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Spontaneous pattern formation and genetic invasion in locally mating and competing populations
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We present a theoretical model of evolution of spatially distributed populations in which organisms mate
with and compete against each other only locally. We show using both analysis and numerical simulation that
the typical dynamics of population density variation is a spontaneous formation of isolated groups due to
competition for resources. The resulting spatial separation between groups strongly affects the process of
genetic invasion by local reproductive mixing, and spatially inhomogeneous genetic distributions are possible
in the final states. We then consider a specific version of this model in the presence of disruptive selection,
favoring two fittest types against their genetic intermediates. This case can be simplified to a system that
involves just two nonconserved order parameters: population density and type difference. Since the coexistence
of two fittest types is unstable in this case, symmetry breaking and coarsening occur in type difference,
implying eventual dominance by one type over another for finite populations. However, such coarsening
patterns may be pinned by the spontaneously generated spatial separation between isolated groups. The long-
term evolution of genetic composition is found to be sensitive to the ratio of the mating and competition
ranges, and other parameters. Our model may provide a theoretical basis for consideration of various properties
of spatially extended evolutionary processes, including spontaneous formation of subpopulations and lateral
invasion of different types.
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[. INTRODUCTION variation and, in the presence of disruptive selection, sym-

metry breaking and coarsening through type difference. For

Species in the wild display spatial variations. Such vari-€ach parameter setting, we study the regimes in which pat-

ability is commonly attributed to variations in selective t€rns form and the characteristic wavelengths of the patterns,
forces, i.e., differences in the environment. However, spatSing linear s_tablllty analysis. Numerical simulations confirm

tially distributed systems can develop inhomogeneity!1€S€ analytical results, and furthermore demonstrate how
through symmetry breaking and spontaneous pattern form%been;¥; I\ljgﬁ;tig]; g?ﬂgt'fat‘i’g rﬁ}"t?,g |tr\1,:[/((a)r?(cét;» g:fgﬂfzggﬁgoﬂ

tion independently of environmental inhomogeneity. Typi- X . o

cally, thepexistenc)é of local but spatially overlgppingyma){ﬁ]gtqe problem_, the mating range and the competition range,
neighborhoodgdemes in a two-dimensional space may re- plays a crucial role in the long-term evolution of the patterns.

itin ad ) f ol hi dth \uti These results have several important implications for spa-
sultin a dynamic pattern of polymorphism, and the evolutionyj, .y extended evolutionary processes. In particular, they are

of the patterns is then controlled by the kinetics of bound+g|eyant to the processes of spontaneous formation of sub-
aries between different typdd]. The significance of such - populations and lateral invasion of different types, which has
spatial patterns in ecological processes was realized fairlyeen a subject of particular interest in population genetics
recently and they were introduced in various stud®s6].  and evolutionary biology8,9].

On the other hand, analogous studies of dynamic spatial pat- In Sec. Il we introduce the model. Section Ill is the analy-
terns in evolutionary genetics are just beginnitgr]. Most  sis of its basic dynamics with no fitness variation between
of the results obtained in both kinds of studies can be apelifferent genotypes. In Sec. IV, we consider a special case of
proximately described with a single nonconserved order pathe model, where genetic intermediates are assumed not vi-
rameter(e.g., type of organismsresulting in several well- able. Finally, in Sec. V, we discuss several implications of
known system behaviors such as symmetry breaking andur results.

coarsening or nucleation and growth, depending on fitness

assignments and initial conditions. Il. GENERAL MODEL

~ In this paper, we extend the understanding of the dynam- \ye start with a population with local genetic mixing by
ics of pattern formation in spatially distributed evolutionary sexual reproduction and local competition for finite resources
processes by considering a more general case that involv@gcessary for reproduction. We restrict ourselves to a simple
population density variation as well as genetic or type variagenetic model where a genome is made of two genes, each of
tion. The underlying dynamics of this model correspond towhich is one of two allelic types4 and—) and is inherited

the formation of isolated groups through population densityfrom one of the two parents participating in sexual reproduc-
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tion. Thus there are four possible genotypgs +], of sites included in the neighborhodd The terms inside the
[+—], [—+], and[ — —]. Biologically speaking, this can square brackets on the right hand side of Hds.and (2)

be viewed as two-locus haploid genetics where gene reconstescribe a logistic growth restriction on the population at
bination is enforced in every mating, or as one-locus diploidocal sites due to the already existing population in their
genetics iff + —] and[ — +] are identified with each other. vicinity. They apply only to reproduction, modeling the fact
For simplicity, we assume that organisms are monoecioughat adult individuals usually have a large advantage when
i.e., any pair of individuals can mate to produce offspring.competing with newborns.

The specifics of the model are as follows. Explained intuitively, this equation implies that if the
(1) Organisms are distributed over a two-dimensional disdimitation on population by competition is ignored, {1r)
crete grid. of the population at a particular site will die andof the

(2) The local populations on each site in the grid are charaverage population within its local mating neighborhood will
acterized by non-negative real numbers with no predefinetie born in each breeding season. The genetic composition of

upper bound. the newborns is determined in Ed) by including the prod-
(3) At each discrete time stepreeding seasonoffspring  uct of two allelic probabilities observed within the mating
are born and part of the previous population dies. neighborhood.
(4) Genetic mixing by sexual reproduction takes place
within local mating neighborhood&leme$ that range over Il. ELAT FITNESS CASE

several sites.
(5) The total number of offspring born per site per season A. Model
is bounded by the introduction of an intrinsic carrying capac- We begin by analyzing the underlying dynamics of Eq.
ity (limitation of resources for reproductipn (2), assumingo,,=0o and A=\ for all a,b. This is the
(6) Competition for limited resources takes place within reference case where there is no difference in fitriess
local competition neighborhoods ranging over several siteseproduction and survival ratesmong all the four geno-
whose size may be different from that of the mating neigh-types, which we call théat fitness caseFor simplicity, we

borhoods. o _ measure the populations in units of the carrying capagity
_The general fo_rm_of the iterative equation of local popu-  Using these assumptions, summing up both sides of Eq.
lations on each site is (2) for all genotypes gives
Np(X) = TapNap(X) + Nap{N(X) )y n'(x)=on(x) +Mn(x))u[1—=(n(X))c] 3
(Naw M (NupDIm |, (NX))c with the constrainh=0. This is a simplified equation for the
X n(x)w (NX))m P (1) population density only, independent of genetic composition.
In Secs. Il B—Ill D we consider the basic properties of the
which simplifies to evolution of population density variation, using E8S).

B. Homogeneous solutions
C Nab{Nax (X)) m{Ny b(X))m _ . .
Nap(X) = T apNan(X) (00w We first study the spatially homogeneous solutions of Eq.

(3). This can be viewed either as a type of mean field ap-
(n(x))c proximation, or as a panmictic limit where the mating and
1- P : vy competition neighborhoods extend over all available space.
In this case the averages oWrandC are not necessary and

The notation is as follows1,,(x) (a,b are either+ or —) is  Ed. (3) is simplified to

the local population of genotypgab] at site x, with the

constraint ng,,=0. n=n,,+n,_+n_,.+n__, N, n'=on+An(1—n). 4
=n,,.+Nn,_, Nn,p,=n,,+n_,. The primes on the left hand o ) )

sides of Egs(1) and(2) denote the value after a unit of time. This gives two stationary solutionsi)=0 and n=(o+A

o is the survival rate of parents of genotyjEeb], and\ 5, —1)/\. The first corresponds to extinction. The second is a
is their reproductive ratéhe number of offspring born per nontrivial solution, which we calhy. Defininga=o+\ and
parent per seasdnThese rates are bounded so that®,, d=An/a, Eg.(4) becomes

<1 and\,,>0. M is the mating neighborhood, ai@lis the

competition neighborhood. We assume thleandC are a set q'=aq(l—q), (5)

of relative coordinates of sites in a pseudocircular region

centered at the site, whose radiusRg or Rc and whose which is the well-known logistic mapl0,11. We note that
edges are jaggethot a perfect circlealong a discrete square « is the net growth rate of the population that includes both
spatial lattice x is the carrying capacity per site. Each pair of survival of the parents and birth of the offspring. The station-
angular brackets on the right hand side represents the locaty solutions argg=0 andq=(a—1)/a=q, corresponding
average of the given function in the neighborhood aroxind to the above two solutions, respectively. The fistvial)
i.e., (F(X))N=[Z,cnf(x+1)])/|N|, where|N| is the number solution is stable ifa<<1. The second solutiom=q, is
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stable if I<a@<3. At =3, however, this solution under- 1
goes a period doubling bifurcation, followed by the well- [
known cascade of period doublings@#creases, leading to
chaos. Thus we obtain the following three regimes for the
basic properties of evolutionary outcome of population den-
sity variation in terms of the net growth rate+\. () o
+\<1; only extinction is possible, as an attractor for any
initial condition. (I1) 1< o+ \ <3; extinction is unstable and ol P
the nontrivial solutiom, is stable.(Ill) o+ X\>3; the solu- L \9/ -~
tion ny undergoes period-doubling bifurcations beginning at -0.2 '
o+\=3, leading to chaos.

0 10 20 30
u

FIG. 1. Numerical plot ofA(u) in Eq. (11) for u>0. The global
minimum (Ug,Zq)~(5.135 62;-0.132 279) is marked with an open
When the population is spatially extended with localcircle. The point (. ,1/2)~(2.21509,0.5) that satisfie(u) = 1/2
mating/competition ranges, the homogeneous solutions olis marked with a closed circle.
tained above may not apply because local symmetry break-
ing can give rise to spontaneous pattern formation and sigwheref= v+ w? is the magnitude of the two-dimensional
nificant spatial inhomogeneities. In this section we study thevave vector ¢ =f cosp,w=fsinp), and J, is the Bessel
pattern formation process in population density using lineafunction of the first kind of orden. Applying this approxi-
stability analysis with space-dependent perturbations, and ithation to Eq.(8), we obtain
dependence om, A, Ry, andR¢.

We consider a two-dimensional oscillatory perturbation u=0c+(1—a)A(fRy) — (e+A—1)A(fRe) (10
added tang, with wave vectow for thex direction andw for
they direction. We write the time evolution of perturbation in with
a two-dimensional population as

C. Stability analysis of the spatially extended version

A(u)=22) (11)
n'(X,y)=no+ &u's(X,y) (6) u

. The actual shape d&(u) is plotted in Fig. 1 foru>0. This
with function has a conspicuous minimum w#5.135 62 where
A(u)~—0.132 279, which we call, and z, in what fol-
lows.
s(x,y)=sin(vx+¢)sin(wy+ ), (7 The condition for the homogeneous solution to be un-
stable is that there are some valued dfiat satisfy| u|>1.
where¢ is a small amplitude. The homogenous solutions ardHere we focus on the more relevant case 1. Note thatu
unstable and patterns form whenis greater than 1. Substi- smaller than—1 is also possible for sufficiently smal and
tuting Eq. (6) into Eq. (3) and keeping only lineaffirst-  large\ in our model. However, it gives rise to a pattern that
orden terms of¢, we obtain inverts itself at each unit of time, which is not as relevant to
modeling ecological populations. Fpr>1, the condition for
instability is the existence of such valuesiothat satisfy

N y)=no+ Eu'Los(x,y) + (1= o) (S(X,Y))u
—(o+N=1){s(x,y))c]. (8) oA(ul/y)<A(u)—1, (12)

where u=fRy, y=Ry/Rc, and 6=(o+\—1)/(1-0).

To calculateu we approximate the averages over the dis-Since it is hard to obtain the analytical solution of this in-
crete neighborhOOdM andC USing integl’als over continu- equa”ty’ we use the f0||owing approximation: When param-
ous circular neighborhoods, assuming thgf and Rc are  etersy and & gradually move from stable regimes, the value
not too small. Using polar coordinates, we analytically 0b-of y that first satisfies this inequality should be obtained near
tain the minimum of its left hand side. Specifically, the minimum

is at u=yug where SA(u/y) = 6z,. Using these assump-
tions, the condition for the inequality to be satisfied is given
R 2m
(s(x,¥))n= izf NJ sin(vx+ ¢+uvr coseh) by
wRyJ0o Jo
8Zo<A(yug)—1. (13

X sin(wy+ ¢+wr sing)dérdr
25(x.y)J1(fRy) Figure Za) shows the regimes where this condition is, or is
= R N (9  not, satisfied in the §,5) plane. We see that, as the mating
fRy range becomes smaller than the competition range, the ho-
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(a) 15 . pend on system size for systems larger than this length scale,
because the system is only unstable to perturbations over a
finite range of wavelengthidl5].

10 | ° o© ° °  °  Unstable From numerical simulations we also find that even popu-
lations that would be in the bifurcation or chaotic regimes in
the previous analysis of the homogeneous case actually re-
sult in static patterns in the spatially extended case. Such
deviation from the mean-field result in spatially extended
settings is also reported for other oscillating reaction-
diffusion models[16,17, where homogeneous oscillations
are destroyed by stochastic disturbances added to local
3 phases and thus no coherent behavior is seen at large scales.
Our model is distinct from those models because its under-
lying dynamics is not oscillatory but of logistic growth, and,
when extended spatially, the generated patterns become static
even at small scales due to significant inhomogeneities in
population density created by local symmetry breaking. In
addition, fory=1, the resultant patterns vary from stripes to
spots ass deviates from its critical values near the instability
curve.

Finally, we calculate the characteristic wavelength of the
patterns, which we calL. We note that the characteristic
scale is determined by the wave vectors of the perturbations
that maximizeu shown in Eqg.(10). With the notationu
=fRy, EQ. (10 becomes

Stable

0.1 1 10

(b)

pu=o+(1—0o)[A(u)—5A(uly)]. (14

Assuming thatd is much greater than 1 for most parameter
Y settings being studie@ee Fig. 2, we approximate the value
of u that maximizesu by the value that minimizegA(u/y).
We obtainu~ yu,, and hencef ~ yuy/Ry=fgy, as an ap-
proximate value of that determines the wavelength of the

FIG. 2. (a) Phase diagram in they(5) plane showing the sta-
bility of the homogeneous solution obtained from the inequality
(13). In the shaded region below the curvézy>A(yug)—1,

which implies that the homogeneous solution is stable, while abovgattems'
the curve it is not. Open circles are the sample points chosen to Since there are many different perturbations that take the

generate the simulation results shown bel@w. Numerical simu- same particular value fdr we need to compute which wave

lation results of pattern formation in population density in the fIatVeCtor IS _domlnant in the pat_terns tha!t superimpose all such
fitness case. Each picture represents a snapshot of the evolution Rfrturbations. To do this we first consider what wave vectors

spatial patterns for each sample césleown abovk taken after 500 €Xist in the perturbatios(x,y) along the direction of obser-
updates. The space consists of 228 sites with periodic bound- Vation (X,,,y,) = (7 cosw,7sinw). Using the same notation
ary conditions. Each picture shows a configuration of the entiredS beforep =f cosp andw=f sinp, we obtain

space. The brightness at each pixel represents the local population
density.o is set to 0.9 for all casea. is varied to obtain different

=si + ¢)si +
values of . The values of Ry ,Rc) used here are (5,15) foy (X0 Yo) =SINWX, + P)SINWY,, + )

=1/3, (5,10) fory=1/2, (10,10) fory=1, (10,5) fory=2, and =sin( rf cosp cosw+ ¢)
(15,5) for y=3. Initial conditions are randomly generated popula- _ _ _
tions withn=0.1x (with +0.02 fluctuations for each site. X sin( 7f sinp sinw+ i)

mogeneous solution can be destabilized, while if the mating
range is greater than the competition range, the stability of
the homogeneous solution is determined almost solely.by 1
Numerical results of spatially explicit simulations are shown - _

in the same figure for several differeptand & [Fig. 2(b)], * 2 cogrfcodpto)té=—yl, (19
implying that our analysis closely corresponds to the actual

model behavior. The existence of an instability is seen as thehich implies that the perturbation at the anglecontains
formation of isolated group&spots or stripes similar to the  two distinct wave vectors$ cosfp—w) and f cosp+ w) with
well-known Turing patterns caused by local activation andthe same amplitude. Integrating the power spectrum over all
long-range inhibition in reaction-diffusion systeifik2—14. angles eliminates botlp and » from the expression and
The characteristic length scale of these patterns does not dgives

=— %cos{rf cogp—w)+ P+ ]
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(which results in Gaussian neighborhopdgroups will not

2
— (—f<k<f) form. This prediction could, in principle, be verified experi-
S(k)=1 JfZ—k? (160 mentally.
0 (otherwise, We also note that the stability characteristics of genetic

composition, which will be discussed in the following sec-

which diverges to+ = ask approaches: f, implying that the tions, are robust to the neighborhood shape variations.

dominant wave vector of the patternfisTherefore, the char-
acteristic wavelength of the pattern is calculated usingp E. Genetic invasion

be The discussion thus far does not include the dynamics of

genetic composition. In this section we investigate the ge-
27 2mRy 27Rc netic composition variations within the population and how
= ~1.223 4R, (17)  they are affected by the population structure created by com-
petition, and its dependence gn We find simple genetic
_ o _ _ ~_diffusion whenvy is greater than a certain critical value; oth-
2(b). Note thatL depends only on the competition range and  \ye first calculate the probability of each genotypg,

>1 which we used to simplify Eq14), and thus it may not  gq_(2) with Eq. (3), resulting in

apply to other cases.

fo YUo Up

X
D. Sensitivity to the neighborhood shape Pab(X) = Pan(X) +0_S(—Q()X)
An interesting characteristic of the present model is its M M
sensitivity to the shape of neighborhoods. In the calculations X[Pax (X)Pp(X) = Pan(X)] (19
presented above, we have adopted “circular” neighborhoods,
where the average of a functid(x) is defined, using weight with
function Wy, by

AN(X))m

(F))n= . (18)
> Wy(r) (Nay (%)
r PR 0= (21)
where Wy(r)=1 if |[r|]<Ry and is otherwise 0. We have
tested other possibilities such as “square” neighborhoods or PM ()= (N b(X))m 22)
“Gaussian” neighborhoods. The square neighborhoods, ob- *b(X) = X))y

tained by redefiningWy(r)=1 if max(r,,|r,[)<Ry and is
otherwise 0, give results that are very similar to those Ob-PM
a

tained from circular neighborhoods. However, this is not theloctj(sleviltshi:\hla ;rrgl?r?g;m;nzfs?:ﬁllzflly%?"sii\;e:f thletlr(]aeb grtst
case for the Gaussian neighborhoods witiy(r) ' *b

- 2 the second locus. For populations that do not exceed the
=e (‘r‘/RN)

' - In this case, the homogeneous solution is stable 5 rying capacityQ(x)/[o+Q(x)] is always positive and
against perturbation of any wavelength in population den:;|tyh | heaM pM hich is a “bal 4
Mathematically, this can be understood by noting that the uzp%k?lgwiys approac b ak ﬁblvlz Icn 1S a‘l'ba} ance;]

integral of sine functions with Gaussian weights, which is aProPability of genotypg ab] with linkage equilibrium that

Fourier transform, is again a Gaussian. This cannot be neg&SSUmes no correlation between the probabilitiea ahdb

tive, in contrast to the functioA(u) shown in Fig. 1. There- within the nelghporhood. S .

fore the average of the perturbation at a given point always It th.e mean-field approximation s app[led to E(q.9),_
has the same sign as the perturbation itself at that point. Eve@ssumlng that. the local population withkt is almost uni-
if the perturbation is very small, the average cannot revers rm, we obtain

its sign and destructive interference cannot happen in popu-

lation density, therefore spatial separation does not take

Q
place. Pab=PabT —~[Pax P b= Pan] = (1= €)Pap+ €Pay P
From a biological point of view, this result means that abFab T g Qitax kb Fab ab axPxb
isolated groups may or may not form depending on the or- (23

ganismal territorial behavior. In particular, when the range of
foraging or mating is well defined, groups may form. If they where p,, =pPa+tPa-s Pxb=Pip+tP_p, and e=Q/[o
are too smooth, e.g., if organisms diffuse in a random fashion- Q]. Using this equation, we find that
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Pax = Pas T Pa- .
=(1—€)Par T €PaxPx+ T (1= €)Pa_+ €Pax Ps -

=(1—€)Pax + €Pax Pux |

o o T T T

and similarlyp; ,= p,p. These results imply that both allelic
frequencieg,, andp, , are conserved over time. This result
is known as the Hardy-Weinberg law in population genetics. 0.5 06 o, 07 0.8 0.9 1

It implies that any change in the average genetic compositior 4

within the mating neighborhood will be preserved, affecting

the future genetic composition at the center of the neighbor- FIG. 3. Results of numerical simulations showing the population
hood. Therefore, when there is variation in genetic composidensity for several different values of in the flat fitness case,
tion between nearby local populations with partial geneticstarting from a genetically inhomogeneous initial condition. The
mixing, they mutually influence each other’s genetic compo-space consists of 128128 sites with periodic boundary conditions.
sition and converge toward the same intermediate composFach picture shows a configuration of the entire space. Dark gray
tion. Moreover, if all the organisms are reproductively con-represents the existence [of +] organisms, light gray represents
nected in the long ternti.e., if genetic mixing is possible the existence of ——], and black represents empfpr nearly
between descendants of any pair of organjsrttee whole em.pt)) reglons:a=0.9 anqx =.1.5 so thatb=14.R¢ is flxeq to 1Q,
population tends toward genetic homogenization in equilib Vi€ Rw is varied to obtain different values of The top picture is
rium. the initial condition, where a circular region pf — ] organisms is

. . . . placed in a background population[of + ] organisms. Population
As we saw in the previous discussion, there are also regensity is initialized so that=0.1x (with = 0.02« fluctuations for

gimes where local competition spontaneously generates IS%ach site. Each picture at the bottom represents a snapshot of the

lated population groups. If the width of the spatial Sepa.ratlor’évolution of spatial patterns for each value pftaken after 3000
between these groups is large enough so that organisms |

. A 9 ; dBdates. Genetic homogenization can be seenyfery,~0.612,
one group cannot find others in different groups within their, i 4 nonhomonegenous genetic distribution remains for
mating neighborhoot, thenP, (x)PY, (x) in Eq. (19) be-

<.
comes a balanced probabilityithin that group, i.e., groups ¢
are genetically decoupled from each other. In such a regime IV. DISRUPTIVE SELECTION CASE
an inhomogeneous genetic distribution may be the final A. Model

steady state of the population. We compute the critical ratio L . . .
The implications of pattern formation for genetic invasion

of the mating and competition rangeg. (below which di din th . " ¢ W if th
groups become genetically decoupled after pattern forma—:?fglrjgﬁges'?n fﬁn%rsesv'g;soﬁec d'ios?inng?y :ﬁotapgg IIn seerg a}(/e
tion) by assuming that the spatial separation is about half ag g g YPES. i

wide as the characteristic wavelengthThis approximation we consider the dynamics of genetic invasion in the presence
yields PP of disruptive selectior(selection against genetic intermedi-

ateg by assuming that genotypgs- —] and[ — +] are not
viable, i.e.,oc, =o0_,=\, _=\_,=0. Disruptive selec-
tion arises in various conditions in nature, such as competi-
tion for diverse resources or mutual dependence of multiple
Ve 2_%“0-612- (25 phenotyped18], and is viewed as one of the most general
and important causes of inhomogeneity generation, including
trait divergence and speciati¢h9,20. We note that this ad-
Figure 3 shows several results of numerical simulations wittdlitional assumption reduces the number of viable genotypes
genetically inhomogeneous initial populations, which appeato two, simplifying analytic treatments.
to be consistent with the approximate valueqf obtained In what follows, we use for n, , andh for n__ to make
above. the notation concise. Similarly, the survival and reproductive
To summarize, in the flat fitness case, the underlying dylates for these types are denoteddyy, Ag, on, andiy,.
namics of spatial variation in genetic composition is a simple/Ve restrict ourselves to symmetric cases only, in which two
genetic diffusion by local reproductive mixing. Without spa- Viable genotypeg andh share the same survival and repro-
tial separation, it leads to a complete homogenization of geductive rates, i.e.gg=oy=0 andxy=\,=\. Finally, we
netic composition over the entire population. However, withagain measure the populations in units of the carrying capac-
spatial separation due to competition for resources, geneti®y «. With these assumptions E(@) becomes
invasion is affected by the length scale of the patterns, de-

pending on whether the ratio of the mating and competition Ma(x))e

ranges is larger than its critical value.. For y<y., spa- g’ (x)=og(x)+ 1900 +h00)m

tially inhomogeneous genetic distributions are possible in the M

final states. X[1=(g(x)+h(x))cl, (26)
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Mh(x))%,
(g(x)+h(x))y

X[1=(g(x)+h(x))cl,

h'(x)=oh(x)+

(27)

with the constraintgy=0h=0. Versions of this disruptive
selection model have been used to study symmetry breaking

and coarsening in spatially distributed populatigti$ and
stability analysis of polymorphic populations
reproduction-migration

in terms of the total population density=g+h, and what
we call type difference=g—h(—n=<c=n), i.e.,

n(x))2,+(c(x))?

n’(x)=an(x)+7\< 2><'\r/|1(x§>,\,| Ju
X[1=(n(x))c], (28
¢’ (x)=ac(X)+Nc(X))m[1—(n(X))c]. (29

B. Homogeneous solutions

PHYSICAL REVIEW E 65 051919

tion of the one-dimensional dynamics on each line and its
stability against orthogonal perturbations to that line.

We first show that the dynamics restricted to the Ime
=0 org=0 is the same as that in the flat fitness case. Setting
h=0 org=0, we find

g'=og+Ag(1-0) (32

dynamics among semi-isolated
demeq 21]. We note that Eqg26) and(27) can be rewritten

h'=ch+Xh(1-h), (33
which are the same as E@). This reflects the existence of
only one genotype within the population along the lifres
=0 or g=0, so that genetic inhomogeneity plays no role.
Along these lines, the same stationary solutiéestinction
and one-type dominangand the same role af+\ occur.
These solutions are also stable to small perturbations away
from the axes(introduction of the other type because a
minority type introduced into a population of another type,
with which they cannot produce viable offspring, disappears
exponentially. This can be derived by assumimgg~gg

(or g<h=~hy) in Egs.(30) and (31), obtainingh’ ~oh(g’

We first calculate the homogeneous solutions for the dis=~ og) with o<1.
ruptive selection case, in the same way as for the previous The mixed solutiory=h=m, is best represented by Egs.
flat fitness cases. For homogeneous populations the local a{28) and (29). For a homogeneous population we obtain

erages oveM and C can be ignored and Eq&6) and (27)
are simplified to

2

g'=0g+A [1-(g+h)], (30

g+h

2

h
h'=ch+\ pll-(g+h)]. (31)

Stationary solutions are obtained by settipgb=g and h’
=h, resulting in the following four solutions:

g=h=0,
o+A—1
g= N =0Jo, hZO,
o+A—1
g:o! = )\ EO!
_ _20+A—2_
== M

- n2+c?
n'=on+N—- (1—n), (34)
¢c'=oc+Ac(l—n). (35

The mixed solution is on the invariant lime=0. On this line
Eq. (34) becomes

AN
n’=an+7(1—n), (36)

which differs from Eqs.(4), (32), and(33) only in that the
net reproductive rate of this mixed solution is reduced by a
factor of 2 due to disruptive selection. If we defife=o
+\/2 andr=\n/(2), Eq. (36) turns into the logistic equa-
tion

(37

Therefore, along this line, the solutiar=0 (g=h=0) is
stable for B<1 and the solutionr=(B8—1)/8 (g=h
=my) is stable for k 8<3. We note that the mixed solution

is unstable to perturbations in the orthogonal type-difference
direction. By assuming?<n? and n~2m,, Egs.(34) and

r'=pr(l-r).

In the (g,h) plane, these stationary solutions lie along the(35) give n’~n andc’~(2—o)c. With o<1, this implies
linesh=0, g=0, andg=h. These lines are invariant sub- exponential growth for small perturbations in type differ-
spaces under the population dynamics, so that initial condience.

tions starting on one of these lines remain on the same line. Combining these results, we find the following scenario
This allows us to consider the model behavior as a combinafor homogeneous populations in the disruptive selection
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(a) (b)
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1 11 IIT 7 (O unstable solution
A\ #» chaotic trajectory
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FIG. 4. (a) Five regimes in thed,\) parameter space, drawn according to the existence and stability of four stationary solutions obtained
from the homogeneous version of our model for disruptive selection cases. Note that only the regians: Wvitive relevant to biological
interpretations of the mode(lb) Phase diagrams in the(h) plane for each regimésee text

case. The ¢,\) parameter space is divided into five regimeswhere{ and » are small amplitudes amg(Xx,y) is the same
determining the existence and stability of the four stationaryspace-dependent perturbatidfqg. (7)] as used in the previ-

solutions(Fig. 4). ous analysis. Substituting Eq&8) and (39) into Egs.(28)
(I) o+X<1: only extinction is possible, as an attractor and(29) and keeping only linear terms ¢fand », the equa-
for any initial condition. tions for these two variables decouple and we obtain

(Il c+X>1 ando+ \/2<1: extinction is unstable along
the linesg=0 andh=0, but not along the ling=h. The 1 B ¢
one-type dominant solutions are stable attractors. N (xy) =2mo+ {ros(x,y) +(1=o){s(x,y))m

() o+A/2>1 ando+\<3: the mixed solutiorg=h —(a+N2—1){s(x,y))c], (40)
=m, is a saddle point. Extinction is unstable in all direc-
tions. The one-type dominant solutions are stable.

(IV) o+\>3 ando+ \/2<3: the one-type dominant so- ctt i x,y) = gt os(x,y) +2(1— a){S(X,y))m]-
lutions undergo period-doubling bifurcations beginning at
o+\=3, leading to chaos. ) o

(V) o+\/2>3: the mixed solution undergoes period- Using the approximation in Eq9) for the local averages
doubling bifurcations beginning ar+A/2=3, leading to  "€Sults in
chaos. It continues to be unstable to type difference pertur-

bations. v{=[c+(1-0)A(fRy)
C. Stability analysis of the spatially extended version —(o+N2-1)A(fRe)]¢, (42

We can conduct a linear stability analysis of pattern for-
mation in both population density and type difference for the
disruptive selection case, similar to the previous section. We
will study the mixed solution only, because the dynamics of i, eigenvalues
the one-type dominant solutions is the same as that of the flat
fithess case, due to their robustness against type difference
perturbation. v=0+(1-0)A(fRy) —(c+N2-1)A(fRc) (44

Adding a two-dimensional oscillatory perturbation to the
mixed solution in the homogeneous population, we write for eigenvector {,0), which we call then direction, and

vyp=[oc+2(1—-a)A(fRy)]7, (43

n'(x,y)=2mg+{v's(x,y), (38) v=0+2(1—a)A(fRy) (45)
cl(x,y)=0+ pv's(x,y), (39)  for eigenvector (Qy), which we call thec direction.
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Equation(44) is similar to Eq.(10), so we can apply the from Eqgs. (28) and (29) by defining py=g/n=(n
results of the previous stability analysis to thdirection, by ~ +c)/(2n) for sites where organisms exish$0), which
replacing 8 with = (o +\/2—1)/(1— o). The regime for results in
patterns to form in population density is thus exactly the

same as shown in Fig. 2 if we view the ordinate asdfais. U(x)
The characteristic wavelengthis the same as before. Pg(X)=Ppg(X) + oTUX)
In terms of thec direction, however, the eigenvalue 7
depends only omr,Ry,, and not on\,R.. Considering v| [PM(x)]2
>1 we obtain v 5 g v 5 —pg(x) |, (48
[Pg () ]°+[1=Pg(x)]
1 with
A(fRM)>§, (46)
M)y

which numerically givesfRy<u,~2.21509(see Fig. L U(x)= n(x) [1=(n(0))c]
This means that any perturbation in thedirection whose
wavelength is longer than the critical value X{[Py(x) 12+ [1-Pg'(x) 1%}, (49

L.=2mRy /u.~2.836 5R,, (47) PY (0= (@O0)m _ (N(X)+c(X) 50

MNHw - 2(N(X))wm

M . g . .
destabilizes the homogeneous solution. This is the directiofa (¥) 1S the probability of genotypp+ + ] observed within

of type differenceg= — h, increasingy while decreasing, M aroundx. Equ_ation(48) is quite similar in form_to Eq.
or the reverse. Our result implies that all perturbations with{19): FOr populations that do not exceed the carrying capac-

shorter wavelengths thdn, are filtered out in an initial tran- iy, U(X)é[‘ﬁhu (?)] is alwayshpc:sitive and tthsg ailways hich

sient and then each local site tends to align with its neighbor§ppr°a(.: es the first term in t € farge square brac ets, whic

at the scalé . toward either genotypet +] or [ — — ]. Note Is a typical update rule of allelic frequencies for populations

that L depecnds only on the mating range and rlmot on th ith disruptive selection when there is no bias between the
c , )

competition range. This result is intuitive because it corre- itness of the two typesl]. The above equations are for

sponds to the relevance of the mating range for genetic pafl€NOWYPE + + ] but they also apply to genotype- — ] due

s : : ._to the symmetry between the types.
terns and the competition range for population density varia- . .
tion. In the linear stability analysis, these two effects are Compared to the flat fitness cabéq. (19)], the major

found to be independent. However, an interplay betweer(fhange in_ Eq(48) is that the first term in _the large square
them arises once nonlinear effects become important. Thgracketls IS no Ion_ger a conserved quantity even within the
details of this process will be discussed in the following mean-field approximation. Its mean-field version is

section.
2
b= Py+ — P p
D. Genetic invasion 9 M 41U p2+(1— pg)2 9
In this section, we consider the dynamics of genetic com- 5
position in the disruptive selection case and how it is affected p

by the spatial population structure created by competition. :(1_X)pg+sz+(1—g_p)21 (51)
Disruptive selection causes a context-dependent dynamics, g 9
which gives rise to a subtle interplay between each SPatia")évhereXEU/[aJrU]. This form shows thap,, tends to go
isolated group’s own genetic evolution and genetic invasiongard either 0 or 1, depending on whether its current value
f_rom other groups. T_hls usually_ _results in coarsening of spajg larger or smaller than 1/20,=0 andp,=1 are the only
tial patterns of genetic composition, but the specifics depenfogsiple stable solutions. Thus, any change in the average
on the ratio of mating and competition ranggsOur analy-  genetic composition within the mating neighborhood will not
sis shows that there are three critical valuesypht which  gignificantly affect the future genetic composition at the cen-
the behavior of the system changes from complete decoyg of the neighborhood, unless the change is great enough to
pling to incomplete decoupling to incomplete coarsening t4yoye the average composition across the value 1/2. There-
complete coarsening. fore, genetic invasion can occur only if there is a sufficiently
large bias imposed on the local genetic composition from
neighboring areas.

We first consider the dynamics of genetic composition Figure 5 shows a numerical simulation of this process
with no significant population density variation. The updatewith parameter settings for which the homogeneous popula-
equation of the probability of one genotype can be obtainedion density is stable. Disruptive selection causes each local

1. Underlying dynamics

051919-9



SAYAMA, de AGUIAR, BAR-YAM, AND BARANGER PHYSICAL REVIEW E 65 051919

Time region to assume either of the two fittest types, giving rise to
symmetry breaking and formation of patterns of two differ-
ent genotypeslight gray and dark gray shown in the figiire
Once the patterns form, their subsequent evolution follows
well-known coarsening behavior in systems where the order
parameter is not conservg2?|, e.g., quenched Ising models.
The boundaries between the two tygealled hybrid zonés
move toward the direction determined by their local curva-
ture, which acts as a bias on the local genetic composition.
The characteristic wavelength of the patterns grows'4s
[1]. In general, a population of finite size will eventually be
dominated by one of the two types. Such coarsening dynam-
ics is consistent with the eigenvaluein the c direction in

Eq. (45), describing the instability of the mixed solution to
type-difference perturbations. The valuewfnonotonically
increases as the wavelength of the perturbations increases for
L>L., indicating that larger-scale perturbations become
more apparent over longer times.

0

N
(9]

[T
o

B2

100

2. Genetic invasion between isolated groups

For populations spontaneously structured into spatially
isolated groups, the spatial separation between the groups
significantly affects the genetic invasion processes. When
such isolation occurs, the ratio of the mating and competition
ranges,y, determines the possibility of genetic invasion.

We systematically consider this problem by dividing the
local population within the mating neighborhood into two
parts: a particular group at the center of the neighborhood,
and the set of other groups that are spatially separated from
the central group. Each part is represented by its total popu-
lation. In a sense, this characterization corresponds to a
mean-field approximation applied to the group-level descrip-
tion of the system. The total population and the probability
of genotypdq + + ] within the focal group are denoted by,
and Pg", and similarly, those outside the group by, and
PE*. We consider how the genetic composition of the focal
group Pg" develops over time, assumiRf*, ne,, andne,
as environmental constants. In the context of coarsening in
type differencePgX can be considered to represent the local
curvature of boundaries between two types for the groups at
or near the boundaries. This enables us to obtain implications
for the coarsening behavior from this analysis.

We assume that each isolated group is genetically well
mixed so thann is represented by the local probability at
the center of that group. From E@8), p, tends to approach

My 2 My 2 _ pMy2 M i )
FIG. 5. Numerical simulation result of pattern formation in type (Pg) /[(Pg) +(1 Pg) J. Pg » the probability of geno

difference in the disruptive selection case. The space consists &yP€[+ +1 within the neighborhood, is written as
128x 128 sites with periodic boundary conditions. Each picture

shows a configuration of the entire space. Dark gray represents the
existence of + + ] organisms, while light gray represents the exis- P&+ Peh
tence offl — —]. The initial condition is a randomly generated popu- pM__9 e g en
lation with n=0.1« (with =0.02« fluctuations for each site.c 9 Nyt Nep
=09, A=0.7, Ry=5, and Rc=3, so that 5=2.5 and y

=1.666 67. This parameter setting falls into the regime where the ) )
homogeneous population density is statsee Fig. 2 and thus no  Where d=ng,/[Ne,+Ney]. d is the ratio between the sub-
spatial separation occurs. The observed behavior is symmetfopulation outside the focal group and the total population,
breaking and coarsening, which is found in systems with nonconWwithin the neighborhood. Applying E452) to Eq. (48) and
served order parameters, such as quenched Ising models. replacingp, with Pgn, we obtain a difference equation

200

400

800

1600

3200

—P2d+PY1-d), (52
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FIG. 6. Phase diagrams in th@g”,PgX) plane for different values odl, obtained from Eqgs(54) and (55). The curves represent the
solutions ofAPZ"=0. Black parts of the curves are stable and gray parts are unstabld-<fey;, a group starting at or ne&y"=0 or 1
remains close to its original state almost regardlengISf Fordy<d<d,, genetic invasion is possible for sufficiently large smal) ng.
Ford>d,, genetic invasion always occurs since the final staﬂégﬁis determined solely b?gx, regardless of its original state. The actual
values ofd, andd, can be found analytically to beéy=3—2.2~0.171573 andl,=1/2.

[Pgd+Pg(1—d)]?
_Pen
o+ U|[PZd+PE(1-d)]?+[1-PPd—PS(1-d)]?> °

APE=PEY — pen= (53)

To study the possibility of genetic invasion, we considercyrve comes in contact witR®*=0 andP&*=1. At d=d;,

when stable solutions &fP3"=0 exist for particulaPg* and
d. We solveAPg"=0 with the restrictions &Pg'<1 and 0
<Pg'<1, which gives

another critical situation is reached where the curve loses its
unstable part. The actual valuesdyf andd, are analytically
calculable, which results irdy=3-22~0.171573 and

pe_g = 1 (54) From Fig. 6 we un_derstand ige following.
g 2 For d=0. The environmenPg" has absolutely no effect
on the genetic composition of the focal group.
for d=0, or otherwise For 0<d<d,. A group with Pg“ close to 1/2 is sensitive
to Pg*. However, a group starting at or neBf"=0 or 1
en 2Pg(1—P)— VP 1—-Pg" cannot change to the opposite type due to the existence of
Pyt d(2Pe"—1) intermediate stable solutions. Once an isolated group ap-
Py= g (550  proaches dominance by either of the two fittest genotypes,

(for Pg"#1/2)

genetic shift from one type to another is not possible regard-
(for Pg"=1/2),

less of Pg".

For dy<<d<d,. Genetic invasion is possible f&* larger
which forms a continuous function that is differentiable for (or smalley than the local maximungor minimum of the
0<Pg"<1 including 1/2. Figure 6 shows phase diagrams incurve. This indicates that the influx of a different genotype to
the (Pe”,ng) plane drawn from these solutions for different the group must be greater than a threshold to cause genetic
values ofd. At d=d,, a critical situation arises where the invasion. In the context of coarsening, boundaries whose lo-

1/2
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FIG. 7. (a) lllustration of the idealized group distribution assumed to compus a function ofy=R,,/Rc. The isolated groups are
assumed to be arranged on a regular hexagonal lattice with basis vectors ofllesugthgroup diametelt/2. The population density is
assumed to be flat within a group and thus the total population of a region is proportional to the populateg, e&rélae area of the central
white circle[ ng,= 7(L/4)?], while n., is the total area of the gray regiorib) A plot of n,, as a function oR,,, drawn based on analytical
calculation using the assumptions (@. (c) A plot of d as a function ofR,,, drawn from(b). Two critical pointsd=d,=3—2+2 andd
=d;=1/2 are shown with the correspondify, valuesR, andR;.

cal curvature is smaller than the threshold may be frozen, R;~0.869 629 ~1.08R-= v,Rc¢, (57)
and in general will not become flat. The maximal curvature

that can be kept from coarsening is determined by the values . i
of ng at its extrema, which is a function of where the coefficients befoiR: are the corresponding val-

ues ofy, which we cally, and y,. Finally, we note thaty,
computed in the flat fithess case still applies to the disruptive
selection case with no modification. The analysis discussed

any small curvature of boundaries can, in principle, give risg1ere applies to spot pattems. A similar analysis may be done

to change in genetic composition in the group at the boundfer the stripe patterns that occur for smal(see Fig. 2
aries, and coarsening continues until all the boundaries be- USing the above results, the following scenario describes

come flat or the entire population becomes dominated by onf'® role of y in the genetic invasion processes in the disrup-
type. tive selection case.

For y<y. (complete decouplingDnce spatial separation
3. The role ofy of groups takes place, organisms in one group are genetically
] ) ] ) decoupled from the rest of the population and each group’s
The variabled is ultimately determined by the model pa- genetic composition evolves independently. This corresponds
rametery, the ratio of mating, and competition ranges. Forig the case wherd=0.
large y, the mating neighborhood extends over more groups, por ¥e< < v, (incomplete decouplingSome intergroup
which increasesl as well. Although the exact value dfis influence occurs; however, effective genetic decoupling be-
hard to obtain, we estimate it by using the assumptions thatyeen the groups occurs as soon as each of them becomes

(1) groups are arranged on a regular hexagonal ffid.  gominated by either of the two fittest types. A change from
7(a)] as seen in the numerical simulations, and tt#tthe  ne dominant type to another is not possible.

population distribution within a group is uniform. With these g4, ¥o<y< 7y, (incomplete coarsening)Coarsening oc-

assumptionsie, is the circular area shown by white,zang( curs to some extent, but boundaries with curvatures below a
is the area shown by gray, in the figume,,= 7(L/4) for  threshold remain.

Ry>L/4. The algebraic solution gives,(Ry) plotted in For y,<v (complete coarsening)Genetic invasion al-

Fig. 7(b), andd(Ry) plotted in Fig. 7c). The critical values  ays occurs and coarsening continues until all boundaries
of Ry such thatl=d,=3-22 andd=d;=1/2, whichwe  are flat or one type dominates the entire population.

For d;<d. Pg" always converges toward a value deter-
mined solely byPSX, regardless of its original state, thus
genetic invasion always occurs. In the context of coarsenin

call Ry andRy, are also shown. Numerically we obtain These results are confirmed in Fig. 8, which presents nu-
merical simulations in the disruptive selection case with sev-
Ry~0.791 234 ~0.96&R = yoRc¢, (56) eral different values ofy, starting with the initial conditions
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Time

0 .

| FIG. 8. Numerical simulations of pattern for-
mation in both population density and type differ-
ence for several different values ¢fin the dis-
ruptive selection case. The space consists of 128
X 128 sites with periodic boundary conditions.
Each picture shows a configuration of the entire
space. Dark gray represents the existence of
[+ +] organisms, light gray represents the exis-
tence of[——], and black represents emptyr
nearly empty regions.oc=0.9 and\ = 3.0 so that

5=14. R is fixed to 10, whileRy, is varied to
obtain different values of. The initial condition

is a randomly generated population with
=0.1x (with =0.02« fluctuationg for each site.
The same initial condition is used for all cases to
clarify the difference of behaviors for differemt

For y<y.,~0.612, complete genetic decoupling
occurs once groups are fully isolated from each
other. Fory,<y<1yy~0.968, groups are effec-
tively decoupled once they approach dominance
by one of the two type&fter about 200 updates

In contrast, fory>vy,~1.06, coarsening contin-
ues after the isolation of groups, leading to even-
tual dominance of the whole population by one
type. Between these regimesg < y<vy,) there

is a distinct behavior where coarsening continues
after the isolation of groups but stops when the
local curvature of boundaries becomes below a
threshold.
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that are randomly created with small fluctuations in bothsition, and their interaction, for spatially distributed popula-
population density and genetic composition. The effects ofions with local mating and competition. Analyses and nu-
spatial separation on the coarsening behavior in type differmerical simulations reveal that the typical dynamics of
ence are seen to vary for differemt For y<y,, genetic population density variation is the formation of isolated
decoupling actually occurs and thus coarsening stops aﬁﬂroups(spots or stripes This process depends on several
groups become fully isolated from each otfafter about parameters, including the reproduction rate and the survival

200 upda’ge)s w_h||e for y>1y,, coarsening continues EVeN rate of organisms and the ratio of mating and competition
after the isolation of groups and the whole population is

"

behav_e fo_ry0< V<71, We can nonetheless observe_ a dis“”.ctform, while with Gaussian neighborhoods they do not. This
behavior in other simulation runs where coarsening contin. o it implies that the spontaneously formed spatial popula-

ues after the isolation of groups but eventually stops in ion structure depends on the organismal behavior in marking
somewhat frustrated shape. Figure 9 shows another examp Beir territories

Where_ isolated groups are already formed Whe_n disruptive We have examined the dynamics of genetic composition
tselectl(t)rr: events gre mdgceﬁ. In this case, t?e dd|ﬁer?n<t:ﬁ b%’nder two different assumptions, the flat fitness case and the
ween the caseg=yo andy>7y, appears earlier dué 10 N€ i ntive selection case. The former results in simple ge-
preexistence of the spatial separation. The final outcomes aestic diffusion. and the latter in symmetry breaking and

similar to those in Fig. 8. coarsening. These genetic invasion processes may take place
despite the spatial separation generated by competition. The
observed dynamics fall into classes of system behaviors that
We have presented a theoretical analysis of evolutionarpave been studied in statistical physics, which illustrates
processes that involve organism distribution, genetic compatheir applicability to the quantitative understanding of bio-

V. DISCUSSION
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Time

-
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FIG. 9. Numerical simulations of pattern for-
mation in type difference where disruptive selec-
tion is induced in a population which is already
structured into isolated groups. As in Fig. 8, dark
gray, light gray, and black indicat¢ + + ],
[——1], and empty regions, respectively. White
represents a mixed population of all the possible
genotypesRc is fixed to 10, whileR,, is varied
to obtain different values ofy. The conditions
shown at time 0 are generated through 500 up-
dates witho=0.9 and\=1.5 for all four geno-
types(i.e., no disruptive selectigrstarting from
the same initial population as used in Fig. 8. At
time 0 the four possible genotypes all coexist in
white groups. Theno,_, o_,., A,_, and
N_, are all set to zero to cause disruptive selec-
tion, while A, . and\__ are increased to 3.0 to
make 3 after the introduction of disruptive selec-
tion equal tos before the introduction of disrup-
tive selection. The behavioral difference between
casesy<y, and y> vy, appears earlier than the
corresponding cases in Fig. 8, while the final out-
comes are similar to those in Fig. 8.
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logical population dynamics. There is an increasing interesinigration over the groups seen in our results are of particular
in applying statistical models to evolutionary processes irinterest for discussion of the phase IIl of Wright's shifting
the physics literaturg23—31. balance theory8,9]. Wright grappled with a problem of evo-

In a two-order-parameter system, the ratio of the characlutionary improvement of fitness of sexually reproducing or-
teristic length scales of these order parameters can be eganisms crossing the valleys in fithess landscapes. He dis-
pected to play a crucial role in the dynamics. This corre-cussed the possibility of fitness improvement in the context
sponds to the ratio of the mating and competition ranges if spatially distributed populations structured into small and
the biological case we have discussed. When the ratio isearly isolated demes that are weakly coupled by migration.
larger than a critical value, significant intergroup migrationin phase | of this process, random factors, such as mutations
takes place and genetic invasion “jumps across” the spatiaand fluctuations in selection, could cause a nearly isolated
gaps between the isolated groups. On the other hand, wheleme to develop its own genetic profile. In phase Il, inde-
the ratio is smaller than the critical value, genetic invasionpendent selection acting on each of the demes could bring
does not occur and each group independently develops itome of them to a higher fitness peak. Then, in phase I,
own genetic composition. Such differences in behavior arenigration between demes could make it possible for the fitter
relevant to the long-term evolution of the genetic composi-genotype in certain demes to invade others. This théory
tion of the population. The critical value of the ratio of the particular its phase Il proceshas been the subject of a
ranges,y, is estimated to be about 0.6 for the flat fitnessnumber of recent articles in theoretical population genetics
case. In the disruptive selection case, our analysis predicf{82—37. The main concern that has been discussed is the
that there are three distinct critical valuesjofone of them  calculation of a migration threshold beyond which invasion
is the same as aboyeat which the behavior changes from should occur. The models that have been considered involve
complete decoupling to incomplete decoupling to incompletéiased migration rates and different numbers of loci, demes,
coarsening to complete coarsening. In particular, in the inand dimensions for the population distribution in physical
complete coarsening regime whenes1 (Ry~Rc), the  space. These models, however, all share two common fea-
coarsening of boundaries between different types may retures: the assumption of the preexistence of isolated groups
main in a frustrated shape. These results are confirmed gnd the consideration of the possibility of invasion as result-
numerical simulations. They may be verified by experimentaing from fitness difference only.
observations in both qualitative and quantitative ways. In contrast, our model demonstrates an example of pos-

Finally, we point out that the formation of isolated groups sible mechanisms of spontaneous formation of isolated
and the possibility of lateral invasion of different types by groups due to competition, which enables us to consider the
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ideas of Wright in a more self-consistent way. Moreover, itAnother issue relevant to biological concerns is extending
also shows the possibility of lateral invasion even with nothe fitness assignment to a more general form. A small asym-
significant fitness difference between two viable typeg ( metry between fittest types or small viability of genetic in-
=0h,Mg=\yp). In this case the local curvature of boundariestermediates may alter the model dynamics. Boundary shapes
between different types determines the direction of invasionand behaviors could couple to fitness variation. Our discus-
which corresponds to the difference in the local populationsions may also be used as an analog of some self-
size between the competing types. We present several moggganization processes in physics that involve two or more
relevant local parameters that participate in the invasion proorder parameters, such as clustering and magnetization of
cesses elsewhef@1], among which the fitness difference is aggregates of mobile spins on a two-dimensional surface, or
just one of the factors. These results imply that the simplgyattern formation of chemical substrates in a reaction-

but prevalent view of evolution as a hill climbing process diffusion system that involves multiple distinct reaction pro-
acting on a fitness landscape must be corrected for morgesses.

realistic contexts such as spatially extended populations. We
believe that our model may provide a theoretical basis for
further consideration of various complex properties of spa-
tially extended evolutionary processes, which have not been
captured by the conventional fithess-oriented perspectives on M.A.M.A. acknowledges financial support from the Bra-
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