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Impact of regulatory proteins on the nonlinear dynamics of DNA
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In this paper we examine the nonlinear dynamics of a DNA chain whose exciton modes are affected by
regulatory proteins that may become bound to the DNA chain by hydrogen bonds. The dynamics of the DNA
chain is described by the Peyrard-Bishop model. Since this model gives rise to large-amplitude broad oscilla-
tions of base pairs, we consider the impact of attached regulatory proteins on the so-called breathers or bubbles.
Assuming that an ideal gas of bubbles may exist in the DNA chain at physiological temperatures we adopt a
statistical approach to calculate the average size of base-pair stretching under the prevailing conditions.
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[. INTRODUCTION class of specific regulatory proteins, which are attached by
hydrogen bonds to a DNA chain. We conjecture that these
Deoxyribonucleic acidDNA) is doubtlessly the most im- proteins, possessing a well-known carbon oxide stretching
portant biomolecule. Its double stranded helical structure unmode could resonantly impact on the DNA dynamics in-
dergoes a very complex dynamics and the knowledge of th&reasing the magnitude of stretching base pairs involved in
dynamics provides insights into various related biologicalthe breather's dynamics. In Sec. IV we present a discussion
phenomena, such as transcription, translation, and mutationdnd conclusions regarding the feasibility of this approach in
The key problem in DNA biophysics is how to relate func- €xplaining the role of regulatory proteins in controlling gene
tional properties of the DNA with its structural and physical €XPression.
dynamical characteristics. In this paper our aim is to estab-
lish a plausible relationship between the regulation of tran- 1l. THE PHYSICAL CONCEPT OF THE PB MODEL
scription processes and the nonlinear dynamics of DNA. IN DNA

The possibility that nonlinear effects might concentrate The B-form DNA in the Watson-Crick model11] is a

the vibrational energy of DNA into localized solitonlike ob- double helix consisting of two strané andB, (see Fig. 1

jects was first contemplated by Englanderal. [1]. Al- : e ) . .
though several authof2-9] have suggested that either to- with the characteristic dimensions depicted. Molecular
masses of nucleotideconsidered without adjacent sugar

pological kink solitons or bell-shaped breathers would be

good candidates to play a basic role in the DNA nonlineatgro'“'pg range from 340(cytosing to 380 r_nu(guamne).
Eherefore, it is apparent that the four constituent base nucle-

dynamics, there are still several unresolved questions in thiotides(adenine cytosine, quanine, and thymide not dif-
regard. The hierarchy of the most important models for non; &Y ' 9 ! y

linear DNA dynamics was presented by YakusheVit@. fer 'ﬂ thgw mass by more than 13%|'Ithl.JS mhc()jm.og%mtlis d_uel
In the present paper we have strongly relied on the exJEO the base sequences are usually ignored In biophysica
tended model for DNA dynamics, first proposed by Peyrar(fnOOIeIS of DNA dynamics.
and Bishop[7]. In the following, we first outline the main
features of that model, which will be henceforth referred to
as the PB model for short. In that context we have examined
in detail the necessary conditions for the existence of
breather excitations in DNA chains. We then focus our atten-
tion on the very important biophysical situation where the
breather solution of the PB model is suspected of playing the
role of a conformational agent in the process of gene expres-
sion. In that respect, the impact of regulatory proteins on
breather dynamics was examined by the method of nonequi-
librium statistical physics allowing the calculation of an av-
erage stretching distance of the base pairs involved.

The present paper is organized in the following way. In
Sec. |l, for clarity and conciseness we outline the PB model
primarily proposed to describe the process of local opening
of DNA base pairs(or local melting of the double heljx
Then we have attempted to shed more light on the still some-
what vague parameter values of the PB model. This is im- FIG. 1. Sketch of the double helix. The sugar-phosphate back-
portant in the determination of the necessary conditions fobone is shown as ribbons. The bases are depicted as short transverse
the existence of breather solitons. In Sec. Ill, we present ongds.
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both the o+ 4)th and the §—4)th bases of the other strand.
Introducing the transverse displacements, v,, of the
bases from their equilibrium positions along the direction of

hydrogen bonds the PB Hamiltonigh3] for the DNA chain
is given in the form

Pl Pro
Hpr= — 4+ —=
3 (o
(c)

+ %k[(un_un—1)2+(vn_vn—1)2]

v, /

+%K[(un_Un+4)2+(un_vn—4)2]
FIG. 2. (a) Schematic representation of the displacements in the
DNA lattice; (b) the corresponding Morse potential between base +D{exd —a(u,—v,)]—1}2). (2.1
pairs; and(c) a bubble defect.
) As already mentioned\ stands for the mass of a base
Consequently, a common mabkis used for the bases, cleotideP,,=Mu, andP,,=Mu, are the base momenta,
and the same coupling constdntor the nearest-neighbor | (or K) is the harmonic elastic constant of the longitudinal
har)momc interactions along each strand is assumed, see Fk%r helicoida) springs. FinallyD anda are the depth and the
2(a).

inverse width of the Morse potential well, respectiveébee
The strands are coupled to each other through hydrogepig_ 2Ab)].

bonds that are supposed to be responsible for transverse dis-t js more convenient to describe the transversal motion of
placements of base pairs. According to the rule of Chargaffye o DNA strands in terms of the center-of-mass coordi-
and co-worker$12] there are only two types of base pairs in ates representing the in-phase and out-of-phase transversal
DNA; A-T andG-C pair, see Fig. 3. AM-T pair is linked by 1,6tions
two, while G-C pair consists of three hydrogen bonds.
Hence, hydrogen bond variability in DNA exhibits a more 1
conspicuous inhomogenity than the corresponding mass dis- Xo=—(Upt+vp),  Yn=—(Uy—v,). (2.2
tribution. v2 v2
Nonetheless, this inhomogenity is neglected in the PB
model and the hydrogen bond interactions are averaged olihe dynamical equations of motion derived from the Hamil-
and modeled by the Morse potentidee Fig. 2b)]. The tonian(2.1) are then
three-dimensional helicoidal structure of the DNA chain im-

plies that neighboring base nucleotides from different strands M X,=k(Xp1 1+ Xn- 1= 2Xn) + K(Xn4a+ Xp_a—2X,) +- -
are sufficiently close to interact through water filaments. This

(2.3
051901-2
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MYn=K(Yn+1+Yn-1=2Yn) =K(Yn+at+Yn-at+2yy) varying envelope. The expansion Hg.8) together with the
o Can scaling in Eq.(2.9) yield the following continuum approxi-
+2v2aD(e” ®n—1)e &, (2.4 mation transformations:

Equation (2.3 describes the well-studied linear waves F(N+1)—F(Z,T)=FAZ,T)el +3F,A(Z,T)e?(?
(phonong while Eq.(2.4) yields nonlinear solitonlike breath-

ers. Consequently, we pay close attention to the nonlinear  F(n+4)—F(Z,T)*=F,4el +2F;,(Z,T)16€%(?
Eq. (2.4) bearing in mind that a stable breather solution may

be viewed as a candidate for long-range interactions alongnd

DNA chains.

According to the original approach of Rgfl3] it is as- & — (2F 11— 2ieoF 11— 02F1)e' + €2Forr
sumed that the oscillations of bases are large enough to be 3 5 5 26
anharmonic, but still insufficient to break the bond since the H(eFrr—diewFr—4ew’Fy)e™ +e.c.,
plateau of the Morse potential is not yet reached. Thus, it is (2.10
presumed that the base nucleotides oscillate around the bot-
tom of the Morse potential allowing the following transfor- where F, and Fy stand for the corresponding derivatives

mation to be safely implemented: with respect to the new variabl&sand T, etc. Following a
rather tedious algebra, we obtain a set of important relations
Vo=€b,; e<l. (2.5 from Eq. (2.6). Equating the coefficients for the first har-

monic (€'°") one obtains
Equation(2.4) can now be expanded to fourth order terms

in ¢, resulting in the following form: €’F 11— 2i ewF 11— 0?F,
. _k K :£{2F [cogql)—1]+2ie/F,sin(ql)
q)n:m(q)n+l+q)nfl_2(pn)_ M(q)n+4+q)n74+2q)n) M 1 1z
— XD+ ead2+ 2BD3) - -- (2.6) 2 2 K
q\¥n n n ' : +e/ Flzzcosqé’)}—M{2F1[005(4q€)+1]

where the new notation is introduced as +4iefFlzsin(4q€)+1662€2Flzz cos4q()}
, 4a’D 3a 7a? — w[Fy+ €X(2aFoF1+2aF} Fy+ 3B|F|2F )],
wq= M a=———, B—T (27)
(2.11

V2
Note that Eq.(2.6) possesses two time scales. The first oneAfter neglecting all the terms witl in Eq. (2.11), a disper-
corresponds to the vibrations of the nucleotide around itsion relation is found to be in the following form:
equilibrium position and the second, much larger, to the
propagation of a collective coherent structure along the DNA s 2 2k 2K
chain. Therefore, one can safely apply the reductive pertur- @~ ~ @g~ yyLcodaé) —1]+ -[cod4qf)+1].
bation method expanding in the small parametand using (2.12
a semidiscrete approximatigt4];

_ From Eq.(2.12 one obtains the group velocity for the wave
@ (t)=F,(ent,et)e'O"+ e[Fy(enl, et) packet as

+[F,(ent,et)]e?9" +c.c+O(€?) ¢
Vg=rrolksinql) — 4K sin(4qe)]. (2.13

and
_ Equating the coefficients fog'©" and e'3°" we link the
0,=ngl — wt. 2.8 !
n=hat—o 28 functionsF,, F,, andF, as follows:
Here, w represents the optical frequency of the base-pair vi- . 2. R
brations,¢ is the distance between neighboring bases in the Fo=ulFal*  Fo=0oF1, (2.14
same strand, and is the wave number whose role will be
) where
discussed later.
Now we consider a continuum limit via a multiple-scale 2
e co - @« B
expansion, where W= Tk o= — P (2.19
1+ —
Z=¢€z, T=e¢€t. (2.9 ng>

This means that the nonlinear excitation that emerges in this Thus, taking into account E§2.14), then again introduc-
picture consists of a carrier wave modulated by a slowlying new independent variables
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S=Z-V,T, 7=¢T, (2.16 between bases @&-T pairs using a surface force apparatus
[15] it was revealed that the range of tAeT forces in water
and equating coefficients witéf in Eq. (2.11), one obtains a s as large as 38 nm and it does not resemble any known
nonlinear Schrdinger equatioNSE) for the leading term  surface force. It has also been shown that a small chemical

F, in the expansion, Eq2.9), change can noticeably modulate the interactions. As our ini-
) ) tial choice we adopt the set of parameter values ascribed to
IF1,+PFisstQ|F|*F1=0. (217 DNAin Ref.[13], reserving the right to a reevaluation of this

Here, the dispersion coefficieRtand the parameter of non- choice at a later stage. The selected numbers are

linearity Q are explicitly given by k=24N/m, a=2x10°m1,
1 (¢€? _ _
== M[kcos{q(’)—lGKzcos{4q€)]—vg] K=8N/m, D=0.1eV,
(2.18 |=3.4x10"9m, u,=10°m/J
and and

2 — — 25
w M=5.4x10 kg, u.~0. (2.23
Q=52 [2a(u+5)+34]. oo
@ As a result, we are able to estimate the parameters involved
It is important to note that provideBQ>0, Eq.(2.17 N the nonlinearity parametey:
exhibits an envelope-soliton solution called a breatloera ) 7av2
bubble, which is expressed as u=——=38x10"m1 s=——~1.1x10"m?*,

3 18
p{iue(s- UeT) (2.24
X

2P Thus using Egs(2.7) and (2.18 we can infer that the in-
(219 equalityQ>0 holds.
From Eq.(2.20 we see that the inequality,>0 follows
if both ug>2u, and P>0 hold. This implies that we must
have A>0, which can in fact be inferred from E@2.20.
(U2—2ugu,) M2 2P Otherwise, the breather soliton could not exist. In summary,
T; Lezm (2.20  we expect that on the basis 01_‘ the above cho_lce _of the model
e erc parameters the breather soliton should exist in the DNA
chain given the conditions in the PB model. Otherwise,
based on the measurements reported in R&l. we readily
conclude that the parametarshould have a value at least
€U, two orders of magnitude smaller. Nevertheless the condition
ﬁ; Q>0 still holds, but it remarkably lowers the value of the
nonlinearity paramete®. The outcome of this would be that
€U, the nonlinear term in NSE, E¢2.17), could not be competi-
Q=+ 55 (Vgteu) -, (2.2)  tive with the dispersive term, thus preventing the existence
of breather solitons. Since the method used in the measure-
Egs. (2.19, (2.8), (2.9), and (2.14 can be transformed to Ment of the forces between base p@irS] was not applied to
give a final form of the breather function as DNA itself but to some two-dimensional Blodgett films of
A-T pairs, it is still possible that such a large decrease in the

S—UeT

Le

Fi(S)=A sec%

where the envelope amplitud® and its widthL, are ex-
pressed as follows:

with ue andu, being the velocities of the envelope and the
carrier wave, respectively. Subsequently, by setting

Ve=Vyteu.; O=q+

€ value of the parametex is a result of the effect of collective
Ph(t)=2A sec+r(n€—vet) cogOnl - Ot) action of hydrogen bonds. Consequently, there is still an el-
© ement of uncertainty remaining in the choice of the param-
€ eter values.
+€eA sec+L—e(n€—Vet)} We now wish to discuss some of the breather features in

the context of the dispersion paramekerlt should be no-
ticed from Eq.(2.18 that this parameter does not depend on
' (2.22 any of the uncertain valugs, D).
In Figs. 4 and 5, the group velocityy and the dispersion
In order to demonstrate that the condition for the exis-coefficient P are depicted versus{, according to Egs.
tence of a breathePQ>0 is satisfied we now attempt to (2.13 and(2.18), respectively. The frequenay was calcu-
make a careful numerical estimate. Before we do that, howlated from the dispersion relation given by Eg.12). For
ever, it must be born in mind that the values of the param¥,>0 andP>0, several multiples ofj¢ are allowed thus
eters involved in the PB model are still somewhat controverfavoring the existence of a breather. The intuition gained in
sial. For example, by direct measurements of the interactionstudying nonlinear systems in condensed matter physics fa-

X

%4— 5cos20nf—Ot)
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FIG. 4. Plot of the group velocityy as a function ofy accord-
ing to Eq.(2.18).

vors the conclusion that the wavelengthof the lattice car-
rier wave @=27/\) should be an integer multiple of lattice
spacingf. Thus the following four options are possible:

N=6¢, (gq¢=1.05rad;
No=7¢, (q¢=0.90rad;
N3=8¢, (qf€=0.78rad;
N=9¢, (q€=0.70rad. (2.29

All these four values lie in the first allowed “zone” fox,
(5. 7¢<A<9.5¢), or equivalently (0.669¢<1.11). It is

PHYSICAL REVIEW E 65 051901
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FIG. 6. Plot of the functiond,(t) given by Eq.(2.22 for q¢
=0.78 rad.

The figures show typical breatherlike shapes indicating that
the choiceq?=0.78 rad represents a more compact confor-
mational excitation.

Ill. THE STATISTICAL MODEL OF A REGULATORY
PROTEIN-DNA INTERACTION

The idea of transmission of regulatory signals came from
the results of experiments in which the so-called long-range
effects were studied in DNA. To describe this effect, let us
consider a simple system consisting of two protein molecules
and one DNA molecule(Fig. 8). It is assumed that the first
regulatory protein molecule can bindwith good
efficiency—via the lock-and-key mechanisrto a special
segment of the DNA molecule. Let it be called site 1. It is
also assumed that the other protein molecule is bound to the
DNA at another site called 2. Numerous experimental data

natural to expect that other allowed zones do not contain any g 17] show that the first protein bound at site 1 influences
A as integer multiples of. For example, the second zone the jnteraction of the second protein molecule with DNA at

reads (2.8<A<2.%).

It is instructive to plot the functiorb ,(t), given by Eq.
(2.22. We choosen=300 andw given by Eq.(2.12. In Fig.
6 we selectedy?¢=0.78 rad while in Fig. 7q€¢=1.05 rad.

P (10_7 mz/s)

. L . 1 . I . L . I . L]
0 1 2 3 4 5 6

g, (rad)

FIG. 5. Plot of the dispersion parameteras a function ofg¢
according to Eq(2.18.

site 2. Furthermore, the distance between the sites can reach
hundreds or even thousands of base pairs.

To explain this effect many alternative models of the ac-
tion at a long distance have been propogEgi19. Our pre-

T T T T

& (nm)

0 A\/ \/
| L 1 L | L
385 39.0 395

£ (ps)

38.0 40.0

FIG. 7. Plot of the functiond,(t) given by Eq.(2.22 for q¢
=1.05 rad.
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9?2 Major Groove
1

H

FIG. 8. A schematic representation of the DNA molecule inter-
acting with two protein molecules. The DNA molecule is repre- "HN——C——COO"
sented by a black band; the sites interacting with proteins are
shaded; protein molecules are represented by small circles. CH,

ferred assumption is that binding of the first protein molecule
produces a mode of energy that is accompanied by a loca
conformational distortion of base pairs causing a breather
excitation or enhancing the amplitude of an already existing H
breather excitation. Such a breather propagates along thi
DNA chain, and upon reaching site 2 it changes the confor-
mational state of the site, which in turn changes the binding
constants of the second protein with the DNA chain.

Specific interactions of regulatory proteins with DNA are
usually defined through hydrogen bonding interactions be-
tween functional groups of amino acid side chains or the
peptide bonds and groups of the bases in the major or minoi
grooves of the DNA chain. Here, we restrict our consider-
ation to those regulatory proteins with hydrogen bonds to the
DNA. Figure 9 represents the protein glutamine bound by
two hydrogen bridges to ai-T base pair in the major Glutamine - AT
groove[20].

We recall that every protein has a peptide group, which FIG. 9. Protein-DNA hydrogen bonding. The structure &-&
contains a double-bonded carbon-oxygen compl@x base pair bound to arginine is shown following R&0] in which
amide-1 bond with a characteristic quantum of energy of the guanidinium group of arginine binds to the N7 and 06 positions
0.205 eV (corresponding to a peak at 1650 ¢t The  of guanine. Glutamine can hydrogen bond specifically to the ad-
amide-1 bond appears to be of great interest here as a potefPine, whereas the carbonyl oxygen group binds to the N6 position
tial “basket” for storage and transport of biological energy. ©f adenine. A specific amino-acid—base-pair hydrogen bond can be
This part of glutamine protein is indicated in Fig. 9 by anMade in a minor groove between asparagine a&@base pair.
ellipse. The amide- exciton mode was prominently exposed\sparaglne binds with the terminal amino group to the N3 position
in the theory of Davydov molecular solitons that was also?! 9uanine, whereas the carbonyl oxygen hydrogen bonds to the N2
applied to a-helical chains[21,22. However, a problem position of guanine.
arises when we note that in a single peptide group, the life- 5
time of an amide-I vibration is of the order of 18 s [22]. H=S Pin 3 , Koo )

We conjecture that the energy of this mode could be utilized y© £ oM T2 Wn Yn-1)"F E[(y” Yn-4)
in producing a conformational change in a neighboring base
pair (A-T) that is mediated by hydrogen bonds depicted by a

rectangle in Fig. 9. Below we elaborate on the quantitative +(Yn—Ynra) 2]+ D(e72N—1)2, 3.3
description of such a model.
Let us first introduce the extended Hamiltonian in an at-5q
tempt to model the above regulatory process in DNA. The
Hamiltonian should consist of two parts as follows: Heeo=E,C/C,, E,=0.205eV, (3.4

whereE, is the energy of the amide-I mode, whi&s, , C,
represent the creation and annihilation operators, respec-
tively, of an excited state possessing the wave vegtor

Finally, H;,; describes the interaction between the amide-I
mode and the nearest base pairs of DNA. It could be conve-
niently written in the form

H=Hg+Hiq, (3.1

where the HamiltoniarH, consists of two terms, first of
which represents the part of the PB Hamiltoni@il) con-
taining the separated coordinatgs and momentaP,,
=My,, while the second one corresponds to the amide-I

mode in the regulatory protein, considered here. Hence, Hin= > HPf (1), (3.5
m

Ho=Hy+Hc-o, (3.2 where the operator part of the interaction is given as follows:

051901-6
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H®=(C+C/)ym, (3.6)  SubstitutingA=y,, into Eqg. (3.10 gives for the average
displacement at lattice sité
while the Heaviside-type interaction switching function has

the form (Y=Y ot fﬁxdtl«y{’(t)lHi(m(tl)»f(tl)"' f; d7y
F()=Vime~ (MO 4(t—F(m—1))— 6@t —FHm+1))} . .
@7 % |l O MR =)

Since we already used for a variable in Eqs(2.16-

(2.19 we now use a modified symb& in order to avoid XF(t=r)f(t=71=T72) -, (3.11

confusion. We assumed here that due to its hydrogen charac- , ) i
ter, the interaction term drops exponentially with distanceVhere the Green's functions have been introduced as fol-

from its original magnitude/,,. It is also assumed here that [OWS:

the protein molecule is located at siteof the DNA chain. (YO Hi( =TD)[Hin( =71=72)))
The Fourier transform of the time-dependent part of the in- 1
teration in Eq.(3.7) = — 5 0(7) 0(F) T {y,(0)
1 [+ (ih)
— —iwt - - -
0= 55| due™ " 1y(o X[Hin =%2),[Hi ~F1~%2),pl ]} (312
yields The average base-pair displacement could be rewritten

following the above technique as

VA=00t2 |dufut(ylent))

sin(Fw)

(O]

f (0)=2V, e om0 gem (3.9

Since the breather solitons in DNA can be generated in o o
different ways, various causes that have been suggested in- +E dNTlf d7of (t—=F) f (t=T1—T>)
clude the thermal fluctuations as well as local ligand-protein mn J—e —o
interactions considered here, in addition to the chemical en- - e~
ergy released during ATP hydrolysis. It is apparent to us that XLy O em( =Dl en(=T1=72))). (313

in a very long DNA chain an ideal gas of breathers can besjnce the commutatdiy,(t), ¢(t;)] equals identically zero

generated via one or several of these mechanisms. Cons&-y( y.]=0), we conclude that only the last term in Eq.
qguently, we need to develop a statistical ap.pro_ach in order t _1’]) remains to be evaluated. Let us denote it(By) ).
compute the average value of the base-pair displacement rgg \we can write

sulting in the process. For this purpose we use the well- 112 (i e
known method of nonequilibrium statistical mechanics de- <y€>(2)22 (_) J dw1J dwof m( @1) Fr( @)
2 o

veloped by Zubare\y23] according to which the average mn - —
value of an arbltrarywphysmal operatdrcan be evaluated as X ((Ye(0)onf @ryye oL+ 02, (3.14
1\"t ty
(Ay=(A)o+ 21 (E) J dtlf dt, Starting from the identity for Green’s functions
n= — oo — o0

{(Ye(O)[Hin = TDHind =71—=72)))
t th-1
in dt3"'f7 dtnflTr{A(t)Hint(tl)

1 >2 + + o0 - (~ o )
— dow dw,e'®171. g @2l 72
27T f—oc 1f—w 2

X[Hint(tz) - [Hine(tn) . pol 1}, (3.9

where(A), is the average value with respect to the density
matrix p, pertaining to the systerfEgs. (3.3 and (3.4]  Wwe can make the following expansion:
unperturbed by the interaction, E8.5). The square brackets (w1t 0yt 21 €)((Ye(O)| @l on)) v, +icw,+ic
above stand for the corresponding commutators, and Tr
means the trace. = (1Y @mll oy cic
If we retain only the two leading terms, E¢3.9) then
yi8|ds +<<[y€(0)!HO]|(Pm||(Pn>>a)1+is,w2+ie' (316)

X{(Ye(O) [ Hind Hin) o, o (3.19

(A)y=(A)o+ i ft dt, T{A()[Hin(t1), pol} We once again remove the first term on the right-hand side of
ifi ) - Eqg. (3.16 and proceed to scrutinize the second term

1 (t dt; fi(w1+ w2+ 21 €)((Ye(0) | @mll 00wy +icwtie
- Pf_wdtl _wdtZTr{A(t)[Hint(tl)a[Hint(tZ)aPO]]}'

i7
(3.10 = Pyl emlen))o, icoytie (3.17)
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where we have used the commutation relation ,Hq]
=P,,.

ye

Let us proceed with expanding E@.17) as follows:

h(w;+w,+2ie)= ((Py€| (Pm||90n>>wl+ie,w2+ie
:<<[Py€ 1(Pm]|q0n>>a)2+ie

+<<[Py€ !HO:H quH (Pn>>a)1+ie,a)2+ie .
(3.189

Taking into account the commutators involved, namely,
[Py¢,@ml=—1%8 m(C,+C,)

and
[Py Hol=ihv2aD[exp — 2v2ay,) —exp —v2ay)]
(3.19

followed by the use of the decoupling of Green’s functions

according to
<<CK+CI)|(CK+Cz)y€>>w2+ie
:<y€><<(CK+ CI)|(0K+ CI)>>w2+iel
we finally obtain
fi(wy+ wy+2i 5)<<Py€| ‘Pm” ‘Pn))

: Q,
=20 T O ) (wp— Qi) VY

+i2v2haD{{{[exp —2v2ay,)
_exq_‘/iayf)]l(Pm||¢n>>wl+ie,w2+ie}! (32()

7)

2
_ —0)2 .~
(YO =(Yehot 20 VeVlynhoe™ """ 8 o(72,)

. , a’D
—('7'6—t)]o(?"QK)SIr[QK?'(n—{?)]-i—ZV
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whereQ ,=E, /A, with E, being the energy of the amide-I
excitation of the regulatory protein attached. Subsequently,
we continue evaluating two commutators of exponentials
with Py, and decoupling the Green’s function involved, to
arrive at the rather involved expression {g1) ),

(7)2 l + o0 + oo
<Y€>(2):—8W; W'ﬁm dwlf,w dw,V,V,

20 o2 C e
Xe™ MOy ) ojo(Fwr)jo(Tws)
Q.exgiow(7€—t)]exgio(Tn—1t)]
(w1t W+ 2i€)2(wr+ Qtie)(w,— O, +ie)
a’D
8- (exp(—2v2ayi))o
X 1+ . YPPY -
(w1+(1)2+2|€) (,L)1+(1)2+T+2|E

a’D
4 (exp(—v2ay))o

(w1+ w2+ 2i 6)

ha®> ’
witwy+ V+2I €

(3.2

wherej(Xx) = sinx/x represents the zeroth order Bessel func-
tion. The only task still remaining is the integration with
respect tow; and w,. This is accomplished through fairly
cumbersome calculations of Cauchy integrals, which eventu-
ally yield an elegantly symmetric but large expression for the
average base-pairs displacement impacted by a regulatory
protein attached to the DNA chain,

[NT 11(7Q2,)cod @, F(n—£) ]

7= 0j2(7Q,)siMQF(n—)]— 3(7)?]2(7Q,)

4
Xcog O, 7(n—€)]+3(7—1)%jo(7— Q,)co§ Q,7(n—€)]} m[(exp( —2v2ay,))o— 2(exp(—v2ay))ol

1

4
+jo(7Q,)cod Q, 7(n—€)] w—ﬁ,ﬂﬁexﬂ —2v2ay,))o— 3 exp —v2ayy))ol - > (2<exp( —2v2ayy))o

3
M

X{jo(TQ+ oul)cog Q,7(n—£) — ou(Te =) ]+ o(TL 2~ wn])cog Q,F(N— ) + wu (7€~ 1)1}

W\

Q,+ 7

— 64 exp( —x/?aymo( j 0(7'

. WM
Ho| T Qem -

‘77'.

Here the new characteristic frequeney, represents

efn-a- e ]

Wy
)co&{ﬂ,}(n—ﬁ— T(?(f—t)}

(3.22

(3.23
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andj,(x) andj,(x) stand for the corresponding Bessel functions. Note that the notatigg indicates an average value with
respect to the density matrpg of the unperturbed system, E@®.2).

The rather complex expression in E8.22 will now be significantly simplified due to the fact that the impact of protein
on the base-pair displacements is greatest with respect to the coupled base pair. Consequently wan méyapdit =7¢,

thus yielding

~ 7)? AU
<ye<T€)>=<ye>o+8(,\;—ﬁV%<ye>oJo(rQK) 1(7Q,) +2

4 1
—2(exp(—v2ay,))ol+jo(7L,) w—ﬁﬂ[<exp( —2v2ay,))o— 3 exp —v2ay,))ol - )

X{Jo(TQ+ om]) +jo(F QL — ou])} — 64 exp _‘QaW»o{ j o<7’

Substituting the parameter valuasand M from Eq. (2.23
and using the definition oby,, Eq.(3.23, leads to the fol-
lowing estimate:

wy=3.10" rad/s. (3.25

Therefore, the expressiai.22 could be further simpli-
fied discarding the terms proportionaldq’,]?’, and eventually
yielding a manageable formula

~3

- 8verr .
Ve =(Ye)o) 1+ 15— 1o(TQIJ1(FQ,)

8vZD7

MR

i5(7Q [ 2(exp(—2v2ay,))o

—(exp(—f2ay€)>o]}. (3.26

aDb

o 4
[_ %(7’)2] o(7Q,) w_[<eXF(_2‘fzaY€)>o
M

2(exp(—v2ay;))o

Hik

(3.29

W\

o

Om
QK+7 QK—

“7‘.

)+j0

the interaction timér as equal to the amide-1 mode lifetime
putting7=10"12 s, we obtain

70, =3x 107 (3.29

Therefore, this large value of the argument allows us to take
into account the asymptotic behavior of the Bessel functions
involved, i.e.,

T

sin("%QK— E)
B

(3.30

which transforms Eq(3.26) into the more transparent form
given below

Sin7Q,)

jo(TQK)Z ?QK ’

J1(7Q )=

(Ye(R)y=( >|1 ATLARPER
= — ———Ssi
YelT Ye)o Mﬁﬂi Ty

In order to estimate and discuss the numerical value of Eq. 8\2D32
(3.20, we first focus on the equilibrium average displace- + f_zsinz(—;.ﬂ )[2(exp(—2v2ay,))o
ment of base pairgy), without the impact of regulatory MAZQ )

proteins. The corresponding statistics was examined earlier
by other authors for the case of thermal fluctuations in a
DNA chain [24] and then extended later by one of the
present authors for the case where the intrinsic electromag-
netic fields play a catalytic role in the breather’s dynamics From Ref.[26] it follows that the average force of the
[25]. In the case of thermal excitations it was estimated thahydrogen bonds in DNA base complexes is in the range of

the average base-pair stretching at physiological temper@bout 3<10*°N. This force could be attributed to the
tures is of the order hydrogen-bridged interaction terivi, in Eq. (3.31). Taking
the valueM =5.4x10 2% kg, we estimate that the second

_<exﬁ_‘f23y6)>o]]- (3.3)

(Ye)o=1X10"1'm, (3.27 term in the curly brackets of E¢3.31) is on the order of
while in the case of strong intrinsic ac fielf85] the value avEF <102 (3.32
increases by up to another order of magnitude so that MﬁQi\ ' ’

(y)5¢=1x10"1m,

(3.28 Let us finally estimate the third term including the non-
linear Morse potential in the model we have developed here.
enabling the appearance of the so-called fluctuational opern addition to the value adopted above, we take into account

ings in the DNA chain. If we us€), from Eq.(3.4) and take D=0.1eV andy,=10" 1! m yielding
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svﬁDFZ hydrolysis effects. We have investigated the possibility of
mfsinz(?ﬂk)[z(exq—zﬁaymo long-range breather propagation as a result of the protein-

DNA binding. The motivation for this effort was given by a
—(exp(—v2ay,))o]=25sif(7Q,). (3.33 number of empirical studies showing a rather intriguing
long-range interaction effect of one protein binding site on
Note that the expression in E.33 is highly sensitive to another along the DNA chain. The application of the PB
the value ¢(),) that reveals resonant character of the pro-model to this case involved an addition of the amide-l mode
cess for to the DNA Hamiltonian and its interaction with DNA base
] pairs. In order to evaluate realistic effects at physiological
sin( 7€), ) —1. (3.39 temperatures we have subsequently calculated nonequilib-
. . .. rium thermodynamic averages of the displacement coordi-
Xs\i/ﬁyl?:i?::’etz:]seeritioget;rtegﬁigg z;errgilgiliiti?jg proteins would SIMhates. The key finding in this study is that both the spatial
: and temporal characteristics of the localized solution can be
significantly extended by protein-DNA interaction. Further-
IV. CONCLUSIONS AND DISCUSSION more, the nature of the system’s response is strongly reso-

In this paper we have considered an application of thé_iant offe_ring a glimpse in_to _the high levels of specificity
Peyrard-Bishop model in our extended version to the nonlininvolved in the DNA functioning. We hope that this latter
ear dynamics of DNA in the presence of regulatory proteinsf{inding can be supported by future experimental resulits re-
Our initial thrust was directed towards specifying the modeldarding DNA-protein interactions.
parameters for the case of the DNA double helix. While there
still remains a certain amount of ambiguity regarding the ACKNOWLEDGMENTS
numerical values that should be adopted for DNA, we have
tried to make our numerical value selections as safe as pos- This research was supported by grants from NSERC,
sible. It has been concluded through our analysis that MITACS-MMPD, and PIMS, and by funding provided by
breather solution is likely to be generated spontaneously dhe Institute of Theoretical Physics at the University of
by external means, such as protein-DNA interactions or ATRAlIberta.
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