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Pattern formation of ion channels with state-dependent charges and diffusion constants
in fluid membranes
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A model of mobile, charged ion channels in a fluid membrane is studied. The channels may switch between
an open and a closed state according to a simple two-state kinetics with constant rates. The effective electro-
phoretic charge and the diffusion constant of the channels may be different in the closed and in the open state.
The system is modeled by densities of channel species, obeying simple equations of electrodiffusion. The
lateral transmembrane voltage profile is determined from a cable-type equation. Bifurcations from the homo-
geneous, stationary state appear as hard-mode, soft-mode, or hard-mode oscillatory transitions within physi-
ologically reasonable ranges of model parameters. We study the dynamics beyond linear stability analysis and
derive nonlinear evolution equations near the transitions to stationary patterns.
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I. INTRODUCTION determined from a quasi one-dimensional or two-
dimensional cable equatid,10,13, which leads to an ef-
Spontaneous pattern formation of ion channels in celfective coupling between channels caused by their associated
membranes has been a subject of continuous interest durifigansmembrane currents.
recent yeargl—4]. Spatially modulated distributions of ion During the process of elimination of ions, the electro-
channels or pumps are ubiquitous in biological cells and thepsmotic drift of channel proteins due to ion motion within
are closely related to important biological functions like mor-the Debye layers near charged lipid surfaces leads to a renor-
phogenesig5] or storage and processing of information in malization of the effective electrophoretic charge of the
neural tissug6]. Many physiological regulation processes channels, as has been showr{4d. Depending on size and
involve changes of ion fluxes through cell membranes orfonformation, negatively charged channel proteins may even

time scales ranging from milliseconds to ho{i5s6]. appear as positively charged due to this effect.

There have been attempts to explain the aggregation of Electrodiffusive models of the above type contain a

channel proteins in a fluid membrane on the basis of theerS-'mpIe mechanism, which may dr|_ve patt_ern formafidh It
dynamic model§7,8], but typically the system of channels is Is based on a feedback loop during which the channel pro-
driven out of equilibrium due to ionic concentration gradi-

ents and transmembrane fluxes. Therefore, a number of au- Yy

thors have put forward models for spontaneous pattern for- 2
mation based upon semiphenomenological, nonequilibrium X Lo or
equations of motion for the densities of channel proteins. The
open channels cause transmembrane ion currents and are
coupled to the voltages near the membrane surface, if they
carry a charge. Thus the models have to be completed by
equations that determine the ion transp@ernst-Planck I
equationy and by the Poisson equation of electrodynamics. *
They have to be supplemented with boundary conditions,
which take into account the dielectric nature of the lipid
membrand1,9,3,4.

These electrodiffusive models can be applied to a number
of important systems like axons or closely neighboring cells
in tissue. In such systems there is a thin layer of electrolyte
(10—100 nm on one side of the membrane and a bulk res-
ervoir of ions in aqueous solution on the other side. The
Ohmic resistance of the thin layer cannot be neglected and
ionic fluxes within the layer, caused by transmembrane cur-
rents, give rise to significant lateral voltage drops, which are L b)
absent on the reservoir side of the membrésee Fig. 1 for ’

a schematic pictuje FIG. 1. (8 Model geometry of membrane patch,xL,
The electrodiffusive models are frequently used in a sim-<shadedl separated from an inert surface by a cleft of widthb)
plified form, where ion densities are approximately elimi- Same model geometry with periodic boundary condition in yhe

nated from the equations. Then the lateral voltage profile islirection.
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teins drift due to lateral voltage gradients and at the sam€ahn-Hilliard-type equation of motion for slow modes near
time modify these voltage gradients by Ohmic voltage dropghe transition. For hard-mode instabilities, an amplitude
caused by transmembrane currents. Therefore, for exampleguation will be derived, which allows us to separate param-
negatively charged channelgrifting in the direction of in-  €ter regions leading to continuous transitions from those
creasing voltage which cause currents directed into the thin leading to discontinuous transitions. Details of the derivation
|ayer of e|ectro|yte, have a tendency to aggregate, becauﬁ the n_onlineal’ evolution equations will be presented in two
the currents will lead to a further increase of voltage. Diffu- @Ppendices.

sion will counteract this tendency by dispersing the channels.

Bifurcations of the homogeneous state to an inhomogeneous

state may be possible if drift currents become big enough to Il. THE MODEL

overcome diffusion, provided the channels are always open
and do not change their properties that determine their di1‘fubr

sion and effective electrophoretic charge. trolyte of widthd from an electrolytic bath, as it is sketched

_In_reality, howeve_r, lon channels ir_1v0|v_ed in signal trans-;,, Fig. 1. Positiong within the membrane are described by
mission and regulation processes will switch between a vag .. .1 rectilinear coordinates=(x,y), 0=<x<L,, 0=y
3 I = X1 =

riety of conformations or molecular complexes correspond—< Ly. We will be interested in infinitely extended systems
ing to closed as well as open states. The differen

conformations and complexes may have different diffusion Ly, Ly=¢), such that we can neglect boundary and geom-
omp y . etry effects in the following discussion. We merely mention
constants and effective electrophoretic charges. Typical ®Xhat if we choose periodic boundary conditions in gheo-

;Taele:’axhé%grciutfgnztégﬁ ;fr‘c))igdt?\gcllie? d %ednlwﬁkgsl |ion an(g#dinate, the membrane corresponds to a cylindrical cable
g 9 p P and is reminiscent of axonic or dendritic structures ffqr

14] and immobilization due to binding to the cytoskeleton>>Ly_ Note that we treak., andd as independent quanti-

[14.15. ties, so that the actual structure in cylindrical geometry looks

In t_he present work, we will set up (_amo! analyze a mm.'mallike Fig. 1(b), with a submembrane layer of widthand a
generic model for mobile channels with internal state kinet-, " . .
fcore of radius (L,/27)—d, which is decoupled from the

ics, which includes state-dependent diffusion and charge o B
the ion channels. For simplicity and lucidity, we will only submembrane layer. Fat=L,/2m the submembrane layer

consider a smle o-Siae nelmactons comectng. 151 SIS PN e e e deaed salas
one open and one closed spaggth constant rates. This al- y 9

lows for a fairly complete discussion of the first bifurcationsw'”I be g;::ven eilsewherél_tﬂh betw d

from the homogeneous and stationary state of the channe| ondc anneis ma{j_sm ch be e-len an operll s(talleanha .

densities and the voltage. Close st.atdzc) according to a simple monomolecular chemi-
Special cases of such a model have been studied prev(f—al reaction scheme

ously. In Ref.[2] the authors considered open channels in

chemical exchange with a reservoir of closed channels. This

We consider ion channels moving within a fluid mem-
ane of sizeL, XL, which separates a thin layer of elec-

reservoir is treated in the well-stirred approximation without Y+

coupling to the lateral voltage profile. Thereby the model !

reduces to an electrodiffusive model with one channel type, c—0

but the particle number of these channels is no longer con-

served. We will see below that our model leads to qualita- T

tively different behavior in a wide range of parameters but v_ (D)

still contains the results d2]. The necessary limit is that of

closed channels, which diffuse much faster than the open

ones and possess vanishing electrophoretic charge. Tlvdth ratesy_ andy, . We are interested in a wide range of

present model is also related[tb6], where a mixture of two  kinetic rates, from 1¥sec for voltage or ligand gated chan-

different channel types has been considered, but without razels down to less than one per hour as is observed for hor-

actions, which allow for transitions between the differentmone regulated phosphorylation and dephosphorylation of

species. channel proteins. For gated channels, the rates depend on
After introducing the model in the following section, we voltage and/or ligand concentration, but within our simplest,

will give our results of the linear stability analysis. Depend-generic model we will treaty. as constants. We will see

ing on parameter ranges either soft-mode instabilities arisbelow that voltage dependencies will not modify the linear

(periodic patterns appear with a wave numikgr which  stability analysis. Temporal variations of ligand concentra-

approaches zero at the transitioor there will be different  tion provide a distinct external driving mechanism, which

kinds of hard-mode instabilities, where patterns vkt 0 will be studied elsewherfl7]. The distribution of channels

occur at the transition. We also will find the emergence ofis described by smooth densities(r,t),r € {o, c}, which

spatiotemporal patterns with nonvanishiggand nonvanish- obey the equations

ing frequencyQ.. In Sec. IV we will derive results of the

nonlinear behavior of our model close to transitions into sta-

tionary patterns. For soft-mode instabilities, we will find a N (r,0)+Vej . (r,t)y=o,[yin(r,t)—y_ny(r,t)] (2
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with o, = +1 forr=o0 ando, = —1 forr=c. Theright-hand  and a typical diffusion time over this length=/2/D,.
side of this equation takes into account the reaction kinetic§hen Eqs.(2)—(4) take on the dimensionless form
of Eq. (1). Current densitief of the channels are assumed to

be of the Nernst-Planck form e=V{Vo+(e+1)Vd}—y (¢—), (6)
jr(r,t)==D{Vn.(r,t)— Ba,n,(r,HE(r,0)}, (3 H{=DVAV{+q({+ VP +y. (e-0), (1)
whereD, and g, refer to the constants of lateral diffusion e ®=[V?~1]0—ado - 5o. (8)

and to the effective electrophoretic charges of open anﬁi .
closed channels, respectively. n these equations we use the reduced paramefers
The coefficients is the inverse temperature ar(r) =Dc/Do, 9=0c/0do,a=ANy/(AN+G), and 7=—a(l
=—VV(r) denotes the lateral electric field. Note that we — @)BdoE. The parametere=CppD,/d compares the
explicitly allow for different diffusion constants and different electrical relaxationRC) time per area to the diffusion con-
electrophoretic charges in the stateandc. stant. Note thaty, andy_ have also been made dimension-
The simple form of the current densities given in £8).  less by multiplication withr (y.—vy. 7).
may be justified for rigid protein structures with charged pro-  For cell membranes, the parameters in Egs-(4) imply
tuberances extending in the intracellular and extracellulafime scales, which differ by several orders of magni-
electrolyte. As discussed 4], the effective electrophoretic tude. According to[12], typical parameter values are
charges may be of both signs due to electro-osmotic effect&m=1 wF/M?,  pe~1 Om, d~10 nm, and D,
although proteins are usually negatively charged. ~0.1 (um)?/sec for diffusion of mobile proteins. Channel
The Kelvin cable equation or its two-dimensional analogconductancea are in the 102 Q™! range, average chan-
may be used to calculate the lateral variation of the transhel densities are around 10-50m 2, and electrotonic
membrane potential provided that spatial variations of iorlengths/, are of the order of a few microns. Then the unit
concentrations have negligible effects and that the characteef time 7~10? sec, whereas the electricaRC) relaxation
istic length scales of lateral patterns are large compared ttme is below 1 usec. This is always the smallest time scale
the width of the thin layer of the electrolyte. A careful dis- of the system, even compared to fast kinetics of voltage or
cussion of the derivation of the cable equation from theligand gated channels with time constants in the millisecond
Nernst-Planck theory can be found[itd]. In the following  range. The constart~10"". This separation of time scales
we will use the two-dimensional cable equati@j justifies the use of the quasistationary approximation in Eq.
(8) and hence in the following we will put the rhs of E®)
equal to zero. For voltage or ligand gated channels, the time
scale set by the ratF is also very fast compared tg T’
~10°, whereas slower regulation processes have time scales
—Ano(r,H{V(r,t)—E}. (4 comparable to or larger than. The limit T>1, y, /y_

] . ] =0(1) will be referred to as théast reaction limitin the
Cr, denotes membrane capacitance per asgds the resis-  fo|jowing.

tivity of the electrolyte within the thin layer of widtd, and For reversal potential§E|~0-100 mV and electro-
An, is the conductance of open channels. We have includeghoretic charges of a few elementary units, the parameter

a passive, homogeneously distributed transmembrane Cofk i the range 7| ~0-10 under physiological conditions.
ductanceG. E is the reversal potential of ion fluxes through

d
CrdiV(r,t)= p—VZV(r ) —GV(r,t)
e

the open channels, which drives the system out of equilib- IIl. LINEAR STABILITY ANALYSIS
rium.
We are interested in the stability of the homogeneous and We linearize Eqs(6)—(8) around the homogeneous and
stationary solution/,n, ,n, of Egs.(2)—(4), stationary solution, Eq5), and apply the plane wave ansatz
(0,4, ®)=(0k, L, Pexplik-x+ wt}+c.c.
— \nE Within the quasistationary approximation potential fluc-
V= o, tuations®, are proportional to fluctuations of open channels
G+A\n,
D= — 7oyl (1+K). €)
Hozﬁﬁ chﬁﬁ (5) Inserting Eq.(9) into the linearized Eqs6) and (7) we get
r r the eigenvalue problem

The total density of channels=n,+n,, is constant and we | |(—7r 7- o 1= O} fex

definel':=y, +y_. To prepare the following analysis, we @ 0 - Yo o — v —k -Dqy D 0

introduce appropriately normalized deviations from the sta-

tionary and homogeneous solution as the new fipldgn, (10

—ng)/ng, {=(nc—nJ/nc, and ®=pa,(V-V)IV. We . _ 2 :
change to dimensionless lengths and times by using as uni‘{g'th = /(1K) The eigenvalues

the typical decay length o, /v=[(pe/d)(An,+G)]~ Y2 w.=—[P(k?)=Q(k?]/2,
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P(k®)=k?(1+D— 7 +T,

Y
ki=—ay-— 5 +\r-(a-1)(qy-+y./D-1)
QK =[KX(1-D— 70+ y_ — y. ]+ 4Dqy_K?7 (13

+Ay_ vy, (11)
if the rhs of Eq.(13) is a positive, real number. By varying
eq,D or the ratesy., the instability may switch between

determine linear stability. Let us note that an extended mod éoft-mode k.=0) and hard-modek(.#0) type.

with voltage dependent reaction rates will lead to the sam .
set of linearized equations. Several statements are noticeable.

The solution(5) becomes unstable against small perturba- (@ For D=0, (immobile closed cha?r)elg,as well as for
tions if Rew, or Rew_ is positive. Note that oscillatory =1, the neutrality conditionzo=1+k" is independent of
unstable modes, which require &m0 (and thusQ<0) the reaction rates and implies a soft-mode instabilitypat
are possible in the parameter rangge<O0. =1. A hard-mode instability requires both mobile channels

The influence of the parametersandq on the qualitative ~ and different charges of closed and open states.
behavior of solutions is already apparent in the nonlinear (b) Hard-mode instabilities are only possible far
system, Eqs(6)—(8). The term ¢ in Eq. (8) drives the =0./0,<1, i.e.,q.<d,. Especially if 0<q<1, then obvi-
curvature of the potentiab, whereasy may change the di- ously |qc|<|d|-
rection of drift currents of the closed channels relative to (c) For D—« andDg=0 we recover the results ¢2].
their diffusion currents and to the drift currents of the open (d) In the fast reaction limit only soft-mode instabilities at
channels. For example, if open cation channels carry a negay,=(Dy_/y,+1)/(Dgy_/y,.+1) remain. Note that the
tive charge, they drift in the direction of increasiNgIf the  critical control parameter stays smaD(1)] in the fast re-

reversal potentialE<O is such that the cation current action limit, indicating that the instability may indeed be
through open channelsn,(V—E) is directed into the thin yeached under physiological conditions.

layer of electrolyte, this current will lead to a further increase  For reaction ratesO(1), typical curves of 5o(k) are
of V.and may cause an enhanced aggregation of open chaghown in Fig. 2. InR, . , both soft- and hard-mode insta-
nels. If closed channels have a positive effective electropjjities may occur. InR_ _ a neutral curve only appears for
phoretic charge, the accumulated open channels will disperqg|q|> v, ly_ . Thenyy(k) is maximal atc=0 and exhibits
again after closing. This may lead to an oscillatory behaviorpo|es at k,2)= —qy_—v./D. Thus, for electrophoretic

By varying t'he relativg sign§ af and 7, different scenarios chargesy, ,q. of different signs and;<0, merely soft-mode
of aggregation and dispersion of channels by lateral strucysiapijities are possiblEFig. 2(b)]. Note that only a finite
tures in® may arise, which are coupled back into B8)  panq of unstable modes, limited to the interval K, K,),
and may lead to stationary or oscn!atory patterns. will appear for all »<<0. This unstable band grows likg,

In the following we will hence discuss the four parame- 172 i, the fast reaction limit. Figure 3 shows thé=0
ter regions R (q>07>0), R (A<07<0),  jineqintheD—T plane for different values af. For param-
R _(q>(_),17<0), andR_ (q<0’77>0) separately. The eters D,T") below each curvé?>0.
guantity » is treated as the primary control parameter. Solvi;lg the linearized S(;/ stem for the eigenvector

(ch,gkc,tbkc) of the critical mode Withgkczl, one gets
A. Instabilities for g7>0 §kC:(qk§+Q7’—+ v+ /D)I(Ki+dy_+y./D) and Dy,
In the regionsR, , andR__, Q(k?) is always po;itive, = —(k§+qy,+ vy /D)/(k§+qy,+ v, /D). Thus SQrok_
the ratesw . (k?) are real and thus plane wave solutions will —sgns, and sgrp, = —sgn®, if g>0. Hence forg>0,
either exponentially grow or decay in time. Instabilities sig- v p ¢
nal the onset of stationary patterns. As >w_, it is the
ratew . , which will drive the solution(5) unstable, if control
parameters reach the stability boundary. Note that in th
long-wavelength limitk— 0, », =O(k?) and thus vanishes : _
for all values of7,g,D,v. . The corresponding diffusion number vanishes leading g3g=1 and®= — 7 so that all

mode reflects conservation of the total number of channelsSPatial periods are in phase as expected from the qualitative
From o, »_=0 we get the neutrality condition discussion on the mechanism of pattern formation given in

Sec. Il after Eq(8).

spatial variations of open and closed channels are in phase
but have a phase lag ef with respect to the potential in the
critical mode. If g<O there is no phase lag, as then
gnwkc=sgn§k6=sgn<1>kc. In this case the critical wave

D(K*+y_ )+,

70(K)=(1+k?) (12

D(k®+qy_)+7y. B. Instabilities for q7<0

The simplest behavior of the system appears in the regime
The minimum of (k) corresponds to the first onset of in- R, _. For Imw.#0, it is obvious from Eq.(11) that
stabilities and the corresponding wave numkeis the first Rew. =—(1/2)P(k?)<0. It is easy to show that linear sta-
unstable modgcritical modg. A minimum of the neutral bility also holds for Imw.. =0 and thus the homogeneous,
curve appears d.+ 0 with stationary solution{5) is linearly stable in this regime.
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FIG. 2. Neutral curves in regiorg ., , (a), R__ (b),andR_,
(c) for different values ofg. For the upper, middle, and lower
curves,q=0.1, 0.2, and 0.6 ina); q=—3.0,—2.0, and—1.0 in
(b); and g=-0.3,—0.5, and—1.0 in (c). Other parameters are
y+=0.01,y_=0.5, andD=0.5.

PHYSICAL REVIEW 5 051920

FIG. 3. Boundaries between hard-mode and soft-mode instabili-
ties inD-vy plane inR , . for different values ofy. In regions below
each curvek?>0. From lower to upper curves, values gfare
0.0,0.1, 0.25, and 0.5.

condition 7p(K) for oscillatory instabilities,

7p(K)=(1+D)(1+k?)| 1+ (14)

(1+D)k2>'

It attains its minimum at the critical wave numbkr;,C
=4JT/(1+D). The critical value of the control parameter is

14y
1+D

Note thatP(k?) and hence the neutral curve do not depend
on the ratioq of the electrophoretic charges. The ragjovill
enter in the oscillation frequend .= (1/2)\|Q(k?)] at the
critical point.

The regionR_, also contains parts witlQ(k?)>0,
where stationary unstable patterns may arise if the neutral
curve determined from Eq12) is crossed. Hence the true
critical point is located at

Ne= mkin{ 70(K), 7p(K)}. (16)

2
(15

7p,=(1+D)

Figure Zc) shows neutral curves iR _, for different
values ofg. Generically a neutral curve iR_ , is composed
of two branches. The one belonging to the onset of oscilla-
tory instabilities does not depend ap whereas the other
one—belonging to stationary patterns—does. By increasing
|g| or D (see Fig. 4 5. changes discontinuously from an
instability with 0.>0 to an instability towards stationary
patterns.

The dependence @b, onI" andD is depicted in Fig. 5.
Oscillatory instabilities will not be attainable in the fast re-
action limit under physiological conditions becauge;l“

R_ is the only parameter regime, where oscillatory in-for largeT.

stabilities may occur, becau§yk?) andP(k?) can simulta-
neously take on negative values in this regimeQKO,
w,.=ow* and the growth rate of the perturbation is ®e
=—P(k?)/2. From P(k?,7)=0 we obtain the neutrality

Figure 4 shows neutral curves f_ , together with the
regionQ(k?)<0 for two cases, which differ by the value of
D. In Fig. 4(a), the unstable pattern is oscillating, in Fig.
4(b), it is stationary. Figure 5 shows the dependence of the
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FIG. 4. Neutral curves and domain of complex eigenvalues
(shadedlin R_, for D=0.09(a) andD =5.0(b). Note that there is
a discontinuous change in the nature of the transition with increas- 0 1 L L 1
ing D; from hard-mode stationary to hard-mode oscillatory type. 0 02 04 06 0.8 1
Other parameter values age= —2.0,y, =0.01,y_=0.5. T b)

FIG. 5. (a) The critical frequency}. as a function oD for I
=0.51 withg= —5. The inset shows th&}. jumps to zero discon-
tinuously.(b) Q. as a function ofl" for D=0.09 withq=—2. The
remaining parameter ig, — y_=—0.49 for both(a) and (b).

critical frequency(), on D andT for differentqg. Note that
the oscillations will set in with a finite frequency at both
transitions from(),=0 to Q,>0.

IV. EFFECTS IN THE WEAKLY NONLINEAR REGIME A. Soft-mode instabilities

We now turn to a _discussior_1 of the b(_ahavio_r of th_e system To proceed beyond the linearized dynamics near a soft-
beyond linear stability analysis. Our discussion will be re-mode instability, it is convenient to introduce the variable
stricted to stationary patterns. A more detailed analysis ot (v, o+ y_¢)/T", which corresponds to fluctuations of the
oscillatory patterns will be given elsewhe[7]. total channel density= (n,+n.—n)/n and which contains

In the vicinity of the critical control parametey, and the 14 critical slow mode ag— 7. . Furthermore, we introduce
critical wave numbek., the linear dispersion of the slow v=(0—¢)IT, which remains fast relative to near the bi-

2 . . 1
modew , (7,k) may be expanded to obtain the linear part off,rcation. We get an equation for the slowly varying part of
a nonl|r_1ear eyolutlon equation for the slow mode near theh(r,t) from a gradient expansion, which is outlined in Ap-
bifurcation point. From Eq(11) one gets pendix A.

If we take into account all terms &@(V?) and include the
O(V% terms, which arise from the linear dispersion Eq.
(17), the resulting equation fou takes on the form of a
dynamical Cahn-Hilliard equatioor “model B” ) [18],

/A

w+(77,k2)—k232731{+§§(k—kc)2
C

+O[(k—kc)4]],

17 oF(u
du= Tslvzlg(u) O(V*4u?). (18
wherez,=4 for soft-mode instabilitiesg=s) andz,=2 for
hard-mode instabilities a=h). The expressions for time _ _
scalesr, and length scaleg, can be found in Appendix A With an effective potential  F(u)=[[f(u)

for soft mode instabilities and in Appendix B for hard-mode + (£2/2) (Vu)?]d?r.
instabilities. The local partf(u) is given by
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FIG. 6. Local part of the effective potenti{u), which controls 0 om“ S of
the Cahn-Hilliard dynamics near soft-mode instabilitiesyat0.6. D a)

The uppermost curve displays the situation at the transition
(n./m=1.02525), whereas the middle curve corresponds to the 10 T T r r 10
spinodal pointn./7=1. The lower curve is in the supercritical
regime atz./7n=0.97. For better visibility,f (u) at the transition

point has been enlarged by a factor of 10.04£0.5 the global

minimum of the potential is attained for positiveand the graphs
appear mirrored at the=0 axis.

2
u

fuy="2o+ 2

o

(2—a)u+

(19 2r ,rff-"/'l'/ 2

2

2
1———u)|n(1+au)
o

with a as introduced in Eq(8). Equation(18) has to be o B 0 L

solved under the constraint of conservation of channel num- ¢ 2 4 6 8 10 5 7 9 1 18 15

ber, fud?r =0, which may be taken into account by an ap- b b) b %

propriate Lagrange multiplier term Au in f(u). Note that FIG. 7. J=0 lines within thek’=0 domain forq=0.1 and

the dynamics only depends on the ratie/» and on the yarious « and y : (8 «=0.25, y=—0.49; (b) «=0.75,

parametew. It thus exhibits a particularly simple universal- = —0.49:(c) a=0.25, y=2.0; and(d) @=0.75, y=2.0. The val-

ity for all permissible values obD,q, y-. . ues ofa and y crucially determine the number and geometry of
Figure 6 shows the effective potentials o 0.6 close to  domains with continuous transitiorishadedt

the transition. The critical poing. becomes the spinodal. In

the subcritical regimey<< ., f(u) develops a second mini- dimensional, stationary patterns the perturbation theory gives

mum u;#0, which decreases with increasing. For n  the following for the amplitude in the supercritical vicinity

>ny with u;(#1)=0, a quench of the homogeneous stateof 7, :

u=0 will result in nucleation and decomposition of the ho-

2

mogeneous state up to the spinodal point .. For 7 P /3 = [ 2l v— 3142 21
> 7, the homogeneous state decays by spinodal decomposi- ~ ™tX™ 7, X €hl O 2k, V| X IXI%x- (2D
tion.

The discussion of the dynamical behavior, including typi-The lengthy expression for the coupling consthas a func-
cal coarsening in the case of quenches, can be found in statien of the model parameters is given in Appendix B.

dard textbooks; see, for instan¢é9]. Figure 7 displays the sign dfin the D-T" plane for fixed
g=0.1. Positive] corresponds to a continuous transition and
B. Hard-mode instabilities (forward bifurcation negativel corresponds to a discontinu-

ous one(backward bifurcation The shapes of the regions

In order to obtain an analytic description of the weakly ~:7 . : ;
. . . o with different signs of] depend crucially on the parameters
nonlinear regime for hard-mode instabilities, we use a stan-

dard multiscale perturbative approach, which results in arf [compare Fig. @) with Fig. 7(b) and Fig. 7c) with Fig.

amplitude equatiof20]. The approach starts from the ansatzr\]liv(i?r)]] Sgd;/(d[)c]ompare Fig. @) with Fig. 7(c) and Fig. 7b)

u x(X,Y,T)eke*+ y* (X,Y, T)e kX (20) Note that fore<0.5[Figs. 7a) and 7c)] there is only one
interval of positiveJ both for fixed D and for fixed I,
for the fluctuationsu=(g,Z,®). The amplitudey depends whereas in the other regime>0.5 [Figs. 1b) and 7d)]
upon the scaled variabléé=ax, Y=a'?%y, andT=a%t. The there may be two such intervals and the domainJof0
scalea becomes small, if the control parametgapproaches consists of two disconnected parts that extend to #fe (
its critical values, from abovea=(7— 5.)/ 7. For con-  =0) line in the considered region of parameters. This means
venience we sketch the procedure in Appendix B. For onethat coming from large values @, one leaves the area of
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continuous transitions, crosses the domain of discontinuous APPENDIX A: GRADIENT EXPANSION NEAR
transitions, and again enters a domain with0 before fi- SOFT-MODE INSTABILITIES
nally the k2=0 line is crossed. The same behavior is ob-
tained by changindg’ at a givenD.

For negativey the region 0fJ=0 contains thé® axis. For u=(y.,o+ty_OIT,
positive y, k<0 for smallT".

We transform Eqs(6)—(8) to the new variables

v=(0—{IT (AL)

V. CONCLUSIONS and get

_ 2 _
We have studied a simple model of spontaneous pattern I'ou=(y++Dy-)Vou+y,y-(1-D)

formation of mobile ions in a fluid membrane. The channel XV2+ (v, +1y )V2D+(y, +ry.)
proteins may switch between an open and a closed state ac-
cording to a simple two-state reaction kinetics with constant XV-(uVD)+vy,y V-(vVD) (A2)

rates. The effective electrophoretic charge and the diffusion _ )
constant of the channel proteins are assumed to be state & the equation of motion far. Note that all terms on the rhs
pendent. The reversal potentibf ions, which may pass the Of the equation fou are at leasO(V*) as a direct conse-
open channels constitutes a nonequilibrium driving forceduence of channel-number conservation. &ave get

The characterization of a particular model is completed by _ 2 2 B

the additional paramete®=D./D, andq=q./q,, the re- Fow=-TI""v+(y-+Dy,)Vv+(1-D)

action ratesy.. , and the parametet, which is the part of XV2U+(1—r)V2P+(1—r)V-(uVd)
transmembrane conductivity due to open channels. Varying
these parameters leads to a number of distinct scenarios for +(y-+ry)V-(vVo). (A3)

the first bifurcations from the stationary and homogeneou

state. Depending on the sign of the control parameter

=a(a—1)Bq.E and the ratiog=q./q, of electrophoretic

charges, four qualitatively different regions of parameter ! X T . .

have been identified from linear stability analysia) for q gradient expansion, Wh'ChO'S obtained by replacingn Eq.

>0 and»>0 (R, ) soft- or hard-mode instabilities lead- (A2) from the leading O(V7)] order of

ing to stationary_patter_ns wiII_ appeab) for_q<0 _arjd 7 0=(1-V2)d+ Uty v)+a(u+y v)d. (Ad)

<0 (R__) only bifurcations with soft-mode instabilities can

occur,(c) for g<0 and7»>0 (R_ ,) hard-mode instabilities This leads to

with or without temporal oscillations may be found, afaf)

for g>0 and »<0 (R,_) the homogeneous, stationary

state remains linearly stable. In the fast reaction limit, where

the time scald”~! becomes much shorter than other time 1

scales(except theR C-relaxation time of transmembrane po- With 7 "=(y +Dy_)/T" and ¢(u)=—nu/(1+au).

tential fluctuationy only soft-mode instabilities remain. By ~ The linearO(V*) term is obtained from the expansion of

varying the ratioD=D./D, of diffusion constants om w+(?7'k2)=75_1k2[(7l— 7c)] ne+ £+ 0(k*)]. For £/ 75 we

=q./q, of effective electrophoretic charges within physi- obtain

ologically plausible bounds, it is possible to switch between , 1

soft- and hard-mode instabilities iR, , and between hard- Ss__ 7+ - . 2 _ _

mode and oscillatory instabilities iR _ | . Ts 2" ar (1=D=m +25(y-=y.)~47y-Dd]
For soft-mode instabilities, we have derived an equation

of motion of slow modes near the transition, which is of the 1

form of a dynamical Cahn-Hilliard equation. The transition 4T3

will generically be discontinuougackward bifurcatiopand

the nonlinear evolution will be characterized by regions ofAdding a term— r_ £2V“u on the rhs of Eq(A5) we get

nucleation and of spinodal decomposition. Quenches into thggs. (18) and(19).

supercritical regime are predicted to show coarsening behav-

ior with a Coarsening Iength scale growmgté@ For hard- APPENDIX B: AMPLITUDE EQUAT|ON NEAR

mode instabilities, an amplitude equation is obtained as in HARD-MODE INSTABILITIES

[2] and parameter regions of forward and backward bifurca-

tions may be distinguished by the sign of the nonlinear cou- The system of nonlinear partial differential equations Egs.

pling parameter. (6)—(8) is written asLu=A{u,u) In the vicinity of 7. ,k.,
The presented model includes and extends several previt=(¢,¢,®) contains both fast scale variatiohwith Vu

ously studied models and may be considered as a minimat O(k;)] and slow scale variationgwith Vu—0 for 7

model for charged ion channels with internal state kinetics in— 7). The slowly varying part may be obtained from a

a fluid membrane. perturbation expansion ie=/|(n— 7.)/ 5|, which explic-

Rote thatv decays with a rat®(V°) due to the—T"%y term.
Thusv is fast near a soft-mode transition and may be adia-
JJaticaIIy eliminated. It does not enter the leading order of the

gu=rg 'v? nCU+(1+u)¢(U)—f ¢(U)dU] (AS)

[(y-—y+)(1-D—n)+27y_Dq]®.  (A6)
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itly separates slow scale variations from fast scales by introand the square of the correlation lengthis
ducing appropriately scaled length and time variab¥es

=ex T=¢€’t. For one-dimensional patterns, the direction ’ 4K?

i &= - (B4)
perpendicular to the pattern wave vector should be scaled as N Vi
Y= €%y [21]. As the functions now may depend upon fast (I+ke)| ket y-+ 5

and slow variables, we have to replage- d;+ €21 and
dy— dyt €dy, etc. In this way, the linear pad becomesC
=Lo+ €L+ €°L,. Inserting the expansiom= eu; + €>u,
+euz+0(eh  [with  u(X,Y,T,x)=x(X,Y,T)expikex)
+cc] and sorting with respect to powers efone gets a

dor-

Evaluating the nonlinear term on the rhs of EB2) gives
Eq. (22) with the following expression for J:

LA

hierarchy of equations, which allows to determimefrom J= e 5

the u, with k<n. It starts withLyu; =0, which implies that
Uy is an eigenstate td, with eigenvalue zero. As; carries
an explicit factor ofe?, the equation, that contains the slow
time derivative ofu; appears in third order ie and has the
form Lou; + LUy + Lous=N3(uq,Uy). After insertingu, as
obtained from the perturbation expansion in termsigfone X
gets the amplitude equation by taking the scalar product of

the third order equation with the left eigenstate &f to

eigenvalue zeroy] . This solvability condition gives —qy_(1+kd)zy}

+k2)
(1+k2)? i

K2+ y,+¥)—+

X (py+ @y Ny+2a) —(1+KZ)

Y
2p1(§+k§+£kcqy

|

The expressions;,z;, andp; stem fromO(e?) corrections

L . ) ~and have the form
The Ihs of Eq.(B1) is linear in y and can be obtained di-

rectly from expandingw . (7,k?) around . k., o (7,k?)
=7, 1(e?+ £2(k—k¢) 2+ O[ (k—k¢)*]). Inserting this expan-
sion on the lhs of Eq(B1) and neglecting thg dependence

— Py {ny(y, +K)

f ul £ u,d?r + f ul £1u,d?r = f uwAN5d%r. (Bl

1
nl:rw{(lwki)m ID+4KE+ . dy-)

c

for simplicity gives —2a(y, +qy_+4kd)}, (B5)
/A 2.2
(T“‘?t_ 7 _5“‘9X>X S GG (B 2O A A )
1= > > )
For the time constant;,, we get B(1+4ke)(1+ke)
T+ (1+D)kZ— n.k2/(1+Kk2) 53 (1+kHEnm +a -
T DI+ y_+ . /D) B3 PIETT e
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