. Lat

in

FIG. 11. ~a! Nonlinear prediction error of the original data s
~thick line! in a 31-DIV culture and 49 sets of phase-randomiz
surrogate data~thin lines! versush, whereh is the number of steps
ahead of a index point. The embedding dimensiont55. The basic
statistics:N52676, m516.3 (s), s513.9 (s), andC50.852. N
is the number of clusters andm, s, andC are the ICI mean, stan
dard deviation, and coefficient of variation, respectively.~b! Non-
linear prediction error of the original data set~thick line! and 49 sets
of random-shuffle-generated surrogate data~thin lines! versush.
The original data set is the same set as was used in~a!. The embed-
ding dimensiont55. ~c! One-step-ahead normalized nonlinear p
diction error ~NPE! versus DIV. ~d! Two-step-ahead NPE versu
DIV.
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globally synchronized bursts~tight coincidences of spike
timing between the cells over the whole recording area d
ing periods of several tens of milliseconds and more! were
observed. The synchronization of spontaneous activity
stable over periods of several hours, and this stability
lead to activity-dependent changes in the network and in
dynamics of individual neurons.

Furthermore, the significance of the activity that is cor
lated between presynaptic and postsynaptic cells or the
of thereof, i.e., synchrony or asynchrony, has long be
known to be a critical point. This has been extensively d
cussed in terms of physiological concepts, mathematica
gument, and simulation. In this paper, we have used ‘‘s
chronization’’ to mean tight coincidences between cells
terms of spike timing. Understanding why there is synchro
or asynchrony of the activity of a cell in a network, in term
of both its own presynaptic and postsynaptic activity and
the interactions between the other cells of the network,
critical point for understanding the activity of the developi
cortical cell. We intended to further investigate this issue
future work. A number of experimental studies of such sy
chrony, bothin vivo and in vitro, have recently been carrie
out. Introductions to the early work, which involves arg
ment from mathematical bases and simulation, are avail
~e.g., Segundo and co-workers@26,55#!. Reviews and sum-
maries of recent issues to do with the cortex, in particu
are also available in, for instance, Fujiiet al. @6#.

Our results in this study have shown that, at least in c
tured cortical neurons, concerted activity is capable of p
ducing synchronized bursts~clusters! and that some of se
quences of clusters are correlated in time@e.g., Figs. 5B~a!
and 5B~b!#. The results also showed that the ICI sequence
all stages of development appeared to be primarily mani
tations of random processes. Any nonlinear determinism
did appear was of high dimension of a dynamical syste
The dimension analysis, in particular, suggests that the
we used are high dimensional, and low-dimensional de
minism is not likely to be present, or that the low dimensio
ality cannot be resolved with these small data sets du
noise or nonstationarity. In the latter case, we need extrem
large amounts of clean data to get any kind of accurate
mension estimate in such high embedding dimensions, w
we did not have in these experiments. However, we th
that the dimension and prediction analysis, along with su
gate analysis, is worthwhile even though the results were
clearly in favor of nonlinear determinism. The results of su
analyses thus complement those of the cluster analysis.

One of the main empirical findings of this study was th
neurons at 15–25 DIV~referred to in this work as the earl
stage of development! yield ICI sequences, which may b
interpreted as the product of stochastic processes with a
tively high-order temporal correlation or of a nonlinear sy
tem with high dimension (d>5). In this stage, in particular
oscillatory ~periodic or bursting! ‘‘forms’’ are visible in the
ICI sequences of many neurons. In contrast, the ICI
quences obtained from cultures at more than 30 DIV~re-
ferred to in this work as the later stages! may be attributed to
stochastic processes with a relatively low-order tempo
correlation or to a ‘‘Poisson-like’’ form. In addition, th
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change in the temporal correlation is associated with
transition of the network structure in developing cortic
neurons.

Our results thus show that synchronized spontaneous
tivity, at least in cultured cortical networks, falls into a pa
tern of multicellular clusters of activity. The timing of thes
clusters is basically that produced by a stochastic proces
by a deterministic system with a high-order dimension.
similar kind of activity may underlie the high variability o
cortical spike trains seenin vivo @6#.

Segundo and co-workers argued for the extrinsic prop
ties of the spike-train ‘‘form’’ on the basis of mathematic
and simulation, illustrating their work with examples th
included bursts and putting their results in the context
neural ‘‘coding’’ @26,55#. The ‘‘code’’ implies the represen
tation and transformation of information. As the pertine
conditions vary for a set of neurons~in the case of our study
with development!, there are corresponding alternations
neural activity. Segundo and co-workers provide an ext
sive explanation of how the postsynaptic averages, varia
ties, and ‘‘forms’’ depend on several presynaptic paramet
including precise tendencies towards firing or not firing
multaneously. The models they used are simple and are
stricted to excitatory junctions and we have dealt with
quences of clusters rather than sequences of spi
However, these earlier results provide a basis for specula
on the functional changes in networks of cultured neuro
during development.

Segundoet al. summarized the main conclusions of the
study on the output of the post synaptic cell@26#. We para-
phrase these conclusions here~1! ~i! When there is no inter-
dependence between presynaptic terminals that impinge
the postsynaptic cell, presynaptic terminals are few, and
citatory postsynaptic potentials are large, the output va
with the presynaptic ‘‘form;’’~ii ! if terminals are numerous
and weak, the presynaptic form ceases to have an effect
the postsynaptic cell generates the same output regardle
the detailed structure of the corresponding input;~2! when
there is an interdependence between presynaptic termi
which involves only a proportion of all terminals or onl
those sets of terminals within separate and independ
groups, the activity of the postsynaptic cell is a function
the statistical form of its input channels, even if the presy
aptic terminals are numerous and weak.

In the early stage~1–25 DIV! of a cultured network, a
single cell is affected by a relatively small number of ad
cent cells because its neurites are not extensive on the
strate. As the results of Segundoet al. show, a single strong
synaptic influence on the spike train’s form may come fro
a single powerful terminal or from several powerful term
nals. That is, the postsynaptic potential has a relatively la
effect on the activity of a cell. Hence, cases~1! ~i! and~2! are
the candidate mechanisms in the early states of its deve
ment for the spike train’s form. In addition, neurophysiolog
cal and pharmacological studies have shown t
g-aminobutyric acid~GABA! receptor antagonists~e.g., pi-
crotoxin and bicuculline methiodide! have marked effects on
cultured cortical neurons in the latter part~15–20 DIV! of
the early stage of development. These effects include
4-14
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induction of anomalous spontaneous activity and the kin
modulation of synaptic currents@13,56#. In the earliest pe-
riod ~1–14 DIV!, however, such antagonists have little effe
on spontaneous activity. This suggests that inhibit
~GABAergic! transmission in the network may have a stro
effect on the dynamics of concerted activity in populations
neurons. In the later part of the early stage, therefore,
clearly oscillatory properties of the ICI sequences may
because the synapses are arranged according to catego~2!
described above.

Another type of network, the simplest, is formed wi
numerous inputs, either independent or synchronous, f
cells immediately presynaptic to those being recorded fro
Stevens and Zador have recently reported that indepen
synaptic inputs are not able to account for the highly irre
lar spike trains observed from cortical neuronsin vivo. They
suggest that the high degree of variability in firing may
explained by a simple alternative model of synaptic drive
which inputs arrive synchronously@57#. Furthermore, their
conclusion implies that synchrony may be an important
pect of the neural code in that it provides a way of encod
signals with a high degree if temporal fidelity over a pop
lation of neurons.

Another possible reason for the characteristic change
the ICI sequences is the changes in the intrinsic propertie
the developing cells. In many cases, clusters~bursts! of ac-
tivity are based on the interaction between slow and
z,

,

.

s
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dynamics. The slow dynamics is, in general, responsible
the triggering of clusters. The mechanism by which a sl
depolarizing wave is generated differs according to the t
of cell. A slow wave in a cortical culture is likely, for ex
ample, to reflect an intracellular influx of calcium and
involve nonactivating Na1 channels orn-methyl-D-aspartate
~NMDA ! channels@13#. During the development of the cul
tured cells, the mechanism that underlies the generatio
the slow wave becomes mature and the properties of the
sequences change accordingly. The existence of specia
mechanisms for cluster generation suggests that cluster
an important feature of neural signals in time. The sign
cance of clusters in processing does not, however, depen
whether the clusters are simple network-driven mechani
or are simply due to the physiological properties of ind
vidual cells.
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