
PHYSICAL REVIEW E, VOLUME 65, 051920
Pattern formation of ion channels with state-dependent charges and diffusion constants
in fluid membranes

Stephan C. Kramer and Reiner Kree
Institut für Theoretische Physik, Georg-August-Universita¨t Göttingen, Bunsenstrasse 9, 37073 Go¨ttingen

~Received 25 October 2001; published 17 May 2002!

A model of mobile, charged ion channels in a fluid membrane is studied. The channels may switch between
an open and a closed state according to a simple two-state kinetics with constant rates. The effective electro-
phoretic charge and the diffusion constant of the channels may be different in the closed and in the open state.
The system is modeled by densities of channel species, obeying simple equations of electrodiffusion. The
lateral transmembrane voltage profile is determined from a cable-type equation. Bifurcations from the homo-
geneous, stationary state appear as hard-mode, soft-mode, or hard-mode oscillatory transitions within physi-
ologically reasonable ranges of model parameters. We study the dynamics beyond linear stability analysis and
derive nonlinear evolution equations near the transitions to stationary patterns.
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I. INTRODUCTION

Spontaneous pattern formation of ion channels in c
membranes has been a subject of continuous interest du
recent years@1–4#. Spatially modulated distributions of io
channels or pumps are ubiquitous in biological cells and t
are closely related to important biological functions like mo
phogenesis@5# or storage and processing of information
neural tissue@6#. Many physiological regulation processe
involve changes of ion fluxes through cell membranes
time scales ranging from milliseconds to hours@5,6#.

There have been attempts to explain the aggregatio
channel proteins in a fluid membrane on the basis of ther
dynamic models@7,8#, but typically the system of channels
driven out of equilibrium due to ionic concentration grad
ents and transmembrane fluxes. Therefore, a number o
thors have put forward models for spontaneous pattern
mation based upon semiphenomenological, nonequilibr
equations of motion for the densities of channel proteins. T
open channels cause transmembrane ion currents and
coupled to the voltages near the membrane surface, if
carry a charge. Thus the models have to be completed
equations that determine the ion transport~Nernst-Planck
equations! and by the Poisson equation of electrodynami
They have to be supplemented with boundary conditio
which take into account the dielectric nature of the lip
membrane@1,9,3,4#.

These electrodiffusive models can be applied to a num
of important systems like axons or closely neighboring ce
in tissue. In such systems there is a thin layer of electro
~10–100 nm! on one side of the membrane and a bulk r
ervoir of ions in aqueous solution on the other side. T
Ohmic resistance of the thin layer cannot be neglected
ionic fluxes within the layer, caused by transmembrane c
rents, give rise to significant lateral voltage drops, which
absent on the reservoir side of the membrane~see Fig. 1 for
a schematic picture!.

The electrodiffusive models are frequently used in a s
plified form, where ion densities are approximately elim
nated from the equations. Then the lateral voltage profil
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determined from a quasi one-dimensional or tw
dimensional cable equation@2,10,11#, which leads to an ef-
fective coupling between channels caused by their associ
transmembrane currents.

During the process of elimination of ions, the electr
osmotic drift of channel proteins due to ion motion with
the Debye layers near charged lipid surfaces leads to a re
malization of the effective electrophoretic charge of t
channels, as has been shown in@4#. Depending on size and
conformation, negatively charged channel proteins may e
appear as positively charged due to this effect.

Electrodiffusive models of the above type contain
simple mechanism, which may drive pattern formation@1#. It
is based on a feedback loop during which the channel p

FIG. 1. ~a! Model geometry of membrane patchLx3Ly

~shaded!, separated from an inert surface by a cleft of widthd. ~b!
Same model geometry with periodic boundary condition in they
direction.
©2002 The American Physical Society20-1
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teins drift due to lateral voltage gradients and at the sa
time modify these voltage gradients by Ohmic voltage dro
caused by transmembrane currents. Therefore, for exam
negatively charged channels~drifting in the direction of in-
creasing voltage!, which cause currents directed into the th
layer of electrolyte, have a tendency to aggregate, bec
the currents will lead to a further increase of voltage. Diff
sion will counteract this tendency by dispersing the chann
Bifurcations of the homogeneous state to an inhomogene
state may be possible if drift currents become big enoug
overcome diffusion, provided the channels are always o
and do not change their properties that determine their di
sion and effective electrophoretic charge.

In reality, however, ion channels involved in signal tran
mission and regulation processes will switch between a
riety of conformations or molecular complexes correspo
ing to closed as well as open states. The differ
conformations and complexes may have different diffus
constants and effective electrophoretic charges. Typical
amples, which cause state dependencies of diffusion
charge are charge transport across the lipid membrane@12–
14# and immobilization due to binding to the cytoskelet
@14,15#.

In the present work, we will set up and analyze a minim
generic model for mobile channels with internal state kin
ics, which includes state-dependent diffusion and charg
the ion channels. For simplicity and lucidity, we will onl
consider a simple two-state kinetics~reactions connecting
one open and one closed state! with constant rates. This al
lows for a fairly complete discussion of the first bifurcatio
from the homogeneous and stationary state of the cha
densities and the voltage.

Special cases of such a model have been studied p
ously. In Ref.@2# the authors considered open channels
chemical exchange with a reservoir of closed channels. T
reservoir is treated in the well-stirred approximation witho
coupling to the lateral voltage profile. Thereby the mod
reduces to an electrodiffusive model with one channel ty
but the particle number of these channels is no longer c
served. We will see below that our model leads to qual
tively different behavior in a wide range of parameters b
still contains the results of@2#. The necessary limit is that o
closed channels, which diffuse much faster than the o
ones and possess vanishing electrophoretic charge.
present model is also related to@16#, where a mixture of two
different channel types has been considered, but withou
actions, which allow for transitions between the differe
species.

After introducing the model in the following section, w
will give our results of the linear stability analysis. Depen
ing on parameter ranges either soft-mode instabilities a
~periodic patterns appear with a wave numberkc , which
approaches zero at the transition! or there will be different
kinds of hard-mode instabilities, where patterns withkcÞ0
occur at the transition. We also will find the emergence
spatiotemporal patterns with nonvanishingkc and nonvanish-
ing frequencyVc . In Sec. IV we will derive results of the
nonlinear behavior of our model close to transitions into s
tionary patterns. For soft-mode instabilities, we will find
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Cahn-Hilliard-type equation of motion for slow modes ne
the transition. For hard-mode instabilities, an amplitu
equation will be derived, which allows us to separate para
eter regions leading to continuous transitions from tho
leading to discontinuous transitions. Details of the derivat
of the nonlinear evolution equations will be presented in t
appendices.

II. THE MODEL

We consider ion channels moving within a fluid mem
brane of sizeLx3Ly , which separates a thin layer of ele
trolyte of width d from an electrolytic bath, as it is sketche
in Fig. 1. Positionsr within the membrane are described b
internal rectilinear coordinatesr5(x,y), 0<x,Lx , 0<y
,Ly . We will be interested in infinitely extended system
(Lx , Ly→`), such that we can neglect boundary and geo
etry effects in the following discussion. We merely menti
that if we choose periodic boundary conditions in they co-
ordinate, the membrane corresponds to a cylindrical ca
and is reminiscent of axonic or dendritic structures forLx
..Ly . Note that we treatLy andd as independent quanti
ties, so that the actual structure in cylindrical geometry loo
like Fig. 1~b!, with a submembrane layer of widthd and a
‘‘core’’ of radius (Ly/2p)2d, which is decoupled from the
submembrane layer. Ford5Ly/2p the submembrane laye
fills the entire interior of the cable. A more detailed analy
of boundary effects and the influence of different geometr
will be given elsewhere@17#.

Ion channels may switch between an open state~o! and a
closed state~c! according to a simple monomolecular chem
cal reaction scheme

g1

↓
c
o

↑
g2 ~1!

with ratesg2 andg1 . We are interested in a wide range
kinetic rates, from 103/sec for voltage or ligand gated chan
nels down to less than one per hour as is observed for
mone regulated phosphorylation and dephosphorylation
channel proteins. For gated channels, the rates depen
voltage and/or ligand concentration, but within our simple
generic model we will treatg6 as constants. We will see
below that voltage dependencies will not modify the line
stability analysis. Temporal variations of ligand concent
tion provide a distinct external driving mechanism, whi
will be studied elsewhere@17#. The distribution of channels
is described by smooth densitiesnr(r ,t),r P$o, c%, which
obey the equations

] tnr~r ,t !1“"j r~r ,t !5s r@g1nc~r ,t !2g2no~r ,t !# ~2!
0-2
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with s r511 for r 5o ands r521 for r 5c. The right-hand
side of this equation takes into account the reaction kine
of Eq. ~1!. Current densitiesj r of the channels are assumed
be of the Nernst-Planck form

j r~r ,t !52Dr$“nr~r ,t !2bqrnr~r ,t !E~r ,t !%, ~3!

whereDr and qr refer to the constants of lateral diffusio
and to the effective electrophoretic charges of open
closed channels, respectively.

The coefficientb is the inverse temperature andE(r )
52“V(r ) denotes the lateral electric field. Note that w
explicitly allow for different diffusion constants and differen
electrophoretic charges in the stateso andc.

The simple form of the current densities given in Eq.~3!
may be justified for rigid protein structures with charged p
tuberances extending in the intracellular and extracellu
electrolyte. As discussed in@4#, the effective electrophoretic
charges may be of both signs due to electro-osmotic effe
although proteins are usually negatively charged.

The Kelvin cable equation or its two-dimensional anal
may be used to calculate the lateral variation of the tra
membrane potential provided that spatial variations of
concentrations have negligible effects and that the chara
istic length scales of lateral patterns are large compare
the width of the thin layer of the electrolyte. A careful di
cussion of the derivation of the cable equation from
Nernst-Planck theory can be found in@11#. In the following
we will use the two-dimensional cable equation@2#

Cm] tV~r ,t !5
d

re
¹2V~r ,t !2GV~r ,t !

2lno~r ,t !$V~r ,t !2E%. ~4!

Cm denotes membrane capacitance per area,re is the resis-
tivity of the electrolyte within the thin layer of widthd, and
lno is the conductance of open channels. We have inclu
a passive, homogeneously distributed transmembrane
ductanceG. E is the reversal potential of ion fluxes throug
the open channels, which drives the system out of equ
rium.

We are interested in the stability of the homogeneous
stationary solutionV̄,n̄o ,n̄c of Eqs.~2!–~4!,

V̄5
ln̄oE

G1ln̄o

,

n̄o5
g1

G
n̄, n̄c5

g2

G
n̄. ~5!

The total density of channels,n̄5n̄o1n̄c , is constant and we
defineGªg11g2 . To prepare the following analysis, w
introduce appropriately normalized deviations from the s
tionary and homogeneous solution as the new fieldsr5(no

2n̄o)/n̄o , z5(nc2n̄c)/n̄c , and F5bqo(V2V̄)/V̄. We
change to dimensionless lengths and times by using as
the typical decay length ofV, l V5@(re /d)(ln̄o1G)#21/2,
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and a typical diffusion time over this lengtht5l V
2/Do .

Then Eqs.~2!–~4! take on the dimensionless form

] t%5“"$“%1~%11!“F%2g2~%2z!, ~6!

] tz5D“"$“z1q~z11!“F%1g1~%2z!, ~7!

e] tF5@¹221#F2aF%2h%. ~8!

In these equations we use the reduced parametersD

5Dc /Do , q5qc /qo ,a5ln̄o /(ln̄o1G), and h52a(1
2a)bqoE. The parametere5CmreDo /d compares the
electrical relaxation (RC) time per area to the diffusion con
stant. Note thatg1 andg2 have also been made dimensio
less by multiplication witht (g6→g6t).

For cell membranes, the parameters in Eqs.~2!–~4! imply
time scales, which differ by several orders of mag
tude. According to @12#, typical parameter values ar
Cm51 mF/m2, re;1 V m, d;10 nm, and Dr
;0.1 (mm)2/sec for diffusion of mobile proteins. Channe
conductancesl are in the 10212 V21 range, average chan
nel densities are around 10–50mm22, and electrotonic
lengthsl V are of the order of a few microns. Then the un
of time t;102 sec, whereas the electrical (RC) relaxation
time is below 1 msec. This is always the smallest time sca
of the system, even compared to fast kinetics of voltage
ligand gated channels with time constants in the milliseco
range. The constante;1027. This separation of time scale
justifies the use of the quasistationary approximation in
~8! and hence in the following we will put the rhs of Eq.~8!
equal to zero. For voltage or ligand gated channels, the t
scale set by the rateG is also very fast compared tot, G
;105, whereas slower regulation processes have time sc
comparable to or larger thant. The limit G@1, g1 /g2

5O(1) will be referred to as thefast reaction limitin the
following.

For reversal potentialsuEu;0 –100 mV and electro-
phoretic charges of a few elementary units, the parameteh
is in the rangeuhu;0 –10 under physiological conditions.

III. LINEAR STABILITY ANALYSIS

We linearize Eqs.~6!–~8! around the homogeneous an
stationary solution, Eq.~5!, and apply the plane wave ansa
(%,z,F)5(%k ,zk ,Fk)exp$ik•x1vt%1c.c.

Within the quasistationary approximation potential flu
tuationsFk are proportional to fluctuations of open channe

Fk52h%k /~11k2!. ~9!

Inserting Eq.~9! into the linearized Eqs.~6! and ~7! we get
the eigenvalue problem

vS %k

zk
D 5H S 2g2 g2

g1 2g1
D 2k2S 12hk 0

2Dqhk D D J S %k

zk
D
~10!

with hk5h/(11k2). The eigenvalues

v652@P~k2!6AQ~k2!#/2,
0-3
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P~k2!5k2~11D2hk!1G,

Q~k2!5@k2~12D2hk!1g22g1#214Dqg2k2hk

14g2g1 ~11!

determine linear stability. Let us note that an extended mo
with voltage dependent reaction rates will lead to the sa
set of linearized equations.

The solution~5! becomes unstable against small pertur
tions if Rev1 or Rev2 is positive. Note that oscillatory
unstable modes, which require Imv6Þ0 ~and thusQ,0)
are possible in the parameter rangeqh,0.

The influence of the parametersh andq on the qualitative
behavior of solutions is already apparent in the nonlin
system, Eqs.~6!–~8!. The termh% in Eq. ~8! drives the
curvature of the potentialF, whereasq may change the di-
rection of drift currents of the closed channels relative
their diffusion currents and to the drift currents of the op
channels. For example, if open cation channels carry a n
tive charge, they drift in the direction of increasingV. If the
reversal potentialE,0 is such that the cation curren
through open channelslno(V2E) is directed into the thin
layer of electrolyte, this current will lead to a further increa
of V and may cause an enhanced aggregation of open c
nels. If closed channels have a positive effective elec
phoretic charge, the accumulated open channels will disp
again after closing. This may lead to an oscillatory behav
By varying the relative signs ofq andh, different scenarios
of aggregation and dispersion of channels by lateral st
tures inF may arise, which are coupled back into Eq.~8!
and may lead to stationary or oscillatory patterns.

In the following we will hence discuss the four param
ter regions R11 (q.0,h.0), R22 (q,0,h,0),
R12 (q.0,h,0), andR21 (q,0,h.0) separately. The
quantityh is treated as the primary control parameter.

A. Instabilities for qhÌ0

In the regionsR11 andR22 , Q(k2) is always positive,
the ratesv6(k2) are real and thus plane wave solutions w
either exponentially grow or decay in time. Instabilities s
nal the onset of stationary patterns. Asv1.v2 , it is the
ratev1 , which will drive the solution~5! unstable, if control
parameters reach the stability boundary. Note that in
long-wavelength limitk→0, v15O(k2) and thus vanishes
for all values of h,q,D,g6 . The corresponding diffusion
mode reflects conservation of the total number of chann

From v1v250 we get the neutrality condition

h0~k!5~11k2!
D~k21g2!1g1

D~k21qg2!1g1

. ~12!

The minimum ofh0(k) corresponds to the first onset of in
stabilities and the corresponding wave numberkc is the first
unstable mode~critical mode!. A minimum of the neutral
curve appears atkcÞ0 with
05192
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252qg22

g1

D
1Ag2~q21!~qg21g1 /D21!

~13!

if the rhs of Eq.~13! is a positive, real number. By varyin
q,D or the ratesg6 , the instability may switch between
soft-mode (kc50) and hard-mode (kcÞ0) type.

Several statements are noticeable.
~a! For D50, ~immobile closed channels!, as well as for

q51, the neutrality conditionh0511k2 is independent of
the reaction rates and implies a soft-mode instability athc

51. A hard-mode instability requires both mobile chann
and different charges of closed and open states.

~b! Hard-mode instabilities are only possible forq
5qc /qo,1, i.e.,qc,qo . Especially if 0,q,1, then obvi-
ously uqcu,uqou.

~c! For D→` andDq50 we recover the results of@2#.
~d! In the fast reaction limit only soft-mode instabilities

hc5(Dg2 /g111)/(Dqg2 /g111) remain. Note that the
critical control parameter stays small@O(1)# in the fast re-
action limit, indicating that the instability may indeed b
reached under physiological conditions.

For reaction ratesO(1), typical curves ofh0(k) are
shown in Fig. 2. InR11 , both soft- and hard-mode insta
bilities may occur. InR22 a neutral curve only appears fo
Duqu.g1 /g2 . Thenh0(k) is maximal atk50 and exhibits
poles at kp

252qg22g1 /D. Thus, for electrophoretic
chargesqo ,qc of different signs andh,0, merely soft-mode
instabilities are possible@Fig. 2.~b!#. Note that only a finite
band of unstable modes, limited to the interval (2kp ,kp),
will appear for allh,0. This unstable band grows likekp

;G1/2 in the fast reaction limit. Figure 3 shows thekc
250

lines in theD2G plane for different values ofq. For param-
eters (D,G) below each curvekc

2.0.
Solving the linearized system for the eigenvec

(%kc
,zkc

,Fkc
) of the critical mode with%kc

51, one gets

zkc
5(qkc

21qg21g1 /D)/(kc
21qg21g1 /D) and Fkc

52(kc
21qg21g1 /D)/(kc

21qg21g1 /D). Thus sgn%kc

5sgnzkc
and sgn%kc

52sgnFkc
if q.0. Hence forq.0,

spatial variations of open and closed channels are in ph
but have a phase lag ofp with respect to the potential in th
critical mode. If q,0 there is no phase lag, as the
sgnvkc

5sgnzkc
5sgnFkc

. In this case the critical wave

number vanishes leading toz051 andF052hc so that all
spatial periods are in phase as expected from the qualita
discussion on the mechanism of pattern formation given
Sec. II after Eq.~8!.

B. Instabilities for qhË0

The simplest behavior of the system appears in the reg
R12 . For Imv6Þ0, it is obvious from Eq.~11! that
Rev652(1/2)P(k2),0. It is easy to show that linear sta
bility also holds for Imv650 and thus the homogeneou
stationary solution~5! is linearly stable in this regime.
0-4
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R21 is the only parameter regime, where oscillatory
stabilities may occur, becauseQ(k2) andP(k2) can simulta-
neously take on negative values in this regime. IfQ,0,
v15v2* and the growth rate of the perturbation is Rev6

52P(k2)/2. From P(k2,h)50 we obtain the neutrality

FIG. 2. Neutral curves in regionsR11 ~a!, R22 ~b!, andR21

~c! for different values ofq. For the upper, middle, and lowe
curves,q50.1, 0.2, and 0.6 in~a!; q523.0, 22.0, and21.0 in
~b!; and q520.3, 20.5, and21.0 in ~c!. Other parameters ar
g150.01,g250.5, andD50.5.
05192
-

conditionhP(k) for oscillatory instabilities,

hP~k!5~11D !~11k2!S 11
G

~11D !k2D . ~14!

It attains its minimum at the critical wave numberkPc

5 4AG/(11D). The critical value of the control parameter

hPc
5~11D !S 11A G

11D D 2

. ~15!

Note thatP(k2) and hence the neutral curve do not depe
on the ratioq of the electrophoretic charges. The ratioq will
enter in the oscillation frequencyVc5(1/2)AuQ(kc

2)u at the
critical point.

The region R21 also contains parts withQ(k2).0,
where stationary unstable patterns may arise if the neu
curve determined from Eq.~12! is crossed. Hence the tru
critical point is located at

hc5min
k

$h0~k!,hP~k!%. ~16!

Figure 2~c! shows neutral curves inR21 for different
values ofq. Generically a neutral curve inR21 is composed
of two branches. The one belonging to the onset of osci
tory instabilities does not depend onq, whereas the othe
one—belonging to stationary patterns—does. By increas
uqu or D ~see Fig. 4! hc changes discontinuously from a
instability with Vc.0 to an instability towards stationar
patterns.

The dependence ofVc on G andD is depicted in Fig. 5.
Oscillatory instabilities will not be attainable in the fast r
action limit under physiological conditions becausehPc

;G

for largeG.
Figure 4 shows neutral curves inR21 together with the

regionQ(k2),0 for two cases, which differ by the value o
D. In Fig. 4~a!, the unstable pattern is oscillating, in Fig
4~b!, it is stationary. Figure 5 shows the dependence of

FIG. 3. Boundaries between hard-mode and soft-mode insta
ties inD-g plane inR11 for different values ofq. In regions below
each curve,kc

2.0. From lower to upper curves, values ofq are
0.0, 0.1, 0.25, and 0.5.
0-5
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critical frequencyVc on D andG for different q. Note that
the oscillations will set in with a finite frequency at bo
transitions fromVc50 to Vc.0.

IV. EFFECTS IN THE WEAKLY NONLINEAR REGIME

We now turn to a discussion of the behavior of the syst
beyond linear stability analysis. Our discussion will be
stricted to stationary patterns. A more detailed analysis
oscillatory patterns will be given elsewhere@17#.

In the vicinity of the critical control parameterhc and the
critical wave numberkc , the linear dispersion of the slow
modev1(h,k2) may be expanded to obtain the linear part
a nonlinear evolution equation for the slow mode near
bifurcation point. From Eq.~11! one gets

v1~h,k2!5kza22ta
21H h2hc

hc
1ja

2 ~k2kc!
2

1O@~k2kc!
4#J , ~17!

whereza54 for soft-mode instabilities (a5s) andza52 for
hard-mode instabilities (a5h). The expressions for time
scalesta and length scalesja can be found in Appendix A
for soft mode instabilities and in Appendix B for hard-mo
instabilities.

FIG. 4. Neutral curves and domain of complex eigenvalu
~shaded! in R21 for D50.09~a! andD55.0 ~b!. Note that there is
a discontinuous change in the nature of the transition with incre
ing D; from hard-mode stationary to hard-mode oscillatory typ
Other parameter values areq522.0,g150.01,g250.5.
05192
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A. Soft-mode instabilities

To proceed beyond the linearized dynamics near a s
mode instability, it is convenient to introduce the variableu
5(g1%1g2z)/G, which corresponds to fluctuations of th
total channel densityu5(no1nc2n̄)/n̄ and which contains
the critical slow mode ash→hc . Furthermore, we introduce
v5(%2z)/G, which remains fast relative tou near the bi-
furcation. We get an equation for the slowly varying part
u(r ,t) from a gradient expansion, which is outlined in Ap
pendix A.

If we take into account all terms ofO(¹2) and include the
O(¹4) terms, which arise from the linear dispersion E
~17!, the resulting equation foru takes on the form of a
dynamical Cahn-Hilliard equation~or ‘‘model B’’ ! @18#,

] tu5ts
21¹2H dF~u!

du J 1O~¹4u2!. ~18!

with an effective potential F(u)5*@ f (u)
1(js

2/2)(¹u)2#d2r .
The local partf (u) is given by

s

s-
.

FIG. 5. ~a! The critical frequencyVc as a function ofD for G
50.51 withq525. The inset shows thatVc jumps to zero discon-
tinuously.~b! Vc as a function ofG for D50.09 withq522. The
remaining parameter isg12g2520.49 for both~a! and ~b!.
0-6
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f ~u!5
hcu

2

2
1

h

a2 F ~22a!u1S 12
2

a
2uD ln~11au!G ,

~19!

with a as introduced in Eq.~8!. Equation ~18! has to be
solved under the constraint of conservation of channel n
ber, *ud2r50, which may be taken into account by an a
propriate Lagrange multiplier term2Lu in f (u). Note that
the dynamics only depends on the ratiohc /h and on the
parametera. It thus exhibits a particularly simple universa
ity for all permissible values ofD,q,g6 .

Figure 6 shows the effective potentials fora50.6 close to
the transition. The critical pointhc becomes the spinodal. I
the subcritical regimeh,hc , f (u) develops a second mini
mum u1Þ0, which decreases with increasingh. For h
.hT with u1(hT)50, a quench of the homogeneous sta
u50 will result in nucleation and decomposition of the h
mogeneous state up to the spinodal pointh5hc . For h
.hc the homogeneous state decays by spinodal decomp
tion.

The discussion of the dynamical behavior, including ty
cal coarsening in the case of quenches, can be found in s
dard textbooks; see, for instance,@19#.

B. Hard-mode instabilities

In order to obtain an analytic description of the weak
nonlinear regime for hard-mode instabilities, we use a st
dard multiscale perturbative approach, which results in
amplitude equation@20#. The approach starts from the ansa

uc@x~X,Y,T!eikcx1x* ~X,Y,T!e2 ikcx# ~20!

for the fluctuationsu5(%,z,F). The amplitudex depends
upon the scaled variablesX5ax, Y5a1/2y, andT5a2t. The
scalea becomes small, if the control parameterh approaches
its critical valuehc from above,a25(h2hc)/hc . For con-
venience we sketch the procedure in Appendix B. For o

FIG. 6. Local part of the effective potentialf (u), which controls
the Cahn-Hilliard dynamics near soft-mode instabilities ata50.6.
The uppermost curve displays the situation at the transi
(hc /h51.025 25), whereas the middle curve corresponds to
spinodal pointhc /h51. The lower curve is in the supercritica
regime athc /h50.97. For better visibility,f (u) at the transition
point has been enlarged by a factor of 10. Ifa,0.5 the global
minimum of the potential is attained for positiveu and the graphs
appear mirrored at theu50 axis.
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dimensional, stationary patterns the perturbation theory g
the following for the amplitudex in the supercritical vicinity
of hc :

th] tx5
h2hc

hc
x1jh

2F]x2
i

2kc
]y

2G2

x2Juxu2x. ~21!

The lengthy expression for the coupling constantJ as a func-
tion of the model parameters is given in Appendix B.

Figure 7 displays the sign ofJ in the D-G plane for fixed
q50.1. PositiveJ corresponds to a continuous transition a
~forward bifurcation! negativeJ corresponds to a discontinu
ous one~backward bifurcation!. The shapes of the region
with different signs ofJ depend crucially on the paramete
a @compare Fig. 7~a! with Fig. 7~b! and Fig. 7~c! with Fig.
7~d!# andg @compare Fig. 7~a! with Fig. 7~c! and Fig. 7~b!
with Fig. 7~d!#.

Note that fora<0.5 @Figs. 7~a! and 7~c!# there is only one
interval of positive J both for fixed D and for fixed G,
whereas in the other regimea.0.5 @Figs. 7~b! and 7~d!#
there may be two such intervals and the domain ofJ.0
consists of two disconnected parts that extend to thekc

2

50) line in the considered region of parameters. This me
that coming from large values ofD, one leaves the area o

n
e

FIG. 7. J50 lines within thekc
2>0 domain for q50.1 and

various a and g : ~a! a50.25, g520.49; ~b! a50.75,
g520.49;~c! a50.25,g52.0; and~d! a50.75,g52.0. The val-
ues ofa and g crucially determine the number and geometry
domains with continuous transitions~shaded!.
0-7
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continuous transitions, crosses the domain of discontinu
transitions, and again enters a domain withJ.0 before fi-
nally the kc

250 line is crossed. The same behavior is o
tained by changingG at a givenD.

For negativeg the region ofJ>0 contains theD axis. For
positiveg, kc

2,0 for smallG.

V. CONCLUSIONS

We have studied a simple model of spontaneous pat
formation of mobile ions in a fluid membrane. The chann
proteins may switch between an open and a closed state
cording to a simple two-state reaction kinetics with const
rates. The effective electrophoretic charge and the diffus
constant of the channel proteins are assumed to be stat
pendent. The reversal potentialE of ions, which may pass the
open channels constitutes a nonequilibrium driving for
The characterization of a particular model is completed
the additional parametersD5Dc /Do andq5qc /qo , the re-
action ratesg6 , and the parametera, which is the part of
transmembrane conductivity due to open channels. Vary
these parameters leads to a number of distinct scenario
the first bifurcations from the stationary and homogene
state. Depending on the sign of the control parameteh
5a(a21)bqoE and the ratioq5qc /qo of electrophoretic
charges, four qualitatively different regions of paramet
have been identified from linear stability analysis:~a! for q
.0 andh.0 (R11) soft- or hard-mode instabilities lead
ing to stationary patterns will appear,~b! for q,0 and h
,0 (R22) only bifurcations with soft-mode instabilities ca
occur,~c! for q,0 andh.0 (R21) hard-mode instabilities
with or without temporal oscillations may be found, and~d!
for q.0 and h,0 (R12) the homogeneous, stationa
state remains linearly stable. In the fast reaction limit, wh
the time scaleG21 becomes much shorter than other tim
scales~except theRC-relaxation time of transmembrane p
tential fluctuations!, only soft-mode instabilities remain. B
varying the ratioD5Dc /Do of diffusion constants orq
5qc /qo of effective electrophoretic charges within phys
ologically plausible bounds, it is possible to switch betwe
soft- and hard-mode instabilities inR11 and between hard
mode and oscillatory instabilities inR21 .

For soft-mode instabilities, we have derived an equat
of motion of slow modes near the transition, which is of t
form of a dynamical Cahn-Hilliard equation. The transitio
will generically be discontinuous~backward bifurcation! and
the nonlinear evolution will be characterized by regions
nucleation and of spinodal decomposition. Quenches into
supercritical regime are predicted to show coarsening be
ior with a coarsening length scale growing ast1/3. For hard-
mode instabilities, an amplitude equation is obtained as
@2# and parameter regions of forward and backward bifur
tions may be distinguished by the sign of the nonlinear c
pling parameter.

The presented model includes and extends several p
ously studied models and may be considered as a min
model for charged ion channels with internal state kinetics
a fluid membrane.
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APPENDIX A: GRADIENT EXPANSION NEAR
SOFT-MODE INSTABILITIES

We transform Eqs.~6!–~8! to the new variables

u5~g1%1g2z!/G,

v5~%2z!/G ~A1!

and get

G] tu5~g11Dg2!¹2u1g1g2~12D !

3¹2v1~g11rg2!¹2F1~g11rg2!

3“"~u“F!1g1g2“"~v“F! ~A2!

as the equation of motion foru. Note that all terms on the rh
of the equation foru are at leastO(¹2) as a direct conse
quence of channel-number conservation. Forv we get

G] tv52G2v1~g21Dg1!¹2v1~12D !

3¹2u1~12r !¹2F1~12r !“"~u“F!

1~g21rg1!“"~v“F!. ~A3!

Note thatv decays with a rateO(¹0) due to the2G2v term.
Thusv is fast near a soft-mode transition and may be ad
batically eliminated. It does not enter the leading order of
gradient expansion, which is obtained by replacingF in Eq.
~A2! from the leading@O(¹0)# order of

05~12¹2!F1h~u1g2v !1a~u1g2v !F. ~A4!

This leads to

] tu5ts
21¹2Hhcu1~11u!f~u!2E f~u! duJ ~A5!

with ts
215(g11Dg2)/G andf(u)52hu/(11au).

The linearO(¹4) term is obtained from the expansion o
v1(h,k2)5ts

21k2@(h2hc)/hc1js
21O(k4)#. For js

2/ts we
obtain

js
2

ts
52

h

2
1

1

4G
@~12D2h!212h~g22g1!24hg2Dq#

2
1

4G3
@~g22g1!~12D2h!12hg2Dq#2. ~A6!

Adding a term2ts
21js

2¹4u on the rhs of Eq.~A5! we get
Eqs.~18! and ~19!.

APPENDIX B: AMPLITUDE EQUATION NEAR
HARD-MODE INSTABILITIES

The system of nonlinear partial differential equations E
~6!–~8! is written asLu5N(u,u) In the vicinity of hc ,kc ,
u5(%,z,F) contains both fast scale variations@with “u
5O(kc)# and slow scale variations~with “u→0 for h
→hc). The slowly varying part may be obtained from
perturbation expansion ine5Au(h2hc)/hcu, which explic-
0-8
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itly separates slow scale variations from fast scales by in
ducing appropriately scaled length and time variablesX
5ex T5e2t. For one-dimensional patterns, the directi
perpendicular to the pattern wave vector should be scale
Y5e1/2y @21#. As the functions now may depend upon fa
and slow variables, we have to replace] t→] t1e2]T and
]x→]x1e]X , etc. In this way, the linear partL becomesL
5L01eL11e2L2. Inserting the expansionu5eu11e2u2
1e3u31O(e4) @with u1(X,Y,T,x)5x(X,Y,T)exp(ikcx)
1cc# and sorting with respect to powers ofe one gets a
hierarchy of equations, which allows to determineun from
the uk with k,n. It starts withL0u150, which implies that
u1 is an eigenstate toL0 with eigenvalue zero. As]T carries
an explicit factor ofe2, the equation, that contains the slo
time derivative ofu1 appears in third order ine and has the
form L2u11L1u21L0u35N3(u1 ,u2). After insertingu2 as
obtained from the perturbation expansion in terms ofu1, one
gets the amplitude equation by taking the scalar produc
the third order equation with the left eigenstate ofL0 to
eigenvalue zero,u1

† . This solvability condition gives

E u1
†L2u1d2r1E u1

†L1u2d2r5E u1
†N 3d2r . ~B1!

The lhs of Eq.~B1! is linear in x and can be obtained di
rectly from expandingv1(h,k2) aroundhc ,kc , v1(h,k2)
5th

21
„e21jh

2(k2kc)
21O@(k2kc)

4#…. Inserting this expan-
sion on the lhs of Eq.~B1! and neglecting they dependence
for simplicity gives

S th] t2
h2hc

hc
2jh

2]x
2Dx5E u1

†N 3d2r . ~B2!

For the time constantth we get

th5
G1~11D !kc

22hckc
2/~11kc

2!

Dkc
2~kc

21g21g1 /D !
~B3!
,

05192
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as
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and the square of the correlation lengthjh
2 is

jh
25

4kc
2

~11kc
2!S kc

21g21
g1

D D . ~B4!

Evaluating the nonlinear term on the rhs of Eq.~B2! gives
Eq. ~21! with the following expression for J:

J5
2hc

S kc
21g21

g1

D D ~11kc
2!2

H aS qg21
g1

D
1kc

2D
3~p11Fkc

n112a!2~11kc
2!

3F2p1S g1

D
1kc

21zkc
qg2D2Fkc

$n1~g11kc
2!

2qg2~11kc
2!z1%G J .

The expressionsn1 ,z1, andp1 stem fromO(e2) corrections
and have the form

n15
1

18kc
4 $~114kc

2!~g1 /D14kc
21zkc

qg2!

22a~g11qg214kc
2!%, ~B5!

z15
n1~b12kc

2!~114kc
2!14kc

2~a2n1hc!

b~114kc
2!~11kc

2!
, ~B6!

p15
~11kc

2!En11a

114kc
2

. ~B7!
d,
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