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Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical
self-avoiding polygons
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Several nontrivial properties are shown for the mean-square radius of gyrationRK
2 of ring polymers with a

fixed knot typeK. Through computer simulation, we discuss both finite size and asymptotic behaviors of the
gyration radius under the topological constraint for self-avoiding polygons consisting ofN cylindrical segments
with radiusr. We find that the average size of ring polymers with the knotK can be much larger than that of
no topological constraint. The effective expansion due to the topological constraint depends strongly on the
parameterr that is related to the excluded volume. The topological expansion is particularly significant for the
small r case, where the simulation result is associated with that of random polygons with the knotK.
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I. INTRODUCTION

A ring polymer is one of the simplest systems that exh
the effect of topological entanglement. The topological st
of a ring polymer is given by a knot, and it is fixed after th
ring polymer is formed. The entropy of the ring polym
with the fixed knot is much smaller than that of no topolo
cal constraint. Thus, there should be several nontrivial pr
erties in statistical mechanics of ring polymers with a fix
topology. Furthermore, some dynamical or thermodynam
properties of ring polymers under topological constrai
could also be nontrivial. In fact, various computer simu
tions of ring polymers with fixed topology were performe
by several groups@1–12#. However, there are still many un
solved problems related to the topological effect, such as
average size of a knotted ring polymer in solution.

In this paper, we discuss how the excluded volume c
trols the topological effect on the average size of ring po
mers in good solution. As a model of ring polymers we e
ploy a model of self-avoiding polygons~SAPs! consisting of
cylindrical segments with radiusr. First, we numerically
construct a large number ofN-noded cylindrical SAPs with
radiusr, and evaluate the mean-square radius of gyrationR2

of the SAPs under no topological constraint. Then, throu
some knot invariants we select such SAPs that should ha
fixed knot typeK, and then calculate the mean-square rad
of gyrationRK

2 of the SAPs with the knotK @13–15#. Com-
paring the mean squareRK

2 with R2, we show various topo-
logical effects in the average size of ring polymers under
topological constraint. By changing the cylinder radiusr, we
modify the excluded volume effect. Thus, we can investig
the topological effect systematically through the simulat
of cylindrical SAPs for various values of cylinder radiusr.

Let us consider the two cases when the radiusr is very
large or very small. When the radiusr is very large, the
simulation should be related to that of the self-avoiding po
gons on the lattice@11,15#. On the other hand, when th
1063-651X/2002/65~5!/051802~9!/$20.00 65 0518
t
e

-

al
s
-

e

-
-
-

h
a

s

e

e

-

radiusr is very small, it is related to random polygons with
fixed topology, as we shall see explicitly through the data
fact, there is quite an interesting suggestion@16–18# that
under a topological constraint the average size of ring po
mers with no excluded volume should be similar to that
ring polymers with the excluded volume, since nontriv
entropic repulsion should be derived from the topologi
constraint. According to the suggestion, the average siz
random polygons with the trivial knot should be given b
NnSAW with respect to the numberN of polygonal nodes,
wherenSAW is the exponent of self-avoiding walks~SAW!.
Thus, the smallr case of the simulation in the paper shou
be important also in the study of the topological effect
random polygons.

We now discuss an asymptotic behavior of the aver
size ofN-noded cylindrical SAPs with a fixed knotK, where
we send the numberN of polygonal nodes to infinity. Let us
assume that whenN is very large, the average size of rin
polymers with or without a topological constraint should
approximately given by some power ofN with correction
terms. For instance, the mean-square radius of gyrationR2 of
cylindrical SAPs under no topological constraint can be
pressed by the following:R25AN2n@11BN2D1O(1/N)#.
Applying the asymptotic expansion to the data ofRK

2 versus
N, we evaluate the best estimates of the exponentnK . Then
we find that whenN is large enough, the asymptotic expa
sion should be valid both forR2 and RK

2 of the cylindrical
SAPs with the knotK. Furthermore, we also find that th
value of the exponentnK should be consistent with that o
SAW: nK5nSAW with respect to errors.

The outline of the paper is given in the following. In Se
II we explain SAPs consisting of cylinderical segments. W
also discuss the effective exponent of the mean-square ra
of gyration under no topological constraintR2. In Sec. III,
we discuss various nontrivial finite-size properties of t
mean-square radius of gyrationRK

2 for cylindrical SAPs with
a given knot typeK. When the ratioRK

2 /R2 is larger than 1,
©2002 The American Physical Society02-1
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then it shows the effective expansion due to the topolog
constraint. Through the simulation, we find that the topolo
cal effect is important particularly in the smallr case for
cylindrical SAPs. Furthermore, the effective topological e
pansion is controlled by the parameterr. In Sec. IV, we dis-
cuss the asymptotic expansion of the ratioRK

2 /R2 with re-
spect to the numberN. Through the numerical analysis, w
conclude that the exponentnK should be consistent with tha
of SAW. Finally, in Sec. V, we graphically explain the effe
tive expansion of the cylindrical SAPs under the topologi
constraint, through the graphs in theN-r plane.

II. CYLINDRICAL SELF-AVOIDING POLYGONS

A. Cylindrical ring-dimerization algorithm and random knots

Let us introduce a model of ring polymers in good so
tion. We consider self-avoiding polygons consisting ofN
rigid impenetrable cylinders of unit length and diameterr:
there is no overlap allowed for any nonadjacent pairs of
lindrical segments, while next-neighboring cylinders m
overlap each other. We call them cylindrical self-avoidi
polygons or cylindrical SAPs, for short. The cylinder radiur
can be related to the stiffness of some stiff polymers such
DNAs @6,14#.

In the simulations of the paper, we have constructe
large number of cylindrical SAPs by the cylindrical ring
dimerization method@13#. The method is based on the alg
rithm of ring dimerization@4#, and very useful for generatin
long self-avoiding polygons~for details, see Ref.@14#!. Here
we note that another algorithm is discussed in Ref.@6# for the
model of cylindrical SAPs, where self-avoiding polygons
impenetrable cylinders withN,100 are constructed in asso
ciation with knotted DNAs@19,20#.

In the cylindrical ring-dimerization method, a statistic
weight is given to any self-avoiding polygon successfu
concatenated. Thus, when we evaluate some quantity,
take the weighted average of it with respect to the statist
weight. Some details on the statistical weight of succes
concatenation is given in Ref.@14#. Hereafter in the paper
however, we do not express the statistical weight, for s
plicity.

Let us describe the processes of our numerical exp
ments. First, we constructM samples of cylindrical SAPs
with N nodes by the cylindrical ring-dimerization metho
We put M5104. Here we note that various knot types a
included in theM random samples. Second, we make kn
diagrams for the three-dimensional configurations of cy
drical SAPs, by projecting them onto a plane. Then, we c
culate two knot invariantsDK(21) andv2(K) for the knot
diagrams. Third, we select only such polygons that have
same set of values of the two knot invariants, and then ev
ate physical quantities such as mean-squared gyration ra
for the selected cylindrical SAPs.

The symbolDK(21) denotes the determinant of a knotK,
which is given by the Alexander polynomialD(t) evaluated
at t521. The symbolv2(K) is the Vassiliev invariant of the
second degree@21,22#. The two knot invariants are pract
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cally useful for computer simulation of random polygo
with a large number of polygonal nodes. In fact, it has be
demonstrated in Ref.@21# that the Vassiliev invariantv2(K)
can be calculated not only in polynomial time but also wit
out using large memory area.

B. Characteristic length of random knotting Nc„r …

For a given knotK, we consider the probabilityPK(N,r )
that the topology of anN-noded self-avoiding polygon with
cylinder radiusr is given by the knot typeK. We call it the
knotting probability of the knotK. Let us assume that we
have MK self-avoiding polygons with a given knot typeK
amongM samples of cylindrical SAPs with radiusr. Then,
we evaluate the knotting probabilityPK(N,r ) by PK(N,r )
5MK /M .

For the trivial knot, the knotting probabilityPtri v(N,r )
for the cylindrical SAPs is given by

Ptri v~N,r !5Ctri v exp@2N/Nc~r !#. ~1!

Here the estimate of the constantCtri v is close to 1.0@13#.
We callNc(r ) the characteristic length of random knotting.
is also shown in Ref.@13# thatNc(r ) can be approximated by
an exponential function ofr,

Nc5Nc~0!exp~gr !. ~2!

The best estimates of the two parametersNc(0) andg are
given byNc(0)529265 andg543.560.6 @13#.

For several knots, it is shown@14# that the knotting prob-
ability PK(N,r ) of a knotK is given by

PK~N,r !5CKS N

NK~r ! D
m(K)

exp@2N/NK~r !#. ~3!

It is numerically suggested in Ref.@14# thatNK(r ) should be
independent ofK: NK(r )'Nc(r ), and also that the constan
CK should be independent of the cylinder radiusr.

We note that the formula given in Eq.~3! has been shown
for some off-lattice models in the case of the trivial kn
@5,8# and some nontrivial knots@9,10#. Furthermore, it has
also been shown for the lattice models with some knots@11#.

C. Mean-squared gyration radius with a topological constraint

The mean-square radius of gyrationR2 of a self-avoiding
polygon is defined by

R25
1

2N2 (
n,m51

N

^~RW n2RW m!2&. ~4!

HereRW n is the position vector of thenth segment~or thenth
node! and^•& denotes the ensemble average, which is ta
over all possible configurations of the self-avoiding polygo

Suppose that we haveM self-avoiding polygons. Then
we evaluate the mean-square radius of gyrationR2 by the
2-2
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sum:R25( i 51
M Ri

2/M , whereRi
2 denotes the gyration radiu

of the i th SAPs in the givenM SAPs.
Let us define the mean-square radius of gyrationRK

2 for
such self-avoiding polygons that have a given knot typeK,

RK
2 5

1

MK
(
i 51

MK

RK,i
2 , ~5!

where RK,i
2 denotes the gyration radius of thei th self-

avoiding polygon that has the knot typeK. In terms ofRK
2 ,

R2 is given byR25(KRK
2 MK /M .

In Fig. 1, the estimates of the mean-square radius of
ration R2 are plotted against the numberN of nodes in a
double-logarithmic scale, for the cylindrical SAPs withr
50.003 and r 50.03. We may confirm the standar
asymptotic behaviors of the mean-squared gyration radiuR2

in Fig. 1. Here we remark on an effective exponentneff ,
which is defined through the power-law approximation,R
;Nneff. It is shown in Ref.@23# that the estimate of the ef
fective exponentneff for the cylindrical SAPs with radiusr is
consistent with that of the cylindrical SAWs with radiusr.
However, both for the cylindrical SAWs and SAPs, the es
mates ofneff are smaller thannSAW, partially because the
range ofN is limited upto 1000 in the data of Fig. 1. Thu
we have neff50.514 for r 50.003 andneff50.556 for r
50.03 ~see also Fig. 7.3 of Ref.@23#!.

III. FINITE-SIZE BEHAVIORS OF RK
2 FOR SOME KNOTS

Let us discuss simulation results on the mean-square
dius of gyrationRK

2 for the cylindrical SAPs with a knotK
and of radiusr. For two prime knots~the trivial and trefoil
knots! and a composite knot~the double-trefoil knot,
31]31), we have investigated the mean-squared gyration
dius RK

2 under the topological constraint in the range of t
numberN satisfying 21<N<1001, and for 14 different val-
ues of cylinder radiusr.

The gyration radiusRK
2 can approximately be given b

some power ofN. In Fig. 2, double-logarithmic plots ofRK
2

FIG. 1. Double-logarithmic plots of the mean-square radius
gyration under no topological constraintR2 for cylindrical SAPs
versus the numberN of polygonal nodes for radiusr 50.003 and
0.03 depicted by closed circles and squares, respectively.
05180
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versusN are given for the trivial and trefoil knots, with two
values of cylinder radius:r 50.003 and 0.03. We see that a
the double-logarithmic plots of Fig. 2 fit to some straig
lines. We note that for other values of cylinder radiusr,
several double-logarithmic plots ofRK

2 versusN are explic-
itly shown in Ref.@23#.

With the numberN fixed,RK
2 should increase with respec

to the radiusr for any knot. Both for the trivial knot@Fig.
2~a!# and the trefoil knot@Fig. 2~b!#, closed squares forr
50.03 are located higher in the vertical direction than clos
circles for r 50.003, through the whole range ofN.

A. Ratio RK
2 ÕR2 and the effective expansion under the

topological constraint

Let us now consider the ratio ofRK
2 to R2 for a given knot

K. If the ratio is larger~smaller! than 1.0, then the averag
size of SAPs with the knotK is relatively larger~smaller!
than that of no topological constraint. We say that the SA
with the knotK is effectively more~less! expanded. In Fig. 3,
the ratioRK

2 /R2 versus the numberN is plotted in a double-
logarithmic scale for the trivial and trefoil knots. Here, w
have depicted only the case ofr 50.003 among many sets o
the cylindrical SAPs with 14 different values of cylindrica
radius.

For the trivial knot, we see in Fig. 3 that the ratioRtri v
2 /R2

is greater than 1.0 whenN.50. Thus, the average size of th

f

FIG. 2. Double-logarithmic plot ofRK
2 versusN with r 50.003

and 0.03 shown by closed circles and squares, respectively:~a! for
the trivial knot; ~b! for the trefoil knot.
2-3
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MIYUKI K. SHIMAMURA AND TETSUO DEGUCHI PHYSICAL REVIEW E 65 051802
ring polymers with the trivial knot enlarges under the top
logical constraint. It gives a typical example of effective e
pansion.

In Fig. 3, the graph of the trivial knot is convex down
wards: the ratioRtri v

2 /R2 is almost constant with respect toN
for small N such asN,100; for N.300 the ratioRtri v

2 /R2

increases with respect toN with a larger gradient, and th
graph can be approximated by a power law such

Rtri v
2 /R2}N2 Dneff

tr i v
. Here the symbolDneff

tr i v denotes the ef-
fective exponent for the trivial knot. We note that the ch
acteristic lengthNc(r ) is approximately given by 300 forr
50.003. Thus, we may say that the power law behavio
valid for N.Nc(r ).

For the trefoil knot, the graph can be approximated b

power of N such asRtre
2 /R2}N2 Dneff

tre
through the range o

100<N<1001. Here the symbolDneff
tre denotes the effective

exponent of the trefoil knot. In Fig. 3, we find that whenN
,100 the ratioRtre

2 /R2 is smaller than 1.0, while it is large
than 1.0 whenN.300. Thus, whenN is small, the topologi-
cal constraint of the trefoil knot gives effective shrinking
ring polymers, while it does not whenN is large. For a non-
trivial knot K, we expect that the ratioRK

2 /R2 is less than 1.0
when N is small, while it can be larger than 1.0 whenN is
large.

The properties of the ratioRK
2 /R2 discussed in the thre

preceding paragraphs are consistent with the simulation
sults of Gaussian random polygons@24#. We have found for
the random polygons that the double-logarithmic graph
RK

2 /R2 versusN is given by a downward convex curve fo
the trivial knot, while it is given by a straight line for th
trefoil knot and also for other several nontrivial knots; for t
nontrivial knots investigated, the ratioRK

2 /R2 is given by

some power ofN such asN2 Dneff
K

. Thus, there are indee
many important properties valid both for the simulation
the Gaussian random polygons and that of the cylindr
SAPs with a small radius such asr 50.003.

The observations derived from Fig. 3 should be valid p
ticularly for finite-size systems. Admitting thatN is finite, we
can only understand that the Gaussian random polygons
the cylindrical SAPs have the similar topological propert

FIG. 3. Double-logarithmic plots of the ratioRK
2 /R2 versusN for

cylindrical SAPs withr 50.003.Rtri v
2 /R2 andRtre

2 /R2 are shown by
closed circles and squares, respectively.
05180
-
-

s

-

is

a

e-

f

f
l

-

nd
s

in common. If we discuss asymptotic behaviors, SAPs a
random polygons should be quite different. However, if w
consider such properties that are valid for finiteN, then they
can hold both for SAPs with small excluded volume a
random polygons that have no excluded volume.

Let us discuss again the convexity of the graph of
trivial knot, which has been observed in Fig. 3. We consid
how the convexity depends on the radiusr. In Fig. 4, the
graphs of the ratioRtri v

2 /R2 versusN are given in a double-
logarithmic scale for four different values of cylinder radiu
r. Then, we see that the graph withr 50.05 is less convex
than that ofr 50.003. Thus, the convexity in the graphs
the effective expansion for the trivial knot should be va
only when cylinder radiusr is small.

Let us assume that the convexity of the graphs ofRtri v
2 /R2

for the smallr case should correspond to a crossover beh
ior of Rtri v

2 /R2 with respect toN. Then, the crossover behav
ior could be related to that of Gaussian random knots, wh
has recently been discussed by Grosberg@18# for Gaussian
random polygons. We can discuss the convexity of
double-logarithmic graph ofRtri v

2 /R2 versusN, taking an
analogy with the crossover of the Gaussian random kn
Thus, we call the convexity of the trivial knot in Fig. 3 th
crossover, hereafter in the paper.

For the nontrivial knots investigated, we do not see a
crossover in the graph ofRK

2 /R2 versusN. For instance, for
the 41 and 31]31 knots, the slope of the graph nearN
;Nc(r ) is straight in the double-logarithmic scale. Th
crossover atN;Nc(r ) should be valid only for the trivial
knot.

B. The plateau in the graph ofRK
2 ÕR2 versusN for large N

We discuss how the ratioRK
2 /R2 depends on the numbe

N, considering both the excluded volume effect and the
fective expansion due to the topological constraint. In Fig
the graphs of the ratioRK

2 /R2 versusN for different values of
cylinder radiusr are shown in linear scales:~a! for the trivial
knot; ~b! for the trefoil knot.

Let us first consider the largeN behaviors of the graphs
shown in Fig. 5 for the trivial and trefoil knots. The graphs

FIG. 4. Double-logarithmic plots of the ratioRtri v
2 /R2 versusN

for r 50.003, 0.01, 0.03, and 0.05 shown by closed circles, squa
diamonds and triangles, respectively.
2-4
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RK
2 /R2 versusN have a common tendency that they beco

constant with respect toN whenN is very large. It is particu-
larly the case for the larger values of cylinder radiusr such
asr 50.03 and 0.05. They approach horizontal lines at so
large values ofN. When r is small such asr 50.003, the
graph becomes flat only for largeN, as shown in Fig. 5.

The flatness of the graphs ofRK
2 /R2 for largeN shows that

the exponentDnK for the ratioRK
2 /R2 should be given by

zero. Here we have definedDnK by the difference,DnK
5nK2nSAW. On the other hand, whenN is small, the graphs
of RK

2 /R2 versusN can be approximated by some power

N. Here we recall that in Fig. 3, the power ofN: N2 Dneff
tre

gives a good approximation for the ratioRtre
2 /R2 as a func-

tion of N through the range of 100<N<1001 with r
50.003. However, the flatness shows that the power-law
proximation does not hold whenN is large enough. Thus, th
graphs in Fig. 5 reaching their plateau regions for largeN
also show that the finite-size behavior described by so
power of N gradually changes into the asymptotic behav
with DnK50.

Let us discuss other finite-N behaviors of the ratioRK
2 /R2.

For the trefoil knot, the ratioRtre
2 /R2 is less than 1.0 whenN

is small; it approaches or becomes larger than 1.0 whenN is
large enough. When cylinder radiusr is small such asr
50.003 andr 50.01, the ratioRtre

2 /R2 is clearly greater than
1.0 whenN is large enough. Whenr is small, there should be

FIG. 5. Graphs of the ratioRK
2 /R2 versus the numberN in linear

scales forr 50.003, 0.01, 0.03, and 0.05 shown by closed circl
squares, diamonds, and triangles, respectively:~a! for the trivial
knot and~b! for the trefoil knot. The same data points are shown
both Fig. 4 and Fig. 5~a!.
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a critical value Ncritical such that Rtre
2 /R2,1.0 for N

,Ncritical , andRtre
2 /R2.1.0 for N.Ncritical . Furthermore,

we have a conjecture that the critical valueNcritical should
be roughly equal to the characteristic lengthNc(r ) of random
knotting. It seems that the conjecture is consistent with
graphs of Fig. 5~b!.

Let us discuss the conjecture onNcritical , explicitly. In
Fig. 5~b!, we see that forr 50.003, the ratioRtre

2 /R2 be-
comes 1.0 roughly atN5300, and also that forr 50.01, the
ratio Rtre

2 /R2 is close to 1.0 roughly atN5400. The obser-
vations are consistent with the estimates ofNc(r ) in Ref.
@13#: Nc(r )5(2.7260.06)3102 for r 50.0 and Nc(r )
5(4.7260.14)3102 for r 50.01. Thus, the consistency sup
ports the conjecture onNcritical .

C. Decrease of the topological effect under the increase
of the excluded volume

The effect of a topological constraint on the gyration r
dius decreases when the excluded volume increases. T
are two examples: the decrease of ratioRK

2 /R2 with respect
to cylinder radiusr while N being fixed, and the disappea
ance of the crossover for the trivial knot shown in Figs.
and 4.

Let us first discuss how the excluded volume can mod
the effective expansion due to the topological constraint.
we clearly see in Fig. 5, the ratioRK

2 /R2 decreases as cylin
der radiusr increases withN fixed, both for the trivial and
trefoil knots. Thus, the effective expansion of SAPs und
the topological constraint becomes smaller when the
cluded volume becomes larger.

It is quite nontrivial that the effective expansion given b
the ratioRK

2 /R2 decreases as cylinder radiusr increases. In
fact, the value ofRK

2 itself increases with respect tor, as we
have observed in Fig. 2. Furthermore, one might expect
the effective expansion due to a topological constraint sho
also increase with respect to cylinder radiusr, simply be-
cause the average size of ring polymers with larger exclu
volume becomes larger, as observed in Fig. 1. However,
not the case for the ratioRK

2 /R2.
Let us now discuss the crossover behavior of the triv

knot again, from the viewpoint of the competition betwe
the topological effect and the excluded volume effect. H
we recall that the crossover has been discussed in Sec.
with Figs. 3 and 4. Here we regard the crossover as a c
acteristic behavior derived from the topological constraint
being the trivial knot.

As a working hypothesis, let us assume that the crosso
should occur at around the characteristic lengthNc(r ). Re-
call thatNc(r ) is larger than 1000 forr 50.03 and 0.05, as
we have estimated:Nc(r )'1200 for r 50.03, andNc(r )
'2600 forr 50.05. If the above hypothesis would be vali
then the graphs forr 5 0.03 and 0.05 should also be conve
In Fig. 4, however, we see no change in the gradient of
graph ofRtri v

2 /R2 versusN for r 50.03 or 0.05. The assume
crossover of the trivial knot does not appear forr 5 0.03 or
0.05. We may thus consider that the crossover as a topo

,

2-5



e

ca
th
io

g

y

ia
po
e

os

-
er
in

ist
e
o
in

ar
de

fo
-
ha
o
c

se
, a
. 3

a
en
f

ts.

-
-

ts:
n

, II,

the

ith
est
II,

f

he

me
s

er-

ng

MIYUKI K. SHIMAMURA AND TETSUO DEGUCHI PHYSICAL REVIEW E 65 051802
cal effect is diminished by the excluded volume effect wh
r>0.03.

D. Characteristic length of random knotting Nc„r …
and the effective expansion

In terms of the characteristic lengthNc(r ), we can explain
some properties of the effective expansion of cylindri
SAPs under a topological constraint. Here we recall that
ratio RK

2 /R2 describes the degree of the effective expans
under the topological constraint of a knotK.

We first consider the case when the characteristic len
Nc(r ) is very large. Let us show that the ratioRtri v

2 /R2

should be close to 1.0 forN!Nc(r ). First, we recall that the
probability Ptri v(N) of the trivial knot decays exponentiall
with respect to the numberN of polygonal nodes,Ptri v(N)
5exp@2N/Nc(r)#. If N/Nc(r ) is very small, the probability
Ptri v(N) is close to 1.0, i.e., almost all SAPs have the triv
knot. Then, the mean-squared gyration radius with no to
logical constraintR2 should be almost equal to that of th
trivial knot Rtri v

2 . Consequently, the ratioRtri v
2 /R2 should be

close to 1.0.
When r>0.05, the characteristic lengthNc(r ) is larger

than 2600. Then, the trivial knot is dominant among the p
sible knots generated in SAPs withN,1000. Thus,Rtri v

2

should almost agree withR2, which is the mean-squared gy
ration radius of SAPs under no topological constraint. Th
is no effective expansion under the topological constra
the Rtri v

2 /R2 is close to 1.0.
Let us next consider the case when the character

length Nc(r ) is small or not large. Then we show that th
mean-square radius of gyration of SAPs with the trivial kn
Rtri v

2 should be larger than that of no topological constra

R2 for N.Nc(r ). In fact, various types of knots can appe
in a given set of randomly generated SAPs of the cylin
radiusr, since the probability of the trivial knotPtri v(N) is
exponentially small forN.Nc(r ). We note that the fraction
of nontrivial knots is given by 12exp@2N/Nc(r)#. Thus, it is
not certain whether the ratioRtri v

2 /R2 is close to the value 1.0
or not. However, we may expect that the ratioRtri v

2 /R2

should be indeed larger than 1.0. Here we consider the
lowing points: whenN.Nc(r ), the majority of SAPs gener
ated randomly should have much more complex knots t
the trivial knot; the mean-square radius of gyration
N-noded SAPs with a very complex knot should be mu
smaller than that of the trivial knot.

The explanation on the effective expansion discus
above is completely consistent with the simulation results
we have discussed in Sec. III, in particular, through Figs
4, and 5.

IV. ASYMPTOTIC BEHAVIORS OF RK
2

A. The exponent ofRK
2

Let us discuss an asymptotic expansion for the me
square radius of gyration of cylindrical SAPs with a giv
knot K. Here we assume thatRK

2 can be expanded in terms o
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1/N consistently with renormalization group argumen
Then, the largeN dependence ofRK

2 is given by

RK
2 5AKN2nK@11BKN2D1O~1/N!#. ~6!

Here, the exponentnK should be given by that of self
avoiding walks,nK5nSAW. In order to analyze the numeri
cal data systematically, however, we have introducednK as a
fitting parameter. Thus, for the ratioRK

2 /R2, we have the
following expansion:

RK
2 /R25~AK /A!N2DnK@11~BK2B!N2D1O~1/N!#.

~7!

Here we have putDnK as a fitting parameter.
We have analyzed the data for the three different kno

the trivial, trefoil, and 31]31 knots, applying the expansio
~7! to the numerical data ofRK

2 /R2 for N>300. The best
estimates of the three parameters are given in Tables I
and III for the trivial, trefoil, and 31]31 knots, respectively.

Let us discuss the best estimates of the difference of
exponents,DnK . We see in Tables I, II, and III that all the
results ofDnK suggest that they should be given by 0.0, w
respect to the confidence interval. Let us examine the b
estimates more precisely. It is rather clear from Tables I,
and III that for a given cylinder radiusr, the best estimates o
DnK are independent of the knot type.

There is another evidence supporting thatDnK50.0 for
the trivial and trefoil knots. Let us consider the plots of t
ratio RK

2 /R2 versusN in Fig. 5 for the trivial and trefoil
knots. We recall that the graphs are likely to approach so
horizontal lines at some largeN. The tendency of the graph
becoming flat for largeN suggests thatRK

2 and R2 should
have the same exponent, i.e.,nSAW.

From the two observations, we conclude that the diff
ence of the exponents is given by 0.0:DnK50.0 for any
value ofr. There is thus no topological effect on the scali
exponent defined in the asymptotic expansion ofRK

2 .

TABLE I. Fitting parametersAK /A,BK2B, and DnK versus
cylinder radiusr: for the trivial knot.

r AK /A BK2B 2DnK x2

0.001 1.31361.285 22.58764.211 0.00360.123 18
0.002 1.23561.152 22.38964.117 0.00960.116 12
0.003 1.21361.065 22.31763.912 0.00960.109 3
0.004 1.22861.062 21.98263.973 0.00360.107 3
0.005 1.17060.983 21.68463.985 0.00760.104 4
0.006 1.20760.921 22.20463.464 0.00560.095 4
0.007 1.15960.891 21.63363.684 0.00560.095 3
0.01 1.10660.836 21.09063.809 0.00560.092 3
0.02 1.06560.686 20.69963.384 0.00360.078 1
0.03 1.06360.628 20.51863.166 20.00160.071 2
0.04 1.04360.590 20.35363.076 20.00160.068 1
0.05 1.01060.554 20.14363.039 0.00260.066 1
0.06 1.02060.551 20.10362.997 20.00160.065 1
0.07 1.01360.531 20.18762.898 20.00160.060 1
2-6
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B. Amplitude ratio AK ÕA

Let us now consider the amplitudeAK of the asymptotic
expansion~7!. In Tables I, II, and III, the best estimates
the ratioAK /A are larger than 1.0 for the three knots, wh
r is small. The observation must be important. In fact, if t
amplitude ratioAK /A is larger than 1.0 in the asymptoti
expansion~7!, thenRK

2 is larger thanR2 for any large value
of N.

However, there is a clear evidence for the observation
AK /A.1.0 for some small values of cylinder radiusr. In
fact, the graphs of the ratioRK

2 /R2 versusN are monotoni-
cally increasing with respect toN, as we see in Figs. 3, 4, an
5. It is clear that the graphs with the smaller values of c
inder radiusr are larger than 1.0 whenN is large. These
observations of Figs. 3, 4, and 5 confirm thatAK /A.1.0
when cylinder radiusr is small. Thus, we may conclude th
the topological constraint gives an effective expansion a
to asymptotically large cylindrical SAPs when the radiusr is
small.

The value ofAK /A decreases with respect to the radiur
for the three knots. We see it in Tables I to III, where the b
estimates ofAK /A are listed. It is also consistent with th
fact that the ratioRK

2 /R2 decreases with respect tor, which

TABLE II. Fitting parametersAK /A,BK2B, and DnK versus
cylinder radiusr: for the trefoil knot.

r AK /A BK2B 2DnK x2

0.001 1.28660.970 24.44062.784 0.01460.096 3
0.002 1.21560.918 24.09362.906 0.01560.095 10
0.003 1.20260.905 23.56263.054 0.01160.094 11
0.004 1.17660.872 23.42363.069 0.01260.093 16
0.005 1.17660.845 23.46162.964 0.01060.090 6
0.006 1.11360.807 23.17463.091 0.01560.090 7
0.007 1.08460.765 23.21962.996 0.01960.088 3
0.01 1.10360.743 23.22062.870 0.01360.084 1
0.02 1.06860.765 22.32663.353 0.00560.088 2
0.03 1.05860.790 22.26263.531 0.00360.091 4
0.04 1.00360.835 22.04364.034 0.00760.101 3
0.05 1.00760.883 22.42264.119 0.00760.107 4
0.06 1.02960.975 22.90064.274 0.00560.116 3
0.07 0.99861.197 21.92365.915 0.00260.146 2

TABLE III. Fitting parametersAK /A,BK2B, and DnK versus
cylinder radiusr: for the double-trefoil knot (31]31).

r AK /A BK2B 2DnK x2

0.001 1.26961.158 25.20363.255 0.01260.116 7
0.002 1.22461.077 25.20363.113 0.01660.112 7
0.003 1.15861.090 24.37163.662 0.01660.118 1
0.004 1.14961.054 24.86663.401 0.01860.116 9
0.005 1.13761.008 24.85163.297 0.01660.112 4
0.006 1.09661.002 24.74563.476 0.02160.115 1
0.007 1.06161.043 23.81964.091 0.02060.122 3
0.01 1.07661.369 23.56365.287 0.01260.159 4
05180
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we have discussed in Sec. III C. However, the decreas
AK /A is quite nontrivial, since the mean-squared gyrati
radiusRK

2 itself increases with respect tor, for the trivial and
trefoil knots, as shown in Fig. 2. Here we recall in Fig. 1 th
the gyration radius under no topological constraintR2 in-
creases with respect tor.

From the viewpoint of asymptotic behavior, we ha
shown that the effective expansion derived from the to
logical repulsion decreases with respect to cylinder radiur.
We have also discussed thatRK

2 is larger thanR2 for any
large value ofN, when cylinder radiusr is small.

C. The r dependence of the amplitude ratio

Let us discuss ther dependence of the amplitude rat
AK /A, more quantitatively. For this purpose, we analyze
data ofRK

2 /R2 versusN again, assumingnK5n in Eq. ~7!.
We evaluate the amplitude ratioAK /A by the following for-
mula:

RK
2 /R25aK@11bKN2D1O~1/N!#. ~8!

Here we have replaced withaK andbK , AK /A andBK2B
in Eq. ~7!, respectively. Here we have also introduced a te
nical assumption:D5DK50.5 in Eq.~7!.

We have obtained the numerical estimates ofaK , apply-
ing the fitting formula ~8! to the data ofRK

2 /R2 with N
>300 . The estimates ofaK versusr are shown in Fig. 6 in
the double-logarithmic scale for the trivial, trefoil, an
31]31 knots. To be precise, the values ofaK are a little
larger than those ofAK /A given in Tables I, II, and III.

The estimate of the parameteraK becomes close to the
value 1.0 when cylinder radiusr is large enough. Further
more, it is suggested from Fig. 6 thataK should be indepen-
dent of the knot type. In fact, the data points for the trivi
trefoil, and the double-trefoil (31]31) knots overlap each
other. These two observations are consistent with the si
lation result of the self-avoiding polygons on the latti
@7,11#.

FIG. 6. Double-logarithmic plots of the amplitude ratioaK ver-
sus cylinder radiusr for the trivial, trefoil, and double-trefoil
(31#31) knots shown by closed circles, squares, and triangles,
spectively. For the double-trefoil knot, the data points for 0.0
<r<0.01 are shown.
2-7
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Interestingly, we see in Fig. 6 that the ratioaK decreases
monotonically with respect to the cylinder radiusr. For the
data with 0.001<r<0.01, we find thataK is roughly ap-
proximated by a decreasing function ofr such as aK
5a0r f exp(2cr), with a051.0060.12, f520.0560.02,
andc55.7864.79. Thex2 value is given by 1.

V. DISCUSSION

With some graphs in theN-r plane, we can illustrate the
finite-size behaviors of the ratioRK

2 /R2 discussed in Sec. III
We recall that the topological effect has played a central r
as well as the excluded-volume effect. Thus, we consider
lengths with respect to the numberN of polygonal nodes: the
characteristic length of random knottingNc(r ) and the
‘‘excluded-volume length’’Nex(r ). When N.Nex(r ), the
excluded-volume effect should be important to anyN-noded
SAP with radiusr .

We define Nex(r ) by Nex(r )51/r 2. The derivation is
given in the following. We first note that the parameterz of
the excluded-volume is given byz5const3ANB/l 3}N1/2r ,
where the cylindrical segments have the diameterd and the
length l , and the second virial coefficientB of a polymer
chain is given byl 2d @25#. Here we also note that the rati
d/l corresponds to the radiusr of the cylindrical SAPs. We
may consider that whenz'1, the excluded volume canno
be neglected. Thus we have the numberNex(r ) from the
conditionANex(r )r 51.

We consider two graphical lines in theN-r plane: N
5Nex(r ) andN5Nc(r ). In Fig. 7, the vertical line expresse
the r axis and the horizontal one theN axis. The graph
Nc(r )5N reaches theN axis at N5Nc(0)'300. Here we
recall that the functionNc(r ) is given by Eq.~2!: Nc(r )
5Nc(0)exp(gr). There is a crossing point for the two curve
lines. The coordinates of the crossing point are appro
mately given byN* 51300 andr * 50.03. For a given simu-
lation of the ratioRK

2 /R2 with a fixed radiusr, we have a
series of data points located on a straight line parallel to
N axis.

Let us first consider the case of small values ofr such as
r 50.003 andr 50.01. From the simulation of Sec. III, it i
shown that the effective expansion due to the topolog
constraint is large. This is consistent with the following i
terpretation of theN2r diagram: if we start from the region
near ther axis and move in the direction of theN axis, then
we cross the lineN5Nc(r ) before reaching another on
ANr51; thus, we expect that the excluded volume rema
,
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small when the topological effect becomes significant.
The above explanation should be consistent with the

servation that the crossover of the trivial knot occurs n
N5Nc(r ) for small values ofr. Here we recall Figs. 3 and 4
When r is very small, then we cross the line ofNc(r )5N
almost atNc(0)'300.

When radiusr is large such asr 50.03 and 0.05, it is
shown in Sec. III through simulation that the effective e
pansion is small: the ratioRK

2 /R2 is close to 1.0. In theN-r
diagram, when we move rightwards from the region near
r axis withr fixed, we cross the lineANr51 before reaching
another lineNc(r )5N. Thus, the effective expansion as th
topological effect should be small.

Finally, we should remark that some important propert
of RK

2 of cylindrical SAPs with radiusr have been discusse
systematically through scaling arguments with the blob p
ture by Grosberg@26#. In Ref. @26#, the characteristic length
Nc(r ) and the excluded-volume parameterz are explicitly
discussed in theN-r diagrams. It would thus be an interes
ing future problem to investigate how far the predicted pro
erties ofRK

2 are consistent with simulation results.
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FIG. 7. N-r diagram. Graphs ofN5Nc(r ) and N5Nex(r ) are
shown by two curved lines. The arrows~a! and ~b! suggest the
series of the data points of Fig. 5 forr 50.01 andr 50.005, respec-
tively. All the data points in the paper are located in the shaded a
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