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Chaos in two-loop negative feedback systems
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Multiloop delayed negative feedback systems, with each feedback loop having its own characteristic time
lag (delay), are used to describe a great variety of systems: optical systems, neural networks, physiological
control systems, etc. Previous investigations have shown that if the number of delayed feedback loops is
greater than two, the system can exhibit complex dynamics and chaos, but in the case of two delayed loops
only periodic solutions were found. Here we show that a period-doubling cascade and chaotic dynamics are
also found in systems with two coupled delayed negative feedback loops.
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[. INTRODUCTION equations has to be restricted to special cases due to the high
dimensionality of the problem. The linear stability of sys-

A variety of oscillatory phenomena are observed in biol-tems with two time delays has been studied by several au-
ogy with well known examples in neurology, cardiology, he-thors [24—29, but there is not a complete analysis since
matok)gy' and eco|ogy_ A fundamental characteristic of thesgiﬁerent authors consider diﬁerent subsets of the parameter
dynamical systems is that their behavior depend on time deSPace. As parameters are varied, one usually observes a Hopf
|ays [1_5] Time de|ays arise as a consequence of intrinsi(‘pifurcation Ieading to oscillations. The current work was un-
biological and physical processes such as reproduction glertaken to search for chaotic dynamics in a system with two
cells and organisms, conduction of excitation, and diffusiordelayed negative feedback loops. A nonlinear model \ith
of chemical signals. For instance, control in physiologicaldelayed negative feedback loops is presented in Sec. II. In
systems is accomplished by multiple negative feedback loopgec. Il we present a linear stability analysis fo=2, and in
that are, in general, delayed. A basic question is whether th@€c. IV we demonstrate bifurcations and chaotic dynamics in
fluctuating dynamics observed in physiological and othef@ System with two delayed negative feedback loops. We dis-
biological systems are due to the instabilities in the basi€uss the results in Sec. V.
control systems, or may be due to other factors such as a
fluctl_Jatmg and noisy environment. _ Il. THE MODEL

It is well known that a single-loop negative feedback sys-
tem with a time delay can display stable limit cycle oscilla- We consider a system dfl delayed feedback loops de-
tions, but it does not exhibit cha¢5—8] due to the mono- scribed by the following equations:
tonicity of the feedback function. A single-loop system will
exhibit chaotic dynamic only if it has mixedhe correspond-
ing function has an extremunfeedback[2,8—13. Most
physiological control systems have multiple negative feed-
back loopgheart rat¢13-13, blood pressurgl6,17, motor  where the subscript; indicates the delayed time argument
activity [18—22), and the dynamics result from the interplay (t—7.), and
of the various feedback controls. Although it would appear
that multiple delayed feedback loops could provide benefits N
to the organism, with some feedbacks operating quickly p— Nflz X ©
(short delay and others slowlylonger delay, mathematical =
properties of systems with multiple delays are not well un-

derstood. Somewhat in opposition to the view that multiple. . : .
delayed feedback loops are more stable than single loo is the variable of primary interest controlled byfeedback

F180ps. The feedback control &f takes place only by way of

[4,20), it has been shown th.afc multilooped delayed .negat]v%he variableP that we have assumed to be the averagg, of
feedback systems may exhibit complex dynamics, includin L ; ;
ust for simplicity (we could have considered a weighted

period-doubling bifurcations leading to chaos, if the numbe average with the weights being treated as parameters

of delayed negative feedback loops is greater than two . . ! .
[18,23. However, the conditions needed for chaos are not The functlonsFi(PTi) are nonlinear functions depending

known, and chaos has not been found to date in systems wif! P at timet—7; . Since we are interested in negative feed-
two negative feedback delayed lodjds,23. back, we assume th&t (X, ) is a monotonically decreasing

The mathematical analysis of multiple-delay differential function,

5<i=Fi(Pri)—Xi, i=1,...N, (1)
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Fi(P.)= —Hin‘ P 0<6;<1, () = [ stable region
wheren; and 6; are parameters governing the steepness anc 204
threshold of the sigmoidal functiofr;, respectively. For
simplicity we shall considen;=n, Vi [18,23. Under this n 154
assumption Eq9.l) lead to the following multidelayed dif- 1
ferential equation foP(t) (2): 10

N

. 1
P()=—P(t)+ ;1 P

o" 5

' (4)

The above Eq(4) can also be used to describe one neuron
havingN self-inhibitory delayed loops, and constitutes a gen- 1
eralization of the equations used by Gopalsamy and Leung
[30] to investigate the dynamical characteristics of a firing
neuron.

It should be remarked that in the limit—« the Eq.(4)

t.)ec.;o.mes piecewise linear and can be.read||y mtggrated. Th'lsne linear stability of the stationary state is then determined
limit is very useful to check the numerics of the finitease by the roots of the associated characteristic equation

that requires numerical integration.

FIG. 1. Stability region in the planed(,n) for fixed parameters
value 7,=0.267,=2.000,=0.491. The parametef; is in arbi-
trary units, andh is dimensionless.

As already mentioned, Ed4) cannot exhibit chaos iN 12
=1 [5-8], and it has been found to exhibit complex dynami- ANtl=—3 > gi(P.n,6)exp(—\1). (10
cal behavior ifN=3 [23]. We are here interested in the case i=1

N=2 for which only periodic or quasiperiodic dynamics ) -~ ] .
have been found. In the following section we make the linear e stationary stat® is asymptotically stable if all roots of

stability analysis of Eq(4) in the caseN=2. Eq. (10) have negative real parts. The stability analysis is
particularly difficult due to the presence of two different ex-

ponential functions in the eigenvaliie As one parameter is
varied a multiple delay differential equation can go through a
SettingN=2 Eq.(4) becomes series of stability switches.
Several authors have investigated the stability regions in a
. 12 o number of special cases. Hale and Hu&84g] studied the
P(t)=—P(t)+ > 2 - (5) linear case using as parameters the delgyand 7, while
=16, + P2 Mahaffy, Joiner, and Zak?26] considered the range 0
<(11/15)<1 and studied the stability region in a three-
The steady-stat® is obtained as a solution of dimensional parameter space.l@eand Campbel[25], Li,
Ruan and Wei 28], Shayer and Campbe]R9] considered
on the simpler case in which the left-hand side of the character-
ra—— (6) istic Eq. (10) is \ instead of\ + 1. As stated by Blair and
=16, +P Campbell[25] each of those works has filled in some piece
) . of the puzzle of the two delay stability problem.
Introducing the variable The above characteristic E(L0) does not have real roots
_ that are positivdsimply because the right-hand side of Eq.
oP(t)=P(t) =P, (7)) (10) is negativé so that the stationary stafe will become
] ] ) unstable via Hopf bifurcation, thus giving rise to an oscilla-
and keeping only the linear terms of the Taylor expansion ofsry solution. The systems with biological motivation are
Eq. (5) we obtain the linear delay differential equation, mainly those with one feedback loop operating quickly
(short delay and another slowlylonger delay. With this
consideration in mind, we have set=0.26, 7,=2.00, and
we computed the stability region in the parameter spghce
for #,e[0.35,0.75. The boundary at which the Hopf bifur-

IIl. LINEAR STABILITY ANALYSIS

d 134
— 5P(t)=—6P(t)— = >, g;(P,n,6,) 8P, (8)
dt 215 i

where cation occurs corresponds t@,(,n) values for which Eq.
(10) has a single pair of roots that are pure imaginary,
n Re (\)=0. In Fig. 1 we display the results whea,
gi(P,n,6,)=n(P)""1 — 5 (99 =0.491, and we can see that the stationary state is stable for
(67+P") n=<11. For the range of parameters considered by us, oscil-
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latory behavior is observed far finite greater than 11. The
single feedback loop system with parameters 2.00¢ 0 -~
=0.491 is stable fon=<2.5 while the single feedback loop
system with parameters=0.26=0.396 is stable fom =
=<11. Therefore the addition of the quick loop renders the i -
system more stable. 6, %% S
0.4
IV. BIFURCATIONS AND CHAOS i
In order to demonstrate the existence of chaos in a systen 03

with two delays, we shall first look for aperiodic solutions T T T T T T 71
and then check if they result from a period-doubling cascade 03 04 %‘5 08 07
We shall consider the cases of finitgsmooth functionF), !
and then—ce limit (piecewise constant functidf). FIG. 2. K(6,,86,) for fixed 7,=0.26, 7,=2.00,n=45 plotted

on the plane ., 6,) (arbitrary unit3. We used 100 crossings of the
Poincaresection, soK =100 corresponds te- black. Integration

A. Nonlinear equation (finite n)
step 0.001.

For fixed values oh, 7, andr, Eq. (5) is integrated for

each point of the planefg , 6,), with 6, and 6, in the inter-  gisplayed on the right-hand side of Fig. 3 indicates that the
val[0.25,0.73. A constant functiof P(t) =0.4 fort<0] has  attractor for 6, =0.634,6,=0.704 is quasiperiodic, while
been used as an initial function in all the cal_culatlons Préthe attractor forg,=0.396,6,=0.491 is chaotic. Figure 4
sented below. We used the three-step Gear integf8t;  shows the bifurcation diagram of the systéhon the plane
double precision, using time step of 0.001 for each point Of(p,n), with parametersd,=0.396, 6,=0.491, 7,=0.26,
the plane ¢, ,6,). Then, for each pointd, , 6,), we consider  anqr,=2.00. For each value of the system is first allowed
the time series formed by determinif{t—2.00) for suces-  tg settle down(the transient is discardp@nd then the suc-
sive crossings of the PoincasectionP(t)=P with dP/dt  cessive values oP; are plotted for two hundred iterations.
<0. We shall denote blp; the value ofP(t—2.00) attheéth  As n increases from 30 through 47, the bifurcation diagram
crossing of this threshold. displays a cascade of period-doubling bifurcations and then
The plot of P, ; vs P; is called the Poincarenap. The the inverse cascade that leads to periodhat exists for 39
number of points in the Poincameap indicates the period of <n<43). The attractor fon=46, displayed at the top of
the corresponding orbit, i.e., one point corresponds to afig. 3, is inside the chaotic region existing beyond the
orbit with period 1, two points to an orbit with period 2, etc. period-3 solution and is followed by another period-doubling
An infinite number of points indicates the presence of quacascade. Figure 5 displays the attradtime delay embed-
siperiodicity or chaotic dynamics. In order to identify those ding) and the corresponding Poincameap for n=35. The
points or regions in the space of parametefig,§,) that Poincaremap has the extremum characteristic of chaotic dy-
may exhibit complex or chaotic dynamics, we discretize thenamics[34].
Poincaresection in segments of size 0.0032]. For each Another way of characterizing a chaotic attractor is by the
point on the plane {;,6,), we count the number of seg- correlation dimensio, and by a positive Lyapunov expo-
ments,K(6,6,), that are visited by the trajectory of the nent.
corresponding attractor. The gray scate[proportional to

K(64,6,)] is used to represer at a point of the plane 1. Correlation dimension
(01,0): the maximum(minimum) value ofK corresponds The correlation dimensio, is estimated from the cor-

to black (white). In Fig. 2 we display the results fon relation sum{35]
=45,r,=0.267,=2.00. The dark regions correspond to pa-

rameter values that may exhibit either complex dynamics or 1 M oM

quasiperiodicity. In fact we expect the black regions to cor- Cy(r)= > > 0(r—|xi—x) (12)
. L e . . M i = “ J ki/s

respond to quasiperiodicity as in this case the two- pairs j=1 k=j+w

dimensional embedding33] obtained by plottingP(t) vs
P(t—2.00) will fill the plane more uniformly than in the where x; are d-dimensional delay vectors\l ,,is=(M —d
case of complex dynamics, thus corresponding to larger val+1)(M —d—w+ 1)/2 is the number of pairs of points cov-
ues ofK. ered by the sumayl is the number ofd-dimensional delay

In the dark gray regions in the neighborhood &f  vectors,0 is the Heaviside step function amdwill be dis-
=0.400,0,=0.500, and in the neighborhood of; cussed below. On sufficiently small length scale, and when
=0.600,0,=0.700, we found both complex dynamics andthe embedding dimensiod exceeds the dimension of the
quasiperiodicity. Figure 3 shows two examples of time delayattractor[36], C4(r)~rP2. Since the attractor dimension is
embedding(left-hand sidg and the corresponding Poincare not knowna priori, one checks for convergence of the esti-
map (right-hand sidg At the top of Fig. 3 we display the mated values ob, with d.
casef;=0.396,0,=0.491, and at the bottom we display the = There are many practical problems associated with the
cased, =0.634, 6,=0.704. The corresponding Poincanap  computation of the correlation dimensif#i7,38. In order to
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052 0.51
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= dx/dt < 0
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FIG. 3. Phase spade(t) vs P(t—2.00) (on the lef}, and corresponding Poincaneap (on the righj. Parameter values used at the top
(bottom): n=45, ,=0.396,6,=0.491 (=46, §,=0.634,6,=0.704). The same delays were used in both casgs0.26,7,=2.00.
Integration step 0.000R is in arbitrary units.

provide a consistent estimate for the correlation integral, the
correlation sum should cover a random sample of points
drawn independently according to the invariant measure or
the attractor. Successive elements of a time series are nc
usually independent. In particular, for highly sampled flow
data, subsequent delay vectors are highly correlated. It is
important to exclude temporally correlated points from the , -
pair counting by ignoring all pairs of points in Eql1)
whose time indices differ by less than wherew is called

the Theiler windoww [37]. With O(M?) pairs available, the
loss of O(M) pairs is not dramatic as long as<M. At the
very least, pairs with =k ought to be excludefB9]. Other-
wise the strong bias toward,= 0 (the mathematically cor-
rect value for a finite set of pointswill reduce the scaling
range drastically.

Parameters in our correlation sum algorithm are, as usual,
the embedding dimensiod, the time delayr,, and the FIG. 4. Bifurcation diagram of Eq5) by varyingn, with fixed
Theiler window that was set tw=2r,. All available pairs  parameters valu#,;=0.396, 6,=0.491, ;,=0.26, andr,=2.00.
that satisfy the Theiler criterion contribute to the sum in Eq.Integration step 0.000F in arbitrary units,n dimensionless.
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050 6, = 0.396 P() = 0.47
] 0, =0.491 0.495 dx/dt < 0

0.48
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0.444 0.485 -
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T T T T T 0470 T T T T T
036 038 040 042 044 046 048 050 0.470 0.475 0.480 0.485 0.490 0.495

P(t-2.00) p

0.36

FIG. 5. Phase spade(t) vs P(t—2.00) (on the lefy, and corresponding Poincaneap (on the righj. Parameter values used= 35,
71=0.26, 7,=2.00, andf, =0.396, 6,=0.491. Integration step 0.000R,in arbitrary units.

(11). The slope of the curve lggC4(r) vs log(r) is the cor-  these local rates over the whole invariant set, and thus con-
relation dimensiorD,. In the Fig. 6, we have plotteB, vs  Sists of as many exponents as there are space directions. The
log,(r) of the attractor displayed in the Fig. 5, for several Most prominent problem in time series analysis is that the
values of the embedding dimension with delay 2.00. Withphysical phase space is unknown, and that instead the spec-
increasing embedding dimensioB, converges to a curve trum is computed in some embedding space. Thus the num-
with well defined plateau @ ,~2.1 for the attractor shown ber of exponents depends on the reconstruction, and might
in the Fig. 5. We also did the calculation for the attractorPe larger than in the physical phase space. Such additional

shown at the top of Fig. 3, and determinBd~1.8. exponents are called spurious, and there are several sugges-
tions to either avoid therf¥1] or to identify them. Moreover,
2. Maximal Lyapunov exponent it is plausible that only as many exponents can be determined

. . . ... . fromatime series as are entering the Kaplan-Yorke formula.

Chaos arises from the exponential growth of infinitesimals yejeyant, and positive, feature of the Lyapunov exponents
perturbations, together with global _foldlng _mechamsm_s s that they are invariant under smooth transformations and
guar_a_nte_e boundedness of the solutions. This exponential Are thus independent of the measurement function or the em-
stability is characterized by the spectrum of Lyapunov expoyeging procedure. They carry a dimension of inverse time
nentg[40]. If one assumes a local decomposition of the phas%nd have to be normalized to the sampling interval.
space into directions with different stretching or contraction 1o maximal Lyapunov exponent can be determined
rates, then the spectrum of exponents is the proper average gfihout the explicit construction of a model for the time

series. A reliable characterization requires that the indepen-

4

e dence of embedding parameters and the exponential law for
SN the growth of distances are checked explici#h?,43.
--------- d=3 We implemented the algorithm introduced by Kaf42]

S [ R d=4 by choosingM reference points; of the time series in the
—rod=5 embedding space. Denoting bi(x; ,€) the set of reference

points x; with distance|xj—xi|<e, we then compute, as a
function of |, the average of distances; .| —x;.| over all
points inU(x;,€). This is done for theM reference points,
and we finally compute

1V 1
S(e,l)=— In| -— X=X 1| |
(€,1) Vi Zl Uix.o)] XjeUE(Xi,e)| j+1~ Xi+1]

44 42 0 8 6 -4 2 (12
Log,(r)

where |U(x;,€)| denotes the cardinality otJ(x;,e). If
FIG. 6. D, of the attractor shown in the Fig. 5. Each curve S(E,') exhibits a linear increase with identical Slope for all

corresponds to a different embedding dimensias indicated. In-  embedding dimensiors larger than somely, and for a rea-

tegration step 0.000 02. Both axes are dimensionless. sonable range o€, then this slope can be taken as an esti-
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mate of the maximal Lyapunov expone2]. Like other a) b)
guantities, the maximal Lyapunov exponent estimate may be -
affected by correlations between reference points and their 0.35 + : | 0354
neighbors. Therefore, a minimum time intervalfor |i —j]| ’

was considered in the computati¢as in the calculation of 0.30 0.30 -

the correlation dimensiob,).

We have calculate®(e,|) for the attractors displayed in
Figs. 3 and 5, with &1<200 and e=2.3x10 % 4.6 0.25 1
X 1074,9.2<1074,18.4<10"*. We have observed a clear Po
linear increase o as function of, reflecting the exponential
divergence of nearby trajectories. The slope is practically the
same for 2d=<5 and the maximal Lyapunov exponent
equals approximately 0.095 § for the attractor in Fig. 5.
We have obtained practically the same value for the maximal

0.25
0.20 -}

0.15

0.15 4

Lyapunov exponent of the attractor in Fig. 3. We used the 0.10 Aq——— 0.10 L ——7—
Theiler [37] window w=57,. The positive maximal 068 070 072 068 070 072
Lyapunov exponents confirm that the attractors in Figs. 3 and T, T

5 are both chaotic.
FIG. 7. Bifurcation diagrams varying,: (a) using the step func-

tion; (b) using function F (3) with n=400 (integration step
0.000 05. Parameters kept fixed,=2.300,=0.2300,=0.217.P
is in arbitray units, and- is in arbitrary time units.

In the limit whenn;— <, the nonlinear sigmoidal function
F in Eq. (3) is a step function, and Ed5) is a piecewice
linear equation and can be integrated explicitly. Comparing
the dynamics obtained by explicit integration of the piece-
wise linear equation with the dynamics using the numerical
methods fom; large but finite provides a way to check the
numerics.

For the parameter values used in Sec. Il A, the pleceW|56A
linear equation exhibits only periodic solutions. Likewise,
the nonlinear Eq(5) with those parameters value exhibits
only periodic solutions fon>55. After making a search in
the parameter spadesing the method described in the be-
ginning of Sec. IllA we selected the parameter valugs
=0.650,=0.2307,=2.306,=0.217. Keeping fixed 6, — e
=0.2304,=0.2177,=2.30, we constructed the bifurcation 01 02 03 04 05 01 02 03 04 05
diagrams by varyingr;. The bifurcation diagrams for; P(t-2.30) P(t-2.30)
€[0.67,0.72 are displayed in Fig. 7: the result for the piece-
wise linear equatioristep function is displayed on the letft,
and for the nonlinear E45) with n=400 is displayed on the ! !
right. We selected the valug =0.715 as a possible candi- . | / 034 }/"f\
date for complex dynamics, and in Fig. 8 we display the ;- g :
phase plane embeddirigt the top, and corresponding Poin- i ;
caremap (at the bottor, where the piecewise linear case is ,* 1 1. o ,
labeled(a), and the nonlinear case with=400 is labeled v R,
(b). Figures 7 and 8 show that the piecewise linear equatior g24 '™ 024 i
(limit n—<) and the nonlinear equation with finite large T “ : \_\
exhibit similar dynamics. The Poincareaps displayed in | T KL | T
Fig. 8 are not typical of those found in systems with chaotic i B
dynamics, but are similar to those found in quasiperiodic ' T r T T T r T
dynamics. Indeed, the solutions with initial conditioRét) 02 P : ‘P
=0.40 fort=<0, and P(t)=0.39 fort<0 do not separate ‘
exponentially, thus confirming quasiperiodicity. Although for £, 8. Phase plane embedding and corresponding Poincare
the parameter ranges considered here the piecewise line@ap for the fixed parameters value,=0.715,7,=2.30, 6,
equation exhibit only periodic and quasiperiodic solutions,=0.230,6,=0.217:(a) piecewise linear systerm(- limit); (b)
we cannot exclude the possibility of it exhibiting chaotic nonlinear systent4) with n=400 (integration step 0.000 0Q1P in
dynamics for other parameters values. arbitrary units.

B. Piecewise linear equation

a) b)

i+1
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V. DISCUSSION AND CONCLUSION feedback loop®N=3 chaos only exists in a very small range
of parameter values. Likewise we find that fée=2, in this

The results presented here show that two-looped delaye :
class of mathematical model, chaos appears to be a compara-

negative feedback systems can display low dimensional cha- e
otic dynamics in the case of smooth functiBiEg. (3)]. As %vely rare phenomenon. Nevertheless it is important to stress

the steepness of the delayed feedback is changed by varyirtiha;r?ué m?;gesr?rit'fsl ;?/g?ael é?sirggdvczec\gmﬁti;o tiﬁat
n, there is a sequence of period doubling bifurcations a%haos i;/a rare Eenomengn if’ a weighted averal eyis used
shown in Fig. 4, and chaotic solutioflsw dimensional cha- P 9 9 K

otic attractoy found for n<<50 as indicated by the positive the weight also being a parameter that can be varied.

) - In conclusion, in a situation such that chaos is not a rare
maximal Lyapunov exponent. For larger valuesipperiodic henomenon, it becomes a possible explanation for the fluc-
and quasiperiodic dynamics were observed. P ' P P

tuations observed in physiological control systems. Finally,

Biological systems display complex dynamics and the.yas the equation of the typ®) is used in neural networks

also contain multiple-delayed feedbacks that play a role i usually in this case the function tanh is used instead of the

controlling the system dynamics. In most cases, the origin Or;unction (3)] our results might play an important role in de-
the complex dynamics is not well known. With the exception . "~ o ght play P
signing artificial networks.

of a comparatively small number of cases in which system
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