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Spontaneous pattern formation and genetic invasion in locally mating and competing populations
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We present a theoretical model of evolution of spatially distributed populations in which organisms mate
with and compete against each other only locally. We show using both analysis and numerical simulation that
the typical dynamics of population density variation is a spontaneous formation of isolated groups due to
competition for resources. The resulting spatial separation between groups strongly affects the process of
genetic invasion by local reproductive mixing, and spatially inhomogeneous genetic distributions are possible
in the final states. We then consider a specific version of this model in the presence of disruptive selection,
favoring two fittest types against their genetic intermediates. This case can be simplified to a system that
involves just two nonconserved order parameters: population density and type difference. Since the coexistence
of two fittest types is unstable in this case, symmetry breaking and coarsening occur in type difference,
implying eventual dominance by one type over another for finite populations. However, such coarsening
patterns may be pinned by the spontaneously generated spatial separation between isolated groups. The long-
term evolution of genetic composition is found to be sensitive to the ratio of the mating and competition
ranges, and other parameters. Our model may provide a theoretical basis for consideration of various properties
of spatially extended evolutionary processes, including spontaneous formation of subpopulations and lateral
invasion of different types.
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I. INTRODUCTION

Species in the wild display spatial variations. Such va
ability is commonly attributed to variations in selectiv
forces, i.e., differences in the environment. However, s
tially distributed systems can develop inhomogene
through symmetry breaking and spontaneous pattern for
tion independently of environmental inhomogeneity. Ty
cally, the existence of local but spatially overlapping mati
neighborhoods~demes! in a two-dimensional space may re
sult in a dynamic pattern of polymorphism, and the evolut
of the patterns is then controlled by the kinetics of boun
aries between different types@1#. The significance of such
spatial patterns in ecological processes was realized fa
recently and they were introduced in various studies@2–6#.
On the other hand, analogous studies of dynamic spatial
terns in evolutionary genetics are just beginning@1,7#. Most
of the results obtained in both kinds of studies can be
proximately described with a single nonconserved order
rameter~e.g., type of organisms!, resulting in several well-
known system behaviors such as symmetry breaking
coarsening or nucleation and growth, depending on fitn
assignments and initial conditions.

In this paper, we extend the understanding of the dyna
ics of pattern formation in spatially distributed evolutiona
processes by considering a more general case that invo
population density variation as well as genetic or type va
tion. The underlying dynamics of this model correspond
the formation of isolated groups through population dens
1063-651X/2002/65~5!/051919~15!/$20.00 65 0519
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variation and, in the presence of disruptive selection, sy
metry breaking and coarsening through type difference.
each parameter setting, we study the regimes in which
terns form and the characteristic wavelengths of the patte
using linear stability analysis. Numerical simulations confi
these analytical results, and furthermore demonstrate
the evolution of genetic variation interacts with populati
density variation. The ratio of the two key length scales
the problem, the mating range and the competition ran
plays a crucial role in the long-term evolution of the patter

These results have several important implications for s
tially extended evolutionary processes. In particular, they
relevant to the processes of spontaneous formation of
populations and lateral invasion of different types, which h
been a subject of particular interest in population gene
and evolutionary biology@8,9#.

In Sec. II we introduce the model. Section III is the ana
sis of its basic dynamics with no fitness variation betwe
different genotypes. In Sec. IV, we consider a special cas
the model, where genetic intermediates are assumed no
able. Finally, in Sec. V, we discuss several implications
our results.

II. GENERAL MODEL

We start with a population with local genetic mixing b
sexual reproduction and local competition for finite resour
necessary for reproduction. We restrict ourselves to a sim
genetic model where a genome is made of two genes, eac
which is one of two allelic types (1 and2) and is inherited
from one of the two parents participating in sexual reprod
©2002 The American Physical Society19-1
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tion. Thus there are four possible genotypes@11#,
@12#, @21#, and @22#. Biologically speaking, this can
be viewed as two-locus haploid genetics where gene rec
bination is enforced in every mating, or as one-locus dipl
genetics if@12# and @21# are identified with each other
For simplicity, we assume that organisms are monoecio
i.e., any pair of individuals can mate to produce offsprin
The specifics of the model are as follows.

~1! Organisms are distributed over a two-dimensional d
crete grid.

~2! The local populations on each site in the grid are ch
acterized by non-negative real numbers with no predefi
upper bound.

~3! At each discrete time step~breeding season!, offspring
are born and part of the previous population dies.

~4! Genetic mixing by sexual reproduction takes pla
within local mating neighborhoods~demes! that range over
several sites.

~5! The total number of offspring born per site per seas
is bounded by the introduction of an intrinsic carrying cap
ity ~limitation of resources for reproduction!.

~6! Competition for limited resources takes place with
local competition neighborhoods ranging over several si
whose size may be different from that of the mating neig
borhoods.

The general form of the iterative equation of local pop
lations on each site is

nab8 ~x!5sabnab~x!1lab^n~x!&M

3
^na* ~x!&M

^n~x!&M

^n* b~x!&M

^n~x!&M
F12

^n~x!&C

k G , ~1!

which simplifies to

nab8 ~x!5sabnab~x!1
lab^na* ~x!&M^n* b~x!&M

^n~x!&M

3F12
^n~x!&C

k G . ~2!

The notation is as follows.nab(x) (a,b are either1 or 2) is
the local population of genotype@ab# at site x, with the
constraint nab>0. n[n111n121n211n22 , na*
[na11na2 , n* b[n1b1n2b . The primes on the left hand
sides of Eqs.~1! and~2! denote the value after a unit of time
sab is the survival rate of parents of genotype@ab#, andlab
is their reproductive rate~the number of offspring born pe
parent per season!. These rates are bounded so that 0,sab
,1 andlab.0. M is the mating neighborhood, andC is the
competition neighborhood. We assume thatM andC are a set
of relative coordinates of sites in a pseudocircular reg
centered at the site, whose radius isRM or RC and whose
edges are jagged~not a perfect circle! along a discrete squar
spatial lattice.k is the carrying capacity per site. Each pair
angular brackets on the right hand side represents the
average of the given function in the neighborhood aroundx,
i.e., ^ f (x)&N[@( rPNf (x1r)#/uNu, whereuNu is the number
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of sites included in the neighborhoodN. The terms inside the
square brackets on the right hand side of Eqs.~1! and ~2!
describe a logistic growth restriction on the population
local sites due to the already existing population in th
vicinity. They apply only to reproduction, modeling the fa
that adult individuals usually have a large advantage w
competing with newborns.

Explained intuitively, this equation implies that if th
limitation on population by competition is ignored, (12s)
of the population at a particular site will die andl of the
average population within its local mating neighborhood w
be born in each breeding season. The genetic compositio
the newborns is determined in Eq.~1! by including the prod-
uct of two allelic probabilities observed within the matin
neighborhood.

III. FLAT FITNESS CASE

A. Model

We begin by analyzing the underlying dynamics of E
~2!, assumingsab5s and lab5l for all a,b. This is the
reference case where there is no difference in fitness~i.e.,
reproduction and survival rates! among all the four geno-
types, which we call theflat fitness case. For simplicity, we
measure the populations in units of the carrying capacityk.

Using these assumptions, summing up both sides of
~2! for all genotypes gives

n8~x!5sn~x!1l^n~x!&M@12^n~x!&C# ~3!

with the constraintn>0. This is a simplified equation for the
population density only, independent of genetic compositi
In Secs. III B–III D we consider the basic properties of t
evolution of population density variation, using Eq.~3!.

B. Homogeneous solutions

We first study the spatially homogeneous solutions of E
~3!. This can be viewed either as a type of mean field
proximation, or as a panmictic limit where the mating a
competition neighborhoods extend over all available spa
In this case the averages overM andC are not necessary an
Eq. ~3! is simplified to

n85sn1ln~12n!. ~4!

This gives two stationary solutions,n50 and n5(s1l
21)/l. The first corresponds to extinction. The second i
nontrivial solution, which we calln0. Defininga[s1l and
q[ln/a, Eq. ~4! becomes

q85aq~12q!, ~5!

which is the well-known logistic map@10,11#. We note that
a is the net growth rate of the population that includes b
survival of the parents and birth of the offspring. The statio
ary solutions areq50 andq5(a21)/a[q0, corresponding
to the above two solutions, respectively. The first~trivial!
solution is stable ifa,1. The second solutionq5q0 is
9-2
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SPONTANEOUS PATTERN FORMATION AND GENETIC . . . PHYSICAL REVIEW E 65 051919
stable if 1,a,3. At a53, however, this solution under
goes a period doubling bifurcation, followed by the we
known cascade of period doublings asa increases, leading to
chaos. Thus we obtain the following three regimes for
basic properties of evolutionary outcome of population d
sity variation in terms of the net growth rates1l. ~I! s
1l,1; only extinction is possible, as an attractor for a
initial condition.~II ! 1,s1l,3; extinction is unstable and
the nontrivial solutionn0 is stable.~III ! s1l.3; the solu-
tion n0 undergoes period-doubling bifurcations beginning
s1l53, leading to chaos.

C. Stability analysis of the spatially extended version

When the population is spatially extended with loc
mating/competition ranges, the homogeneous solutions
tained above may not apply because local symmetry bre
ing can give rise to spontaneous pattern formation and
nificant spatial inhomogeneities. In this section we study
pattern formation process in population density using lin
stability analysis with space-dependent perturbations, an
dependence ons, l, RM , andRC .

We consider a two-dimensional oscillatory perturbati
added ton0, with wave vectorv for thex direction andw for
they direction. We write the time evolution of perturbation
a two-dimensional population as

nt~x,y!5n01jm ts~x,y! ~6!

with

s~x,y!5sin~vx1f!sin~wy1c!, ~7!

wherej is a small amplitude. The homogenous solutions
unstable and patterns form whenm is greater than 1. Substi
tuting Eq. ~6! into Eq. ~3! and keeping only linear~first-
order! terms ofj, we obtain

nt11~x,y!5n01jm t@ss~x,y!1~12s!^s~x,y!&M

2~s1l21!^s~x,y!&C#. ~8!

To calculatem we approximate the averages over the d
crete neighborhoodsM and C using integrals over continu
ous circular neighborhoods, assuming thatRM and RC are
not too small. Using polar coordinates, we analytically o
tain

^s~x,y!&N'
1

pRN
2 E0

RNE
0

2p

sin~vx1f1vr cosu!

3sin~wy1c1wr sinu!durdr

5
2s~x,y!J1~ f RN!

f RN
, ~9!
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where f [Av21w2 is the magnitude of the two-dimension
wave vector (v5 f cosr,w5f sinr), and Jn is the Bessel
function of the first kind of ordern. Applying this approxi-
mation to Eq.~8!, we obtain

m5s1~12s!A~ f RM !2~s1l21!A~ f RC! ~10!

with

A~u![
2J1~u!

u
. ~11!

The actual shape ofA(u) is plotted in Fig. 1 foru.0. This
function has a conspicuous minimum atu'5.135 62 where
A(u)'20.132 279, which we callu0 and z0 in what fol-
lows.

The condition for the homogeneous solution to be u
stable is that there are some values off that satisfyumu.1.
Here we focus on the more relevant casem.1. Note thatm
smaller than21 is also possible for sufficiently smalls and
largel in our model. However, it gives rise to a pattern th
inverts itself at each unit of time, which is not as relevant
modeling ecological populations. Form.1, the condition for
instability is the existence of such values ofu that satisfy

dA~u/g!,A~u!21, ~12!

where u[ f RM , g[RM /RC , and d[(s1l21)/(12s).
Since it is hard to obtain the analytical solution of this i
equality, we use the following approximation: When para
etersg andd gradually move from stable regimes, the val
of u that first satisfies this inequality should be obtained n
the minimum of its left hand side. Specifically, the minimu
is at u5gu0 where dA(u/g)5dz0. Using these assump
tions, the condition for the inequality to be satisfied is giv
by

dz0,A~gu0!21. ~13!

Figure 2~a! shows the regimes where this condition is, or
not, satisfied in the (g,d) plane. We see that, as the matin
range becomes smaller than the competition range, the

FIG. 1. Numerical plot ofA(u) in Eq. ~11! for u.0. The global
minimum (u0 ,z0)'(5.135 62,20.132 279) is marked with an ope
circle. The point (uc ,1/2)'(2.215 09,0.5) that satisfiesA(u)51/2
is marked with a closed circle.
9-3
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SAYAMA, de AGUIAR, BAR-YAM, AND BARANGER PHYSICAL REVIEW E 65 051919
mogeneous solution can be destabilized, while if the ma
range is greater than the competition range, the stability
the homogeneous solution is determined almost solely bd.
Numerical results of spatially explicit simulations are sho
in the same figure for several differentg andd @Fig. 2~b!#,
implying that our analysis closely corresponds to the ac
model behavior. The existence of an instability is seen as
formation of isolated groups~spots or stripes!, similar to the
well-known Turing patterns caused by local activation a
long-range inhibition in reaction-diffusion systems@12–14#.
The characteristic length scale of these patterns does no

FIG. 2. ~a! Phase diagram in the (g,d) plane showing the sta
bility of the homogeneous solution obtained from the inequa
~13!. In the shaded region below the curve,dz0.A(gu0)21,
which implies that the homogeneous solution is stable, while ab
the curve it is not. Open circles are the sample points chose
generate the simulation results shown below.~b! Numerical simu-
lation results of pattern formation in population density in the fl
fitness case. Each picture represents a snapshot of the evoluti
spatial patterns for each sample case~shown above!, taken after 500
updates. The space consists of 1283128 sites with periodic bound
ary conditions. Each picture shows a configuration of the en
space. The brightness at each pixel represents the local popul
density.s is set to 0.9 for all cases.l is varied to obtain different
values ofd. The values of (RM ,RC) used here are (5,15) forg
51/3, (5,10) forg51/2, (10,10) forg51, (10,5) forg52, and
(15,5) forg53. Initial conditions are randomly generated popu
tions with n50.1k ~with 60.02k fluctuations! for each site.
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pend on system size for systems larger than this length sc
because the system is only unstable to perturbations ov
finite range of wavelengths@15#.

From numerical simulations we also find that even pop
lations that would be in the bifurcation or chaotic regimes
the previous analysis of the homogeneous case actually
sult in static patterns in the spatially extended case. S
deviation from the mean-field result in spatially extend
settings is also reported for other oscillating reactio
diffusion models@16,17#, where homogeneous oscillation
are destroyed by stochastic disturbances added to l
phases and thus no coherent behavior is seen at large sc
Our model is distinct from those models because its und
lying dynamics is not oscillatory but of logistic growth, an
when extended spatially, the generated patterns become s
even at small scales due to significant inhomogeneities
population density created by local symmetry breaking.
addition, forg>1, the resultant patterns vary from stripes
spots asd deviates from its critical values near the instabili
curve.

Finally, we calculate the characteristic wavelength of t
patterns, which we callL. We note that the characteristi
scale is determined by the wave vectors of the perturbat
that maximizem shown in Eq.~10!. With the notationu
[ f RM , Eq. ~10! becomes

m5s1~12s!@A~u!2dA~u/g!#. ~14!

Assuming thatd is much greater than 1 for most parame
settings being studied~see Fig. 2!, we approximate the value
of u that maximizesm by the value that minimizesdA(u/g).
We obtainu'gu0, and hencef 'gu0 /RM[ f 0, as an ap-
proximate value off that determines the wavelength of th
patterns.

Since there are many different perturbations that take
same particular value forf, we need to compute which wav
vector is dominant in the patterns that superimpose all s
perturbations. To do this we first consider what wave vect
exist in the perturbations(x,y) along the direction of obser
vation (xv ,yv)5(t cosv,t sinv). Using the same notation
as before,v5 f cosr andw5 f sinr, we obtain

s~xv ,yv!5sin~vxv1f!sin~wyv1c!

5sin~t f cosr cosv1f!

3sin~t f sinr sinv1c!

52
1

2
cos@t f cos~r2v!1f1c#

1
1

2
cos@t f cos~r1v!1f2c#, ~15!

which implies that the perturbation at the anglev contains
two distinct wave vectorsf cos(r2v) and f cos(r1v) with
the same amplitude. Integrating the power spectrum ove
angles eliminates bothr and v from the expression and
gives

e
to

t
of

e
ion
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S~k!5H 2

Af 22k2
~2 f ,k, f !

0 ~otherwise!,

~16!

which diverges to1` ask approaches6 f , implying that the
dominant wave vector of the pattern isf. Therefore, the char
acteristic wavelength of the pattern is calculated usingf 0 to
be

L[
2p

f 0
5

2pRM

gu0
5

2pRC

u0
'1.223 45RC , ~17!

which coincides with the numerical results shown in F
2~b!. Note thatL depends only on the competition range a
not on the mating range. This is due to the assumptiod
@1 which we used to simplify Eq.~14!, and thus it may not
apply to other cases.

D. Sensitivity to the neighborhood shape

An interesting characteristic of the present model is
sensitivity to the shape of neighborhoods. In the calculati
presented above, we have adopted ‘‘circular’’ neighborhoo
where the average of a functionf (x) is defined, using weigh
function WN , by

^ f ~x!&N5

(
r

f ~x1r!WN~r!

(
r

WN~r!
, ~18!

where WN(r)51 if uru,RN and is otherwise 0. We hav
tested other possibilities such as ‘‘square’’ neighborhoods
‘‘Gaussian’’ neighborhoods. The square neighborhoods,
tained by redefiningWN(r)51 if max(urxu,uryu),RN and is
otherwise 0, give results that are very similar to those
tained from circular neighborhoods. However, this is not
case for the Gaussian neighborhoods withWN(r)
5e2(uru/RN)2

. In this case, the homogeneous solution is sta
against perturbation of any wavelength in population dens
Mathematically, this can be understood by noting that
integral of sine functions with Gaussian weights, which is
Fourier transform, is again a Gaussian. This cannot be n
tive, in contrast to the functionA(u) shown in Fig. 1. There-
fore the average of the perturbation at a given point alw
has the same sign as the perturbation itself at that point. E
if the perturbation is very small, the average cannot reve
its sign and destructive interference cannot happen in po
lation density, therefore spatial separation does not t
place.

From a biological point of view, this result means th
isolated groups may or may not form depending on the
ganismal territorial behavior. In particular, when the range
foraging or mating is well defined, groups may form. If th
are too smooth, e.g., if organisms diffuse in a random fash
05191
.

s
s
s,

r
b-

-
e

le
y.
e
a
a-

s
en
e
u-
e

t
r-
f

n

~which results in Gaussian neighborhoods!, groups will not
form. This prediction could, in principle, be verified exper
mentally.

We also note that the stability characteristics of gene
composition, which will be discussed in the following se
tions, are robust to the neighborhood shape variations.

E. Genetic invasion

The discussion thus far does not include the dynamics
genetic composition. In this section we investigate the
netic composition variations within the population and ho
they are affected by the population structure created by c
petition, and its dependence ong. We find simple genetic
diffusion wheng is greater than a certain critical value; ot
erwise genetic decoupling is found between isolated grou

We first calculate the probability of each genotypepab
[nab /n for sites where organisms exist (n.0), by dividing
Eq. ~2! with Eq. ~3!, resulting in

pab8 ~x!5pab~x!1
Q~x!

s1Q~x!

3@Pa*
M ~x!P

* b
M ~x!2pab~x!# ~19!

with

Q~x![
l^n~x!&M

n~x!
@12^n~x!&C#, ~20!

Pa*
M ~x![

^na* ~x!&M

^n~x!&M
, ~21!

P
* b
M ~x![

^n* b~x!&M

^n~x!&M
. ~22!

Pa*
M (x) is the probability of allelea observed at the firs

locus withinM aroundx, and similarlyP
* b
M (x) of alleleb at

the second locus. For populations that do not exceed
carrying capacity,Q(x)/@s1Q(x)# is always positive and

thuspab always approachesPa*
M P

* b
M , which is a ‘‘balanced’’

probability of genotype@ab# with linkage equilibrium that
assumes no correlation between the probabilities ofa andb
within the neighborhood.

If the mean-field approximation is applied to Eq.~19!,
assuming that the local population withinM is almost uni-
form, we obtain

pab8 5pab1
Q

s1Q
@pa* p* b2pab#5~12e!pab1epa* p* b ,

~23!

where pa* 5pa11pa2 , p* b5p1b1p2b , and e[Q/@s
1Q#. Using this equation, we find that
9-5
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pa*
8 5pa18 1pa28

5~12e!pa11epa* p* 11~12e!pa21epa* p* 2

5~12e!pa* 1epa* p**
5pa* , ~24!

and similarlyp
* b8 5p* b . These results imply that both alleli

frequenciespa* andp* b are conserved over time. This resu
is known as the Hardy-Weinberg law in population geneti
It implies that any change in the average genetic composi
within the mating neighborhood will be preserved, affecti
the future genetic composition at the center of the neighb
hood. Therefore, when there is variation in genetic comp
tion between nearby local populations with partial gene
mixing, they mutually influence each other’s genetic comp
sition and converge toward the same intermediate comp
tion. Moreover, if all the organisms are reproductively co
nected in the long term~i.e., if genetic mixing is possible
between descendants of any pair of organisms!, the whole
population tends toward genetic homogenization in equi
rium.

As we saw in the previous discussion, there are also
gimes where local competition spontaneously generates
lated population groups. If the width of the spatial separat
between these groups is large enough so that organism
one group cannot find others in different groups within th
mating neighborhoodM, thenPa*

M (x)P
* b
M (x) in Eq. ~19! be-

comes a balanced probabilitywithin that group, i.e., groups
are genetically decoupled from each other. In such a reg
an inhomogeneous genetic distribution may be the fi
steady state of the population. We compute the critical ra
of the mating and competition rangesgc ~below which
groups become genetically decoupled after pattern for
tion! by assuming that the spatial separation is about hal
wide as the characteristic wavelengthL. This approximation
yields

gc'
L

2RC
'0.612. ~25!

Figure 3 shows several results of numerical simulations w
genetically inhomogeneous initial populations, which app
to be consistent with the approximate value ofgc obtained
above.

To summarize, in the flat fitness case, the underlying
namics of spatial variation in genetic composition is a sim
genetic diffusion by local reproductive mixing. Without sp
tial separation, it leads to a complete homogenization of
netic composition over the entire population. However, w
spatial separation due to competition for resources, gen
invasion is affected by the length scale of the patterns,
pending on whether the ratio of the mating and competit
ranges is larger than its critical valuegc . For g,gc , spa-
tially inhomogeneous genetic distributions are possible in
final states.
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IV. DISRUPTIVE SELECTION CASE

A. Model

The implications of pattern formation for genetic invasio
discussed in the previous section may not apply if there
differences in fitness among distinct genotypes. In Sec.
we consider the dynamics of genetic invasion in the prese
of disruptive selection~selection against genetic intermed
ates! by assuming that genotypes@12# and @21# are not
viable, i.e.,s125s215l125l2150. Disruptive selec-
tion arises in various conditions in nature, such as comp
tion for diverse resources or mutual dependence of mult
phenotypes@18#, and is viewed as one of the most gene
and important causes of inhomogeneity generation, includ
trait divergence and speciation@19,20#. We note that this ad-
ditional assumption reduces the number of viable genoty
to two, simplifying analytic treatments.

In what follows, we useg for n11 andh for n22 to make
the notation concise. Similarly, the survival and reproduct
rates for these types are denoted bysg , lg , sh , andlh .
We restrict ourselves to symmetric cases only, in which t
viable genotypesg andh share the same survival and repr
ductive rates, i.e.,sg5sh5s and lg5lh5l. Finally, we
again measure the populations in units of the carrying cap
ity k. With these assumptions Eq.~2! becomes

g8~x!5sg~x!1
l^g~x!&M

2

^g~x!1h~x!&M

3@12^g~x!1h~x!&C#, ~26!

FIG. 3. Results of numerical simulations showing the populat
density for several different values ofg in the flat fitness case
starting from a genetically inhomogeneous initial condition. T
space consists of 1283128 sites with periodic boundary condition
Each picture shows a configuration of the entire space. Dark g
represents the existence of@11# organisms, light gray represent
the existence of@22#, and black represents empty~or nearly
empty! regions.s50.9 andl51.5 so thatd514. RC is fixed to 10,
while RM is varied to obtain different values ofg. The top picture is
the initial condition, where a circular region of@22# organisms is
placed in a background population of@11# organisms. Population
density is initialized so thatn50.1k ~with 60.02k fluctuations! for
each site. Each picture at the bottom represents a snapshot o
evolution of spatial patterns for each value ofg, taken after 3000
updates. Genetic homogenization can be seen forg.gc'0.612,
while a nonhomonegenous genetic distribution remains forg
,gc .
9-6
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h8~x!5sh~x!1
l^h~x!&M

2

^g~x!1h~x!&M

3@12^g~x!1h~x!&C#, ~27!

with the constraintsg>0,h>0. Versions of this disruptive
selection model have been used to study symmetry brea
and coarsening in spatially distributed populations@1# and
stability analysis of polymorphic populations i
reproduction-migration dynamics among semi-isola
demes@21#. We note that Eqs.~26! and~27! can be rewritten
in terms of the total population densityn5g1h, and what
we call type differencec[g2h(2n<c<n), i.e.,

n8~x!5sn~x!1l
^n~x!&M

2 1^c~x!&M
2

2^n~x!&M

3@12^n~x!&C#, ~28!

c8~x!5sc~x!1l^c~x!&M@12^n~x!&C#. ~29!

B. Homogeneous solutions

We first calculate the homogeneous solutions for the
ruptive selection case, in the same way as for the prev
flat fitness cases. For homogeneous populations the loca
erages overM andC can be ignored and Eqs.~26! and ~27!
are simplified to

g85sg1l
g2

g1h
@12~g1h!#, ~30!

h85sh1l
h2

g1h
@12~g1h!#. ~31!

Stationary solutions are obtained by settingg85g and h8
5h, resulting in the following four solutions:

g5h50,

g5
s1l21

l
[g0 , h50,

g50, h5
s1l21

l
[h0 ,

g5h5
2s1l22

2l
[m0 .

In the (g,h) plane, these stationary solutions lie along t
lines h50, g50, andg5h. These lines are invariant sub
spaces under the population dynamics, so that initial co
tions starting on one of these lines remain on the same
This allows us to consider the model behavior as a comb
05191
ng

d

-
us
v-

i-
e.
a-

tion of the one-dimensional dynamics on each line and
stability against orthogonal perturbations to that line.

We first show that the dynamics restricted to the lineh
50 or g50 is the same as that in the flat fitness case. Set
h50 or g50, we find

g85sg1lg~12g! ~32!

or

h85sh1lh~12h!, ~33!

which are the same as Eq.~4!. This reflects the existence o
only one genotype within the population along the linesh
50 or g50, so that genetic inhomogeneity plays no ro
Along these lines, the same stationary solutions~extinction
and one-type dominance! and the same role ofs1l occur.
These solutions are also stable to small perturbations a
from the axes~introduction of the other type!, because a
minority type introduced into a population of another typ
with which they cannot produce viable offspring, disappe
exponentially. This can be derived by assumingh!g'g0
~or g!h'h0) in Eqs. ~30! and ~31!, obtainingh8'sh(g8
'sg) with s,1.

The mixed solutiong5h5m0 is best represented by Eq
~28! and ~29!. For a homogeneous population we obtain

n85sn1l
n21c2

2n
~12n!, ~34!

c85sc1lc~12n!. ~35!

The mixed solution is on the invariant linec50. On this line
Eq. ~34! becomes

n85sn1
ln

2
~12n!, ~36!

which differs from Eqs.~4!, ~32!, and ~33! only in that the
net reproductive rate of this mixed solution is reduced b
factor of 2 due to disruptive selection. If we defineb[s
1l/2 andr[ln/(2b), Eq. ~36! turns into the logistic equa
tion

r 85br ~12r !. ~37!

Therefore, along this line, the solutionr 50 (g5h50) is
stable for b,1 and the solutionr 5(b21)/b (g5h
5m0) is stable for 1,b,3. We note that the mixed solutio
is unstable to perturbations in the orthogonal type-differe
direction. By assumingc2!n2 and n'2m0, Eqs. ~34! and
~35! give n8'n andc8'(22s)c. With s,1, this implies
exponential growth for small perturbations in type diffe
ence.

Combining these results, we find the following scena
for homogeneous populations in the disruptive select
9-7
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FIG. 4. ~a! Five regimes in the (s,l) parameter space, drawn according to the existence and stability of four stationary solutions o
from the homogeneous version of our model for disruptive selection cases. Note that only the regions withs,1 are relevant to biologica
interpretations of the model.~b! Phase diagrams in the (g,h) plane for each regime~see text!.
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case. The (s,l) parameter space is divided into five regim
determining the existence and stability of the four station
solutions~Fig. 4!.

~I! s1l,1: only extinction is possible, as an attract
for any initial condition.

~II ! s1l.1 ands1l/2,1: extinction is unstable along
the linesg50 andh50, but not along the lineg5h. The
one-type dominant solutions are stable attractors.

~III ! s1l/2.1 ands1l,3: the mixed solutiong5h
5m0 is a saddle point. Extinction is unstable in all dire
tions. The one-type dominant solutions are stable.

~IV ! s1l.3 ands1l/2,3: the one-type dominant so
lutions undergo period-doubling bifurcations beginning
s1l53, leading to chaos.

~V! s1l/2.3: the mixed solution undergoes perio
doubling bifurcations beginning ats1l/253, leading to
chaos. It continues to be unstable to type difference per
bations.

C. Stability analysis of the spatially extended version

We can conduct a linear stability analysis of pattern f
mation in both population density and type difference for
disruptive selection case, similar to the previous section.
will study the mixed solution only, because the dynamics
the one-type dominant solutions is the same as that of the
fitness case, due to their robustness against type differ
perturbation.

Adding a two-dimensional oscillatory perturbation to t
mixed solution in the homogeneous population, we write

nt~x,y!52m01zn ts~x,y!, ~38!

ct~x,y!501hn ts~x,y!, ~39!
05191
y
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r-
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e
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wherez andh are small amplitudes ands(x,y) is the same
space-dependent perturbation@Eq. ~7!# as used in the previ-
ous analysis. Substituting Eqs.~38! and ~39! into Eqs.~28!
and~29! and keeping only linear terms ofz andh, the equa-
tions for these two variables decouple and we obtain

nt11~x,y!52m01zn t@ss~x,y!1~12s!^s~x,y!&M

2~s1l/221!^s~x,y!&C#, ~40!

ct11~x,y!5hn t@ss~x,y!12~12s!^s~x,y!&M#.
~41!

Using the approximation in Eq.~9! for the local averages
results in

nz5@s1~12s!A~ f RM !

2~s1l/221!A~ f RC!#z, ~42!

nh5@s12~12s!A~ f RM !#h, ~43!

with eigenvalues

n5s1~12s!A~ f RM !2~s1l/221!A~ f RC! ~44!

for eigenvector (z,0), which we call then direction, and

n5s12~12s!A~ f RM ! ~45!

for eigenvector (0,h), which we call thec direction.
9-8
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Equation~44! is similar to Eq.~10!, so we can apply the
results of the previous stability analysis to then direction, by
replacingd with d̂[(s1l/221)/(12s). The regime for
patterns to form in population density is thus exactly t
same as shown in Fig. 2 if we view the ordinate as thed̂ axis.
The characteristic wavelengthL is the same as before.

In terms of thec direction, however, the eigenvaluen
depends only ons,RM , and not onl,RC . Consideringunu
.1 we obtain

A~ f RM !.
1

2
, ~46!

which numerically givesf RM,uc'2.215 09 ~see Fig. 1!.
This means that any perturbation in thec direction whose
wavelength is longer than the critical value

Lc[2pRM /uc'2.836 54RM ~47!

destabilizes the homogeneous solution. This is the direc
of type difference,g52h, increasingg while decreasingh,
or the reverse. Our result implies that all perturbations w
shorter wavelengths thanLc are filtered out in an initial tran-
sient and then each local site tends to align with its neighb
at the scaleLc toward either genotype@11# or @22#. Note
that Lc depends only on the mating range and not on
competition range. This result is intuitive because it cor
sponds to the relevance of the mating range for genetic
terns and the competition range for population density va
tion. In the linear stability analysis, these two effects a
found to be independent. However, an interplay betw
them arises once nonlinear effects become important.
details of this process will be discussed in the followi
section.

D. Genetic invasion

In this section, we consider the dynamics of genetic co
position in the disruptive selection case and how it is affec
by the spatial population structure created by competiti
Disruptive selection causes a context-dependent dynam
which gives rise to a subtle interplay between each spati
isolated group’s own genetic evolution and genetic invas
from other groups. This usually results in coarsening of s
tial patterns of genetic composition, but the specifics dep
on the ratio of mating and competition ranges,g. Our analy-
sis shows that there are three critical values ofg, at which
the behavior of the system changes from complete dec
pling to incomplete decoupling to incomplete coarsening
complete coarsening.

1. Underlying dynamics

We first consider the dynamics of genetic composit
with no significant population density variation. The upda
equation of the probability of one genotype can be obtai
05191
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from Eqs. ~28! and ~29! by defining pg[g/n5(n
1c)/(2n) for sites where organisms exist (n.0), which
results in

pg8~x!5pg~x!1
U~x!

s1U~x!

3F @Pg
M~x!#2

@Pg
M~x!#21@12Pg

M~x!#2
2pg~x!G , ~48!

with

U~x![
l^n~x!&M

n~x!
@12^n~x!&C#

3$@Pg
M~x!#21@12Pg

M~x!#2%, ~49!

Pg
M~x![

^g~x!&M

^n~x!&M
5

^n~x!1c~x!&M

2^n~x!&M
. ~50!

Pg
M(x) is the probability of genotype@11# observed within

M aroundx. Equation~48! is quite similar in form to Eq.
~19!. For populations that do not exceed the carrying cap
ity, U(x)/@s1U(x)# is always positive and thuspg always
approaches the first term in the large square brackets, w
is a typical update rule of allelic frequencies for populatio
with disruptive selection when there is no bias between
fitness of the two types@1#. The above equations are fo
genotype@11# but they also apply to genotype@22# due
to the symmetry between the types.

Compared to the flat fitness case@Eq. ~19!#, the major
change in Eq.~48! is that the first term in the large squa
brackets is no longer a conserved quantity even within
mean-field approximation. Its mean-field version is

pg85pg1
U

s1U F pg
2

pg
21~12pg!2

2pgG
5~12x!pg1x

pg
2

pg
21~12pg!2

, ~51!

wherex[U/@s1U#. This form shows thatpg tends to go
toward either 0 or 1, depending on whether its current va
is larger or smaller than 1/2.pg50 andpg51 are the only
possible stable solutions. Thus, any change in the ave
genetic composition within the mating neighborhood will n
significantly affect the future genetic composition at the ce
ter of the neighborhood, unless the change is great enoug
move the average composition across the value 1/2. Th
fore, genetic invasion can occur only if there is a sufficien
large bias imposed on the local genetic composition fr
neighboring areas.

Figure 5 shows a numerical simulation of this proce
with parameter settings for which the homogeneous pop
tion density is stable. Disruptive selection causes each lo
9-9
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FIG. 5. Numerical simulation result of pattern formation in ty
difference in the disruptive selection case. The space consis
1283128 sites with periodic boundary conditions. Each pictu
shows a configuration of the entire space. Dark gray represent
existence of@11# organisms, while light gray represents the ex
tence of@22#. The initial condition is a randomly generated pop
lation with n50.1k ~with 60.02k fluctuations! for each site.s

50.9, l50.7, RM55, and RC53, so that d̂52.5 and g
51.666 67. This parameter setting falls into the regime where
homogeneous population density is stable~see Fig. 2! and thus no
spatial separation occurs. The observed behavior is symm
breaking and coarsening, which is found in systems with nonc
served order parameters, such as quenched Ising models.
05191
region to assume either of the two fittest types, giving rise
symmetry breaking and formation of patterns of two diffe
ent genotypes~light gray and dark gray shown in the figure!.
Once the patterns form, their subsequent evolution follo
well-known coarsening behavior in systems where the or
parameter is not conserved@22#, e.g., quenched Ising models
The boundaries between the two types~called hybrid zones!
move toward the direction determined by their local curv
ture, which acts as a bias on the local genetic composit
The characteristic wavelength of the patterns grows ast1/2

@1#. In general, a population of finite size will eventually b
dominated by one of the two types. Such coarsening dyn
ics is consistent with the eigenvaluen in the c direction in
Eq. ~45!, describing the instability of the mixed solution t
type-difference perturbations. The value ofn monotonically
increases as the wavelength of the perturbations increase
L.Lc , indicating that larger-scale perturbations beco
more apparent over longer times.

2. Genetic invasion between isolated groups

For populations spontaneously structured into spatia
isolated groups, the spatial separation between the gro
significantly affects the genetic invasion processes. W
such isolation occurs, the ratio of the mating and competit
ranges,g, determines the possibility of genetic invasion.

We systematically consider this problem by dividing t
local population within the mating neighborhood into tw
parts: a particular group at the center of the neighborho
and the set of other groups that are spatially separated f
the central group. Each part is represented by its total po
lation. In a sense, this characterization corresponds t
mean-field approximation applied to the group-level desc
tion of the system. The total population and the probabi
of genotype@11# within the focal group are denoted bynen

and Pg
en, and similarly, those outside the group bynex and

Pg
ex. We consider how the genetic composition of the foc

group Pg
en develops over time, assumingPg

ex, nen, andnex

as environmental constants. In the context of coarsenin
type difference,Pg

ex can be considered to represent the lo
curvature of boundaries between two types for the group
or near the boundaries. This enables us to obtain implicat
for the coarsening behavior from this analysis.

We assume that each isolated group is genetically w
mixed so thatPg

en is represented by the local probabilitypg at
the center of that group. From Eq.~48!, pg tends to approach
(Pg

M)2/@(Pg
M)21(12Pg

M)2#. Pg
M , the probability of geno-

type @11# within the neighborhood, is written as

Pg
M5

Pg
exnex1Pg

ennen

nex1nen
5Pg

exd1Pg
en~12d!, ~52!

where d[nex/@nex1nen#. d is the ratio between the sub
population outside the focal group and the total populati
within the neighborhood. Applying Eq.~52! to Eq. ~48! and
replacingpg with Pg

en, we obtain a difference equation

of

he

e

try
-
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DPg
en[Pg

en82Pg
en5

U

s1U F @Pg
exd1Pg

en~12d!#2

@Pg
exd1Pg

en~12d!#21@12Pg
exd2Pg

en~12d!#2
2Pg

enG . ~53!

FIG. 6. Phase diagrams in the (Pg
en,Pg

ex) plane for different values ofd, obtained from Eqs.~54! and ~55!. The curves represent th
solutions ofDPg

en50. Black parts of the curves are stable and gray parts are unstable. Ford,d0, a group starting at or nearPg
en50 or 1

remains close to its original state almost regardless ofPg
ex. For d0,d,d1, genetic invasion is possible for sufficiently large~or small! Pg

ex.
For d.d1, genetic invasion always occurs since the final state ofPg

en is determined solely byPg
ex, regardless of its original state. The actu

values ofd0 andd1 can be found analytically to bed05322A2'0.171 573 andd151/2.
e
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i

nt
e

its

t

e of
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To study the possibility of genetic invasion, we consid
when stable solutions ofDPg

en50 exist for particularPg
ex and

d. We solveDPg
en50 with the restrictions 0<Pg

en<1 and 0
<Pg

ex<1, which gives

Pg
en50,

1

2
, 1 ~54!

for d50, or otherwise

Pg
ex55 Pg

en1
2Pg

en~12Pg
en!2APg

en~12Pg
en!

d~2Pg
en21!

~ for Pg
enÞ1/2!

1/2 ~ for Pg
en51/2!,

~55!

which forms a continuous function that is differentiable f
0,Pg

en,1 including 1/2. Figure 6 shows phase diagrams
the (Pg

en,Pg
ex) plane drawn from these solutions for differe

values ofd. At d5d0, a critical situation arises where th
05191
r

n

curve comes in contact withPg
ex50 andPg

ex51. At d5d1,
another critical situation is reached where the curve loses
unstable part. The actual values ofd0 andd1 are analytically
calculable, which results ind05322A2'0.171 573 and
d151/2.

From Fig. 6 we understand the following.
For d50. The environmentPg

ex has absolutely no effec
on the genetic composition of the focal group.

For 0,d,d0. A group with Pg
en close to 1/2 is sensitive

to Pg
ex. However, a group starting at or nearPg

en50 or 1
cannot change to the opposite type due to the existenc
intermediate stable solutions. Once an isolated group
proaches dominance by either of the two fittest genotyp
genetic shift from one type to another is not possible rega
less ofPg

ex.
For d0,d,d1. Genetic invasion is possible forPg

ex larger
~or smaller! than the local maximum~or minimum! of the
curve. This indicates that the influx of a different genotype
the group must be greater than a threshold to cause ge
invasion. In the context of coarsening, boundaries whose
9-11
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FIG. 7. ~a! Illustration of the idealized group distribution assumed to computed as a function ofg5RM /RC . The isolated groups are
assumed to be arranged on a regular hexagonal lattice with basis vectors of lengthL and group diameterL/2. The population density is
assumed to be flat within a group and thus the total population of a region is proportional to the populated area.nen is the area of the centra
white circle@nen5p(L/4)2#, while nex is the total area of the gray regions.~b! A plot of nex as a function ofRM , drawn based on analytica
calculation using the assumptions in~a!. ~c! A plot of d as a function ofRM , drawn from~b!. Two critical pointsd5d05322A2 andd
5d151/2 are shown with the correspondingRM valuesR0 andR1.
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cal curvature is smaller than the threshold may be froz
and in general will not become flat. The maximal curvatu
that can be kept from coarsening is determined by the va
of Pg

ex at its extrema, which is a function ofd.
For d1,d. Pg

en always converges toward a value dete
mined solely byPg

ex, regardless of its original state, thu
genetic invasion always occurs. In the context of coarsen
any small curvature of boundaries can, in principle, give r
to change in genetic composition in the group at the bou
aries, and coarsening continues until all the boundaries
come flat or the entire population becomes dominated by
type.

3. The role ofg

The variabled is ultimately determined by the model pa
rameterg, the ratio of mating, and competition ranges. F
largeg, the mating neighborhood extends over more grou
which increasesd as well. Although the exact value ofd is
hard to obtain, we estimate it by using the assumptions
~1! groups are arranged on a regular hexagonal grid@Fig.
7~a!# as seen in the numerical simulations, and that~2! the
population distribution within a group is uniform. With thes
assumptions,nen is the circular area shown by white, andnex
is the area shown by gray, in the figure.nen5p(L/4)2 for
RM.L/4. The algebraic solution givesnex(RM) plotted in
Fig. 7~b!, andd(RM) plotted in Fig. 7~c!. The critical values
of RM such thatd5d05322A2 andd5d151/2, which we
call R0 andR1, are also shown. Numerically we obtain

R0'0.791 234L'0.968RC[g0RC , ~56!
05191
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R1'0.869 629L'1.06RC[g1RC , ~57!

where the coefficients beforeRC are the corresponding val
ues ofg, which we callg0 andg1. Finally, we note thatgc
computed in the flat fitness case still applies to the disrup
selection case with no modification. The analysis discus
here applies to spot patterns. A similar analysis may be d
for the stripe patterns that occur for smalld̂ ~see Fig. 2!.

Using the above results, the following scenario descri
the role ofg in the genetic invasion processes in the disru
tive selection case.

For g,gc (complete decoupling). Once spatial separatio
of groups takes place, organisms in one group are genetic
decoupled from the rest of the population and each grou
genetic composition evolves independently. This correspo
to the case whered50.

For gc,g,g0 (incomplete decoupling). Some intergroup
influence occurs; however, effective genetic decoupling
tween the groups occurs as soon as each of them beco
dominated by either of the two fittest types. A change fro
one dominant type to another is not possible.

For g0,g,g1 (incomplete coarsening). Coarsening oc-
curs to some extent, but boundaries with curvatures belo
threshold remain.

For g1,g (complete coarsening). Genetic invasion al-
ways occurs and coarsening continues until all bounda
are flat or one type dominates the entire population.

These results are confirmed in Fig. 8, which presents
merical simulations in the disruptive selection case with s
eral different values ofg, starting with the initial conditions
9-12
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FIG. 8. Numerical simulations of pattern for
mation in both population density and type diffe
ence for several different values ofg in the dis-
ruptive selection case. The space consists of 1
3128 sites with periodic boundary condition
Each picture shows a configuration of the ent
space. Dark gray represents the existence
@11# organisms, light gray represents the ex
tence of@22#, and black represents empty~or
nearly empty! regions.s50.9 andl53.0 so that

d̂514. RC is fixed to 10, whileRM is varied to
obtain different values ofg. The initial condition
is a randomly generated population withn
50.1k ~with 60.02k fluctuations! for each site.
The same initial condition is used for all cases
clarify the difference of behaviors for differentg.
For g,gc'0.612, complete genetic decouplin
occurs once groups are fully isolated from ea
other. Forgc,g,g0'0.968, groups are effec
tively decoupled once they approach dominan
by one of the two types~after about 200 updates!.
In contrast, forg.g1'1.06, coarsening contin
ues after the isolation of groups, leading to eve
tual dominance of the whole population by on
type. Between these regimes (g0,g,g1) there
is a distinct behavior where coarsening continu
after the isolation of groups but stops when t
local curvature of boundaries becomes below
threshold.
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that are randomly created with small fluctuations in bo
population density and genetic composition. The effects
spatial separation on the coarsening behavior in type dif
ence are seen to vary for differentg. For g,g0, genetic
decoupling actually occurs and thus coarsening stops a
groups become fully isolated from each other~after about
200 updates!, while for g.g1, coarsening continues eve
after the isolation of groups and the whole population
eventually dominated by one type as predicted. Although
particular example does not clearly show how bounda
behave forg0,g,g1, we can nonetheless observe a distin
behavior in other simulation runs where coarsening con
ues after the isolation of groups but eventually stops i
somewhat frustrated shape. Figure 9 shows another exam
where isolated groups are already formed when disrup
selection events are induced. In this case, the difference
tween the casesg,g0 andg.g1 appears earlier due to th
preexistence of the spatial separation. The final outcomes
similar to those in Fig. 8.

V. DISCUSSION

We have presented a theoretical analysis of evolution
processes that involve organism distribution, genetic com
05191
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sition, and their interaction, for spatially distributed popu
tions with local mating and competition. Analyses and n
merical simulations reveal that the typical dynamics
population density variation is the formation of isolate
groups ~spots or stripes!. This process depends on seve
parameters, including the reproduction rate and the surv
rate of organisms and the ratio of mating and competit
ranges. We have also found that the population density
namics are sensitive to the shape of neighborhoods adop
With well-defined competition neighborhoods groups m
form, while with Gaussian neighborhoods they do not. T
result implies that the spontaneously formed spatial pop
tion structure depends on the organismal behavior in mark
their territories.

We have examined the dynamics of genetic composit
under two different assumptions, the flat fitness case and
disruptive selection case. The former results in simple
netic diffusion, and the latter in symmetry breaking a
coarsening. These genetic invasion processes may take
despite the spatial separation generated by competition.
observed dynamics fall into classes of system behaviors
have been studied in statistical physics, which illustra
their applicability to the quantitative understanding of bi
9-13
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FIG. 9. Numerical simulations of pattern for
mation in type difference where disruptive sele
tion is induced in a population which is alread
structured into isolated groups. As in Fig. 8, da
gray, light gray, and black indicate@11#,
@22#, and empty regions, respectively. Whit
represents a mixed population of all the possib
genotypes.RC is fixed to 10, whileRM is varied
to obtain different values ofg. The conditions
shown at time 0 are generated through 500 u
dates withs50.9 andl51.5 for all four geno-
types~i.e., no disruptive selection! starting from
the same initial population as used in Fig. 8. A
time 0 the four possible genotypes all coexist
white groups. Thens12 , s21 , l12 , and
l21 are all set to zero to cause disruptive sele
tion, while l11 andl22 are increased to 3.0 to

maked̂ after the introduction of disruptive selec
tion equal tod before the introduction of disrup
tive selection. The behavioral difference betwe
casesg,g0 and g.g1 appears earlier than th
corresponding cases in Fig. 8, while the final ou
comes are similar to those in Fig. 8.
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logical population dynamics. There is an increasing inter
in applying statistical models to evolutionary processes
the physics literature@23–31#.

In a two-order-parameter system, the ratio of the char
teristic length scales of these order parameters can be
pected to play a crucial role in the dynamics. This cor
sponds to the ratio of the mating and competition range
the biological case we have discussed. When the rati
larger than a critical value, significant intergroup migrati
takes place and genetic invasion ‘‘jumps across’’ the spa
gaps between the isolated groups. On the other hand, w
the ratio is smaller than the critical value, genetic invas
does not occur and each group independently develop
own genetic composition. Such differences in behavior
relevant to the long-term evolution of the genetic compo
tion of the population. The critical value of the ratio of th
ranges,g, is estimated to be about 0.6 for the flat fitne
case. In the disruptive selection case, our analysis pred
that there are three distinct critical values ofg ~one of them
is the same as above!, at which the behavior changes fro
complete decoupling to incomplete decoupling to incompl
coarsening to complete coarsening. In particular, in the
complete coarsening regime whereg'1 (RM'RC), the
coarsening of boundaries between different types may
main in a frustrated shape. These results are confirmed
numerical simulations. They may be verified by experimen
observations in both qualitative and quantitative ways.

Finally, we point out that the formation of isolated grou
and the possibility of lateral invasion of different types
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migration over the groups seen in our results are of partic
interest for discussion of the phase III of Wright’s shiftin
balance theory@8,9#. Wright grappled with a problem of evo
lutionary improvement of fitness of sexually reproducing o
ganisms crossing the valleys in fitness landscapes. He
cussed the possibility of fitness improvement in the cont
of spatially distributed populations structured into small a
nearly isolated demes that are weakly coupled by migrat
In phase I of this process, random factors, such as mutat
and fluctuations in selection, could cause a nearly isola
deme to develop its own genetic profile. In phase II, ind
pendent selection acting on each of the demes could b
some of them to a higher fitness peak. Then, in phase
migration between demes could make it possible for the fi
genotype in certain demes to invade others. This theory~in
particular its phase III process! has been the subject of
number of recent articles in theoretical population gene
@32–37#. The main concern that has been discussed is
calculation of a migration threshold beyond which invasi
should occur. The models that have been considered inv
biased migration rates and different numbers of loci, dem
and dimensions for the population distribution in physic
space. These models, however, all share two common
tures: the assumption of the preexistence of isolated gro
and the consideration of the possibility of invasion as res
ing from fitness difference only.

In contrast, our model demonstrates an example of p
sible mechanisms of spontaneous formation of isola
groups due to competition, which enables us to consider
9-14
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ideas of Wright in a more self-consistent way. Moreover
also shows the possibility of lateral invasion even with
significant fitness difference between two viable types (sg
5sh ,lg5lh). In this case the local curvature of boundari
between different types determines the direction of invas
which corresponds to the difference in the local populat
size between the competing types. We present several m
relevant local parameters that participate in the invasion p
cesses elsewhere@21#, among which the fitness difference
just one of the factors. These results imply that the sim
but prevalent view of evolution as a hill climbing proce
acting on a fitness landscape must be corrected for m
realistic contexts such as spatially extended populations.
believe that our model may provide a theoretical basis
further consideration of various complex properties of s
tially extended evolutionary processes, which have not b
captured by the conventional fitness-oriented perspective
evolution.

There are a number of possible future extensions of
present model. We have previously considered more c
plex genetics with multiple loci and/or multiple alleles@7#.
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Another issue relevant to biological concerns is extend
the fitness assignment to a more general form. A small as
metry between fittest types or small viability of genetic i
termediates may alter the model dynamics. Boundary sha
and behaviors could couple to fitness variation. Our disc
sions may also be used as an analog of some s
organization processes in physics that involve two or m
order parameters, such as clustering and magnetizatio
aggregates of mobile spins on a two-dimensional surface
pattern formation of chemical substrates in a reacti
diffusion system that involves multiple distinct reaction pr
cesses.
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