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Turing patterns with pentagonal symmetry
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We explore numerically the formation of Turing patterns in a confined circular domain with small aspect
ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering
a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids.
Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation
pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids.
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[. INTRODUCTION pentagonal seed is formed and used as a source of morpho-
gen in a larger disk, as one might assume that in a biological
The occurrence of pentagonally symmetric organisms hasystem there is the possibility that a certain pattstable or
been largely surveyed and studied in defdil2]. For ex- noY can be frozen at a stage of developmérdicified or
ample, a pentagonal pattern is the basic pattern of the echipiologically differentiatedl and may serve as a seed for fu-
noderm skeletons. Some radiolarians and diatoms also préure development. These patterns compare notably well with
vide notable examples of pentagonal patterns. HowevetN€ pigmentation pattern dfoxopneustes pileolusnd, in a
most mathematical models for biological pattern formationdifferent context, still in the phylum of echinoderms, with
exhibit hexagonal patterri8—6] and the issue of selecting the plate arrangements of the calyxes of primitive camerate

and stabilizing fivefold symmetric patterns has not been ad(_:ri_noids[Z]. All these results Iea_d us o consider morphogen-
dressed in these models. esis as a step by stgp process in the_ sense _that once a pattern
Motivated by thede novoappearance of pentagonal sym- is generated and biologically con§oI|dated, it can serve as a
metry in therudiment diskduring the early development of seed.for the next step. It alsq relpforqes the importance of
regular echinoid larval formgechinopluteous|7], we care- transient or unstable patterns in biological syst¢&is
fully explore the formation of radially symmetric patterns
using a Turing system solved on a confined circular domain
with size comparable with the characteristic wavelength,
starting from random initial conditions. Since under this as- In all biological models there remain uncertainties about
pect ratio the boundary controls the symmetry of the patternthe mechanisms behind pattern formation: the study of ge-
the radius of the diskor the curvature of the circlecan be  netics alone cannot provide us with such mechanisms. Per-
considered as the relevant parameter. Taking into account the@ps the most extensively studied mechanism for self-
wavelength of the Turing equations, we may expect a penerganized biological pattern formation is the Turing
tagonal pattern if system parameters and disk radius are adhstability [9—11] and we focus our attention on this mecha-
equately tuned, such that a central plus several marginadism. Albeit the molecular details are still unknown, the Tur-
peaks are possible. We address this problem by studying ning model has been shown to exhibit pigment patterns con-
merically the Turing modes confined in a small size disk. Assistent with those observed in some mamnha§, seashells
we shall show, the frustration induced by small disk radiug13], and marine fishe§14—18. Curved geometries have
reduces the usual hexagonal symmetry of the pattern, to pr@also been introduced to model microscopic organisms such
duce pentagonally symmetric pattern. We also show that thegs radiolariang19] and patterns on the hard wings of lady
are stable and, under large spatial homogeneities in the initiddeetles[20]. Recently, it has been found that morphogens
conditions, they appear over a well defined range of diskthe name given by Turing to the chemicals in prepattern
sizes. We also simulated numerically the situation when anodels do exist[21], but experimental evidence that mor-

Il. THE MODEL
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phogen patterns are set up by a Turing mechanism is yet t

be found.

Turing equations describe the temporal development of

the concentrations of two chemical$,andV, that diffuse at

different ratesD andD,,, and react according to the non-

linear functionsf andg,

U
E=DUV2U+f(U,V),

oV
e DyV2V+g(U,V).

We take the model introduced by Barrat al. [17], ob-

tained by observing that, in general, there is a stationary

uniform solution U.,V.), given by the zeros of and g.
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FIG. 1. Variation of dispersion relation, from E@), for differ-

Functions are then expanded around this point in a Tayloént parameter values. The continuous line correspondsy to
series, neglecting terms of order higher than cubic. The spe=0.899, 8=-0.91, D=0.516, and6=0.01011, to enhance the

cific system we consider is

Jou

- =D6V2u+au(l—rw?) +uv(l—ryu),

(1a

al’l
1+7UU)+u(y+r2v), (1b)

whereu=U-U,, v=V-V,, Dy=D, and Dy=1. The

S
e v+ Bv

guantity § conveniently gives the size of the system, and the

modeks;=6.41562. The dotted line corresponds to the same pa-
rameters as in the previous case but with 0.00 845 to enhance
the modeky;=7.01 558. Finally, the dashed line corresponds to the
same modeky;, but obtained with parameter values=0.2334,
B=-0.95,D0=0.12, ands6=0.01011.

fu+gv<O:>a+B<o,

ngV_ ngU>0$a(,8+ 1)>0,

particular arrangement of the coefficients obeys conservation

rules in these chemicals. There are two interaction param-
etersr, andr, that, in Cartesian coordinates, control the

formation of stripe or spot patterns, respectivgly].

We investigate patterns in a two-dimensional disk with

zero-flux boundary conditions, namely,
n-vu(r,6)=n-Vo(r,0)=0,

for all 6e[0,27), with r at the boundary of the disk with
unit outward normah. We then, in the linear regime, look
for solutions of the form(in the usual way

u=ugexpAt) >, CJn(krexpime),

v=voexpAt) >, Dydn(kr)expimé),

whereC,, andD, are constants andl,, are Bessel functions

DUgV+ vau>0:>5(DB+ Cl{)>0,

(Dygy+Dyfy)2=4DyDy(fygy—fygy)>0

=(DB+a)?—4Da(B+1)>0, (3)
where subscripts ifiand g denote differentiation.

At the onset of instability, a good approximation of the
critical wave vector is given by the minimum of the left part
of the last inequality in Eq(3), namely,

2:vau+ Dugv: 1
¢~ 2D,Dy o

D 4

a+ Dﬁ)

wherek=Kq,n= kmn@; kmn iS thenth zero of the derivative
of the Bessel function;, and a is the radius of the disk.
Observe that this equation implies that oneed, 8,D) are

of mth order of the first kind. By SubStituting these SO|uti0nSfixed7 one could select a pattern of a given radial Symmetry

in the linearized version of Eq1l) we obtain that the disper-
sion relation is given by the solutions of

A+[(1+D)6k%— B—a]\+[(DSk?*—DB— a) 5k?

+a(B+1)]=0. (2

by varying 8. Alternatively, solving Eq(4) for &, one could
tune the other parameters to satisfy the conditierx,,/a
for a given symmetrym.

In Fig. 1 we show the dispersion relation, from E#g),
for a selection of different parameter values in the appropri-
ate parameter domain defined by HE®). The parameters

In order to keep the solutions as simple as possible, we erwere chosen to enhance mokig= «5,=6.41562(in what
forced (0,0) to be the only spatially uniform steady state byfollows, we shall consider a unitary disk=1), according to
settinga= —y [17]. The following conditions must be sat- Eq. (4), and modekys;= xo3=7.01 558 was enhanced using

isfied for diffusion-driven instabilityf10,17:

two different sets of parameter values.
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FIG. 3. Value of the pattern symmetry axis versiis”’?, which
is proportional to the radius of the disk, for simulations with param-
eter valuesa=0.899, 8=-0.91, D=0.516, a=1, andr;=r,
=0.2. The dashed lines represent noncentrosymmetric sixfold pat-
terns. Onefold symmetry axis corresponds to mixed symmetries.
Below 8~ 1?=9.66, noncentrosymmetric patterns with four or less
spots are obtained and fat~Y?>>18.25 hexagonal patterns with
defects are generated. Starting fréw 0.001 (5~ Y?=31.623) pat-
terns were obtained by increasiddy 0.0001 and, in each case, we
used 36 10° time iterations to converge, with a time step Mf
=1x10"%

FIG. 2. Series of symmetries obtained in a disk with zero-flux
boundary conditions. The values éfare (a) 0.01 011,(b) 0.0075,
(c) 0.0055,(d) 0.0065, ande) 0.0037. These correspond to select-
ing modesksy, Kg1, k71, Kap, andks,, respectively.

geometry to solve the Turing equations allows us to generate
a fivefold pattern.

The appearance of the central spot in some of the patterns
in Fig. 2 may seem strange at first sight. In particular,
Js(Kssr) is zero at the origin and Fig.(& shows nonzero

. NUMERICALLY COMPUTED STEADY-STATE values there. We should, however, note that the linear analy-

PATTERNS sis predicts modes under the linear regime, while the final
) ) ) ) . solution depends also on the nonlinear terms and it is ex-

Equations(1) are solved in polar coordinates in a unitary pected that, besides monomodes, nonlinear coupling of dif-
disk (a=1) by a simple Euler method as described in detailferent modes may appear. In Appendix B we perform a
in Appendix A. The calculations reported here were carriedmodal decomposition of a pentagonal pattern to confirm this
out using grid parameter®1 =34, N=68, Ar=1/34, and possibility.

A6=2m/68. The parameter valuekept fixed in all our Since in Appendix A we obtain only necessary conditions
simulation$ are «=0.899, 3=—0.91, andD=0.516. We for numerical stability, we performed a number of simula-
used 16¢< 10° time iterations to converge, with a time step of tions with different step sizen time and spacein order to
At=1x10"*, which fulfills the necessary condition for nu- Verify that the solution does not change under these condi-
merical stability(A9). The system was always initialized us- tions. In Figs. 4a) and 4b), we show the pentagonal pattern
ing random fluctuations £0.5) around the steady state OPtained with the same parameters as in Fig) But with
UP;=0 andV{;=0, for all i,j. The seed of the random smaller time steps, namely>510 > and 1X10°°, respec-
ge'nerator was set to the CPU time of the computer. tively. In Fig. 4c) we changed the spatial step sizeNb

In Fig. 2, examples of patterns obtained with paramete=N=68’ with At=2x10"". Finglly, in. Fig.. 4d).’ a plot of
e the convergence facter for the simulations in Figs.(4) and
valuesr;=r,=0.2, to produce a spot pattefi?7], are

) . . 4(b) is shown.
shown. The values of correspond to increasing the size of In the range of disk sizes where we obtain pentagonally

the domain and, according to E#), different symmetries gy mmetric solutions, other admissible modes are possible
are selected. The convergence to steady state of the patteffig we found that under several different runs, with different
was estimated by means of the quantity=2;;(U}; initial conditions, it was possible to obtain these motmst

— Ui”'j’ 12 at each time step. A typical value of this quantity only if we reduce the amplitude of the random fluctuations in
in all our calculations is X10°°. In Fig. 3 a graph of the the initial conditiony. This problem of multiple stable
pattern symmetry axis value versudsis shown. It can be steady-state solutions has been one of the main criticisms of
seen that hexagonal and pentagonal patterns are more frve Turing model as a plausible explanation for robust pat-
guent and the pentagonal pattern is generated in a range oftern formation. It has been shown that using different types
about 16% of the explored radius. The use of the circulaof boundary conditiong22] or employing domain growth
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shown[26]. Much of the rest of larval growth consists of the
formation and lengthening of podial buds maintaining the
pentagonal symmetry of the initial lobes. These five podial
buds play a major role, by migration from pole to pole, dur-
ing the embryological skeletal development of regular echi-
noids in the framework of the axial-extraxial thed®7].
Thus, the symmetry of the adult echinoid is set in this initial
stage of development and, for this purpose, the first relevant
event is the formation of a pentagonal pattern in the rudiment
that dictates the radial symmetry of future development.

Regarding ratios and relative sizes, the realistic diagrams
in Figs. 5a) and 8b) compare notably well with Fig. (3)
with the exception of the central spot in the latter. In Fig.
5(c) we show a simulation with the same parameters as in
Fig. 2(a) but the factors that control the formation of stripes
or spots were changed tq=>5 andr,=3. Generally, spots
) Y - are more robust and pronounced than strifged; actually,

0 ‘ 1000 2000 3000 stripes are only formed for very small valuesef In the
4000 x (Time step) simulation of Fig. %c), the factor favoring stripes is high,
) ) . they do not form becauseg is not small. The net result is a

FIG. 4. Simulations of the pentagonal pattemn with the samegot of modulation of amplitudes such that the central spot of
parameters as in Fig.(@ Eut with dlffesrent spatial and temporal o pentagon, albeit present, has a very low amplitude.
step S'ng(a) At=5x10 *, (b) 1x10°% (c) M=N=68, andAt Notice that taking into account how the symmetry of the
n ti20>:1 i?n (é)ar;at(g)c‘:gtti:lj;:z ﬁ:gvz:]gd%;‘(;at;aggggg tlrifes'm”‘ patterns are selected, from a genetic point of view, the pen-

‘ ' ' tagonal symmetry of the adult echinoid can be efficiently
encoded using two basic parameters as highly condensed in-
structions: the radius of the rudiment digk the cell num-
ben and the characteristic wavelength of the morphogens.

Let us now consider the case when a given pattern is used

IV. PATTERNS OF SEA URCHINS as source of morphogens in a larger disk. That is, we simu-
) ) late the influence of an initially frozen pattern in a domain

Selecting the symmetry of the Turing pattern by means ofyhere a pattern forming reaction takes place. This has been
the disk radius may be relevant for capturing the essence gfsed to simulate the imposition of some directional prefer-
the de novoappearance of the five primary podia during theence onto the pattern formed, by means of a pattern of dif-
early development of regular echinoid larval forms. At thefgrentiated celld28-30. We first consider the pentagonal
first stages of larval growth, these animals develop five budgyycture shown in Fig. (@) implanted as a source of mor-
of primary podia in a disk calleimaginal rudimentrudi-  phogens in a disk of larger size. The procedure is as follows.
ment disk or justrudiment[7,24,29. These five buds point The spots of the pentagonal structure shown in Fig),2
to the vertices of a slightly distorted pentagon and give risegenerated in a disk of radius(proportional to 1{/8,, with
to tthe (rjadially syn;rg}etric alc_iutl_t. In Figs(& antd ?% S‘f:_he' 8,=0.01011), is implanted in a larger disk of radiRs>r
matic diagrams of the realistic arrangement of the five pri- : ; ; ;
mary pogia in the rudiment oEuci%aris thouarsi and P (proportional to 1(3r, Wlth- 0r=0.0006), and its amplltqde

L . scaled such that the maximum equals 1. The system is then
Strongylocentrotus  droebachiensisea urchin larvae are jyisalized with the previous pentagonal pattern as a seed at
the center andJ?;=V?;=0 in the area not occupied by the
spots of the pentagonal seed. These spots are considered a
source of morphogen in such a way that their size is main-
tained fixed and the value of the morphogen is set to 1 dur-
ing all time steps. In Fig. & we show the pattern that re-
sults after 800 000 iterationdefore reaching steady state
The pattern compares notably well with the pigmentation
pattern of the common Indo-Pacific sea urchin spetms
opneustes pileolugAlphonso urchin, shown in Fig. @),

FIG. 5. Schematic diagrams showing the realistic arrangemerfRNd it may be considered as a frozen pattern when the animal
of the five primary podia in the rudiment &) Eucidaris thouarsi  '€aches adulthood. The similarities between the simulated
larvae (taken from Fig. 2 of Ref[7]) and (b) Strongylocentrotus ~Pattern and the real biological pattern are supported by the
droebachiensisea urchin larvaftaken from Fig. %) of Ref.[25]].  coherence between the pigmentation pattern and the morpho-
(c) Numerical calculation of the pentagonal pattern with the samdogical structure of the urchin teges seen in Fig. ®)],
parameters as in Fig(& but with the factors that control the for- suggesting that both pigmentation and skeleton formation
mation of stripes or spots changedrto=5 andr,=3. were simultaneous during the growth process.

[23] it is possible(at least on a one-dimensional domatia
increase greatly the robustness of certain modes.
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(@) (b)

FIG. 6. (a) Transient patterriafter 800 000 iterations obtained
with §=0.0006 using a pentagonal seed as described in the text
with the remaining parameter values as in Fig(l.Toxopneustes
pileolus sea urchin(taken from echinoid website of The Natural
History Museum of London, designed by A. Snjith

V. PATTERNS OF CRINOIDS

In a second simulation we let the pattern of Figp)Geach
stability (6x 10° time iterationg. The final pattern is shown
in Fig. 8@ and it consists of a nearly twinned pentagonal
structure. The disk size used in the simulatiody (
=0.0006) is large enough to obtain a hexagonal pattern, but
in this case it has to couple with the pentagonal seed and the
best way to do this is to generate a twinned structure formed
by a central pentagon surrounded by distorted hexagons.

This result can be related to another important and primi-
tive taxonomic group of echinoderms: the crino[@i]. In
Fig. 7 we show the typical plate diagrams of 11 calyxes of
camerate crinoid fossils that we have studigd2]. An in-
teresting fact is that all these structures are variations of a
fundamental arrangement that is a twinned pentagonal struc-
ture. This can be made evident as follows. By using the
numerical approach described elsewhi2g we digitalize

each plate diagram codifying the result using a binary sysgn,s asperatus(d) Diamenocrinus jouani(e) Hercocrinus el-
tem: black(1) and the white backgrountD). Next, we eX-  egans () Kyreocrinus constellatysig) Opsiocrinus mariana(h)

pand this binary function as a truncated Fourier-Bessel seri@Srtsaecrinus cocae(i) Rhodocrinites kirbyi (j) Sphaerotocrinus
with real coefficientd2] so that a plate arrangement can begrnatus and(k) Thylacocrinus vannioti

described by the plate model function

FIG. 7. Typical plate diagrams of camerate crinoid®: Ar-
chaeocrinus microbasaligb) Condylocrinus verrucosugc) Deo-

4 CO: 025, C5: 009, Cl(): - 042, C15: - 004, C20: 045,
_ : S5=0.36, S;p=—0.1, S;5=—0.28, andS,y=0.26, which
T = k + 5 1910~ 7 1 215 » and o , .
(r.6) nZO Jon(Kn)[ Con COSENG) + Ssn SINSNO) ], compare well with the averaged coefficients of the fossil spe-

(5) cies. This good match is better appreciated if we reproduce
the image using these coefficients and Ex). The resulting
wherer and @ are polar coordinates ardis the wave num-
ber [2]. The values ofC and S were calculated for the 11
fossil species shown in Fig. 7 and it turns out that all struc-
tures are quite similaf2]. An average structure can be ob-
tained by taking the mean of the calculated constdbits
and S of the 11 species studied, givinG,=0.25, Cy
=0.05, C1p=—0.45, C15=0.02, C»,=0.48, S;=0.47, S;
=—0.02,S;5= —0.46, andS,,=0.05. Notably, this undula-
tory average structure is an almost perfect fivefold twinned (a) (b) (c)
structure, as shown in Fig(®, which compares well with
the twinned Turing structure that results from our simulation, F|G. 8. (a) Final steady-state pattern of the simulation shown in
and is shown in Fig. &). Fig. 6(a) after 6x 10P time iterations(b) Pattern obtained using Eq.
In order to compare both patterns in a more proper way5) and the coefficients of the Fourier-Bessel analysigaf (c)

the simulated structure of Fig.(@ was transformed to a Average twinned structure of the arrangement of plates of camerate
black and white image and the Fourier-Bessel analysis givesinoids.
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VI. CONCLUSIONS

We have explored numerically the formation of Turing
patterns in a circular domain with size comparable with the
characteristic wavelength. Our results show that, under large
spatial homogeneities in the initial random conditions, pen-
tagonal patterns appear and are stable over a well defined
range of disk size&bout 16% of the explored radjusome
real biological examples of pentagonal patterns in regular
echinoids and criuoids are presented. Our results may offer a
possible mechanism for inducing the fivefold symmetry ob-
served in early development of these animals. By assuming
that in a biological system a certain pattern can be calcified
or biologically differentiated at a stage of development, we
also simulate pigmentation patterns in sea urchin shells by
using sources of morphogens implanted in a disk. Finally, the
importance of a transient or an unstable pattern in biological
systems is reinforced.

FIG. 9. Schematic plate arrangemen®yfcnocrinus dyerfossil
crinoid. Plates are indicated by thick white lines. Circles indicate ACKNOWLEDGMENTS
the center of the plates and form a lattice of ridges decorating the
plates. This latticddrawn with thin white linesis a twinned pen- P
tagonal structure formed by distorted hexagons with a pentagon
the center. The inset shows a schematic diagram of the calyx or CL%
of Pycnocrinus dyeradult form from where the plate diagram was
obtained.

We thank J. P. Adrados for help with figure preparation.
art of this work was financially supported by the Royal
ociety Leverhulme TrustP.K.M.). One of us(J.L.A.) ac-
nowledges financial support from DGAPA-UNAM through
Grant No. IN-108199.

. . . APPENDIX A: FINITE-DIFFERENCE SCHEME
pattern is shown in Fig.(®). Both undulatory patterngv-

eraged and mimickgdare pentagonal twinned structures By using subscripts to denote differentiation, in polar co-
with the property that the sides of the central pentagon arerdinates the Laplacian reads
also sides of antinode hexagons surrounding this pentagon.

Our Turing model thus captures the essence of these
structures that evolution has explored in crinoids, which are
fluctuations of a basic pentagonal twinned structure. This
average structure is a simple and predictable geometrical pathe systen{1) is then
tern that evolution may have occupied in the morphospace of
early crinoid skeletons. Hence, this is another example that
corroborates the claim of the more general work by Thomasu;=D &
et al.[33], where it is established that viable design elements
available for animals, to use as skeletons, have been fully
exploited in early ages. Evidently, evolution also tried the
twinned structure itself, as can be seen in Fig. 9, where the —5 n 1 +} +B
schematic plate arrangementRjcnocrinus dyercamerate MUMRCLLIAN v
crinoid fossil[31,37 is shown. In the figure, plates are indi- (Alb)
cated by thick white lines. The centers of the plates are in-
dicated by circles and form a lattice of ridges decorating thewith zero-flux boundary conditiong,=v,=0 at the bound-
plates. Observe that this latti¢@rawn with thin white lines  ary of the disk (=a).
is a twinned pentagonal structure formed by distorted hexa- We use the simple Euléforward differencg approxima-
gons with a pentagon at the center, quite similar to the oneton to approximate,, u,, v, v,, and central differences to
shown in Fig. 8. Notice also that plates constitute the Dirich-approximateu,, , Uyy, v, , anduvy,. Using equally spaced
let domains of the lattice of ridgd84]. This plate arrange- points alongr, 6, andt we thus denote;=(Ar)/2+iAr,
ment is also observed iBlyptocrinus decadactylusamerate  9,=jA¢, and t,=nAt, where i=0,1,... M, |
crinoid fossil[31,32. =0,1,... N, Ar=1/M, and A6=2=/N. We start fromr

The plate arrangement shown in Fig. 9 was directly ob-=(Ar)/2 in order to avoid the singularity of the Laplacian at
tained from the calyx or cup of the published images of fossilthe origin. The center of the disk is obtained by using bound-
crinoids[31,32. A schematic diagram of the calyx is shown ary conditions such that central points are joined in pairs
in the inset of Fig. 9; the stem of the fossil is represented bygeparated by= /2, that is,
the three white lines at the bottom of the figure and white
filled circles indicate the starting point of the arms. U(ro-1,0;,t))=U(ro, 0+ ni2,th),

1

1
Ure + — Ugg+ — Uy +au(l—rw?)+v(l-ryu),
r

(Ala)

al’l
1+ 5 U Fu(y+ro),
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for j=0,1,...,N/2)—1, and

U(ro-1,0;,t))=U(ro, 0, _ni2,tn),

for j=N/2,... N.

If Ui ;) and V(i ;) denoteU(r;,6;,t,) and V(r;,6; ,t,),

respectively, we then solve

D SAt
+1__
Uiy =Up+ —(Ar)2<U8+1,j>—2U?i,n+U?iflm
DoAt ) )
—ri(Ae)z(U(i,Hl)_ZU(i,J)+U(i,i*l))

+KMU” —Uf ) +At[aU] + V]
riAr( G+~ Y [aUgj+ Vi)

—ar UG (VG )= r2UG Vi (A28)
SAt

n+1__y\/n

(Vi1 =2V Vi-1j)

SAt o
gz ey 2oyt Vai-n)
I
SAt
n n n n
T rar Vi Vi) TALAVG )~ el

with zero-flux boundary conditions

n _ n n _ n
M+1i=Um,j> iNe1=Yins

n _ n n _ n
M+1j=VYm,j: Vine1=Vin-
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D SAt
n+1__ n n n n
Uij=Ui;+ _(Ar)z(u(i+l,1)_2U(i,J)+U(iflyi))
DoAt ) ]
+ —ri(M)z(U(i,j+1)_2U<i,i)+U(i,i—1))

DAt ) )

The truncation errors arise from the Taylor series expan-
sions used to approximate derivatives

n+1 n
Ui,j _UI,J

At
Al =U;t+ 7Un(§) (t=ést+AtL)

and

=207+ Uy
(Ar)?
(Ar)?

:urr+Turrrr(g)(r_Arsfsr'FAr)y

with similar expressions fou, anduy.

From these equations, we can calculate the truncation er-
ror introduced by the finite-difference discretization of Eq.
(A3a),

n _At (Ar)?
Ti’j:?utt(ri ’0j vgijn)+ Turrrr(Vijn ,(91' o)

(AG)? Ar
+ 35 Yaseo(Ti &ijn  t) + 5 Une (Xijn 6] 1),

which is O(At) + O(Ar?)+O(A 6%+ O(Ar). By assuming

around the steady staté);=0 andV?;=0, for alli,j. _ _ _ _ eque
Given the nonlinear terms in Ec(sAé) a rigorous analysis the numerical method is consistent with the partial differen-

of the stability of the difference scheme is not an easy taskial €quation(A3a). , ,
In practice, however, since important sources of instability 10 determine when the method is stable, we find the equa-

are the higher-order ternf85], necessary conditions and a tion satisfied by the err@=U —u. By definition of the trun-
good estimation oAt are obtained by investigating the con- ation error, the exact solutiansatisfies

sistency and stability of Eq§A2) as if they were uncoupled.

Thus, we consider the equations

1 1
u=DJ§ u,,+—2u99+Fur +au, (A3a)
r
1 1
V=96 Vit gt U + Bu. (A3b)
r

As above, the finite-difference discretization of E43a)

ror goes to zero aAt, Ar, andA € go to zero. Consequently,

D SAt
n+l1_..n n n n
Ui.j _ui,J’+_(Ar)z(u(i+1,j)_2u(i,1)+u(ifl,i))

D SAt

+ ———(uf i y—2uf A+ ug )
ri(Aa)Z (i,j+1) (i) (i,j—1)
D5At n n n n

+ —rIAr (u(l+l,J)_u(l,j))+aAtu(l,J)+AtTl,] .

By substracting Eq(A4) from this equation, after grouping
common terms, we obtain
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» DSAt _ D&At  DSAt
) (Ar)?2 (A% TiAr 5
Dast_Daat| .  (Daat)
(Ar)Z riAr €l+1i) (Ar)Z €i-1,)
J[Doat|, (Daat) .,
— el — e = no
ri(Aa)Z (i,j+1) I’i(AH)Z (i,j—1) ]

(A5)

If we define Ta=maxXT{ | and E"=maxej |, for 1=<i
<M and O<j=<N, from Eq.(A5) we get

D 5At DS6At DAt

-2 -2 - E"
(Ar)2  ri(AG)% TiAr

+ aAt

1
|e?i,+j) s’l

DoAt DoAY

+ + E"+ D5At‘ "
(Ar)z riAr ‘

angt

D 6At
ri(A6)?
(A6)

n

+ AtT pay-

The absolute value sign can be removed provided that all the

terms under absolute value sign are nonnegative. Sihce
>0 and5>0, we assume that

a=0,

(A7a)

DSAt  DSAt  DOSAt
+2 +
(Ar)2  ri(A@)%  TiAr

1=

=

: (A7b)

so that, after removing absolute value signs in &) and
simplifying, we obtain

n+1

el [y |<SE"+ @AtE"+ AtTa= (14 @A E"+ At T g,

It can be provedsee, for instance, theorem 1.2.1 of Ref.

[35]) that the above sequence of inequalities with nonnega-

tive numbers is equivalent to
|e?|‘1)| SeanAt( EO+ nAtTmaX) — eanAtnAtTmax,

where we used the fact thBP=0. Thus, as a fixed value of
t,, the error goes to zero 8%,,,—0, and Eq.(A4) is stable
under the assumptior(&\7).

The above stability analysis is also valid for the discreti-
zation of Eq.(A3b), with the only difference that ilx=0
[assumptionA7a)], then, according to the first condition in
Eq. (3) B is negative < — «a) [17]. Thus, the discretization
of EqQ. (A3b) is stable under the assumptions

<

B=<0, (A8a)

1=2 oAt +2 oAt + oAt +|B|At (A8h)
= .
(Ar)2 1 (A@)? AT

PHYSICAL REVIEW E65 051913

TABLE I. Normalized magnitudes of the coefficients for the
Fourier-Bessel decomposition of the pattern in Fig)4

m/n 1 2 3 4 5 6 7
0 0.372 0.021 1.000 0.058 0.013 0.004 0.015
1 0.003 0.006 0.012 0.004 0.002 0.001 0.000
2 0.002 0.016 0.004 0.003 0.002 0.002 0.001
3 0.002 0.010 0.002 0.003 0.002 0.002 0.002
4 0.002 0.010 0.000 0.002 0.002 0.002 0.002
5 0.594 0.057 0.012 0.017 0.014 0.011 0.011
6 0.002 0.008 0.003 0.000 0.000 0.001 0.001
7 0.002 0.007 0.003 0.000 0.000 0.001 0.001

Equations(A7b) and (A8b) can be written in a more trans-
parent way if we take into account that, since we are avoid-
ing the originr =0, min(;)=ro=(Ar/2). By substituting this
into Eqgs. (A7b) and (A8b) and rearranging the terms we
obtain

At=<

R 4D5 _ 4Ds
(Ar)2  Ar(A6)2

, (A9a)

=

=

At

(A9b)

3

46
+[8

(Ar)? i Ar(A6)2

respectively. Both inequalities provide necessary conditions
for the stability of Eq.(A2).

The values used in all our calculations dpe=0.516,
Ar=1/34, A0=27/68, andB=—0.91. Thus by consider-
ing, for example, the value of to obtain the pentagonal

FIG. 10. Reconstructed image using the complex coefficients
tabulated in Table | and E¢B1).
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pattern in Fig. 2a) (6=0.01011) we gefAt<0.009 326 and K2
mn

At=0.004 791, respectively. Con= (k) [k 2

. a (2w .
APPENDIX B: MODAL DECOMPOSITION % f J u(r, a)er(kmnr)e—lmﬁ dodr.
0JO

The principal modes involved in the Turing patterns simu-
lated in this work can be revealed by means of a modaBy examining the magnitudgC,,,,| of these coefficients, we
decomposition. In particular, the solution of E¢), u(r, 6), can determine the principal modes of the functigm, 9).
can be expanded in a Fourier-Bessel series as We performed the Fourier-Bessel decomposition of the
pattern in Fig. 4c). In Table |, the normalized magnitudes
|Cmnl for m=0,1,...,7 anch=1,2, ...,7, argabulated. It

_ ime can be seen that the more relevant modeg@8g (51), and
u(r,e)—mzzo n; Crnndm(Kma )€, (B (01). SinceJ, is nonzero at the origin, the enhancement of
modeskyz and ky, account for the central spot in the pen-
tagonal pattern.
whereky,,= kmn/a, as defined in Sec. II. In order to verify our result, we use the obtain@mbm-
Using the orthonormality and completeness ofplex) coefficients, to reconstruct the pattern using EBfl).
Jm(Kmf)€M?, the complex coefficient€,,, are given by The result is shown in Fig. 10.
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