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Dynamic response of adhesion complexes: Beyond the single-path picture
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We analyze the response of molecular adhesion complexes to increasing pulling (threamic force
spectroscopywhen dissociation can occur along either one of two alternative trajectories in the underlying
multidimensional energy landscape. A great diversity of behaviexg., nonmonotonicityis found for the
unbinding force and time as a function of the rate at which the pulling force is increased. In particular we
identify a class of “harpoon” stickers that bind easily but resist strong pulling efficiently. Using existing data,
we also demonstrate the consequent difficulty of unambiguously determining the features of the energy land-
scape from such single-molecule pulling experiments.
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INTRODUCTION In this paper we point out limitations arising from the

The last decades have witnessed a remarkable develo riori assumption of a single-path topology of the energy

ment of physical investigation methods to probe single mol_andscape for the interpretation of such experiments. From

ecules or complexes by various micromanipulation meang.he analysis of simple examples with a two-path topology,

Techniques have been put forward to probe the unfolding of/® draw three conclusionst) first, the dependence of the

proteins and to quantify the strength of adhesion structure&/Pture force and rupture time on the pulling rate can take
[1-5]. An important step in this direction is the proposal of Various forms, includingnonmonotonicbehavior (see e.g.,
the group of Evant al. to use soft structures to pull on Figs. 3-3. (i) Second, the main features of the energy land-
adhesion complexes or molecules at various loading rate$cape cannot be unambiguously deduced frdrfyg,log(r)]
(dynamic force spectroscopy6]. Moving the other end of plot, as very different landscapes can yield similar curves
the soft structure at constant velocity induces on the comple&Fig. 6). (i) Third, we propose simple “harpoon” designs
a pulling force that increases linearly in tinfie-rt. Measur-  [Figs. Xc) and Xd)] for functionally efficient stickers that
ing the typical rupture time,, yields a typical rupture force can bind easily but strongly resist in a range of pulling forces
fiyp=Ttyp that depends on the pulling rate This provides  (Fig. 4).

information as to the energy landscape of the bound com- Obviously for real binding/adhesion complexes, there are
plex. Indeed, in many situations one observes a linear in-

crease offy, with log(r), which can be understood within a (@ Classical
simple adiabatic Kramers picture for the escape from a well —})—---- o—jof4—----
(bound/attached statever a barrier of heighkE located at a 0 a 0 4 A a

projected distanca from the well along the pulling direc-

tion. The progressive increase of the force results in a corre- oth o

sponding increase of the escape rate, so that, in agreement 0 .

with some experiment$6], the typical rupture forcen- Sath

creases logarithmically with:rf,=[kgT/X]In[rx/(ksTw)],

wherew is the escape rate in the absence of force. The rup- Harpoon

b
(©
ture time on the other hardkcreases with.rThe occurrence ath o
in some cases of two successive straight lines in a &---- Q\--_-
[fyp,log(r)] plot has been argued to be the consequence of g path B .
0o b 0

having two successive barriers along the one-dimensional

(1D) escape path, the intermediate one showing up in the (d) a Combo

response at fast pulling rat¢8] [Figs. Xa) and 2. Other @

theories have tried to back up more complete information as 0 -=--

to the overall effective 1D potential landscape by an analysis path B

of the probability distribution for rupture time and of the B b x

statistics of trajectories before ruptuir@,8]. Assemblies in >

series and in parallel of such 1D bonds have also been con- £ 1. sketch of the topology of the main valley of the energy
sidered[9-11]. landscape for a few examples. 0 denotes the fundamental bound

state,A andB are local minima, and, a’, b, andb’ are passes to
overcome. To the rightincreasing values of) of the last passes is

b)) a Switch

*Email address: Denis.Bartolo@espci.fr the continuum that describes unbound statesClassical single-
TEmail address: Imre.Derenyi@curie.fr path scheme(b), (c), and (d) Unbinding can occur through two
*Email address: armand@turner.pct.espci.fr alternative routesr and 3.
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FIG. 2. Classical picture for a single-path energy lands¢épe
[Fig. 1(@)]: the probability densityP(f) for unbinding at force is
plotted in gray scale as a function of the pulling rat&he typical
forcefy, (locus of the maximum oP) is highlighted with a dashed
line. Plotted curves correspond B, =12, X, =0.5, EA=9, Xa
=1, andE =20, x,=2. At very low pulling rates unbinding is not
affected by the pulling and proceeds over baraavith a “sponta-
neous” ratewqoexp(—E,). For larger pulling rates the typical un-
binding forcef,, increases linearly with log], with a slope pro-
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FIG. 3. Switch geometryFig. 1(b)]: same quantities as in Fig.

2, forE,;=20, x,=0.5, andg,= 30, x,= 2. Unbinding is controlled

by escape ovea at low pulling rates, and oves for higher values

of r: the slope of the unbinding fordaverage or typicaldecreases
from 1Kk, to 1K, .

state “0” (i.e., Ep=0 andxy=0). Intermediate barriera’,
b’, and local minimaA andB may exist, with energieg,; ,
Ey , Ea, andEg (all positive, and projected distances: ,

portional to 1%, . Increasing fgrther the pulling ratelleads to Ay, Xa, andxg. In line with typical values from experi-
steeper slope:1/x,, corresponding to escape over the inner barnerments we choose to write energies in units kT
a’. These asymptotes are depicted with solid lines. The dashe,dv4 pi\l nm and distances in nm

arrows along the drawings indicate which pairs of energy well and For these quasi-1D-situations, we follow the strategy

barrier are probed in these asymptotic limits. Inset: mean rupture . ; . .
time against pulling rate. adopted for single-path geometrigd] and use an adiabatic

Kramers theory, an efficient way of obtaining semiquantita-
tively correct answerfl4]. Practically, we describe the time
evolution of the probabilities of being in the potential
minima (bound statgsusing transition rates given by Kram-
Ers formula for the instantaneous energy profile. We further-
more assume the attempt frequencies to be constant and all
equal towg, which sets the time scale in the problem, so that
e transition rate from minimurhover the neighboring bar-
riis wgexd—(E—E)+f(t)(x—x)]. For the plots of
Figs. 2—6 we take arbitrarilypy,=10° s 1. Jump over the
rightmost barriera or b) of either path corresponds to rup-
ure leading to escape 10— .

numeroug conformational degrees of freedom, and the con-
figurational space is clearly multidimensional. This allows
for complex energy landscapes and various topologies for th
structure of their valleys and pasdqd£]. Only the probing
(pulling) is unidirectional. We note in passing that even for
more macroscopic sticky systems, usual adhesion tests f
soft adhesives often show up hysteresis loops associated Wi}
the existence of more than one degree of freedd&j. We

do not attempt here an exhaustive exploration of effects al
lowed by the multidimensionality of the phase space, bu{
rather focus on a few simple two-path topologiewm. 1), to We focus on the case where eitligy; or Ey, is larger than
argue for the three points mentioned above. Their experimerE 50 thata is the “natural” route by which battachment and
tal relevance is emphasized by the use of realistic values fodrgtachment proceeds the absence of pullingiVe also limit
the plots throughout and by direct comparison to experimen

tal data in Fig. 6. ourselves to simple scenarios in which the force is linearly

increased in timd =rt.
For further reference we recall the classical single-path
scenarig Fig. 1(a)] in Fig. 2 for a typical set of parameters,

. ) ~__and then we turn to a brief analysis of the three geometries
We consider three simple examples, sketched in Figsye have introducefFigs. 1b), 1(c), and 1d)].
1(b), 1(c), and 1d), where detachment can proceed through

two alternative routesr and 8. A common set of notations
can be ascribed for all casésig. 1). From the fundamental
bound-state “0,” the routex for escapddetachmentis over

barriersa, of heightE, located at a projected distancg

from “0.” Alternatively, escape can occur through brangh  proceeds through path at weak pulling rates ag,<E,,
over barrierb, of heightE,, and projected distance,. All but if x,>X, it switches to pathB for pulling forcesf large
energies and projected distances are measured relative to tarough such thd,— fx,>E,— fx,. The resulisee Fig. 3

MODEL

FIRST CASE: SWITCH

Topology as in Fig. (b). Barriera andb are both located
downwards in the pulling directionxg,x,>0). The escape
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FIG. 4. Harpoon geometiyFig. 1(c)]: same quantities as in Fig. 100 ..' y B b & 1
2, for E;=20, x,= —2, E,=40, andx,=2. Pulling impedes un- & " path p L
binding through the spontaneous routgeso that for strong enough 50 , - 1
pulling, escape is controlled by the higher barteresulting in a \ay
jump of the typical unbinding force and time. Inset: the average 0 = 76 =
unbinding time is nonmonotonic. 10 10

r [pN/s]
is then a succession of two straight lines of decreasing slopes
in the[fy,,log(r)] plot, a feature forbidden in the single-path
picture. The first slopes1/x,) is characteristic of the spon-
et oy A o B D 18 s o] o i, 137500
T - R - =7.5,x,=0.25,E,=17.5, andx,= 0.45. (b) Classical single path
for the rupture of two bonds in series, which is a particular Fig. 1(a), with E, =10, X,y =0.2, Ex=3.75, x4=0.37, andE,

=17.5, x,=0.45.(c) Combo two-path geometryFig. 1(d)], with
E,=17.3, x,=0.32, E,, =13, x,,=0.4, Eg=7, xg=0.6, andE,
=20.8, x,=0.68. Thanks to the two-path topology, the third sce-
nario is able to account for a slight decrease of the slope at inter-
mediate values.

FIG. 6. Experimental data on the L-selecfiti7] (circles and
curves from quite diverse energy landscapes that all provide good
fits. (@) Classical single path of Fig.(d), with the numbers deduced

80

60}

case of this switch topologfQ]. In the trivial casex,>x,
route B is never explored so that the single-path picture ap-

Z 40} .
o plies.
- To clarify the calculation leading to the plot in Fig. 3, we
describe the evolution of the probability of attachmpfit)
20 at timet of the system initially attached at tinte=0 [ p(0)
=1] by
0 ST ‘ Bb dp
100 102 104 106 108 E(t): —wo(efEaJrf(t)xa-F efEbJrf(t)Xb)p(t)_ (1)

r [pN/s]

FIG. 5. “Selective harpoon” from the combo topolod¥ig. Solving Eq. (1) nume.rllcally W'.th f=rt yields p(t) and
1(d)]: same quantities as in Fig. 2, f&,=20, x,=2, Ey = 10, therefore Erl\e probability density for the unbinding force
X, =0.5, Eg=5, Xa=1.5, E;=27, andx,=2.5. At low puling  P(f)=—r""dp/dt. In the plots, this distribution is sug-
rates the spontaneous pathis used. Upon increase of larger ~ dested through a gray scale, while the location of its maxi-

forces are employed and the minimunbecomes favorable as Mum which defines the typical valdg,,, is highlighted with
compared to 0. A€, is not too large, equilibration of population @ dashed line. Similar procedures are used for the following

then empties 0 iB, so that escape eventually occurs frBroverb, examples, with thermal equilibrium between the bound states
resulting in a higher straight line of slopel/(x,—xg). At even  assumed as initial condition.
higher pulling rates, becausg>x, , the escape ovea becomes

faster than this equilibration, and pathis used again. Barriea SECOND CASE: HARPOON

controls the behavior at low and high rates, but in an intermediate

window, a stronger bonding is provided by barrierThe typical Topology similar to the previous one but with<O [Fig.
(dashed lingor average unbinding force is nonmonotonic. 1(c)]. The main feature here is that as the pulling force in-
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creases, the probability to escape ozelecreases. Therefore ening of the binding complex for a given window of pulling
the system gets “stuck” in rout@ [15]. If the barrierE,, is  ratesr (selective harpoon

infinite [left side of Fig. 1c)], there is a finite probability
p..= exy — wo(r|%,)) ‘e E’] that unbinding never occurs. For
a finite but high barrierE,, pulling eventually results in The analysis of the three simple examples above has un-
unbinding but at high rupture forcésee Fig. 4 The topol-  veiled a wide range of behaviors that one may expect from
ogy thus allows here to form “easily(i.e., over barriem) a  dynamic force spectroscopy measuremdsee Figs. 3-b
“harpoon” sticker that can resist strong pulling. Correspond-Conversely, we also stress the poiii) mentioned in the
ingly the mean unbinding time increases first with pulling Introduction: even clear-cut outcomes of experiments, such
rate (a phenomenology connected to the negative resistandds the succession of two lines of increasing slopes, do not
analyzed in Ref[16]), before decreasing for larger values constitute unambl_guous signatures of the energy Iand_scapes.
when activated escape ovedominates. Note that the prob_ To substantiate thlS, eXperlmentaI data on the L'selectln from
ability distribution P(f), now consists of two separate en- [17] are plotted against calculations corresponding to sensi-
sembles, which coexist over a narrow region of pulling ratesPly different landscapes in Fig. 6. Not only are the typical
This is in contrast with Fig. 3 where there is a continuousand average unbinding forces very similar in the three cases,

DISCUSSION

evolution of a single cloud. but so are the probability distributions for most values of
so that it is difficult to discriminate between the three land-
THIRD CASE: COMBO scapes from this sole set of data. This would require addi-

tional information, that could, e.g., be obtained using other

The alternative route consists of two barriers and a locatemporal sequences than the simptert.
minimum B [Fig. 1(d)], and we focus on the case whétg Eventually we point out that the harpoon geometries pro-
is smaller than the two others. posed here constitute a very obvious paradigm for efficient

Thanks to the increased complexity and number of paramstickers. Attachment of the sticker can proceed through route
eters in this case many scenarios can occur, covering features with a possibly not too high barrieE,. The harpoon
already unveiled in Figs. 2—4e.g., switch and harpoon configuration then allows us to benefit from the much stron-
More intricate pictures can also show up, as depicted in Figger b barrier for a given window of pulling forces, making
5. An explanation of this example is given in the caption,the sticker more efficient in these conditions. This “hook”
illuminating how for low or high pulling rates barriercon-  design is obviously a favorable strategy for adhesion com-
trols the behavior, whereas for intermediate values, the se@lexes, the function of which is to maintain adhesion under
ondary and stronger barrierlimits unbinding. Two features the action of well-defined tearing stresses. It would be sur-
are striking. First, the unbinding fordéypical or averageis  prising if advantage was not taken of this by some biological
no more monotonic. Second, branghresults in a strength- systems.
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