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Analytical characterization of spontaneous firing in networks
of developing rat cultured cortical neurons
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We have used a multiunit electrode array in extracellular recording to investigate changes in the firing
patterns in networks of developing rat cortical neurons. The spontaneous activity of continual asynchronous
firing or the alternation of asynchronous spikes and synchronous bursts changed over time so that activity in
the later stages consisted exclusively of synchronized bursts. The spontaneous coordinated activity in bursts
produced a variability in interburst intervéBI) sequences that is referred to as “form.” The stochastic and
nonlinear dynamical analysis of IBI sequences revealed that these sequences reflected a largely random process
and that the form for relatively immature neurons was largely oscillatory while the form for the more mature
neurons was Poisson-like. The observed IBI sequences thus showed changes in form associated with both the
intrinsic properties of the developing cells and the neural response to correlated synaptic inputs due to inter-
action between the developing neural circuits.
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[. INTRODUCTION andin vivo suggests that the preparation of a cultured net-
work provides a reasonable model system for examining net-
Spontaneous electrical activity that is correlated acroswork activity [12—14. Cultures of neurons thus provide a
large numbers of neurons occurs in the brain. It has beeHseful approximation of such truly physiological prepara-
suggested that such correlated activity plays critical roles ifions as slices and intact cortices. Rather than rely on theo-
sleeping and wakinff], in the planning and performance of retical models of neural networks, we have here used net-
motor actiong2,3], and in the formation of the neural cir- works of rat cortical neurons cultured on the surface of a
cuits of developing sensory systerf®5]. Several authors Multielectrode array.

have reviewed the issues of correlated activity across neu- A dissociated neural culture should also be useful for

rons for neural network operation, in particular, at the corti—StUdying the electrical activity associa.ted V\.'ith the develop-
cal level (for example, Fujiiet al. [6] and references withjn ment of a neural network. Immature dissociated neurons re-

and in the visual systerf7.8]. Although such spontaneous connect in a seemingly random fashion and reconstruct net-

coordinated activity may have physiological importance works. Even in a culture, however, the structure and
L Yy may € phy 9 P ‘connectivity of a network as a whole are hard to estimate. In
little is known about its dynamics.

. . . . this study, the spread of neurite as measured was several
The fine structure of spatiotemporal activity in the intacty | ndreds of micrometers and the density of neurons in the

brain is not, however, easy to measure. To characterize g1 res was less than several hundreds of cell<n@ur
system, one generally needs a long-term recording of its Stqsstimate was that it was possible for each single neuron to be
tionary state, and external stimuli and interactions of connecgzgnnected to approximately 600 othésee Sec. Il for more
tivity with other regions of the brain can make it hard to details.
obtain such a recordinig vivo. Neural network models sub- Recent work in dynamical analysis has provided math-
jected to biological constraints of structural and dynamicalematical tools that are capable of evaluating nonlinear deter-
plausibility have extensively been constructed and can sheshinistic properties in time series of recorded data. Investiga-
light on the ways a complex assembly of units behageg, tors have applied such tools to finding nonlinear structure in
for example, several relevant boolg-11]). However, most  the time series of neurophysiological dff—19. To what
such studies have relied on theoretical models that mimiextent does firing in a network behave the way a determin-
some of the known properties of neurons. One may thusstic process behaves or to what extent does it behave as an
question the extent to which such models may be relied uposffectively stochastic process? This has been a basic question
to provide a sufficiently realistic representation of correlatedn such studies. Evidence from electroencephalogiaEG)
activity in networks of large numbers of neurons. and single-unit cross-correlation studies suggests that coordi-
The similarity between the pharmacological effects on ex-nated activity may involve a nonlinear determinism of low
citability and synaptic transmission that are observed in culdimension[20,21]. However, the relatively few observations
tures and the effects observed in cortical slice preparatioof in vitro neural preparations have tended to show clear
evidence of nonlinear deterministic mechanigmhs—19.
Both linear and nonlinear analyses of neurobiological

*Present address: Department of Electronics and Systems, Faculyne series have provided useful insights into the possibili-
of Engineering, Takushoku University, 815-1 Tatemachi, Hachioji-ties for synaptic cording. In recent studies, in particular, Se-
shi, Tokyo 193-8585, Japan. gundo and co-workers have applied nonlinear analysis to the
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sequences of interspike intervals in spike trains recordetto three formgSec. IV B. Nonlinear analysis is then used
from synaptically inhibited crayfish pacemaker neuronsto detect the nonlinear determinism and to estimate complex-
[22,23. Different postsynaptic spike-train “forms,” each of ity measures of the sequences, such as correlation dimen-
which denotes a set of timings with shared properties, aréions and degrees of nonlinear prediction e(®ec. IV Q.
generated by varying the average rate and/or dispersion &€ conclude in Sec. V with a discussion of our results.

the intervals of presynaptic spike trains. They reported that it

was possible to characterize each form in terms of its dimen-

sion, nonlinearity, and predictability. They indicated that dif- IIl. MATERIALS AND METHODS

ferent dimensions, nonlinearities, and predictabilities were A. Cell culture

classified as forms that pertain to universal behavior catego- Wi d liah dificati f th ll-cul hod
ries and assigned names to these forms, for example, debusi/l a slg tm? |2|%at|(%rr1]o the ce 'Cfuf;“; metldo
“noisy,” “periodic,” “quasiperiodic,” and “intermittent” used by Muramotcet al. [28]. The cortices of 17-day-o

[24,25. These methods of linear and nonlinear analyses ar}é\/istar rat embryos were chopped into small pieces, digested

broadly applicable to any train of spikes that may be de!n 0.02% papair(Boehringey, and then mechanically disso-

scribed as an ordered set of intervals, including those fronfiated by trituration. The cells were then resuspended in Dul-

synaptic arrangements, which are composed of sets of nLE-eCCO’S modified Eagle’s mediufSigma supplemented by

. 0, - i i 0, -
merous weakly convergent terminals. % heat-inactivated fetal bovine seruhiyClone, 5% heat

In this study, we started by observing the spatial upat_inactivated horse seruniGibco, 2.5 wg/ml of insulin

terns” of the spontaneous activity that arises in cultured netiSigma' and penicillin-streptomycir(5-40 U/ml, Sigma

works of developing cells. This observation was concenEléctrode arrays that had been coated with fi#ysine

trated on whether or not there were correlations between cefS19ma and laminin(Sigma were then plated with the cells.

activities. Here, a spatial “pattern” is taken to imply syn- These neurons were then cultured in an i_ncubator at .37°C
chrony or asynchrony of the electrical activity of cells. We With @n HO-saturated atmosphere, consisting of 90% air and
then characterized the “forms” of burst sequences, where 30% CQ.
burst denotes a tendency for firing within a group of cells to
be clustered in time. We use forms to imply types of burst- B. Estimation of connectivity
interval dispersions and sequences of bursts, which are inde- The degree of connectivity in an intact cortex is high and
pendent of overall averages. These were much like the formg js estimated that each neuron makes several thousands of
of spike trains, such as “periodic,” “bursting,” and connections to other neurofigd]. Unlike a cortexin vivo,
“Poisson-like” used by, for example, Segunebal. [26] and  however, a cultured cortical network is intrinsically local-
Tuckwell[27]. To find out whether the firing “timingsTde-  jzed. It is thus difficult to precisely characterize connectivity
scriptions of bursts as a point procegenerated in a popu- ithin a particular preparation. We estimated cell connectiv-
lation of neurons are distinguishable from a random processy in the following way. First, we administered an intracel-
we statistically evaluated the burst-sequence data. We algQjar injection of Lucifer Yellow(Sigma and then measured
applied nonlinear analysis to find out if some form of non-the arborization of the neurons by visual inspection; we
linear determinism was present and to obtain some measufgynd this to be 1.20.5 mn? [mean= SD (standard devia-
of complexity for the sequences. _ _tion), n=12 neuron} The densityD of our cultures was
Neurons themselves are complex systems with a physical 4+ 0. 6x 10? neurons/mr (n=12 cultures). We then
structure that indicates many variables. At the cellular levelseq the following method to infer the number of cells
for instance, these include the conductances of the ion char@Nce”) that may be connected to a given cell. We assume that
nels, the postsynaptic potentials, and the release of nel o neurons are, respectively, located on disks of radius

rotransmitters. Networks of neurons are, of course, eVeRnqr. and that the disks have a dense covering of axons and
more complex. The experiments in this study demonstrateflgnyites. If the distanck between the centers of the two
that a variety of characteristic forms are imposed on the timyisks is less tham,+r, (i.e., I<r;+r,), a connection be-

ing of bursts of neural activity. We have used the approachegyeen the neurons is possible. Furthermore, if the axons and

outlined above to address the changes in form that arise duffangrites of every neuron in the culture are assumed to have
ing the concerted activity seen in the development of Iarg%xactly the same length (2, it is then possible for each

numbers of cells to form networks and discuss the underlyn e ron to have connections with all other neurons that have

ing physiological factors. _ enters within a circle of radiusr2around the center of the
This paper is organized as follows. The materials and;.«; neuron's disk. As a resulN=47r2D provides an

methodz me used are des%rll%ed In Sgca I(Ij' One Cl#_Sther P'%stimate of the number of connections per cell. It would thus
cess and the way we treated the recorded data In Which itWag, ,ssiple for each neuron of the cultures in this study to be

apparent are described in Sec. lll. The spatial “patterns onnected to about 633 (£2x 1.4x 10?) other neurons.
observed in the earlier developmental stage of the neuraﬁ

networks are described in the first part of Sec. IVA. The
characteristics of the burst sequences observed in the net-
works of their more mature stages are then explained, and We used an electrode-array subst{@@—32 that had 64
histograms of interburst intervals, autocorrelation histo-recording sites within a 161.3-mn? area to make extracel-
grams, and power spectra are used to classify the sequendatar recordings of the activity of neurons in 44 cultures.

C. Recording
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(a) whole-cell voltage sites were sorted and classified by using the hierarchical
clustering method34] and then converted into pulse trains,
each of which was assumed to represent the response of a
single cell[35]. Trains of spikes identified in this way exhib-
ited autocorrelation functions with low values around the
origin: this is compatible with their having been generated by
individual cells that become refractory after firing.
-85 mv Standard single-cell statistics such as average intervals,
20 mvV standard deviations, coefficients of variation, histograms, and
100 ms average firing rates were also routinely computed. We prin-
cipally used these, however, to assist in the interpretation of
L the other measures. Basic statistice., sample sizes, aver-

age intervals, standard deviations, and coefficients of varia-
tion) for spike trains of individual neurons obtained from
-i' nine cultures are shown in Table | and the sets of spike trains

are labeled as neuron number 1-9.

CH2 -, H . ; poimpted ; i v D. Detecting bursts
[ } [ W [ We identified bursts in each spike train by applying the
method described in Sec. Ill. Each was considered as an

CH3 ' ’ ' ’ ’ H' 1 ' . individual event; a series of bursts was considered to be a
realization of a point process with a timing that was de-
scribed by the sequences of interburst intervals. In short, the
diagnosis of a train as “bursty” is based on the predomi-

CH4 %% nance of two clearly different time scales in the interspike
intervals(ISls), which in turn led to clearly separate modes

) 30 mV in the ISI histogram{not shown herg We took the longer of
extracellular signal | 150 uv the intervals or the sum of the intervals as the interburst
(c) 2s intervals. Figure (b) shows the synchronization of firing be-
OOO0 0000 / tween cells in a culture at 25 DIV.
Qoo ooono
%E% % %% % Il. THE CONCEPT OF THE CLUSTER PROCESS
2
I Y A In this study, bursts imply tendencies to fire synchro-
%%%% %%% nously and in mathematical parlance constitute “clusters”
0000 ooon [36,37. Clusters are used to indicate a set of firing events

that are closely spaced in time. Our method for identifying

clusters(burstg in each of the spike trains we analyzed is
FIG. 1. Spontaneous synchronized firing in a culture at 25 dayxplained bellow. Each cluster was taken to be an individual

in vitro (DIV). (8 Action potentials of a cell under a whole-cell event; each series of clusters was considered to be the real-

voltage clamp to the resting leve-65 mV). (b) Extracellular  jzation of a point process with a timing described by the
voltages recorded at four sites, along with the simultaneously re-

corded whole-cell voltagec) The four selected recording sites.
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TABLE |. Summary of statistics on spike trains.

Each recording site covered an area o&k30 um?, and the
distance between the centers of adjacent sites was 180 Coefficient
[33] [Fig. 1(c)]. For this experiment, we used a special iNCU-Neyron Days Sample Average  Standard of
bator with a measuring system of the same design as one tha,o.  invitro  size interval(s) deviation(s) variation
had been built by Jimbet al. [33].

Statistics on spike trains

Recording sessions lasted for 5-8 h during which the 1 5 5949 22.0 83.1 3.77
cells were kept at 37 °C, and the session took place after the 2 7 4753 4.58 7.18 1.57
cells had been cultured for 3—65 daiysvitro (DIV). The 3 12 10092 3.53 5.03 1.42
day before each recording session, the culture medium was 4 15 3888 11.3 14.6 1.29
exchanged for a medium that contained neither insulin nor 5 16 7197 10.1 15.7 1.56
penicillin-streptomycin, but was otherwise the same. A digi- 6 17 8214 3.43 11.3 3.29
tal signal processor stored the amplitudes and widths of those 7 28 6447 2.42 5.49 2.27
spikes where the recorded signal rose above a threshold set atg 30 6582 2.25 2.66 1.18
five times the standard deviation of the baseline noise. The g 58 5578 3.72 7.55 2.03

amplitudes and widths recorded at each of the 64 measuring

051924-3



TAKASHI TATENO, AKIO KAWANA, AND YASUHIKO JIMBO PHYSICAL REVIEW E 65051924

sequences of intercluster interval€ls) or interburst inter-  denoted by\, . As a definition, the first event in the cluster
vals (IBls). In such a cluster process, a primary process deto be considered is called the primary event. A cluster con-
termines the timing of the clusters. Each of the primarytainingi events thus exhibitsi 1) intervals and the time
events triggers a secondary series. Figu@ % a simple over whichi successive events occur is

illustration of a cluster process.

Gruneiset al. have proposed a method for estimating the
statistical parameters of a cluster process when the primary
process is a Poisson procgs¥¥]. In the paper presented
here, we have adopted their model as a framework. We stafthe distribution ofA; is expressed as
by applying their parameter-estimation method for a Poisson Fi_J()=ProjA,<t} (i=2,3,...). 3)
cluster process to the experimental data. After that, we esti- 1 ' a
mated the times at which the primary process had createfh this study, the intervals between events within the clusters
events. are assumed to be/th orde) gamma distributed with a dis-

Here is a brief explanation of the model. Suppose thatribution density function expressed as
Niot(t) is a stochastic variable that denotes the number of
events in_atime interve[IO,t_]. Let(n.) denote the mean rate wi(\)= v (v lexg —vBN)  (v=1.2,...),
of the primary proces$Poisson procegsThe cluster con- (v=1)
sists of N random events wherbl is a stochastic variable (4)
with the distribution functiorp,,= ProdN=m}. The model
assumes that the clustered distribution is described by

i—1
A= A (i=23,...). 2)
k=1

where B=E[\]"! and E[ -] represents expectation. When
v=1, the process is Poissonian and the intervals are expo-

No nentially distributed. We thus have the probability distribu-
Pm=m’ 2 m> (m=1,...Np), 1) tion function of the intervals of i successive events
m=1
v .
wherez is a real number. The functiop,, is called a clus- w4 (t)= m(v,@t)v("”_lexp(— vBt)
tered distribution andm takes on values in the range
1,2,... Ng, whereNg is the maximum value ai. The time (i=23,...). (5

interval between thkth and k+ 1)th events in the cluster is
The distribution ofA; is given by

(@) || | primary process Fo()=1, 6
TV r i-1 .
"H |: | ' secondary process Fi_4(t)= 1—21 wi(t) (i=2,3,...). (7)

il

clusters

> We then obtain

— , 7 Pro N;oi(t)=1}=Proq Ny (t)>i — 1}Prof A;<t}
' ' Cluster process
[ =Ri=DFig() (1=23,...),
" ®

(b) T where
go.s slope p, 1 No
£ : Ru(i)=Prof{Nig()>i}= > pp. C)
§ : VMo m=i+1
g 03 ,
§ Tmin i T Since the cluster constitutes a renewal pro¢ssgsson pro-
?.%01 l i cess, we obtain the following expression for the probability
o 0. ' .
= J LY | .r/ v density ofN;q(t):

10 ;‘(J;) 10° Prob{Nyo((t) =i} =Prol Nyoi(t)=i} — Prol Nyo,(t) =i + 1}
FIG. 2. (a) lllustration of a cluster process. In such a process, =Rn(I = 1)F;—1(t) = Ry(i)Fi(t)
each of a series of primary events is assumed to form a so-called
renewal process. Each of the primary events triggers a secondary (i=23,...). (10
series of events. Each series of secondary processes is called a ) ] i
“cluster.” (b) The variance/meatFano factoy curve for numbers Next, we briefly explain the procedure we followed to fit

of spikesN(t) versus period of observatian(s) on a log vs log ~ the data to the model. The Poisson cluster process with in-
scale. The experimental parametes,f,, Tmax, VMo, andu,)  tervals\ that are exponentially distributed is sufficiently de-
that are derived from the curve are indicated. The culture had beescribed by four parameters; Ny, (ng), andB. The addi-

17 DIV. The neuron is listed as neuron number 6 in Tables | and Iltional parametew is needed when the intervals are gamma
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TABLE II. Poisson cluster-process parameters. The numbers in (m=2,3,...), (12
square brackets denote powers of 10.

: becauseN,(t) is stationary and Prdbl(0)=0}=1. Thus,
B (units of  \ye estimated the timing of the primary process in the follow-

Neutronno. (Ng) (N) (\) (9 No z 1I(N)) ing way. If the total recording tim& is divided into small
1 9.63-3] 474 8091 5 631 1.23 bins, each with a time width oAt, the number of spikes
2 259-2] 856 4.152] 18 —2.18 2.40 within —each bin obeys the probability distribution
3 204-2] 962 216 45 —1.05 0.464 Prqt{NAt(t)=m} under the condltlpn thalt no two secondary
4 6.04-2] 236 58¢2] 10 —2.81 17.0 series ovz_arlap. The number of sp|kd=.!_sm(|)(| =1,... M),
5 297-3] 334 1.392] 14 -2.13 729 in .each bin was thgn counted ah@t(l) was _smoqthed by
6 124-1] 235 3282] 8 —143 310 using a Hanning window. In pract|ce., bins with \{wdths from
7 1'82_1] 2'27 1.50‘)-1] 15 _1'89 668 20 ms to 100 ms were used. The times at which local ex-
8 2.2([-1] 2'03 1'72_2] 48 _2'30 5'80 trema exceeded'a threshold were regarded as indicating
9 8.97[-2] 2'88 2'02_1] 15 71'57 4§6 events of the primary process. The threshold was set as

(Nat)— o, where(N,,) and o are, respectively, the mean
and standard deviation &f,; .

distributed. We assumed that the intervals were exponentially

distributed and that it was, in fact, possible to approximate IV. RESULTS
the distribution functions of the intervals in our recorded data A= spontaneous firing patterns in networks of developing
by assumingv=1. We thus have to derive four parameters cortical neurons

from the experimental data. For this purpose, we used count- ,

ing statistics on the Poisson cluster process. That is, the num- 1N€ cultures on the electrode arrays had areas in the range
ber of event$N,.,(t)] counted in a time intervalis used as oM 10 10 50 mrfi and contained 4000-10000 cells. Spon-

a random variable in obtaining the estimate. The variance-td@n€ous activity varied from culture to culture and according
mean valuegalso known as a Fano factor cupvier Ni(t) to the stage of development. Some typ_lcal spontaneous firing
were then calculated and plotted on a log vs log graph t@alterns were, however, appareffi.continual asynchronous
obtain the variance/mean curve. As is shown in Fifh)2 firing of cells, (ii) alternation between_ asynchronq_gs spikes
parameterd ., Tmax, andVM, are readily obtained from and .synchronous t_)urs(tocal synchronization and(iii) ex-

such a plot, whereVM, is the saturated value of the ClUSiVely synchronized bursfd4].

variance/mean curve. In addition, a redundant parameter Figure 3 shows how the spike-train patterns observed in
one culture changed from 3 to 7 DIV. At 3 DIV, both asyn-

logo( VM) chronous firing and locally synchronized bursts with a long

= 10010 Tmad Ter) (1) spike-propagation delay (3-5 mah) are visible. At 5
DIV, globally synchronized bursts with a shorter spike-

is used to represent the line of fit to the slopeof the propagation delqy represent the dominant pattern of activity.
variance/mean curve under the condition tE&N2]/E[N] At 7 DIV, the spike trains obse_rve_d at all sites of the_ elec-
=V M. If this condition is satisfied, the value pf depends trodes show a much tighter pommd_ence than they did at 5
on two parametersy, andz. Best-fit values foN, andz are DIV. Average numbers of spikes wnhln each of the bursts
thus obtained fol~ .. In practice, sincé\, is an integer recorded at each electrode had also increased. ,
andzis a real number, it is convenient to start by findiXg It was not possible to discern any changes in spatial pat-

first and then obtaiz. We obtaing by comparing eitheT ;. terns of firing by naked-eye observation after synchronized

Of T,a, With the abscissa of the variance/mean curve. Fi_fmng had begun to occur. The average SD and coefficient of

: _ variation () of ICI (I1BI) sequences for 176 cells from all 44
gig)gc\t/;%odrg[l\l/\lef rc])°f> I\];riosmcélr::czlatit[j'\?r(gr]‘r/]Izlfnh!)]\/;/:vc:lrjd‘;:e cultures are shown in Fig. 4. Both the average and SD of the

and z. Examples of parameters estimated from the experi%&ﬁeiﬁgrgizlefesi;;f dnli;nabtler fgrfzziﬁl:goténgﬂﬁﬁfﬂn d
mental data are given in Table II. 9 y

. S . showed no tendency to change.
We now estimate the timing of the primary process. Sup Since some of the analysis in this section involves the

pose thalN,,(t) is a stochastic variable that denotes the num- . . . e .
ber of events in some time intenalt + W](t,W=0) within assumption that the process is stationary, it is desirable to
the cluster. The probability density of the 'number of spikesStart by v_erifying that_ the. sequences of clusters_ are station-
in that int e.rv al is then given b ary. A point process igstrictly) stationary according to the
9 Y mathematical definition when the joint distribution of the

Me

Prol Nyy(t) =m} = Prob{ Nyoy(t + W) — Noi(t) = m} number_ of events in_ anl fixed inte_rvgls ig in\_/ariant under
translation[38], that is, when the distribution is the same in
=ProNyo(( W) — Nyo(0) =m} any pair of intervals. However, it is difficult to use the ex-
perimental data to satisfy this strict definition. A more prac-
=Prol N;o«(W)=m} tical definition (i.e., of weak stationarifyrequires only that
certain first- and second-order statistical properties remain
=Ry(M—=1)F,_ 1 (W) —Rn(M)F (W) invariant. In practice, some criteria that discriminate one data
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FIG. 3. Changes in spontaneous firifgpike traing in a developing culture ata) 3 DIV, (b) 5 DIV, and (c) 7 DIV. (i) Spatial
configuration of electrodes by which signals were detediedSpontaneous firing over 40 mifiii) An expanded view of the 3-s period
marked with an asterisk ifii).

set from another are necessary in order to recognize station-
arity. In the present work, stationarity was equated with free- |, this section, we investigate the “forms” of the series

dom from trends. This was judged by Kendall rank-produced by the cluster procelgsimary processduring the
correlation tests, a practical application of the Kendallgevelopment of cultured neural networks. This is based on
coefficient 7 [39]. The tests(used at the 0.05 confidence analysis of the “forms” as stochastic point processes. It is
level) measure the correlation between the orders and magossible to deduce many forms on apriori basis, and the
nitudes of the values. In particular, the results of the tests fomain idea of doing so is that the formal features of each
the “Poisson” form are discussed in Sec. IVB 2. would carry implications as to the subjacent physiology. Ac-

B. Stochastic analysis of cluster sequences
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(a) tion histogram of ICls and an autocorrelation function of the
1202 Poisson point process.
gao §> o 1. Tendencies to periodicity in cluster sequences
% i@o First, we were interested in finding tendencies for ICls to
g 40 @;%) repeat periodically. This was important for the
® “delta-like” form, so we explored and measured the correla-
o8 °% B gg o & tional properties of the series. A typical way of evaluating
0 days i s 60 repetition is to compute the correlation functions or histo-
(o) grams (CF9 for series of events. The CFs for the cluster
=% series were calculated on the basis of the methods described
E 8 by Bryantet al. [40]. In particular, the autocorrelation histo-
g 8 o gram or autocorrelogram provides an estimate of the mean
F 9 probability of firing (or a cluster in this studyfor a neuron
E a0 88 as a function of time subsequent to the beginning of a spike
§ gg‘b o o (clustey. Since autocorrelation histogramg&utocorrelo-
£ oL 8 J% o of ¢ P gramg are symmetrical and always have a peak at a lag of
0 s V‘}.go 60 zero, we have only plotted the values for positive time and
(c) ¥ thus excluded the uninteresting delta-like function at the ori-
s gin (Fig. 5B).
B2 @ The “delta-like” histogram for one set of ICIs that is
§ < shown in Fig. 5Aa) has a single sharp mode with a small
5 8o 8 amount of spread in both directions. Figure(&Bshows that
= ! ’% o% 8 o % the corresponding autocorrelation histogram is highly “peri-
ke ﬁg Sgg SE g odic” with several modes at integer multiples of the ICI his-
ke o g togram’s mode and that such modes extend throughout the
S 20 40 60 range of the autocorrelation histogram. Figure(thBshows

days /1 viiro an “early mode” type, which has an obvious peak that cor-

FIG. 4. Statistics on sequences of intercluster inter@lis) for ~ '€SPONds to the modal value of the ICI histografig.
176 cells from the 44 cultures, at 7-65 days in vitalv). (8  2A(D)]. Such peaks are occasionally followed by additional
Average ICI versus DIM(b) Standard deviation of ICls versus DIv. and smaller peaks. This type suggests a weak tendency to-
(c) Coefficient of variation versus DIV. ward periodic firing in clusters or bursting-type firing. The
third is a “flat” type of autocorrelation histogranpFig.
. , S o . 5B(c)] that shows only small deviations from the average
cprdmg_to Tuckvyells class!flcat|0|1j27], It Is _posgblg 0 yalue. This indicates tr);at the firing times are independen'?of
distinguish ten dl_fferent. major types of ISI distribution for .., other, except, of course, for the early effect of the re-
sequences of spike trains. Here, three forms found for IC}actory period of the cells. Thus, the ICI histogram is a
densities in the experlmentgl data were used'. Dlstr.lbutlons cgpecieu type of asymmetrical histogram in which the mode is
ICls that are close to a quite narrow Gaussian, bim¢dal close to the extreme left of the range and the decay to the
multimoda), and exponential distribution are referred to asright is nearly exponential, as is suggested by Fig(chA
“delta-like” (periodig, “bimodal” (bursting, and “Poisson” Another way of evaluating the correlational properties of
forms, respectively27]. Bursting as used here refers to a a series is to compute its power spectrum. This is generally
burst of clusters(e.g., a doublet, triplet, or short train of achieved by estimating the power spectrum of the correla-
high-frequency clustefsand this differs from our usage else- tional properties across different shifts of time lags. We used
where in this paper. Figure 5A shows typical examples of thehis standard method to estimate the power speciibh
three types of ICI histograms. and found tendencies to periodicity in the cluster sequences

In this study, however, “classification” indicates generali- that were within the criteria for assigning significance. This
zations found by study of the cluster sequences. Most histonvas achieved by testing whether or not deviations of the
grams of IClIs are clearly of one type or another, but theoscillatory components from the average of the power spec-
separation of types is not absolute. The Poisson process igpym were statistically significant. Power spectra of the clus-
for instance, a theoretical construct, so we do not intend téer sequences are plotted in Fig. 6 and the three tfipes
strictly verify that a cluster sequence is produced by a Poisperiodic, bursting, and Poisson forjishown are the same as
son process, but rather to find a form that we refer to ashose in Fig. 5.
“Poisson-like.” Even though the separation of types is not The criterion used was three times the standard deviation
always absolute and there is a continuous gradation from ong8o) from the average on a logarithmic scale. If the oscilla-
type to another, we need some criteria for classification ofory components in the frequency domain are beyond the
the types in order to characterize the forms of the clustecriterion (the dashed lines shown in Fig), Gve regarded the
sequences. Thus, in identifying the Poisson-like form, forsequences as having a strong tendency to repeat periodically
example, the relevant comparison is with a flat autocorrelate.g., Fig. 6a)] and classified the sequence as being of the
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= 400 s, C.=0.1524. (b) At 18 DIV. N =2676, u,
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delta-like” form. Oscillatory tendencies were visible in the variety of functions of the deviations are used in such tests.
cluster sequences from many neurons at 15—20 DIV. HowWe have used the Kolmogorov-Smironov one-sample statis-
ever, the number of neurons that exhibit no oscillatory tentic, which we briefly explain below.

dency increases at above 21 DIV. All of the results are sum- We let Fy(x) be an unknown cumulative distribution

marized in Table Ill. function andSy(x) be the empirical distribution function of
Fx(x). In practice,Sy(x) is calculated as the sample repar-
2. Tests of ICI series to identify the Poisson-like form tition of ICI sequence$l;} (i=1,...N). Thatis, it is the

In this section, we investigate the characteristics of th’roPortion of sample observations that are less than or equal

cluster sequences in terms of the Poisson process. We inved@-X for some real numbex,

tigated the “delta-like” (periodig form of the cluster se-

guences in the preceding section. Discriminating the “Pois- Sy(X)

son” and “bursting” forms from each other in a way that N

may be inferred from the recorded data, in particular, turn

out to be the main issue in this section. However, as state} . .

earlier, verifying the Poisson property of an actually recorde EnCt'O,G of a Poisson Process that has a rate

sequence generally requires that many tests verifying thg 1/(Zi=1!i/N). The null hypothesisi, we tested was thus
roperty must be satisfied; we are thus seeking a form we )

EaIIpPoi)éson—Iike, rather than the actual Poissongform, in the Hot Fx(X)=Fo(x) forall x, (14

cluster sequences. Thus, to investigate whether or not CIUStWhich is called a two-sided test of goodness of thesi(x)

sequences displayed a “Poisson-like” form, we tegtiedhe is the statistical ima s

. S ) N ge of the distribution producedHg(x).
goodness of the fit O.f the distribution funpnon afi the If the null hypothesis is true, there should be little difference,
independence of the intervals, on the basis of the method eyond sampling variation, betweeh(x) and Fo(x), for

nonparametric statlstlcql inferenfeo)]. any x. To test the empirical distribution function for a Pois-
If N sample observations are the values of a random vari:

) .son process, we used the two-sided Kolmogorov-Smirnov
able, a comparison of the observed and expected cumulaﬂv&s) statisticsD
relative frequencies is possible for each of the different ob- N>
served vglges. Hence, for a givBlaRsample observat|oq, sev- Dy=sugSy(X) — Fx(x)]. (15)
eral statistical measuregesty of goodness of the fit are X
functions of the deviation of the observed cumulative distri-
bution (empirical distribution from the corresponding cumu- This statistics is based on the maximal absolute measure of

lative probability as expected under the null hypothesis. Athe “distance” betweerty(x) [ Fo(x) under the null hypoth-

_ (number ofl j<x)

(13

et Fo(X)=1—exp(—Ax) be the cumulative distribution
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FIG. 6. Power spectra of cluster sequences. The abscissa scale isFIG. 7. Results of testing distributions for Poisson-like charac-
cycles per secontHz) and the ordinate is power, on a logarithmic teristics.(a) Comparison, for data on ICI sequences from a cell in a
scale. The horizontal solid and dashed lines on each plot, respegulture at 45 day# vitro (DIV), of the empirical distribution func-
tively, indicate the mean power and the meanthree standard tion Sy(x) with the expected Poisson distribution functibg(x).
deviations, in logarithmic form. The original data are the same asThe basic statisticsN=3183, u=7.56 (s), c=7.43 (s), and
shown in Fig. 5, and the plots i), (b), and(c) similarly corre-  ¢=1.02. N is the number of clusters and, o, andC are the ICI
spond to the “periodic,” “bursting,” and “Poisson” forms, respec- mean, standard deviation, and coefficient of variation, respectively.

tively. (b) A similar comparison for the data on sequences from a cell in an
18-DIV culture. The basic statistics{=2676, u=16.4 (s), o
esig and the empirical distribution functioBy(x). In gen- =139 (s), andC=0.852. (c) Ratios between the two-sided

eral, the distribution oDy is not asymptotically normal, but Kolmogorov-Smirnov(KS) statisticsDy anddy , versus DIV for
a convenient approximation to the sampling distribution of161 cells from 41 cultures. The data sets excluded those ICI se-
Dy has been derivef9,38. Let dy , be a value such that quences classified as being of the “delta-like” form. The 95% con-
fidence level is used in the tegt=0.05.
ProDy>dy o} = a. (16)
The two-sided test of goodness of the fit using the statistics
TABLE Ill. Tendencies to periodicity displayed by the cluster Dy then rejects the null hypothesis at a levelif the ob-

sequences. served value oDy is greater tharly ,. We used the 95%
confidence levela=0.05. The hypothesid , was rejected if
Number of cells (%) the empirical distribution function passed outside the band
Daysin vitro Over 20 Over 3o Sample number  pounded above by the smaller 8(x)+dy . and 1 and
bounded below by the larger &(x)—dy ., and O.
1-1 21. 4 (14. 2 1 : g o N .
1 20 265 (214 (14.9 8 (100 Figure 7 shows the empirical distribution functioBg(x)
- (417 11 (183 60 (100 . ' SN .
and the corresponding Poisson distribution functibgéx).
21-40 13 (@5 0 © 40 (100 In Fig. 7(a), there is a good match between the observed and
41-65 2 (417 0 (0) 48 (100 : '

expected distributions of ICIs from a cell cultured for over
Total 46 (26.) 15 (8.52 176 (100 45 DIV. In Fig. 7(b), the sequences from a cell cultured for
18 DIV deviate markedly from the corresponding Poisson
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process. The results of the KS statistizg for all of the data (a)
sets, except for those cluster sequences classified as being of 0
the “delta-like” form, are summarized in Fig.(@). In the x o
plot, the ordinate represents the ratiol®f to dy ,. Small 51 % x x:ﬁ Zap § g
values of the ratio(less than 1 indicate good agreement |‘; ol i" o g Xy
between the distributions of the sequences and those pro- ~z 0 x”‘&"*x,hg x; g g X
duced by Poisson processes. In terms of the distributions, the ] %
proportion of data sets with cluster sequences of the “Pois- -5 x “Fap
son” form increases with the number of daysvitro. 1o %

The statistical test of the independence of ICI sequences 5 m = =

{I;} that we have used here is based on Sperman'’s coefficient days /7 witw

of rank correlation[39]. Let us draw a sample af pairs (b)
{(i,liz)} (i=1,...n) for some positive integek and
denote the respective ranks of the variables in the sample as 10
. L S X
Uj=rankll;) and Vi=rankll;;) (i=1,...n), |,_ 51 %g‘ Zap g
& x X% x
a7 ol B K] Diy
P . . . . x x
where rankk;) =] if the ith elemeniX; is thejth smallest in = 5 & =
the sample. The derived sample observations phirs are h G
thus {(u;,v;)} and u;,v;=1,...)n for i=1,...n. The _10
(kth-ordey Sperman’s coefficienR, of rank correlation is 0 0 70 50
defined as days 2 viro
! — — FIG. 8. Results for independence of the test of the ICI se-
1%21 (Ui—=U)(vi=V) guences. Values of the first-order and second-order Sperman’s co-
Ry= 5 , (18 efficients of rank correlatioR; andR, are plotted against DI\(a)
n(n“—1) The first-order Sperman’s coefficients of rank correlatin For

comparison, sinc&yn—1 (k=1,2,...) approaches an asymp-
totically normal distribution for increasingly large valuesrgfthe
values are multiplied by a constatih— 1, wheren is the length of

U: \/— E (19) each data setb) The second-order correlation coefficié®y. Inde-

2 pendence of the intervals is thus tested against a null hypothesis

Ho(k): R=0 (k=1,2,...). Thehypothesis is rejected at the

Reyn—1 is known to be asymptotically normal, i.e., to ap- confidence levelr (a=0.05) if |Ry/yn—1>2,,, wherez,, is

proach a normal distribution whemis large (i>10). Inde-  read from a standardized normal table ang~3.481.

pendence of the intervals is thus tested by a null hypothesis

Ho(k): Re=0 (k=1,2,...). Thehypothesis is rejected at correlation tests using the Kendall coefficien39]. The
the confidence levela (@=0.05) if |R/\Vn—1>2,,, tests(administered at the 0.05 confidence leveieasured
wherez,, is read from a standardized normal tapie]. the correlation between the orders and the magnitudes of the
Values of the first-order and second-order Sperman’s CoiC| sequences. In such cases, we were unable to treat the
efficients of rank correlatiofR; and R, are plotted against data as representing a homogeneous Poisson process, so we
DIV in Fig. 8. At 10-13 and 21-40 DIV, the values are in repeatedly divided such data sets into two sets, up to a maxi-
good agreement with the hypothesis. The valueRpfor  mum of four times(as a result, 2—16 subsets of the original
higher values ok show similar tendencies to those shown by data were obtainedWe then tested the null hypothesis on
Ry for k=1 and 2. Furthermore, the absolute valueRpfor  the subsets thus obtained.
values ofk greater than 8 are all less thap,, and are thus
not significantly different from 0. All results of testing for
goodness of the fit to the distribution function and the inde-
pendence of the intervals are summarized in Table IV. De- Although linear modeling techniques are only able to par-
viations from the null hypothesis are visible in most of thetially represent the underlying system because they do not
R; and R, values for data sets at 14—20 Dlthe result is take the nonlinear contribution into account, they do allow us
not shown here because the values are scattered over a widerdeal with simplified forms of problems. A large number of
range of scale than those for 10—13 and 21-40)DTWese nonlinear algorithms for characterizing real-valued data have
negative results for the null hypothesis are easily explainethus been developeldt3]. In the work reported on in this
by the oscillatory tendencies of the data sets of ICI sequencesection, we used correlation dimensions and a method of
from cultures at 14—-20 DIV, as was discussed in the precedionlinear forecasting.
ing section. In general, the dynamics of a system are simplified con-
In some sets of the ICI sequences we found a trend, whickiderably when it is sufficiently stationary to be governed by
was practically determined to exist by Kendall rank-its attractor. The trajectory of the state point in phase space is

where

C. Nonlinear analysis of ICI series
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TABLE IV. Results of tests for Poisson processes. For the data we used, however, to obtain the values of the
dimension less than the boudg, we need to go to embed-
(@i (i) ding dimensions of 20 or more before they start seeing a
Days ~ Number No KS (iii) (@), (i), saturation as shown in Fig.(. This is even beyond the
in vitro of cells trend test Independence and (iii) conservative embedding dimension limit oD2- 1 [46],
1-10 24 21 15 12 10 (41.7% which should. be apout 14-15 if the dimensibnis reaI.Iy '
11-20 49 45 19 14 7 (14.3% aroun_d 7. This by itself suggests_ that_ the data are high di-
21-40 40 38 25 32 20 (50.0% mensional, or that the low dimensionality cannot be resolved

with these small data sets.

To confirm this suspicion, therefore, for those data sets of
Total 161 149 95 87 64 (39.8% ICI sequences that have correlation dimensions bedgw
we applied surrogate data analysis. That is, to test the null
hypothesis () that our results are explicable as the result

able to portray the essential features of the system’s dynanff nondeterministic(linear stochastic processes, we com-
ics as long as it provides a good approximation of the attracPared the q‘ata with sets of Inathem_atlcal contr4is4g that

tor. Grassberger and Procaccia have described a method faf€ called “surrogate data.” Following the method proposed
using correlation integrals to determine the attractor’s correPY Theileret al [47], we selected the residual probabiligy
lation dimension in a simple waj44]. These correlation (0.04 of a false rejection, corresponding toal_evel of signifi-
integrals seem to be a good tool, since they are effective art@nc€ Of (1 @)x100% (96%). For a two-sided test, we
their calculation usually requires fewer data points than othef€n generatl =2/a—1 (M =49 whena=0.04) surrogate
methods. We begin in the usual way by constructing a delap®duences, resulting in a probability efthat the original
embedding of the data. Thedimensional embedding yields data unld give e_lther the smallest or largest value of the
vectors of the formx.(i)=(l;, li_.+1). In the Grass- correlation dimension. We thus used two methods to nidkke

berger and Procacci@P) method, we start by counting the S€ts Of surrogates for each testing eéne (i) was a phase-
normalized number C(r,7) of pairs of vectors in randomized method based on the discrete Fourier transform,
r-dimensional phase space that have vector differences less
thanr. For small values of, the correlation integral function
C(r,7) is known to behave according to a power law,

41-65 48 45 36 29 27 (56.3%

C(r,7)ecr”, (20

If the correlation exponent approaches some limitas+
is increased, the correlation dimension of the attractat. is
Although the correlation dimensiahis defined in terms of a
limit as the radius approaches zero, it is in practice numeri-
cally estimated from the slope of the curve of the log of the
correlation integral versus the log of radius. If the graph of
log;,oC(r,7) versus loggr has an apparently linear region,
this is called the scaling region. In the GP method, it is
assumed that most of the information about dimension is
contained in this scaling region. We estimated the slope of
the curve by a least-squares fit of a straight line to points on
the curve. Eckmann and Ruelle have shown that we need
more than 187 data points to accurately estimate the corre-
lation dimensiond from the GP algorithm45]. Since there
were 1000-3500 points in each data set of this work, the
results of estimation are only accurate if the correlation di-
mension is less than the Eckmann-Ruelle bodge 7.09.

The correlation integrals of a data set of ICIs at 30 DIV
are shown in Fig. @. When the slopes of the curves are ol . . . . .
plotted against the embedding dimensionthey seem to 0 5 10 15 20 25
converge to a valued(=6.82) asr increasesFig. 9b)]. All T
of the results are summarized in Table V. In the immature g g, (5 Correlation integrals for a data set from a culture at
stageg1-10 DIV), the correlation dimensions are quite uni- 31 p|v, The basic statistics: N=2487, u=17.6 (s), &
formly scattered over the interval from 1 to 7. At the more —14.3 (s), and’=0.812.N is the number of clusters and, o,
mature stage$21-65 DIV), however, few correlation di- andc are the ICI mean, standard deviation, and coefficient of varia-
mensions below 4 appear. The number of higher-order ( tion, respectively(b) Slope of the curve of the correlation integcal
=5) correlation dimensions correspondingly increases.  versus the embedding dimensien
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TABLE V. Summary of the results for estimated correlation dimension.

Number of cells(%)

Daysin vitro d<3 3=d<4 4<d<5 5=<d<6 6=<d<7 a>7 Total
1-10 4 5 5 7 4 3 28
(10.7 (179 (179 (25.0 (14.3 (10.7 (100

11-20 3 4 10 12 18 13 60
(5.0 6.7 (16.7 (20.0 (30.0 (21.7 (100

21-40 0 8 7 10 8 7 40
(0) (20.0 (17.5 (25.0 (20.0 (17.5 (100

41-65 0 4 11 9 7 17 48
0) (8.3 (22.9 (18.8 (14.9 (35.9 (100

Total 7 21 33 38 38 30 176
(4.0 (11.9 (18.8 (21.6 (26.7 (17.1 (100

while the other(ii) was a random-shuffle methdd7]. The  sequence of the meanh,(.,,) of the predicted series,
same procedure as outlined above was used to calculate the
correlation integrals of the original and surrogate data. We
thus obtained the correlation dimensiahgsfor the original

data anddq, ... ,dy for the surrogates. Figure 10A shows
the results of analysis using surrogate data produced by the
phase-randomized method to check the null hypothé$§3 (

for those examples of ICI sequences, where the correlation

dimensions of the original data sets are less tan The whereN is the number of elements in the testing §efA
analysis gave the negative result that the null hypothesi§ormalized prediction error of less than 1 means that it is

(Ho) should not be rejected for fodFigs. 10Aa), 10A(C),  possible to predict the series with an accuracy beyond that of
10A(f), and 10Ag)] of the seven data sets. However, al-the paseline prediction by the mean interval of the se-
though we rejected the hypothesig for three of the data qguences. To test the null hypothesis that our results were
sets[Figs. 10Ab), 10A(d), and 10Ae) we note that the cor-  gypjicable as having been produced by nondetermintitic
relation dimensionsl, (longer vertical lines marked with o5, stochasticprocesses, we again applied surrogate analy-
circles of the original data sets for which there were positivegjs \We used the same two methods as we had in testing the
results are very c'lose.to thpse of thg correspondlng SUMQsorrelation integrals to make 49 sets of surrogates for each
gates(shorter vertical line without a circleAnalysis using testing se. The same procedure was again used to calculate
the random-shuffle surrogate method also showed the neggse NPEs of the original and surrogate data.
Five result that th(—_} nu'II hypothesigdg) should not be re- Figures 11a) and 11b) show the NPE as obtained by
jected, as plotted in Figs. 108 and 108f). _forecasting the ICI sequences of a culture at 17 DIV. The
We also used a nonlinear forecasting method Or'g'”a”lbne-step-ahead NPEs of the original détaick lines are
developed by Sugihara and co-worké®,50 and extended |ess than 1 and are apparently separated from the surrogate
by Saue51,52. Sauer showed that a determinism that un-gata (thin lines generated by both the phase-randomized
derlies sequences of neurophysiological data may be d?Fig. 11(a)] and random-shufflgFig. 11(b)] methods. How-
te_cted by anglyzing the interspikg intervals in the dat'a.' Sinc'@ver, a value of the one-step-ahead NPE, near 1.0, means that
this method is capable of detecting a weak determinism, ithe degree of predictability is small and that this method of
has been used to evaluate many neurophysiological data s@fgiction is almost the same as substituting the original val-
[15-18. ) ) o _ues with the mean value of the intervals in the sequences.
In nonlinear forecasting, we divided each data set intorpese randomly shuffled and phase-randomized surrogates
halves, one of which was the training st while the other  gre not well suited for surrogate data analysis in these cases
provided the testing sef After selecting an interval in 7 pecause NPEs greater than 1 imply that the algorithm pro-
as an index point, thé nearest neighbors of the related yiges a poorer prediction than the prediction from the mean
r-dimensional vectox,(m;)(j=1,... k) in D, wherekis  yalue of the data set. This often happens with interval data,
3% of all embedded vectors, were found. Future sequenceg that we have to be careful with the interpretation of the
li+n, h steps ahead of the index point were estimated by results as was mentioned by Schreiber and Sch&ig}.
averaging the sequencksteps ahead of tHenearest neigh-  There is, moreover, no clear difference between predictions
bors!pm, . Herel . denotes the estimated valuelof,.  more than two steps ahead from the original and from the
The accuracy of the prediction was evaluated by computingurrogate data. The one- and two-step-ahead NPEs of ICI
anh-step normalized prediction err@IPE) as the square of sequences from all of the data sets are shown in Figs) 11
all prediction errors averaged over the whole testingZBet and 11d). The variance of the NPEs decreases as DIV in-
and then dividing this mean square by the variance of the ICtreases, and most of the two-step-ahead NPEs are greater

N7
;l (isn=lmen) N7
NPEh) = : (21)

izl (|i+h_|mean)2/NT
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(=7.09) while those of the other tw@euron numbers 1 and are 150 g : x x x
- X X

greater thard,. Longer lines with circles indicate correlation di-
mensions @,) of the original data sets and shorter lines indicate
those of the corresponding surrogates (. . . ,.d,g), as calculated

-
o
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two-step prediction error ~

by using the phase-randomizéfl) and random shuffléB) meth- 0.5 20 20 80

ods. For(a) neuron number 2 listed in Tabledg=6.98,(b) number days # viro

4, dy=5.92, (c) number 5,d,=3.48, (d) number 6,d,=4.25, (¢)

number 7,d,=5.63, (f) number 8,d,=6.82, and(g) number 9, FIG. 11. (&) Nonlinear prediction error of the original data set
dg=4.78. (thick line) in a 31-DIV culture and 49 sets of phase-randomized

surrogate datéhin lineg versush, whereh is the number of steps

than 1. Thus, for two-step-ahead prediction, the deterministiahead of a index point. The embedding dimensierb. The basic
hypothesis for the corresponding sequences was rejectestatistics:N=2676, u=16.3 (s), 0=13.9 (s), and’=0.852.N
This implies that there is no two-step predictability of theis the number of clusters and, o, andC are the ICl mean, stan-
sequences. Furthermore, no predictability may be expectedfrd deviation, and coefficient of variation, respectivety. Non-
for higher-order forecasting. linear prediction error of the original data s#tick line) and 49 sets
of random-shuffle-generated surrogate ddhan lineg versush.
The original data set is the same set as was uséa).imfhe embed-
ding dimensionr=5. (c) One-step-ahead normalized nonlinear pre-

The role of spontaneous activity in the configuring of op-diction error (NPE) versus DIV.(d) Two-step-ahead NPE versus
erative circuits has recently been recognizgd|. A typical ~ DIV.
example of this is the activity-dependent process involved in
the establishment of cortical columf&. The spatiotemporal about their dynamigsAs for spatial “patterns,” some neural
properties of spontaneous firing in networks of developinggroups, in the early stages of their development, of the cul-
neurons undergo large changes, but little is known about theired cortical networks examined in this work were seen to
rules for evolution over time that govern these changes,  form small groups in which activity was synchronized. Later,

V. DISCUSSION
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globally synchronized burstgtight coincidences of spike change in the temporal correlation is associated with the
timing between the cells over the whole recording area durtransition of the network structure in developing cortical
ing periods of several tens of milliseconds and mavere  neurons.
observed. The synchronization of spontaneous activity was Our results thus show that synchronized spontaneous ac-
stable over periods of several hours, and this stability cativity, at least in cultured cortical networks, falls into a pat-
lead to activity-dependent changes in the network and in th&ern of multicellular clusters of activity. The timing of these
dynamics of individual neurons. clusters is basically that produced by a stochastic process or
Furthermore, the significance of the activity that is corre-by a deterministic system with a high-order dimension. A
lated between presynaptic and postsynaptic cells or the lackimilar kind of activity may underlie the high variability of
of thereof, i.e., synchrony or asynchrony, has long beerortical spike trains seeim vivo [6].
known to be a critical point. This has been extensively dis- Segundo and co-workers argued for the extrinsic proper-
cussed in terms of physiological concepts, mathematical aties of the spike-train “form” on the basis of mathematics
gument, and simulation. In this paper, we have used “synand simulation, illustrating their work with examples that
chronization” to mean tight coincidences between cells inincluded bursts and putting their results in the context of
terms of spike timing. Understanding why there is synchronyneural “coding” [26,55. The “code” implies the represen-
or asynchrony of the activity of a cell in a network, in terms tation and transformation of information. As the pertinent
of both its own presynaptic and postsynaptic activity and ofconditions vary for a set of neurofiis the case of our study,
the interactions between the other cells of the network, is avith development there are corresponding alternations in
critical point for understanding the activity of the developing neural activity. Segundo and co-workers provide an exten-
cortical cell. We intended to further investigate this issue insive explanation of how the postsynaptic averages, variabili-
future work. A number of experimental studies of such syn-ties, and “forms” depend on several presynaptic parameters,
chrony, bothin vivo andin vitro, have recently been carried including precise tendencies towards firing or not firing si-
out. Introductions to the early work, which involves argu- multaneously. The models they used are simple and are re-
ment from mathematical bases and simulation, are availablstricted to excitatory junctions and we have dealt with se-
(e.g., Segundo and co-workdrd6,55). Reviews and sum- quences of clusters rather than sequences of spikes.
maries of recent issues to do with the cortex, in particularHowever, these earlier results provide a basis for speculation
are also available in, for instance, Fugii al. [6]. on the functional changes in networks of cultured neurons
Our results in this study have shown that, at least in culduring development.
tured cortical neurons, concerted activity is capable of pro- Segundcet al. summarized the main conclusions of their
ducing synchronized bursiglusters and that some of se- study on the output of the post synaptic d&b]. We para-
guences of clusters are correlated in tifeeg., Figs. 5Bq) phrase these conclusions héte (i) When there is no inter-
and 5Bb)]. The results also showed that the ICI sequences alependence between presynaptic terminals that impinge on
all stages of development appeared to be primarily manifeshe postsynaptic cell, presynaptic terminals are few, and ex-
tations of random processes. Any nonlinear determinism thatitatory postsynaptic potentials are large, the output varies
did appear was of high dimension of a dynamical systemwith the presynaptic “form;”(ii) if terminals are numerous
The dimension analysis, in particular, suggests that the dai@nd weak, the presynaptic form ceases to have an effect and
we used are high dimensional, and low-dimensional deterthe postsynaptic cell generates the same output regardless of
minism is not likely to be present, or that the low dimension-the detailed structure of the corresponding ing@; when
ality cannot be resolved with these small data sets due tthere is an interdependence between presynaptic terminals,
noise or nonstationarity. In the latter case, we need extremehyhich involves only a proportion of all terminals or only
large amounts of clean data to get any kind of accurate dithose sets of terminals within separate and independent
mension estimate in such high embedding dimensions, whichroups, the activity of the postsynaptic cell is a function of
we did not have in these experiments. However, we thinkhe statistical form of its input channels, even if the presyn-
that the dimension and prediction analysis, along with surroaptic terminals are numerous and weak.
gate analysis, is worthwhile even though the results were not In the early stagé¢1-25 DIV) of a cultured network, a
clearly in favor of nonlinear determinism. The results of suchsingle cell is affected by a relatively small number of adja-
analyses thus complement those of the cluster analysis. cent cells because its neurites are not extensive on the sub-
One of the main empirical findings of this study was thatstrate. As the results of Segundbal. show, a single strong
neurons at 15-25 DIVreferred to in this work as the early synaptic influence on the spike train’s form may come from
stage of developmentyield ICI sequences, which may be a single powerful terminal or from several powerful termi-
interpreted as the product of stochastic processes with a relaals. That is, the postsynaptic potential has a relatively large
tively high-order temporal correlation or of a nonlinear sys-effect on the activity of a cell. Hence, cagé$ (i) and(2) are
tem with high dimensiond=5). In this stage, in particular, the candidate mechanisms in the early states of its develop-
oscillatory (periodic or bursting “forms” are visible in the  ment for the spike train’s form. In addition, neurophysiologi-
ICI sequences of many neurons. In contrast, the ICI seeal and pharmacological studies have shown that
guences obtained from cultures at more than 30 D&  y-aminobutyric acid(GABA) receptor antagonist®.g., pi-
ferred to in this work as the later stag@say be attributed to crotoxin and bicuculline methiodigidnave marked effects on
stochastic processes with a relatively low-order temporatultured cortical neurons in the latter p&i5—20 DIV) of
correlation or to a “Poisson-like” form. In addition, the the early stage of development. These effects include the
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induction of anomalous spontaneous activity and the kinetidynamics. The slow dynamics is, in general, responsible for
modulation of synaptic curren{d3,56. In the earliest pe- the triggering of clusters. The mechanism by which a slow
riod (1-14 DIV), however, such antagonists have little effectdepolarizing wave is generated differs according to the type
on spontaneous activity. This suggests that inhibitoryof cell. A slow wave in a cortical culture is likely, for ex-
(GABAergic) transmission in the network may have a strongample, to reflect an intracellular influx of calcium and to
effect on the dynamics of concerted activity in populations ofinvolve nonactivating Na channels on-methyl-D-aspartate
neurons. In the later part of the early stage, therefore, theNMDA) channeld13]. During the development of the cul-
clearly oscillatory properties of the ICI sequences may beured cells, the mechanism that underlies the generation of
because the synapses are arranged according to cai@yory the slow wave becomes mature and the properties of the ICI
described above. sequences change accordingly. The existence of specialized
Another type of network, the simplest, is formed with mechanisms for cluster generation suggests that clusters are
numerous inputs, either independent or synchronous, froran important feature of neural signals in time. The signifi-
cells immediately presynaptic to those being recorded fromcance of clusters in processing does not, however, depend on
Stevens and Zador have recently reported that independewhether the clusters are simple network-driven mechanisms
synaptic inputs are not able to account for the highly irregu-or are simply due to the physiological properties of indi-
lar spike trains observed from cortical neurensivo. They  vidual cells.
suggest that the high degree of variability in firing may be
explained by a simple alternative model of synaptic drive in ACKNOWLEDGMENTS
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