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Statistical thermodynamics of equilibrium polymers at interfaces
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The behavior of a solution of equilibrium polymers~or living polymers! at an interface is studied, using a
Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of
polymers and the chain length distribution are calculated. For equilibrium polymers at a nonadsorbing surface
it is found that the depletion layer thickness has a maximum. In dilute solutions it is proportional to the average
radius of gyration of the polymers, which increases with increasing concentration. Above the overlap concen-
tration it corresponds to the bulk correlation length, which decreases with increasing concentration. Further-
more, it is found that the surface region is predominantly occupied by the shorter chains. Both in dilute
solutions and in a melt of equilibrium polymers, a very simple relation is found between the surface excess of
a component and the chain length.
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I. INTRODUCTION

Polymers have been the subject of great scientific inter
This has resulted in a broad spectrum of theoretical, num
cal, and experimental techniques to investigate their pro
ties, both in solution and at interfaces@1–3#. A special class
of polymers are the so called equilibrium polymers, or livi
polymers. The difference from classical polymers is that
bonds in equilibrium polymers are reversible rather than
valent. As a result, the chain length distribution in such s
tems is not fixed, but is determined by thermodynamic eq
librium. Examples of equilibrium polymers are liquid sulfu
@4–6#, wormlike micelles@7#, and supramolecular polymer
based on hydrogen bonding@8#.

The equilibrium between breakage and formation
bonds in equilibrium polymer solutions results in a polyd
perse chain length distribution. This equilibrium distributio
can be calculated using statistical mechanics. Within a me
field approximation, originally by Flory, this yields an exp
nential chain length distribution@2,7,9#:

f~N!5N
fM

^N&2
expS 2

N

^N& D , ~1!

wheref(N) is the volume fraction of chains ofN segments,
fM is the total volume fraction of monomers, and^N& is the
number averaged chain length. The factorfM /^N&2 normal-
izes the distribution, ensuring(Nf(N)5fM . The average
chain length is a function of the monomer concentrationfM ,
the scission energyE that is needed to break a bond betwe
two monomers, and the temperatureT:

^N&.fM
1/2expS E

2kTD . ~2!

This result does not depend on the chain stiffness, so th
applies to flexible chains, semiflexible chains, and stiff ro
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No direct measurements of the chain length distribution h
been reported so far, due to experimental difficulties@7#.

Because of their ‘‘tunable’’ properties, it may be advan
geous to use equilibrium polymers rather than classical p
mers in some applications, for example if special rheologi
properties are desired. In many practical systems, the be
ior of the polymer molecules near surfaces is of great imp
tance. An example is the use in colloidal systems, wh
polymers can enhance or diminish the colloidal stabil
@3,10–12#. Obviously, before equilibrium polymers can b
used for such applications, it is necessary to understand
behavior near surfaces and their effect on the interacti
between colloidal particles.

So far, only little attention has been paid to equilibriu
polymers near surfaces. The interfacial behavior of class
polymers, on the other hand, is quite well understood@3#.
The presence of a surface affects a polymer molecule in
ways: ~i! it reduces the conformational entropy, and~ii ! it
may have an energetic interaction with the polymer s
ments. The equilibrium configuration is a result of the b
ance between these two factors. If there is a strong attrac
between the surface and the polymer segments, the polym
are adsorbed. If, on the other hand, the adsorption energ
too small to compensate the entropy loss, the polymers
depleted from the surface. Both polymer adsorption a
depletion can cause flocculation in colloidal syste
@3,10–12#.

Several theoretical models have been proposed to
scribe the behavior of monodisperse polymers at interfa
Scheutjens and Fleer@3,13–16# developed a self-consisten
field lattice theory, based on a mean-field approximati
which proved to be successful in describing polymer adso
tion and depletion. The concentration profile of polymer se
ments is calculated. For nonadsorbing polymers there
region of lower polymer concentration next to the surfa
~the depletion layer!. The thickness of this depleted regio
corresponds to the correlation length in the bulk of the po
mer solution. Several regimes can be distinguished@3#. In
dilute solutions the thickness of the depleted region is
proximately equal to the radius of gyrationRg of the polymer
©2002 The American Physical Society01-1
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coils. Within a mean-field approximation this radius of gyr
tion scales with the chain length asRg;N1/2. Above the
overlap concentration, the interactions between polym
coils become important. The coils interpenetrate and form
network. In good solvents, mean-field theory predicts
crossover to the so-called marginal regime, where binary
teractions are dominant. This crossover occurs at a volu
fraction f* ;N21. In the marginal regime the correlatio
length ~which determines the depletion layer thickness! is
independent of the chain length and decreases with incr
ing polymer concentration asjm;f21/2. At higher polymer
concentrations, a crossover to the concentrated regime is
served, where higher order interactions become import
The semidilute regime@1#, which is important for flexible
chains in a good solvent, cannot be described by the m
field treatment. For a complete diagram of the different
gimes in a polymer solution, see, for example, Refs.@3,17#.

The theoretical description of polymer systems has
cused mainly on monodisperse polymers. Equilibrium po
mer solutions, however, are polydisperse. Furthermore,
chain length distribution is a function of the concentrati
@see Eqs.~1! and~2!#. A system of equilibrium polymers nea
a surface therefore adapts its chain length distribution in
der to minimize the free energy. Since the entropic rest
tions imposed by the surface are different for polymers
different chain lengths, the composition of the polymer so
tion close to the surface is expected to be different from
bulk composition. The entropy loss suffered by the long
chains is larger than that for the shorter chains, so that, in
absence of energetic interactions, the surface region is
dominantly occupied by the shorter chains.

So far, only a few studies have dealt with polydispe
polymer systems near a surface. Hariharanet al. @18# used
the Scheutjens-Fleer theory to study surface segregation
bimodal polymer melt. Their results showed depletion of
long chains and net adsorption of the short chains, in ag
ment with what would be expected on the basis of entro
restrictions. Similar results were obtained by Hertanto a
Dickman for semidilute solutions of polydisperse polyme
using Monte Carlo simulations@19#. In a recent paper@20#
we studied the effect of a surface on a polydisperse poly
melt with an arbitrary chain length distribution. A ver
simple relation was found between the surface excess
component in the melt, its chain length, and its bulk conc
tration.

Schmitt et al. @21# presented an analytical model for
dilute solution of ideal equilibrium polymer chains confine
between two repulsive walls. Excluded volume interactio
were not accounted for in this approach. The depletion
equilibrium polymers from the gap resulted in an attract
force between the two plates, and a decrease of the ave
chain length in the gap. Milchev and Landau@22# did lattice
Monte Carlo simulations on concentrated solutions of eq
librium polymers confined between two surfaces. Their
sults show that the surface region is preferentially occup
by short chains, which is in agreement with the results
polydisperse systems of unbreakable polymers@18,20#.
Rouault and Milchev@23# used the same Monte Carlo alg
rithm to calculate the average chain length in a concentra
05180
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equilibrium polymer solution in a gap between two surfac
as a function of the gap size. Their results are in reason
agreement with the analytical model of Schmittet al. @21#.

In this paper we apply a lattice theory for molecules w
orientation dependent interactions, developed by Besse
and Scheutjens@24#, to a system of equilibrium polymers
The theory can be used in both homogeneous and inho
geneous systems. In Besseling and Scheutjens’s model
relations due to interactions between monomers are
counted for in a Bethe-Guggenheim approximation~also
called the quasichemical approximation or first-order a
proximation!. Besseling and co-workers successfully appli
this theory to describe the structure of water and hydrat
forces@25–27#.

In Sec. II we give a general description of the model.
Sec. III we present some results for equilibrium polym
solutions. In this paper we consider only flexible chains. F
we consider a homogeneous solution and compare
present model to other mean-field models. Then we cons
the case of nonadsorbing equilibrium polymers near a sin
surface, and compare these results to the depletion of
breakable polymers. Finally, we look at the effect of a s
face on the chain length distribution. In subsequent pap
we will investigate chain stiffness, adsorption of equilibriu
polymers, and the effect of equilibrium polymers on the s
face forces.

II. THEORY

A. General description of the model

In this section, the general features of the theory are
scribed. A method to calculate the chain length distribution
presented in Sec. II B. In Sec. II C we summarize the de
vation of the partition function and the self-consistent-fie
equations for the equilibrium configuration. A more comple
description of the theory can be found in Ref.@24#.

A schematic representation of the model is depicted
Fig. 1. The volume that contains the equilibrium polym
solution is divided into a number of identical lattice site
Each site contains either a solvent molecule or a bifunctio
monomer. In order to deal with spatially inhomogeneous s

FIG. 1. A two-dimensional representation of a thre
dimensional cubic lattice. Left of layer 1 there is an inert so
surface. Layers 1 toM contain solvent molecules~open squares! or
bifunctional monomers~filled figures!. The bonding groups of the
monomers are denoted as curved faces.
1-2
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tems, the lattice is divided intoM parallel lattice layers, num
beredz51,2, . . . ,M . Each layer is allowed to be occupie
differently. The number of sites in each layer is denotedL.
The surface area, and henceL, are taken infinitely large, so
that edge effects can be ignored. By choosing the approp
boundary conditions atz50 and z5M , we can model a
homogeneous solution, a solution adjoining a single so
surface, or a solution confined between two surfaces.
lattice coordination numberq gives the number of neighbor
ing sites that each lattice site has. In this paper we us
cubic lattice, in whichq56. Four of these neighboring site
are within the same lattice layer.

The surface of each molecule consists ofq faces that are
directed toward nearest neighbor sites. A bifunctional mo
mer has two different types of faces. Two of itsq faces are
the bonding groups, denoted as faces of type 2~and in Fig. 1
represented as curved faces!. The otherq22 faces of a
monomer are denoted as faces of type 1. A monomer
have a number of different monomeric states. The state
monomer is specified by the direction in which the tw
bonding groups are pointing. In the present paper we c
sider only completely flexible chains. Hence, there is no
ergy difference between linear states in which the two bo
ing groups are on opposite sides of the monomer and
states where the two bonding groups make a 90° an
Semiflexibility will be considered in a subsequent paper. T
solvent molecules are isotropic, because allq faces of a sol-
vent molecule are identical~these are denoted as faces
type 0!. Solvent molecules therefore have no distinguisha
states.

The number of molecules of typeA having states that are
located at layerz is denotednA

s(z). The subscriptA denotes
either a monomer~M! or a solvent~S! molecule. Every lat-
tice site is occupied by either a monomer or a solvent m
ecule, so that the following constraint needs to be satisfi

(
A

nA5nM1nS5ML, ~3!

where nA5(s,znA
s(z) is the total number of molecules o

typeA in the system. The number of faces of typea (50, 1,
or 2! in layer z pointing in directiond is denotedna

d(z).
Obviously, the distribution of faces is directly related to t
distribution of molecule states. The number of contacts
tween faces of typea with directiond at sites in layerz and
faces of typeb is denotednab

d (z). One of these contact type
~2-2! denotes the formation of bonds between monomers
the layerz and the directiond of a facea are specified, then
the layer number and the direction of the face that ma
contact with that facea are fixed. It is located at layerz
1d, by which we denote the layer at whichd is directed
from a site in layerz ~hered can have the values21, 0, or
11), and it has the opposite direction tod, denoted2d.
Obviously,nab

d (z)5nba
2d(z1d). For the distribution of con-

tacts and faces the following relation should hold:

(
b

nab
d ~z!5na

d~z! ~4!
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for all a, z, andd.
Site fractions of monomers, faces, and contacts are

fined as fA
s(z)[nA

s(z)/L, fa
d(z)[na

d(z)/L, and fab
d (z)

[nab
d (z)/L. They can be considered as probability distrib

tions for sites to be occupied in a certain way.
A first-order or quasichemical approximation is used

calculate the occupation of the lattice sites. Correlations
tween neighboring sites are accounted for in this approa
but pairs of sites are occupied independently. This appro
goes beyond the Bragg-Williams or random-mixing appro
mation, which assumes the occupation of individual sites
be stochastically independent. The contact probabi
fab

d (z) is related to the pair distribution function:

cab
d ~z![

fab
d ~z!

fb
2d~z1d!

, ~5!

which is the conditional probability to find a face of typea,
provided that it is located in layerz and points in directiond
at a face of typeb. In case the occupancy of nearest neighb
sites is stochastically independent, as in the Bragg-Willia
approximation,cab

d (z) is independent ofb. The contact
probability for this case is simply given as the product of t
occupation probabilities of each of the sites:

fab
d* ~z!5fa

d~z!fb
2d~z1d!, ~6!

where the asterisk indicates a random distribution of c
tacts. Generally the distribution of contacts differs from t
random distribution however, because low energy conta
~i.e., bonds between monomers! are favored over high en
ergy contacts.

A bond between two neighbor monomers is formed if tw
of their bonding groups~type 2 faces! point toward each
other. The strength of such a bond is determined by the c
tact energyu2252E between two bonding groups. IfE is
large, 2-2 contacts will be favored and long chains will
formed. We take all contact energiesuab between other com-
binations of faces~of monomers and solvent! equal to zero.
This implies that we are dealing with a good solvent. A
interaction energies with the surface are set to zero as w
so there is no preferential interaction of either monomers
solvent with the surface.

For a solution of equilibrium polymers in contact with
surface, the polymer concentration next to the surface wil
general be different from the bulk concentration. The exc
amount of monomers at the surface, expressed in equiva
lattice layers, is defined as

uM
ex5(

z51

M

@fM~z!2fM
b #, ~7!

where fM
b is the bulk volume fraction of monomers. I

depletion occurs,uM
ex is negative.

B. Chain length distribution

The formation of chains is a consequence of the format
of contacts between bonding groups~faces of type 2!. The
1-3
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chain length distribution can be calculated from the distrib
tion of monomers and contacts over the lattice layers.

The volume fraction of monomers at layerz that have a
chain fragment ofN21 monomers bound to one of its bon
ing groups and of which theother bonding group points in
direction d is denoted asfM

d (z,N). Furthermore, the prob
ability to find a monomer in layerz with a bonding group in
direction d, with connected atthat bonding group a chain
fragment ofN21 other monomers, is denoted asPd(z,N).

Obviously,

Pd~z,1!5f2
d~z!2f22

d ~z! ~8!

gives the probability to find anend segment atz with a
nonbonded bonding group pointing in directiond.

For N.1,

Pd~z,N!5fM
2d~z1d,N21!c22

d ~z! ~9!

@this is quite analogous to Eq.~5!#. The first factor on the
right hand side gives the probability of finding at layerz
1d the last segment of a fragment ofN21 segments, with
the remaining bonding group pointing in direction2d, to-
ward a site atz. The factorc22

d (z) gives the probability that
this chain fragment is linked to another monomer atz.

Using Eqs.~8! and ~9!, all fM
d (z,N) can be obtained

through the recurrence relation

fM
d ~z,N!5(

d8
Pd8~z,N!P2

du2
d8~z!. ~10!

The first factor under the summation gives the probability
find at layerz an Nth segment of a chain, with connected
directiond8 a chain fragment ofN21 other monomers. The

second factorP2
du2

d8(z) gives the probability that one bondin
group of a monomer atz has directiond, provided that the
other has directiond8. This probability can be calculated
the distribution of monomer states$fM

s (z)% is known, be-
cause the direction of the bonding groups is specified

each state. The productPd8(z,N)P2
du2

d8(z) yields the volume
fraction of monomers atz that have a chain fragment ofN
21 other monomers bound to a bonding group with dir
tion d8, and of which the other bonding group has directi
d.

Equation~10! with Eq. ~8! yields simply the volume frac-
tion of chain ends atz:

fM~z,1!5(
d

fM
d ~z,1!5(

d
@f2

d~z!2f22
d ~z!# ~11!

from which the number weighted average chain length
obtained readily:

^N&5

(
z

fM~z!

1

2 (
z

fM~z,1!

. ~12!
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The volume fraction of chains ofN segments in the sys
tem can be calculated as

f~N!5
N

2M (
z,d

fM
d ~z,N!@12c22

2d~z1d!#, ~13!

where the factor12 corrects for double counting of the chain
The factor in square brackets denotes the probability th
bonding group~of the Nth monomer! at layerz pointing in
directiond is not linked to another monomer.

In general, the chain length distribution next to a surfa
is different from the bulk distribution. The surface excess
every chain length can be calculated as

uex~N!5M @f~N!2fb~N!#, ~14!

where fb(N) is the bulk volume fraction of chains ofN
segments. Obviously,(Nuex(N)5uM

ex.

C. Partition function and equilibrium configuration

The total potential energyU in the system can be ex
pressed as

U„$nab
d ~z!%…5

1

2 (
a,b,d,z

nab
d ~z!uab, ~15!

where the factor12 corrects for double counting of each co
tact in the sum. In the present study, the only nonzero c
tribution is that of the 2-2 contacts.

The number of possible configurations in which a cert
distribution of states and contacts can be realized is den
V„$nA

s(z)%,$nab
d (z)%…. An expression for this quantity wa

derived in Ref.@24#:

ln V„$nA
s~z!%,$nab

d ~z!%…52 (
A,s,z

nA
s~z!ln fA

s~z!

2
1

2 (
a,b,d,z

nab
d ~z!ln

cab
d ~z!

fa
d~z!

.

~16!

The first term on the right hand side of this equation cor
sponds to ideal mixing of monomers. The last term accou
for correlations between the occupations of neighbor
sites. The factor12 accounts for double counting of each co
tact in the sum. In case of random formation of contac
cab

d (z)5fa
d(z) and the last term in Eq.~16! vanishes.

In order to find the equilibrium state, we have to find t
most probable distribution of monomer states and conta
For a system in open contact with a homogeneous bulk,
equilibrium state can be found by maximization of the gra
canonical partition function with respect to the distributio
of molecule states$nA

s(z)% and contacts$nab
d (z)%. The grand

canonical partition function is given by

J~$mA%,M ,L,T!5 (
$nA%

Q~$nA%,L,T!expS (
A

nAmA

kT D
~17!
1-4
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where the sum extends over all distributions$nA% that satisfy
constraint~3!, and wheremA is the chemical potential o
componentA. The canonical partition functionQ($nA%,L,T)
is a function of the degeneracyV and the potential energyU:

Q~$nA%,L,T!5 (
$nA

s(z)%,$nab
d (z)%

V„$nA
s~z!%,$nab

d ~z!%…

3expS 2
U~$nab

d ~z!%

kT D , ~18!

where the sum extends over all distributions$nA
s(z)% and

$nab
d (z)% that satisfy conditions~3! and ~4!.
Maximization of the grand canonical partition functio

with respect to$nA
s(z)% and$nab

d (z)% considering constraints
~3! and~4! gives the distribution of contacts and of molecu
states@24#. The distribution of contacts is given by

fab
d ~z!5

fa
d~z!fb

2d~z1d!

Ga
d~z!Gb

2d~z1d!
expS 2

uab

kT D , ~19!

whereGa
d(z) is a face weighting factor that accounts for t

saturation of faces of typea at layerz having directiond. It
is a consequence of constraint~4!. For the equilibrium dis-
tribution of molecules over the different states we find@24#

fA
s~z!5LAGA

s~z! ~20!

whereLA5exp(mA /kT) is a normalization constant.~It has
the same value for the heterogeneous system containing
surface as for the homogeneous bulk system with which
heterogeneous system is in equilibrium.! The monomer
weighting factorGA

s(z) measures the probability of finding
molecule of typeA having states in layer z. It can be fac-
torized as

GA
s~z!5C)

a,d
Ga

d~z!qAa
sd

, ~21!

whereqAa
sd equals 1 if the face pointing in directiond of a

moleculeA having states is of typea, and zero otherwise
Each face of moleculeA contributes a factorGa

d(z) to
GA

s(z). The factorC is a consequence of constraint~3!. It can
be shown thatC51 in homogeneous systems@24#. From this
condition the value ofC in any system can be found, sinc
LA is identical for systems that are in equilibrium.

The distribution of molecules is normalized by the fac
LA . Summation over all statess and layersz in Eq. ~20!
yields the following expression forLA :

LA5
uA

(
s,z

GA
s~z!

, ~22!

whereuA is the amount of molecules of typeA expressed in
equivalent lattice layers,uA5(zfA(z). Equation~22! makes
it possible to normalize any componentA by either fixingLA
~an open system! or uA ~a closed system!. If the normaliza-
05180
the
e

r

tion conditions are given for all components, then all fa
weighting factorsGa

d(z) and volume fractionsfA
s(z) are de-

termined completely by Eqs.~19! and ~20! and the con-
straints~3! and ~4!. These self-consistent equations can
solved numerically as described in Ref.@24#, so that the dis-
tribution of molecule states and contacts can be found.

D. Limitations of the model

The Bethe-Guggenheim approach adopted in this st
takes into account correlations between the occupation
neighboring lattice sites, but the occurrence of contacts
assumed not to depend on other contacts. Although this is
exact, it is much better than the random-mixing approxim
tions of Bragg-Williams and Flory. Taking into account co
relations results in an extra term in the expression for pa
ing entropy, Eq.~16!. For chain molecules this correctio
implies a better description of the excluded volume inter
tions. Whereas in the Flory approximation the excluded v
ume of a chain of lengthN is justN times that of a monomer
the present approach implicitly accounts for connectiv
The level at which excluded volume interactions are tak
into account is equivalent to Guggenheim’s approa
@28,29#. For athermal chains with a fixed length this
equivalent to Huggins’ treatment@30,31#. This approxima-
tion is superior to the Flory approximation. As borne out
simulations by Dickman and Hall@32# it does a far better job
in describing the equation of state. The results of the Bet
Guggenheim approach~and other mean-field theories! for
polymer solutions are nearly correct forQ conditions at all
concentrations, and for concentrated solutions at all solve
conditions.

Furthermore, for the present system of bifunctional as
ciating monomers the influence of the possible occurrenc
polymeric rings of monomers on the contact probabilit
cab

d is not accounted for in the Bethe-Guggenheim appro
mation. It is not so obvious how serious this approximati
is. We expect that it is correct forQ conditions and for
concentrated solutions.

In Sec. II B, where the chain length distributions are c
culated from the bond probabilitiesc22

d , rings are neglected
altogether. It is known@33–35# that rings may contribute
significantly at low concentrations for monomers that are
a similar size to the Kuhn length. If the associating monom
is significantly larger or smaller than the Kuhn length, rin
closure becomes rare for statistical reasons. For these c
ring closure can be neglected. For monomers that are
similar size to the Kuhn length, the chain length distributi
may be different from the one calculated by our model, d
to the formation of rings. Still we expect that this will no
considerably influence the trends in the concentration p
files and the depletion layer thickness.

III. RESULTS AND DISCUSSION

A. Equilibrium polymers in an isotropic homogeneous system

In an isotropic homogeneous solution, the chain len
distribution is exponential, in agreement with mean-field p
dictions @Eq. ~1!#. The average chain length is a function
1-5



is
e-

a

a

n

io
it

s

ac

.
q
-

is
in-
his
of

e
in
ex-

he
at

ion
en

me
-
ns,

the

of
er

e
me
a

k-
. In

the
cen-
ol-

J. van der GUCHT AND N. A. M. BESSELING PHYSICAL REVIEW E65 051801
the scission energyE and the total volume fractionfM of
monomers. In the well known Flory approximation it
given by Eq.~2!. It is interesting to see whether the Beth
Guggenheim approach yields the same expression.

In an isotropic homogeneous system all site fractions
the same for all layersz and directionsd. The site fractions
of faces are given by

f0
d512fM ,

f1
d5

~q22!fM

q
, ~23!

f2
d5

2fM

q
.

The average number of monomers per chain for this c
follows from Eqs.~11! and ~12! as

^N&5
fM

1
2 q~f20

d 1f21
d !

5
f2

d

~f20
d 1f21

d !
511

f22
d

~f20
d 1f21

d !
,

~24!

where we have used Eq.~23! and constraint~4!: f2
d5f20

d

1f21
d 1f22

d . Heref22
d is the site fraction of bonds betwee

monomers in directiond, andf20
d 1f21

d is the site fraction of
end segments of the equilibrium polymer chains in direct
d @so that 1

2 q(f20
d 1f21

d ) is the number of chains per un
volume#.

The distribution of the various contacts between face
given by Eq.~19!, with constraint~4!. For E@0 we may
assume that the number of unfavorable 2-0 and 2-1 cont
is very small. Hence, constraint~4! gives f0

d'f00
d 1f01

d ,
f1

d'f10
d 1f11

d , andf2
d'f22

d . After substitution of Eq.~19!
applied to the various contact types we find

f0
d'

~f0
d!2

~G0
d!2

1
f0

df1
d

G0
dG1

d
,

f1
d'

f1
df0

d

G1
dG0

d
1

~f1
d!2

~G1
d!2

, ~25!

f2
d'

~f2
d!2

~G2
d!2

expS E

kTD ,

where we have usedfa
d5fa

2d andGa
d5Ga

2d . The solution
of these equations isG0

d5G1
d5(f0

d1f1
d)1/2 and G2

d

5(f2
d)1/2exp(E/2kT). Substitution of these results in Eq

~19! gives the distribution of all contacts. Substitution in E
~24! finally yields, with Eq.~23!, a relation between the av
erage chain length, the volume fraction of monomersfM ,
and the scission energyE:
05180
re

se

n

is

ts

.

^N&511S fM

1
2 q2fM

D 1/2

expS E

2kTD . ~26!

For ^N&@1 and fM! 1
2 q the Flory result ^N&;fM

1/2 is
found. For largerfM , however, a correction to this scaling
found: the average length increases more strongly with
creasing concentration than the mean-field power law. T
correction originates from the connectivity dependence
the excluded volume interactions~see the discussion at th
end of Sec. II C!. The dependence of the average cha
length on the scission energy is the same as in Flory’s
pression.

B. Depletion at a single surface

The volume fraction of monomers as a function of t
distance to a nonadsorbing surface is plotted in Fig. 2
several bulk concentrations for monomers with a sciss
energy of 15kT. The monomer volume fractions have be
divided by the bulk volume fractionfM

b in order to show
more detail. At large distance from the surface, the volu
fraction of monomers equalsfM

b . Near the surface the vol
ume fraction is lower, because of conformational restrictio
just as for ordinary polymers@1,15,16#. Note that the thick-
ness of the depletion layer is not a monotonic function of
monomer concentration. This will be discussed shortly.

The profiles in Fig. 2 are characterized by the thickness
the depletion layer. Various definitions of the depletion lay
thicknessD may be used@3#. For example, we may replac
the continuous profiles by a step function with the sa
value of uM

ex. The width of the step function then gives
measure for the depletion layer thickness:

D152
uM

ex

fM
b

. ~27!

An alternative approach for finding the depletion layer thic
ness is based on the shape of the volume fraction profile

FIG. 2. Monomer volume fraction versus the distance to
surface expressed in lattice layers for three bulk monomer con
trations. The volume fractions have been divided by the bulk v
ume fractionfM

b . The scission energy is 15kT.
1-6
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the asymptotic regime~at largez), the volume fraction ap-
proaches the bulk value exponentially:

lim
z→`

@fM
b 2fM~z!#;e2z/D2. ~28!

The decay lengthD2 gives an alternative definition of th
depletion layer thickness.

Both values of the depletion layer thickness (D1 andD2)
are plotted in Fig. 3 as a function of the bulk volume fracti
of monomers for various values ofE. The two definitions of
D yield more or less the same trends. At low concentratio
the depletion layer thickness increases with increasing c
centration and increasing scission energy. This concentra
dependence is different from the behavior observed for o
nary polymers, for whichD is independent of the concentra
tion in the dilute regime. The reason for this difference
obvious. In dilute solutions, the depletion layer thickness
determined by the~average! radius of gyration of the poly-
mer molecules@3#. For ordinary polymers, the size of th
molecules~and thus the radius of gyration! is fixed, but for
equilibrium polymers this size increases with increasing c
centration@Eq. ~2! or ~26!#. Therefore the depletion laye
thickness also increases. Hence, we expect the follow
scaling for the depletion layer thickness in the dilute regim

Dd;^Rg&;^N&1/2;~fM
b !1/4expS E

4kTD . ~29!

Here the second proportionality holds for ideal dilute so
tions in a mean-field approximation. ForD2 this scaling is
found for all values of the scission energy. ForD1 this scal-
ing is only found for large values ofE, and thus for long
chains. At the moment, we do not have an explanation
this.

Once the chains start to overlap, the depletion layer th
ness starts to decrease with increasing concentration a
becomes independent of the scission energy~and thus inde-
pendent of the length of the individual chains!. The depletion
layer thickness is now determined by the bulk correlat
length. In a mean-field approximation, we expect the follo
ing scaling for the depletion layer thickness in this regim

FIG. 3. The depletion layer thickness as a function of the b
concentration of monomers for three different scission energ
The dashed curves correspond toD1, the full curves toD2.
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Dm;jm;~fM
b !21/2, ~30!

where jm is the correlation length in the marginal regim
~see the Introduction!. Because the chain length is irreleva
above the overlap concentration, the polydispersity is a
unimportant, and the correlation length is the same as fo
monodisperse polymer solution. ForD2, the marginal regime
scaling is clearly visible in Fig. 3, especially at high scissi
energies. ForD1 the marginal regime is more difficult to see
It might be more pronounced at higherE values ~longer
chains!. At high volume fractions the depletion layer thick
ness decreases more steeply than predicted by Eq.~30!. This
is due to a crossover to the concentrated regime where hi
order interactions become important. Obviously, if the v
ume fraction goes to unity, the depletion layer thickness g
to zero.

At intermediate concentration the depletion layer thic
ness exhibits a maximum. The position of the maximum c
responds to the crossover concentrationfM* from the dilute
to the marginal regime. This concentration can be found
equatingDd @Eq. ~29!# andDm @Eq. ~30!#. This yields

fM* ;expS 2
E

3kTD ~31!

andfM* ;^N* &21, with ^N* & the average chain length at th
crossover concentration. The relation betweenfM* and^N* &
is the same as for homopolymers~see the Introduction!. The
position of the maximum is plotted as a function of the sci
ion energyE in Fig. 4, for both definitions of the depletio
layer thickness. It can be seen that the position of the m
mum is well described by Eq.~31! for both cases.

We may compare our results to the results of Schm
et al. @21#. They considered ideal solutions of equilibriu
polymers and derived an analytical expression for the av
age volume fraction of monomers in a gap between repuls
walls. In the limit of infinite gap width their results give fo
the surface excess at a single surfaceuM

ex/fM
b ;^Rg&, which

is in agreement with our results for the dilute regime@Eq.
~29!#.

k
s.

FIG. 4. The volume fraction at whichD has a maximum as a
function of the scission energyE. The diamonds denote the max
mum in D1, the squares inD2.
1-7
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C. Chain length distribution at a surface

The total excess amount of monomers near the surfaceuM
ex

is the sum of the contributionsuex(N) of all chain lengths in
the solution. The excess amount of each component
function of its chain length is plotted in Fig. 5~a! for several
monomer concentrationsfM

b and a scission energy of 15kT.
The chain length has been divided by the average ch
length in order to show more detail. Fig. 5~b! shows
uex(N)/fb(N) as a function of the chain length for the sam
data. It is obvious that the distribution of chain lengths n
the surface differs from the bulk composition. The effect
the surface is different for chains of different length. Fro
Fig. 5~b! it can be seen that the region close to the surfac
preferably occupied by the shorter chains, in agreement w
previous findings@18,19#. This is because the conformation
restrictions near the surface are smaller for short chains
for long ones. The relation betweenuex(N) andN is different
below and above the overlap concentration. In the dilute
gime, all uex(N) are negative, i.e., all chains are deplet
from the surface. There are no interactions between chain
this regime, so that the concentration profile of every co
ponent in the solution is the same as for a monodispe
solution of chains of the same chain length and bulk conc
tration. Hence, every component has a depletion layer wi
characteristic depletion layer thicknessD(N), which is not
influenced by the other components in solution. AgainD(N)
may be defined in different ways, but here we only u

FIG. 5. ~a! The excess amountuex(N) as a function of chain
length for several values offM

b andE515kT. Average lengths are
indicated in parentheses.~b! uex(N)/fb(N) versus the chain length
for the same parameters.
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D1(N) @Eq. ~27!#. For long enough chainsD1(N) is propor-
tional to the radius of gyrationRg(N);AN of chains of
lengthN. Hence, in the dilute regime we find

uex~N!

fb~N!
52D1~N!;2AN. ~32!

Becausefb(N) has a maximum atN5^N&, the excess
amountuex(N) @Fig. 5~a!# has a minimum. It is easily shown
that substitution of Eq.~1! in Eq. ~32! yields a minimum in
uex(N) at N5 3

2 ^N&, which is also seen in Fig. 5~a!.
In more concentrated solutions relation~32! no longer

holds. The chains overlap and interactions between
chains become dominant. This is most clearly seen in
melt, where the total volume fraction of monomers is uni
and hence the total surface excess of monomersuM

ex is zero.
The larger entropic penalty near the surface causes a de
tion of long chains. This depletion must be compensated b
net adsorption of short chains. The surface segregatio
polydisperse polymer melts has been investigated be
@18,20#. It was shown that the following relation holds fo
polydisperse polymer melts, irrespective of the chain len
distribution @20#:

uex~N!

fb~N!
5AS 12

N

^N&w
D , ~33!

where^N&w is the weight averaged chain length, and whe
A'0.195 in a cubic lattice. The results in Fig. 5~b! are in
agreement with these results. In an exponential chain len
distribution,^N&w52^N&. Hence, the intercept with the hor
zontal axis is atN52^N&.

With increasing monomer concentration there is a tran
tion from the dilute regime@Eq. ~32!# to the concentrated
regime@Eq. ~33!#. Just like the total depletion layer thicknes
~Fig. 3!, the depletion layer thicknessD(N) of every compo-
nent exhibits a maximum around the overlap concentrati

IV. CONCLUDING REMARKS

In this paper we applied a model for molecules with o
entation dependent interactions, based on a Be
Guggenheim approximation, to a system of equilibriu
polymers. The model can be used in both homogeneous
inhomogeneous systems. The chain length distribution i
homogeneous system is in agreement with Flory’s mean-fi
predictions, with small corrections at high monomer conc
trations.

For equilibrium polymers at a nonadsorbing surface
found that the depletion layer thickness has a maximum
the crossover concentration from the dilute to the margi
regime. In the dilute regime the depletion layer thickness
proportional to the average radius of gyration, and in
marginal regime it corresponds to the bulk correlation len
jm . In this paper, intra- and intermolecular segment-segm
interactions are accounted for on a mean-field level. Suc
mean-field treatment does not account for the swelling of
polymer coils in a good solvent. The excluded volume int
1-8



h
rr

fo
xi

he
u

s
um

ex
ce

m
-
o

a
de

e
e

n
o

th

und

ins
he
the
pa-
n,
elt,

an
er
oth
mi-

by
can
one
ers
ect,
e as
de

of

ble
d
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actions result in an expansion of the chains@1,2#: the radius
of gyrationRg in a good solvent is proportional toN3/5 rather
than N1/2. Hence, the exponents in Eq.~29! are not correct
for a good solvent. Furthermore, the mean-field approac
not able to describe the semidilute regime, where the co
lation length scales as@1,19# js;f23/4. We expect that the
thickness of the depletion layer still has a maximum
swollen chains in a good solvent. The position of this ma
mum may depend in a different way onE and T than pre-
dicted by Eq.~31!, however. For many practical systems t
crossover from the semidilute to the marginal regime occ
at relatively low volume fractions@3#. In the marginal re-
gime, the mean-field approach is justified. Also, in mo
cases the solvent is not athermal, so that excluded vol
interactions are screened to some extent. InQ solvents the
mean-field treatment is effectively exact. Therefore, we
pect that our model becomes more accurate if we introdu
net attraction between polymer segments (u11,u12,0). This
extension is straightforward.

The experimental evidence for depletion of equilibriu
polymers is scarce. Ke´kicheff et al. @36# measured the deple
tion interaction between two mica surfaces in a solution
wormlike micelles of CTAB above the overlap concentr
tion. The range of the depletion attraction was found to
crease with increasing surfactant concentration, in agreem
with our results for concentrations above the overlap conc
tration. The exponenta for the correlation lengthj;f2a

was approximately 0.65, which falls between marginal a
semidilute scaling. No measurements for dilute solutions
equilibrium polymers are reported yet, and hence also
T
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J
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maximum in the depletion layer thickness has not been fo
yet experimentally.

In Sec. III C we studied the surface segregation of cha
of different lengths. Small chains reside preferably in t
surface region. In the dilute regime every component in
mixture is depleted from the surface to a distance com
rable to its radius of gyration. With increasing concentratio
a net adsorption is observed of short chains. In the m
there is a linear relation betweenuex(N)/fb(N) andN, and
uex(N) changes sign atN5^N&w .

The model described in this paper is very versatile. It c
be used to calculate the effect of an equilibrium polym
solution on the interactions between two surfaces, for b
adsorbing and nonadsorbing polymers. Furthermore, se
flexible or rodlike equilibrium polymers can be modeled
assigning a positive energy to bent monomer states. We
also study associating molecules that occupy more than
lattice site. In this way we can model associating monom
that are larger or smaller than the Kuhn length. We exp
however, that the trends for these cases will be the sam
predicted in this paper. Other interesting possibilities inclu
the study of end-grafted equilibrium polymers~‘‘equilibrium
brushes’’!, branched equilibrium polymers, and the effect
‘‘chain stoppers’’~monomers with only one bonding group!.
These aspects will be the subject of future publications.
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