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Several nontrivial properties are shown for the mean-square radius of gyRﬁioh ring polymers with a
fixed knot typeK. Through computer simulation, we discuss both finite size and asymptotic behaviors of the
gyration radius under the topological constraint for self-avoiding polygons consistMgyindrical segments
with radiusr. We find that the average size of ring polymers with the KQatan be much larger than that of
no topological constraint. The effective expansion due to the topological constraint depends strongly on the
parameter that is related to the excluded volume. The topological expansion is particularly significant for the
smallr case, where the simulation result is associated with that of random polygons with thi€.knot
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[. INTRODUCTION radiusr is very small, it is related to random polygons with a
fixed topology, as we shall see explicitly through the data. In
Aring polymer is one of the simplest systems that exhibitfact, there is quite an interesting suggest{d®—18 that
the effect of topological entanglement. The topological stateinder a topological constraint the average size of ring poly-
of a ring polymer is given by a knot, and it is fixed after the mers with no excluded volume should be similar to that of
ring polymer is formed. The entropy of the ring polymer ring polymers with the excluded volume, since nontrivial
with the fixed knot is much smaller than that of no topologi- entropic repulsion should be derived from the topological
cal constraint. Thus, there should be several nontrivial propeonstraint. According to the suggestion, the average size of
erties in statistical mechanics of ring polymers with a fixedrandom polygons with the trivial knot should be given by
topology. Furthermore, some dynamical or thermodynamicalN"sAv with respect to the numbel of polygonal nodes,
properties of ring polymers under topological constraintswhere vy, is the exponent of self-avoiding walkKSAW).
could also be nontrivial. In fact, various computer simula-Thus, the smalt case of the simulation in the paper should
tions of ring polymers with fixed topology were performed be important also in the study of the topological effect on
by several groupEl—12]. However, there are still many un- random polygons.
solved problems related to the topological effect, such as the We now discuss an asymptotic behavior of the average
average size of a knotted ring polymer in solution. size ofN-noded cylindrical SAPs with a fixed knét, where
In this paper, we discuss how the excluded volume conwe send the numbeé\ of polygonal nodes to infinity. Let us
trols the topological effect on the average size of ring poly-assume that wheN is very large, the average size of ring
mers in good solution. As a model of ring polymers we em-polymers with or without a topological constraint should be
ploy a model of self-avoiding polygorSAPS consisting of ~ approximately given by some power &f with correction
cylindrical segments with radius. First, we numerically —terms. For instance, the mean-square radius of gyratfoof
construct a large number ®-noded cylindrical SAPs with ~ cylindrical SAPs under no topological constraint can be ex-
radiusr, and evaluate the mean-square radius of gyra&n pressed by the followingR>=AN?"[1+BN™*+0O(1/N)].
of the SAPs under no topological constraint. Then, throughApplying the asymptotic expansion to the dataRf versus
some knot invariants we select such SAPs that should haveM, we evaluate the best estimates of the expomgntThen
fixed knot typeK, and then calculate the mean-square radiugve find that wherN is large enough, the asymptotic expan-
of gyrationR2 of the SAPs with the knoK [13—15. Com-  sion should be valid both foR? and RZ of the cylindrical
paring the mean squa@i with R21 we show various topo- SAPs with the knotK. Furthermore, we also find that the
logical effects in the average size of ring polymers under thealue of the exponenty should be consistent with that of
topological constraint. By changing the cylinder radiysve ~ SAW: v = vsay With respect to errors.
modify the excluded volume effect. Thus, we can investigate The outline of the paper is given in the following. In Sec.
the topological effect systematically through the simulationll we explain SAPs consisting of cylinderical segments. We
of cylindrical SAPs for various values of cylinder radius ~ also discuss the effective exponent of the mean-square radius
Let us consider the two cases when the radius very  of gyration under no topological constraiRt. In Sec. lIl,
large or very small. When the radiusis very large, the Wwe discuss various nontrivial finite-size properties of the
simulation should be related to that of the self-avoiding poly-mean-square radius of gyrati&§ for cylindrical SAPs with
gons on the latticgd11,15. On the other hand, when the a given knot typek. When the ratidR2/R? is larger than 1,
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then it shows the effective expansion due to the topologicatally useful for computer simulation of random polygons
constraint. Through the simulation, we find that the topologi-with a large number of polygonal nodes. In fact, it has been
cal effect is important particularly in the smallcase for demonstrated in Ref21] that the Vassiliev invariant ,(K)
cylindrical SAPs. Furthermore, the effective topological ex-can be calculated not only in polynomial time but also with-
pansion is controlled by the parametein Sec. IV, we dis- Out using large memory area.

cuss the asymptotic expansion of the rdﬁﬁ/ R? with re-

spect to the numbeN. Through the numerical analysis, we B. Characteristic length of random knotting N(r)

conclude that the exponenf should be consistent with that For a given knoK, we consider the probabilitp (N,r)
of SAW. Finally, in Sec. V, we graphically explain the effec- that the topology of amN-noded self-avoiding polygon with
tive expansion of the cylindrical SAPs under the topologicalcylinder radiusr is given by the knot typd. We call it the
constraint, through the graphs in ther plane. knotting probability of the knoK. Let us assume that we
have My self-avoiding polygons with a given knot typgé
amongM samples of cylindrical SAPs with radius Then,

Il. CYLINDRICAL SELF-AVOIDING POLYGONS we evaluate the knotting probability(N,r) by Px(N,r)
S . . N . =M /M.
A. Cylindrical ring-dimerization algorithm and random knots For the trivial knot, the knotting probabilit,;,(N,r)

Let us introduce a model of ring polymers in good solu-for the cylindrical SAPs is given by
tion. We consider self-avoiding polygons consisting Nf
rigid impenetrable cylinders of unit length and diameter Purio(N.F) = Cyriy €xi = N/Ne(r)]. @)
there is no overlap allowed for any nonadjacent pairs of cy-
lindrical segments, while next-neighboring cylinders mayHere the estimate of the constad{;, is close to 1.013].
overlap each other. We call them cylindrical self-avoiding Ve callNc(r) the characteristic length of random knotting. It
polygons or cylindrical SAPs, for short. The cylinder radius 1S @S0 shown in Ref13] thatN¢(r) can be approximated by
can be related to the stiffness of some stiff polymers such a&" exponential function df,
DNAs [6,14].

In the simulations of the paper, we have constructed a Nc.=Nc(0)exp(yr). (2
large number of cylindrical SAPs by the cylindrical ring-
dimerization method13]. The method is based on the algo- The best estimates of the two parametigg0) andy are
rithm of ring dimerizatior{4], and very useful for generating given byN.(0)=292+5 andy=43.5+0.6[13].
long self-avoiding polygongfor details, see Ref14]). Here For several knots, it is showii4] that the knotting prob-
we note that another algorithm is discussed in R&ffor the ability P (N,r) of a knotK is given by
model of cylindrical SAPs, where self-avoiding polygons of
impenetrable cylinders withl<<100 are constructed in asso-

m(K)
ciation with knotted DNAJ19,20. pK(N,r):CK(L) ext — N/Nk(r)]. (3)
In the cylindrical ring-dimerization method, a statistical Nk (r)

weight is given to any self-avoiding polygon successfully
concatenated. Thus, when we evaluate some quantity, weis numerically suggested in Rgfl4] thatN(r) should be
take the weighted average of it with respect to the statisticahdependent oK: N (r)~N.(r), and also that the constant
weight. Some details on the statistical weight of successfut, should be independent of the cylinder radius
concatenation is given in Ref14]. Hereafter in the paper,  We note that the formula given in E(B) has been shown
however, we do not express the statistical weight, for simfor some off-lattice models in the case of the trivial knot
plicity. [5,8] and some nontrivial knotg9,10]. Furthermore, it has

Let us describe the processes of our numerical experialso been shown for the lattice models with some khbig
ments. First, we construd?l samples of cylindrical SAPs
with N nodes by the cylindrical ring-dimerization method.
We put M= 10" Here we note that various knot types are
included in theM random samples. Second, we make knot The mean-square radius of gyratiBA of a self-avoiding
diagrams for the three-dimensional configurations of cylin-polygon is defined by
drical SAPs, by projecting them onto a plane. Then, we cal-
culate two knot invarianta c(—1) andv,(K) for the knot , 1 s =
diagrams. Third, we select only such polygons that have the R _W N (R = Rm)%). (4)
same set of values of the two knot invariants, and then evalu- '
ate physical quantities such as mean-squared gyration radius ~_
for the selected cylindrical SAPs. HereR, is the position vector of thath segmentor thenth

The symbolA(— 1) denotes the determinant of a kikgt  node and(-) denotes the ensemble average, which is taken
which is given by the Alexander polynomidl(t) evaluated over all possible configurations of the self-avoiding polygon.
att=—1. The symbob ,(K) is the Vassiliev invariant of the Suppose that we haviel self-avoiding polygons. Then,
second degref21,29. The two knot invariants are practi- we evaluate the mean-square radius of gyrafsnby the

C. Mean-squared gyration radius with a topological constraint

N
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FIG. 1. Double-logarithmic plots of the mean-square radius of r —— 7 — T
gyration under no topological constraiR? for cylindrical SAPs i ® tre(r=0.003)
versus the numbeN of polygonal nodes for radius=0.003 and @ I
0.03 depicted by closed circles and squares, respectively. -§ 100 | [_® tre(r=0.03) .=2$ 4
s a2
sum:R?=3M R?/M, whereR? denotes the gyration radius 3 s
of theith SAPs in the giverM SAPs. & s
Let us define the mean-square radius of gyraﬁlﬁnfor £ 10} 4
such self-avoiding polygons that have a given knot tipe g '=||'.
c i 4
2 1 - 2 é I ’ )
Rk=p1- = Rii- (5 N
Ki=1
10 100 1000
2 . . . (b) N : Number of nodes
where R ; denotes the gyration radius of thi¢h self-
avoiding polygon that has the knot type In terms ofR2, FIG. 2. Double-logarithmic plot oRZ versusN with r=0.003
R? is given byRZZEKRﬁM kM. and 0.03 shown by closed circles and squares, respectialior

In Fig. 1, the estimates of the mean-square radius of gythe trivial knot; (b) for the trefoil knot.

ration R? are plotted against the numbBf of nodes in a
double-logarithmic scale, for the cylindrical SAPs with
=0.003 and r=0.03. We may confirm the standard
asymptotic behaviors of the mean-squared gyration reRfius
in Fig. 1. Here we remark on an effective exponesj,
which is defined through the power-law approximatiéh,
~NPeff, It is shown in Ref[23] that the estimate of the ef-
fective exponenig for the cylindrical SAPs with radiusis
consistent with that of the cylindrical SAWs with radius
However, both for the cylindrical SAWs and SAPs, the esti-
mates ofve; are smaller tharvg,y, partially because the
range ofN is limited upto 1000 in the data of Fig. 1. Thus,
we have vg=0.514 for r=0.003 andv.=0.556 forr

versusN are given for the trivial and trefoil knots, with two
values of cylinder radiug:=0.003 and 0.03. We see that all
the double-logarithmic plots of Fig. 2 fit to some straight
lines. We note that for other values of cylinder radiys
several double-logarithmic plots Gfﬁ versusN are explic-
itly shown in Ref.[23].

With the numbeN fixed, RZ should increase with respect
to the radiusr for any knot. Both for the trivial knofFig.
2(a)] and the trefoil knoffFig. 2(b)], closed squares far
=0.03 are located higher in the vertical direction than closed
circles forr=0.003, through the whole range Wf

~0.03(see also Fig. 7.3 of Ref23)) A. Ratio Ri/R? and the effective expansion under the
' C ' topological constraint
lll. FINITE-SIZE BEHAVIORS OF R% FOR SOME KNOTS Let us now consider the ratio &% to R* for a given knot

K. If the ratio is larger(smalle) than 1.0, then the average

Let us discuss simulation results on the mean-square ra&;ize of SAPs with the knoK is relatively larger(smalle)
dius of gyrationRg for the cylindrical SAPs with a kndk  than that of no topological constraint. We say that the SAPs
and of radiusr. For two prime knotgthe trivial and trefoil  with the knotK is effectively moreles9 expanded. In Fig. 3,
knots and a composite knofthe double-trefoil knot, the ratioR2/R? versus the numbeN is plotted in a double-
3:#31), we have investigated the mean-squared gyration rapgarithmic scale for the trivial and trefoil knots. Here, we
dius Rﬁ under the topological constraint in the range of thehave depicted only the case £ 0.003 among many sets of
numberN satisfying 2.kN=<1001, and for 14 different val- the cylindrical SAPs with 14 different values of cylindrical
ues of cylinder radius. radius.

The gyration radiusRﬁ can approximately be given by For the trivial knot, we see in Fig. 3 that the ratiktf;iv/R2
some power of\. In Fig. 2, double-logarithmic plots d?ﬁ is greater than 1.0 whed>50. Thus, the average size of the
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FIG. 3. Double-logarithmic plots of the ratzlaﬁ/Rz versusN for FIG. 4. Double-logarithmic plots of the ratiZ, /R? versusN
cylindrical SAPs withr =0.003.R;;,/R? andRy./R” are shown by for r=0.003, 0.01, 0.03, and 0.05 shown by closed circles, squares,
closed circles and squares, respectively. diamonds and triangles, respectively.

ring polymers with the trivial knot enlarges under the topo-
logical constraint. It gives a typical example of effective ex-
pansion.

In Fig. 3, the graph of the trivial knot is convex down-

in common. If we discuss asymptotic behaviors, SAPs and
random polygons should be quite different. However, if we
consider such properties that are valid for firitethen they

. Lo 5 : can hold both for SAPs with small excluded volume and
wards: the ratidRf,;,/R is almost constant with respectfd .o 4om polygons that have no excluded volume.

. : 2
for small N such asN<100; for N>300 the ratioRy;,/R? Let us discuss again the convexity of the graph of the

increases with respect td with a larger gradient, and the trjyjal knot, which has been observed in Fig. 3. We consider
graph can be approximated by a power law such amow the convexity depends on the radiusin Fig. 4, the
RZ, /R?cN2A7i | Here the symbol vi" denotes the ef- graphs of the ratid?;,/R? versusN are given in a double-
fective exponent for the trivial knot. We note that the char-logarithmic scale for four different values of cylinder radius
acteristic lengthN(r) is approximately given by 300 far  r. Then, we see that the graph witk=0.05 is less convex
=0.003. Thus, we may say that the power law behavior ighan that ofr =0.003. Thus, the convexity in the graphs of
valid for N>N(r). the effective expansion for the trivial knot should be valid
For the trefoil knot, the graph can be approximated by aonly when cylinder radius is small.
power of N such asR?/R2xN? Ave through the range of Let us assume that the convexity of the graphR#f /R?
100<N<1001. Here the symbal v denotes the effective for the smallr case should correspond to a crossover behav-
exponent of the trefoil knot. In Fig. 3, we find that whin  ior Of R?,/R? with respect to\. Then, the crossover behav-
<100 the ratioR2/R? is smaller than 1.0, while it is larger 10" could be related to that of Gaussian random knots,'whlch
than 1.0 wherN>300. Thus, whem is small, the topologi- Nas recently been discussed by GrosHésgj for Gaussian
cal constraint of the trefoil knot gives effective shrinking to "andom polygons. We can 2d|scuzss the convexity of the
ring polymers, while it does not wheN is large. For a non-  double-logarithmic graph oRy;,/R” versusN, taking an
trivial knot K, we expect that the ratiB2/R? is less than 1.0 @nalogy with the crossover of the Gaussian random knots.
whenN is small, while it can be larger than 1.0 whahis Thus, we call the convexity of the trivial knot in Fig. 3 the
large. crossover, herea}ft’er in the paper.
The properties of the ratiRﬁ/Rz discussed in the three For the nontrivial knots investigated, we do not see any

preceding paragraphs are consistent with the simulation ré0Ssover in the graph @ /R? versusN. For instance, for
sults of Gaussian random polygof]. We have found for the 4 and 3#3, knots, the slope of the graph nebr
the random polygons that the double-logarithmic graph of“Nc(r) is straight in the double-logarithmic scale. The
Rﬁ/RZ versusN is given by a downward convex curve for CroSSover alN~N(r) should be valid only for the trivial
the trivial knot, while it is given by a straight line for the KnOt.

trefoil knot and also for other several nontrivial knots; for the

nontrivial knots investigated, the rati®2/R? is given by B. The plateau in the graph of Ri/R” versusN for large N

some power ofN such asN2 Aver, Thus, there are indeed We discuss how the ratiRZ/R? depends on the number
many important properties valid both for the simulation of N, considering both the excluded volume effect and the ef-
the Gaussian random polygons and that of the cylindricafective expansion due to the topological constraint. In Fig. 5,
SAPs with a small radius such as0.003. the graphs of the ratiEtﬁ/R2 versusN for different values of
The observations derived from Fig. 3 should be valid parcylinder radiug are shown in linear scale&) for the trivial
ticularly for finite-size systems. Admitting thatis finite, we  knot; (b) for the trefoil knot.
can only understand that the Gaussian random polygons and Let us first consider the largd behaviors of the graphs
the cylindrical SAPs have the similar topological propertiesshown in Fig. 5 for the trivial and trefoil knots. The graphs of
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130 = T - T T a critical value Ngyticar Such that RZ./R?><1.0 for N
s bl tri/ave(r=0.008) ] <Ngritical » @aNdRZ /R?>1.0 for N>Ngisical - Furthermore,
1 t:;:vzg:fgggg % we have a conjecture that the critical valNg;i;i., Should
L Vi =U.! ..
1.2 + 3 be roughly equal to the characteristic lendf(r) of random
° 5 ¢ + + knotting. It seems that the conjecture is consistent with the
g0 ] ¢ E graphs of Fig. ).
11f ¢ i LI . ] Let us discuss the conjecture ®itical» explicitly. In
s t i g n Fig. 5b), we see that for =0.003, the ratioR?/R? be-
1.05 - & s b s s b @ 7 comes 1.0 roughly al=300, and also that far=0.01, the
. I R R RRRRRR. ratio R2/R? is close to 1.0 roughly a=400. The obser-
0 200 400 600 800 1000 1200 vations are consistent with the estimatesNyf{r) in Ref.
@) N : Numbor of nodes [13]: Ng(r)=(2.72+0.06)x 10 for r=0.0 and N(r)
13 11— =(4.72£0.14)x 107 for r=0.01. Thus, the consistency sup-
12 F . E ports the conjecture oN¢iica -
®
11 F ¢ o ]
t B .;::". __- ______ C. Decrease of the topological effect under the increase
o R E £t of the excluded volume
5 09fF 5 4 % 3 _ _ _
e 0s | ] The effect of a topological constraint on the gyration ra-
' . ::;:::E:gg??) dius decreases when the excluded volume increases. There
07 o tre/ave(r=0.03) E are two examples: the decrease of ra&g/R? with respect
06 A tre/ave(r=0.05) E to cylinder radius while N being fixed, and the disappear-
0.5 0 200 200 800 300  Jo0o 1200 ance of the crossover for the trivial knot shown in Figs. 3

(b) N : Number of nodes and 4.
Let us first discuss how the excluded volume can modify

FIG. 5. Graphs of the ratiB/R* versus the numbe in linear  the effective expansion due to the topological constraint. As
scales forr =0.003, 0.01, 0.03, and 0.05 shown by closed circles,We clearly see in Fig. 5, the ratiaﬁ/Rz decreases as cylin-
squares, diamonds, and triangles, respectivedy:for the trivial der radiusr increases withN fixed, both for the trivial and
knot and(b) for the trefoil knot. The same data points are shown in . L .

: ; trefoil knots. Thus, the effective expansion of SAPs under
both Fig. 4 and Fig. &). . .
the topological constraint becomes smaller when the ex-
2100 cluded volume becomes larger.
Ri/R" versusN have a common tendency that they become ¢ s quite nontrivial that the effective expansion given by
constant with respect td whenN is very large. Itis particu-  the ratioR2/R? decreases as cylinder radinsncreases. In
larly the case for the larger values of cylinder radiusuch fact, the value oRﬁ itself increases with respect tpas we

lasr =0.0|3 andﬂ(zl.o\?\.”;rhey _approa|<|:h horr]izontilloliggg atthsom?]ave observed in Fig. 2. Furthermore, one might expect that
argehvbaeggfngs flat or?ln rfolf I;:na assu;:ho?vi_in i:i 5 € the effective expansion due to a topological constraint should
grap y ge 9 °. also increase with respect to cylinder radiyssimply be-

2
h The ﬂatnezs of ]Ehe ghraphs_ EE/ZF/QR;orrI]arglszshoyvs thst cause the average size of ring polymers with larger excluded
the exponenti vy for the ratioRy/R* should be given by 1,me hecomes larger, as observed in Fig. 1. However, it is
zero. Here we have defineflvy by the difference A vy not the case for the ratig2/R2
K/ R°.

— VK VSAN: On the other hand, wheis small, the graphs Let us now discuss the crossover behavior of the trivial
of Rg/R“ versusN can be approximated by some power of K : . . .
o 5 A not again, from the viewpoint of the competition between
N. Here we recall that in Fig. 3, the power BE N"™"f  the topological effect and the excluded volume effect. Here
gives a good approximation for the raff,/R* as a func- e recall that the crossover has been discussed in Sec. IIl.A
tion of N through the range of 1BON<1001 with r  with Figs. 3 and 4. Here we regard the crossover as a char-
=0.003. However, the flatness shows that the power-law apacteristic behavior derived from the topological constraint of
proximation does not hold wheMis large enough. Thus, the peing the trivial knot.
graphs in Fig. 5 reaching their plateau regions for lage  As a working hypothesis, let us assume that the crossover
also show that the finite-size behavior described by somehould occur at around the characteristic lenititr). Re-
power of N gradually changes into the asymptotic behaviorcall thatN(r) is larger than 1000 for=0.03 and 0.05, as
with Av=0. we have estimatedN.(r)~1200 for r=0.03, andN(r)

Let us discuss other finitl-behaviors of the rati&ﬁ/Rz. ~ 2600 forr =0.05. If the above hypothesis would be valid,
For the trefoil knot, the rati®? /R is less than 1.0 wheN  then the graphs far = 0.03 and 0.05 should also be convex.
is small; it approaches or becomes larger than 1.0 vhen  In Fig. 4, however, we see no change in the gradient of the
large enough. When cylinder radiusis small such as  graph ofR2;,/R? versusN for r =0.03 or 0.05. The assumed
=0.003 and =0.01, the raticR? ./R? is clearly greater than crossover of the trivial knot does not appear ffor 0.03 or
1.0 whenN is large enough. Whenis small, there should be 0.05. We may thus consider that the crossover as a topologi-
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cal effect is diminished by the excluded volume effect when TABLE |. Fitting parametersAx /A,Bx—B, and Avy versus

r=0.03. cylinder radiusr: for the trivial knot.
D. Characteristic length of random knotting N(r) ' AxlA Bk~ B 28k X
and the effective expansion 0.001 1.3131.285 —2.587-4.211 0.0030.123 18
In terms of the characteristic length(r), we can explain 0002 12331152 -2.3834.117 00020116 12
some properties of the effective expansion of cylindricalo-003 1.21%1.065 -2.317£3.912  0.00%0.109 3
SAPs under a topological constraint. Here we recall that thg:004  1.228:1.062 —1.982:3.973  0.00x0.107 3
ratio Rﬁ/R2 describes the degree of the effective expansiorp'005 1.176-0.983  —1.684-3.985  0.007:0.104 4
under the topological constraint of a krigt 0.006 1.20%0.921 —2.204+3.464 0.00%:0.095 4
We first consider the case when the characteristic IengtR'007 1.158:0.891  —1.633-3.684  0.0050.095 3
N(r) is very large. Let us show that the ratRe; /R? 1.106:0.836  —1.090-3.809  0.005:0.092 3
should be close to 1.0 fod<<N(r). First, we recall that the 0.02 1.065:0.686 ~ —0.699:3.384 ~0.003-0.078 !
probability P,,;, (N) of the trivial knot décays exponentially 003 ~ 1.0630.628 1 ~0.518-3.166 ~—0.001-0071 2
with respecttrtl(; the numbeM of polygonal nodesPy;;,(N) 0.04 1.043:0.590  ~0.353:3.076  —0.001:0.068 1
. trivd %/ 1.013:0.554 —0.143+3.039 0.002-0.066 1

=exd —N/Ng(r)]. If N/N¢(r) is very small, the probability

Pui»(N) is close to 1.0, i.e., almost all SAPs have the trivial .’ 1020:0.551 = ~0.103-2.997 ~0.00120.065 1
triv R 1.0130.531 —-0.18742.898 -—0.001£0.060 1

knot. Then, the mean-squared gyration radius with no topo-
logical constraintR? should be almost equal to that of the
trivial knot RZ;, . Consequently, the ratiB?;,/R? should be
close to 1.0.

When r=0.05, the characteristic length.(r) is larger
than 2600. Then, the trivial knot is dominant among the pos-
sible knots generated in SAPs witi<1000. Thus,RZ;,
should almost agree witR?, which is the mean-squared gy- Here, the exponeniy should be given by that of self-
ration radius of SAPs under no topological constraint. TheréVoiding walks, vk =vsay. In order to analyze the numeri-
is no effective expansion under the topological constraintC@! data systematically, however, we have introduegas a

the R2, /R? is close to 1.0 fitting parameter. Thus, for the ratiB%/R?, we have the
ro e . . .
Let us next consider the case when the characteristiEO”OWIng expansion.

length N¢(r) is small or not large. Then we show that the 2,52 e B _A
mean-square radius of gyration of SAPs with the trivial knot Ri/R™= (A /AN T+ (B = B)N24 O(1N) . @

R2;, should be larger than that of no topological constraint

R? for N>N(r). In fact, various types of knots can appear Here we have pul v as a fitting parameter.

in a given set of randomly generated SAPs of the cylinder We have analyzed the data for the three different knots:
radiusr, since the probability of the trivial knd®y;,(N) is  the trivial, trefoil, and 3# 3, knots, applying the expansion
exponentially small foN>N,(r). We note that the fraction (7) to the numerical data oR2/R? for N>300. The best

of nontrivial knots is given by +exgd —N/N.(r)]. Thus, itis  estimates of the three parameters are given in Tables |, Il
not certain whether the ratie?; ,/R? is close to the value 1.0 and IlI for the trivial, trefoil, and 3# 3, knots, respectively.

or not. However, we may expect that the rafg; /R? Let us discuss the best estimates of the difference of the
should be indeed larger than 1.0. Here we consider the folexponentsAvy . We see in Tables I, II, and Ill that all the
lowing points: wherN>N,(r), the majority of SAPs gener- results ofAvy suggest that they should be given by 0.0, with
ated randomly should have much more complex knots thafespect to the confidence interval. Let us examine the best
the trivial knot; the mean-square radius of gyration oféstimates more precisely. It is rather clear from Tables I, II,
N-noded SAPs with a very complex knot should be muchand Ill that for a given cylinder radius the best estimates of
smaller than that of the trivial knot. Avy are independent of the knot type.

The explanation on the effective expansion discussed There is another evidence supporting that,=0.0 for
above is completely consistent with the simulation results, athe trivial and trefoil knots. Let us consider the plots of the
we have discussed in Sec. Ill, in particular, through Figs. 3ratio R/R? versusN in Fig. 5 for the trivial and trefoil
4, and 5. knots. We recall that the graphs are likely to approach some
horizontal lines at some largé. The tendency of the graphs
becoming flat for largeN suggests thaRﬁ and R? should
have the same exponent, i.egpy -

From the two observations, we conclude that the differ-
Let us discuss an asymptotic expansion for the meanence of the exponents is given by 08yx=0.0 for any
square radius of gyration of cylindrical SAPs with a givenvalue ofr. There is thus no topological effect on the scaling

knotK. Here we assume thmf( can be expanded in terms of exponent defined in the asymptotic expansionRﬁf.

1/N consistently with renormalization group arguments.
Then, the largeN dependence dRﬁ is given by

RZ=AN?"K[ 1+ BN~2+O(1/N)]. (6)

IV. ASYMPTOTIC BEHAVIORS OF R%

A. The exponent ofR%
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TABLE Il. Fitting parametersAy /A,Bx—B, and Ay versus T oo
cylinder radiusr: for the trefoil knot. 15T

0.001 1.286:0.970 —4.440:£2.784 0.014£0.096 3

r Ag/A Bc«—B 2Avy v ' ?
| # ! iﬁ;

0.002  1.2150.918 -4.093-2.906 0.0150.095 10 2 ?

0.003  1.2020.905 -3.562-3.054 0.01%#0.094 11 = | . -
0.004 11760872 —3.423:3.069 0.0120.093 16 o trivial 33 ﬂ
0.005 1.176:0.845 —3.461+2.964 0.016-0.090 TE | w trefol $
0.006  1.1130.807 -3.174-3.091 0.0150.090 = | . 3131 =
0.007  1.084:0.765 —3.219-2.996 0.0180.088 09 = . _
0.01  1.1030.743 -3.220:+2.870 0.0130.084 0,001 ool od

0.02 1.0680.765 —2.326-3.353 0.005:0.088
0.03 1.0580.790 —2.262-3.531 0.00%0.091
0.04 1.003:0.835 —2.043+4.034 0.00%#0.101
0.05 1.0070.883 —2.422-4.119 0.00%0.107
0.06 1.02%0.975 —2.900-4.274 0.0050.116
0.07 0.998:1.197 —1.923+5.915 0.002-0.146

r: cylinder radius

FIG. 6. Double-logarithmic plots of the amplitude ratiq ver-
sus cylinder radiusgr for the trivial, trefoil, and double-trefolil
(3:#3;) knots shown by closed circles, squares, and triangles, re-
spectively. For the double-trefoil knot, the data points for 0.001
<r=<0.01 are shown.

N WA WPEANEWNO

we have discussed in Sec. llIC. However, the decrease of

Ak /A is quite nontrivial, since the mean-squared gyration
Let us now consider the amplitudig of the asymptotic  radiusR? itself increases with respect tofor the trivial and

expansion(7). In Tables I, II, and IlI, the best estimates of trefoil knots, as shown in Fig. 2. Here we recall in Fig. 1 that

the ratiOAK /A are Iarger than 1.0 for the three knOtS, Whenthe gyration radius under no t0p0|ogica| Constrm in-

r is small. The observation must be important. In fact, if thecreases with respect to

amplitude ratioA¢ /A is larger than 1.0 in the asymptotic  From the viewpoint of asymptotic behavior, we have

expansion(7), thenRg is larger tharR? for any large value shown that the effective expansion derived from the topo-

of N. logical repulsion decreases with respect to cylinder radius
However, there is a clear evidence for the observation thaje have also discussed th&f is larger thanR? for any

A /A>1.0 for some small values of cylinder radiusIn large value ofN, when cylinder radius is small.

fact, the graphs of the ratiﬁﬁ/R2 versusN are monotoni-

cally increasing with respect fd, as we see in Figs. 3, 4, and C. The r dependence of the amplitude ratio

5. It is clear that the graphs with the smaller values of cyl- , . .
inder radiusr are larger than 1.0 wheN is large. These Let us discuss the dependence of the amplitude ratio

observations of Figs. 3, 4, and 5 confirm thgt/A>1.0 Ak /A, m(;re guantitatively. For this purpose, we analyze the
when cylinder radius is small. Thus, we may conclude that data ofRi/R" versusN again, assumingy = v in Eq. (7).
the topological constraint gives an effective expansion alsdVe evaluate the amplitude raty /A by the following for-
to asymptotically large cylindrical SAPs when the radius ~ Mula:
small.

The value ofAg /A decreases with respect to the radius
for the three knots. We see it in Tables | to lll, where the beshere we have replaced with, and 8y, Ac/A andBy— B

estimates ofAc /A are listed. It is also consistent with the in Eq.(7), respectively. Here we have also introduced a tech-
fact that the raticR3/R? decreases with respect tpwhich g-17), Tesp Y-

nical assumptionA=A,=0.5 in Eq.(7).

We have obtained the numerical estimatesyRf, apply-
ing the fitting formula(8) to the data ofRZ/R? with N
=300 . The estimates afx versusr are shown in Fig. 6 in
the double-logarithmic scale for the trivial, trefoil, and

B. Amplitude ratio Agx/A

RZ/R?= ay[1+ BN~ 2+ O(1/N)]. (8)

TABLE lIl. Fitting parametersAy /A,Bx—B, and Ay, versus
cylinder radiusr: for the double-trefoil knot (3#3,).

N

r AIA Bx—B 2A vy X ( :
3,43, knots. To be precise, the values af are a little

0.001  1.26¢1.158 —5.203t3.255 0.0120.116 7 larger than those of\c /A given in Tables I, Il, and III.
0.002  1.2241.077 -5.203+3.113 0.01&0.112 7 The estimate of the parameteg becomes close to the
0.003  1.1581.090 —4.371+3.662 0.0160.118 1 value 1.0 when cylinder radiusis large enough. Further-
0.004  1.1491.054 —4.866+3.401 0.0180.116 9 more, it is suggested from Fig. 6 thag should be indepen-
0.005  1.13%#1.008 —4.851+3.297 0.01&0.112 4 dent of the knot type. In fact, the data points for the trivial,
0.006  1.096:1.002 —4.745:3.476 0.02%0.115 1 trefoil, and the double-trefoil (3 3;) knots overlap each
0.007 1.06%+1.043 —3.819-4.091 0.026:0.122 3 other. These two observations are consistent with the simu-
0.01 1.0761.369 —3563+5287 00120159 4 lation result of the self-avoiding polygons on the lattice

[7,11].
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Interestingly, we see in Fig. 6 that the ratiq decreases r
monotonically with respect to the cylinder radiusFor the 0.1
data with 0.00%r=<0.01, we find thatwy is roughly ap-
proximated by a decreasing function of such asag 0.08
= aor ® exp(—yr), with au=1.00+0.12, ¢=—0.05+0.02, o . N~Ne(r)
and y=5.78+4.79. They? value is given by 1. 0.06 \ (b)r=0.05 \

V. DISCUSSION 0.04 |
) . . b G ’;‘_ﬂ}\

With some graphs in thdl-r plane, we can illustrate the 0.0211 (ayr=0.01 e \
finite-size behaviors of the ratiez/R? discussed in Sec. Il. mewos N1
We recall that the topological effect has played a central role 0 =500 1000 1500 2000
as well as the excluded-volume effect. Thus, we consider two N

lengths with respect to the numhbgrof polygonal nodes: the
characteristic length of random knottiny.(r) and the FIG. 7. N-r diagram. Graphs o=N(r) andN=Ng(r) are
“excluded-volume length”Ng,(r). When N>Ng,(r), the  shown by two curved lines. The arrows) and (b) suggest the
excluded-volume effect should be important to &ftpoded  series of the data points of Fig. 5 fo+=0.01 andr =0.005, respec-
SAP with radiusr . tively. All the data points in the paper are located in the shaded area.
We define Ng,(r) by Ne(r)=1/r2. The derivation is
given in the following. We first note that the parametesf ~ small when the topological effect becomes significant.
the excluded-volume is given k= constx NB/ /3 NY?r | The above explanation should be consistent with the ob-
where the cylindrical segments have the diametand the servation that the crossover of the trivial knot occurs near
length /, and the second virial coefficief® of a polymer N=N(r) for small values of. Here we recall Figs. 3 and 4.
chain is given by ?d [25]. Here we also note that the ratio Whenr is very small, then we cross the line b;(r)=N
d// corresponds to the radiusof the cylindrical SAPs. We almost atN:(0)~ 300.
may consider that whem~1, the excluded volume cannot ~ When radiusr is large such ag=0.03 and 0.05, it is
be neglected. Thus we have the numb&g(r) from the  shown in Sec. Ill through simulation that the effective ex-
condition {Ng,(r)r=1. pansion is small: the rati®%/R? is close to 1.0. In thé\-r
We consider two graphical lines in the-r plane: N diagram, when we move rightwards from the region near the
=Ney(r) andN=N(r). In Fig. 7, the vertical line expresses r axis withr fixed, we cross the lingNr=1 before reaching
the r axis and the horizontal one thid axis. The graph another lineN.(r)=N. Thus, the effective expansion as the
N.(r)=N reaches theN axis atN=N,(0)~300. Here we topological effect should be small.
recall that the functiorN.(r) is given by Eq.(2): Ng(r) Finally, we should remark that some important properties
=N.(0)expr). There is a crossing point for the two curved of Rﬁ of cylindrical SAPs with radius have been discussed
lines. The coordinates of the crossing point are approxisystematically through scaling arguments with the blob pic-
mately given byN* =1300 and * =0.03. For a given simu- ture by Grosberd26]. In Ref.[26], the characteristic length
lation of the ratioRZ/R? with a fixed radiusr, we have a Nc(r) and the excluded-volume parameterre explicitly
series of data points located on a straight line parallel to théliscussed in thél-r diagrams. It would thus be an interest-
N axis. ing future problem to investigate how far the predicted prop-
Let us first consider the case of small values sfich as  erties ofRZ are consistent with simulation results.
r=0.003 andr=0.01. From the simulation of Sec. Ill, it is
shown that the effective expansion due to the topological
constraint is large. This is consistent with the following in-
terpretation of theN—r diagram: if we start from the region We would like to thank Professor K. Ito for helpful dis-
near ther axis and move in the direction of ti¢ axis, then  cussions. We would also like to thank Professor A. Yu. Gros-
we cross the lineN=N,(r) before reaching another one berg for a helpful discussion and for sending the unpublished
JUNr=1; thus, we expect that the excluded volume remainsiote onRﬁ [26].
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