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Statistical thermodynamics of equilibrium polymers at interfaces
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The behavior of a solution of equilibrium polymeiwr living polymers at an interface is studied, using a
Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of
polymers and the chain length distribution are calculated. For equilibrium polymers at a nonadsorbing surface
it is found that the depletion layer thickness has a maximum. In dilute solutions it is proportional to the average
radius of gyration of the polymers, which increases with increasing concentration. Above the overlap concen-
tration it corresponds to the bulk correlation length, which decreases with increasing concentration. Further-
more, it is found that the surface region is predominantly occupied by the shorter chains. Both in dilute
solutions and in a melt of equilibrium polymers, a very simple relation is found between the surface excess of
a component and the chain length.
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[. INTRODUCTION No direct measurements of the chain length distribution have
been reported so far, due to experimental difficulfigls
Polymers have been the subject of great scientific interest. Because of their “tunable” properties, it may be advanta-
This has resulted in a broad spectrum of theoretical, numerigeous to use equilibrium polymers rather than classical poly-
cal, and experimental techniques to investigate their propeimers in some applications, for example if special rheological
ties, both in solution and at interfacgk-3]. A special class  properties are desired. In many practical systems, the behav-
of polymers are the so called equilibrium polymers, or living ior of the polymer molecules near surfaces is of great impor-
polymers. The difference from classical polymers is that thaance. An example is the use in colloidal systems, where
bonds in equilibrium polymers are reversible rather than copolymers can enhance or diminish the colloidal stability
valent. As a result, the chain length distribution in such Sys{3,10-14. Obviously, before equilibrium polymers can be
tems is not fixed, but is determined by thermodynamic equiused for such applications, it is necessary to understand their
librium. Examples of equilibrium polymers are liquid sulfur behavior near surfaces and their effect on the interactions
[4—6], wormlike micelles[7], and supramolecular polymers between colloidal particles.
based on hydrogen bondir§]. So far, only little attention has been paid to equilibrium
The equilibrium between breakage and formation ofpolymers near surfaces. The interfacial behavior of classical
bonds in equilibrium polymer solutions results in a polydis-polymers, on the other hand, is quite well underst¢at
perse chain length distribution. This equilibrium distribution The presence of a surface affects a polymer molecule in two
can be calculated using statistical mechanics. Within a meaways: (i) it reduces the conformational entropy, afi it
field approximation, originally by Flory, this yields an expo- may have an energetic interaction with the polymer seg-
nential chain length distributiof2,7,9: ments. The equilibrium configuration is a result of the bal-
ance between these two factors. If there is a strong attraction
H(N)= Nﬂex;( _ l ) between the surface and the polymer segments,.the polyme_rs
(N)2 (N))’ are adsorbed. If, on the other hand, the adsorption energy is
too small to compensate the entropy loss, the polymers are
where ¢(N) is the volume fraction of chains ™ segments, depleted from the surface. Both polymer adsorption and
¢ is the total volume fraction of monomers, a(i) is the  depletion can cause flocculation in colloidal systems
number averaged chain length. The faatgs/(N)? normal-  [3,10-13.
izes the distribution, ensuringy¢(N)= ¢, . The average Several theoretical models have been proposed to de-
chain length is a function of the monomer concentralgpn,  Scribe the behavior of monodisperse polymers at interfaces.
the scission energl that is needed to break a bond betweenScheutjens and Fle¢8,13—16 developed a self-consistent-
two monomers, and the temperatiire field lattice theory, based on a mean-field approximation,
which proved to be successful in describing polymer adsorp-
<N>:¢#zex% _) @ tion an(_j depletion. The concentratioq profile of polymer seg-
2kT ments is calculated. For nonadsorbing polymers there is a
region of lower polymer concentration next to the surface
This result does not depend on the chain stiffness, so that {the depletion layer The thickness of this depleted region
applies to flexible chains, semiflexible chains, and stiff rodscorresponds to the correlation length in the bulk of the poly-
mer solution. Several regimes can be distinguisf&d In
dilute solutions the thickness of the depleted region is ap-
*Electronic address: jasper@fenk.wau.nl proximately equal to the radius of gyrati&y of the polymer
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coils. Within a mean-field approximation this radius of gyra-
tion scales with the chain length &,~N2 Above the
overlap concentration, the interactions between polymer
coils become important. The coils interpenetrate and form a
network. In good solvents, mean-field theory predicts a
crossover to the so-called marginal regime, where binary in-
teractions are dominant. This crossover occurs at a volume
fraction ¢* ~N~1. In the marginal regime the correlation
length (which determines the depletion layer thickness
independent of the chain length and decreases with increas-
ing polymer concentration a&,~ ¢~ 2. At higher polymer
concentrations, a crossover to the concentrated regime is ob-
served, where higher order interactions become important.
The semidilute regimél], which is important for flexible FIG. 1. A two-dimensional representation of a three-
chains in a good solvent, cannot be described by the meamtimensional cubic lattice. Left of layer 1 there is an inert solid
field treatment. For a complete diagram of the different re-surface. Layers 1 tM contain solvent molecule®pen squaresor
gimes in a polymer solution, see, for example, RE3s17]. bifunctional monomersgfilled figures. The bonding groups of the
The theoretical description of polymer systems has fo-monomers are denoted as curved faces.
cused mainly on monodisperse polymers. Equilibrium poly-
mer solutions, however, are polydisperse. Furthermore, th
chain length distribution is a function of the concentration
[see Eqs(1) and(2)]. A system of equilibrium polymers near = i haner we apply a lattice theory for molecules with
a surface therefore adapts its chain length distribution in orgientation dependent interactions, developed by Besseling
der to minimize the free energy. Since the entropic restricynq Scheutjen§24], to a system of equilibrium polymers.
tions imposed by the surface are different for polymers ofthe theory can be used in both homogeneous and inhomo-
different chain lengths, the composition of the polymer solu-geneous systems. In Besseling and Scheutjens’s model cor-
tion close to the surface is expected to be different from theg|ations due to interactions between monomers are ac-
bulk composition. The entropy loss suffered by the longercounted for in a Bethe-Guggenheim approximati@iso
chains is larger than that for the shorter chains, so that, in thggjled the quasichemical approximation or first-order ap-
absence of energetic interactions, the surface region is prgyoximatior). Besseling and co-workers successfully applied
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quilibrium polymer solution in a gap between two surfaces
s a function of the gap size. Their results are in reasonable
agreement with the analytical model of Schneittal. [21].

dominantly occupied by the shorter chains. . this theory to describe the structure of water and hydration
So far, only a few studies have dealt with polydisperseforces[25-27.
polymer systems near a surface. Harihaeal. [18] used In Sec. Il we give a general description of the model. In

the Scheutjens-Fleer theory to study surface segre_gation iNGec. 11l we present some results for equilibrium polymer
bimodal polymer melt. Their results showed depletion of thesoytions. In this paper we consider only flexible chains. First
long chains and net adsorption of the short chains, in agregge consider a homogeneous solution and compare the
ment with what would be expected on the basis of entropigyresent model to other mean-field models. Then we consider
restrictions. Similar results were obtained by Hertanto anghe case of nonadsorbing equilibrium polymers near a single
Dickman for semidilute solutions of polydisperse polymersgyrface, and compare these results to the depletion of un-
using Monte Carlo simulationgl9]. In a recent papef20]  preakable polymers. Finally, we look at the effect of a sur-
we studied the effect of a surface on a polydisperse polymeface on the chain length distribution. In subsequent papers
melt with an arbitrary chain length distribution. A very e will investigate chain stiffness, adsorption of equilibrium

simple relation was found between the surface excess of golymers, and the effect of equilibrium polymers on the sur-
component in the melt, its chain length, and its bulk concentace forces.

tration.

Schmitt et al. [21] presented an analytical model for a Il. THEORY
dilute solution of ideal equilibrium polymer chains confined
between two repulsive walls. Excluded volume interactions
were not accounted for in this approach. The depletion of In this section, the general features of the theory are de-
equilibrium polymers from the gap resulted in an attractivescribed. A method to calculate the chain length distribution is
force between the two plates, and a decrease of the averageesented in Sec. Il B. In Sec. Il C we summarize the deri-
chain length in the gap. Milchev and Landg?] did lattice  vation of the partition function and the self-consistent-field
Monte Carlo simulations on concentrated solutions of equiequations for the equilibrium configuration. A more complete
librium polymers confined between two surfaces. Their re-description of the theory can be found in Rg#4].
sults show that the surface region is preferentially occupied A schematic representation of the model is depicted in
by short chains, which is in agreement with the results forFig. 1. The volume that contains the equilibrium polymer
polydisperse systems of unbreakable polymé¢i8,20.  solution is divided into a number of identical lattice sites.
Rouault and Milche\23] used the same Monte Carlo algo- Each site contains either a solvent molecule or a bifunctional
rithm to calculate the average chain length in a concentrateshonomer. In order to deal with spatially inhomogeneous sys-

A. General description of the model
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tems, the lattice is divided intil parallel lattice layers, num- for all «, z, andd.

beredz=1,2,... M. Each layer is allowed to be occupied  Site fractions of monomers, faces, and contacts are de-
differently. The number of sites in each layer is dendted fined as ¢%(2)=n3(2)/L, $%(2)=n%(2)/L, and ¢4(2)

The surface area, and heniceare taken infinitely large, so Eng (2)/L. They can be considered as probability distribu-
that edge effects can be ignored. By choosing the appropriatfns for sites to be occupied in a certain way.

boundary conditions az=0 andz=M, we can model a A first-order or quasichemical approximation is used to
homogeneous solution, a solution adjoining a single solictalculate the occupation of the lattice sites. Correlations be-
surface, or a solution confined between two surfaces. Theveen neighboring sites are accounted for in this approach,
lattice coordination numbeg gives the number of neighbor- but pairs of sites are occupied independently. This approach
ing sites that each lattice site has. In this paper we use goes beyond the Bragg-Williams or random-mixing approxi-
cubic lattice, in whichg= 6. Four of these neighboring sites mation, which assumes the occupation of individual sites to

are within the same lattice layer. be stochastically independent. The contact probability
The surface of each molecule consistsgdaces that are ¢‘iﬁ(2) is related to the pair distribution function:

directed toward nearest neighbor sites. A bifunctional mono-

mer has two different types of faces. Two of g¢daces are ¢iﬁ( 2)
the bonding groups, denoted as faces of tygar@?l in Fig. 1 zp‘iﬁ(z)z — , (5)
represented as curved fage3he otherq—2 faces of a bg (Z+9)

monomer are denoted as faces of type 1. A monomer can

have a number of different monomeric states. The state of \Q’hic.h Is the c_or_1ditional pr_obability to fin_d a f_ace_ of type
monomer is specified by the direction in which the two provided that it is located in layerand points in directioml

bonding groups are pointing. In the present paper we Con:gltaface of type8. In case the occupancy of nearest neighbor

sider only completely flexible chains. Hence, there is no en§ites is stochastically independent, as in the Bragg-Williams

. . d . .
ergy difference between linear states in which the two bond@PProximation, ¢,4(z) is independent of3. The contact

ing groups are on opposite sides of the monomer and be,p[robabil_ity for this case is simply given as the product of the
states where the two bonding groups make a 90° ang|é).ccupat|on probabilities of each of the sites:
Semiflexibility will be considered in a subsequent paper. The dx /oy ,d —d
solvent molecules are isotropic, becausegdthces of a sol- Pap(2)= ¢a(2) b (2F ), ©
vent molecule are identicdthese are denoted as faces of\yhere the asterisk indicates a random distribution of con-
type 0. Solvent molecules therefore have no distinguishablgacts. Generally the distribution of contacts differs from the
states. _ random distribution however, because low energy contacts
The number of molecules of typehaving stater thatare  (je. ponds between monomgrare favored over high en-
located at layee is denotedh(z). The subscripi denotes  ergy contacts.
either a monome(M) or a solvent(S) molecule. Every lat- A bond between two neighbor monomers is formed if two
tice site is occupied by either a monomer or a solvent molof their bonding groupstype 2 faces point toward each
ecule, so that the following constraint needs to be satisfiedpther. The strength of such a bond is determined by the con-
tact energyu,,= — E between two bonding groups. E is
> na=ny+ns=ML, (3) large, 2-2 contacts will be favored and long chains will be
A formed. We take all contact energieg; between other com-
binations of facegof monomers and solvenequal to zero.
wheren,=2, ,ni(2) is the total number of molecules of This implies that we are dealing with a good solvent. All
typeA in the system. The number of faces of typg¢ =0, 1,  interaction energies with the surface are set to zero as well,
or 2) in layer z pointing in directiond is denotedni(z). so there is no preferential interaction of either monomers or
Obviously, the distribution of faces is directly related to thesolvent with the surface.
distribution of molecule states. The number of contacts be- For a solution of equilibrium polymers in contact with a
tween faces of typer with directiond at sites in layez and surface, the polymer concentration next to th(_e surface will in
faces of typeg is denotemfw(z). One of these contact types general be different from the bulk concentration. 'The excess
(2-2) denotes the formation of bonds between monomers. [gMount of monomers at the surface, expressed in equivalent
the layerz and the directiord of a facea are specified, then lattice layers, is defined as
the layer number and the direction of the face that makes M
contact with that facex are fixed. It is located at layer ex_ _ b
+d, by which we denote the layer at whichis directed O Zl Lom(2)= Pul. )
from a site in layerz (hered can have the values 1, 0, or
+1), and it has the opposite direction ¢ denoted—d. where ¢',3,| is the bulk volume fraction of monomers. If
Obviously,n 5(z) =n,(z+d). For the distribution of con- depletion occursgy' is negative.
tacts and faces the following relation should hold:
B. Chain length distribution

2 nd (2)= nd(z) (4) The formation of chains is a consequence of the formation
7P * of contacts between bonding grouffaces of type 2 The
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chain length distribution can be calculated from the distribu- The volume fraction of chains dff segments in the sys-

tion of monomers and contacts over the lattice layers. tem can be calculated as

The volume fraction of monomers at layethat have a
chain fragment oN—1 monomers bound to one of its bond- H(N)= i 2 b8 (z,N)[1— ¢‘d(z+d)] (13)
ing groups and of which thether bonding group points in 2M M5 230

directiond is denoted asﬁﬁ,,(z,N). Furthermore, the prob-
ability to find a monomer in layez with a bonding group in  Where the factok corrects for double counting of the chains.
direction d, with connected athat bonding group a chain The factor in square brackets denotes the probability that a

fragment ofN—1 other monomers, is denoted B&(z,N).  bonding group(of the Nth monomey at layerz pointing in
Obviously, directiond is not linked to another monomer.
In general, the chain length distribution next to a surface
Pd(z,1)= ng(z) - ¢22(z) (8) is different from the bulk distribution. The surface excess for
every chain length can be calculated as
gives the probability to find aend segment atz with a . b
nonbonded bonding group pointing in directidn 6(N)=M[(N)— ¢°(N)], (14)
ForN>1, b _ . .
where ¢°(N) is the bulk volume fraction of chains d¥l
Pd(z,N) = iy 32+ d,N— 1)y, 2) (9)  Segments. Obviously \ 6%(N) = 6.
[this is quite analogous to E@5)]. The first factor on the C. Partition function and equilibrium configuration
right hand side gives the probability of finding at layer The total potential energy) in the system can be ex-

+d the last segment of a fragment Nf-1 segments, with  pressed as
the remaining bonding grogp pointing in directiend, to- .
ward a site az. The factori,,(z) gives the probability that d _ d
this chain fragment is Iinketzjzto another monomer.at U({n“ﬁ(z)})_i a%z n“ﬁ(z)u“ﬁ’ (15)
Using Egs.(8) and (9), all ¢%(z,N) can be obtained
through the recurrence relation where the factog corrects for double counting of each con-
tact in the sum. In the present study, the only nonzero con-
q 3 o did’ tribution is that of the 2-2 contacts.
¢M(Z*N)_2 P (z,N)P3|3 (2). (10) The number of possible configurations in which a certain
d distribution of states and contacts can be realized is denoted
The first factor under the summation gives the probability to()({ng(z)},{niﬂ(z)}). An expression for this quantity was
find at layerz an Nth segment of a chain, with connected at derived in Ref[24]:
directiond’ a chain fragment oN— 1 other monomers. The
second factoP|$ (2) gives the probability that one bonding N Q(nZ(2)}{n%42)H=— > ni(2)n ¢3(2)
group of a monomer at has directiond, provided that the Aoz

other has directiom’. This probability can be calculated if 1 08 (2)
the distribution of monomer statdspy,(z)} is known, be- = > niﬁ(z)ln ”‘dﬁ )
cause the direction of the bonding groups is specified for 2 a0z $a(2)
each state. The produ@F/(z,N)P‘2’|g/(z) yields the volume (16)

fraction of monomers az that have a chain fragment &f ] ) ) ) .
tion d’, and of which the other bonding group has directionSPonds to ideal mixing of monomers. The last term accounts

d. for correlations between the occupations of neighboring
Equation(10) with Eq. (8) yields simply the volume frac- Sites. The factog accounts for double counting of each con-
tion of chain ends at: tact in the sum. In case of random formation of contacts,

zpiﬁ(z)=¢2(z) and the last term in Eq16) vanishes.
p g g In order to find the equilibrium state, we have to find the

¢M(Z,1)=§ ¢M(211):§ [$2(2) = ¢242)] (11)  most probable distribution of monomer states and contacts.

For a system in open contact with a homogeneous bulk, the
i;quilibrium state can be found by maximization of the grand

canonical partition function with respect to the distributions

of molgcule stg?ef?‘nZ(z)}. anql co.ntact$niﬁ(z)}. The grand

canonical partition function is given by

from which the number weighted average chain length
obtained readily:

2 du(2)
(Ny=

12 E({ugMLT=3 Q({nA}.L,UeXF’( > nﬁ?)
{nat A

—
5 2 du(z.1) (17
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where the sum extends over all distributidms} that satisfy ~ tion conditions are given for all components, then all face

constraint(3), and whereu, is the chemical potential of weighting factorsG‘i(z) and volume fractiongbz(z) are de-

componeni. The canonical partition functio({na},L,T)  termined completely by Eqs19) and (20) and the con-

is a function of the degenera€y and the potential enerdy:  straints(3) and (4). These self-consistent equations can be
solved numerically as described in RE24], so that the dis-

Q({na}L,T)= ) Ed Q({ng(z)},{ngﬁ(z)}) tribution of molecule states and contacts can be found.
{na(@}An, 52} D. Limitations of the model
U({nﬁiﬁ(z)} The Bethe-Guggenheim approach adopted in this study
xexp — KT ' (18 takes into account correlations between the occupations of

neighboring lattice sites, but the occurrence of contacts is
where the sum extends over all distributiofis;(z)} and  assumed not to depend on other contacts. Although this is not
{niﬁ(z)} that satisfy condition$3) and (4). exact, it is much better than the random-mixing approxima-
Maximization of the grand canonical partition function tions of Bragg-Williams and Flory. Taking into account cor-
with respect tdnx(2)} and{n‘iﬂ(z)} considering constraints relations results in an extra term in the expression for pack-
(3) and(4) gives the distribution of contacts and of moleculeing entropy, Eq.(16). For chain molecules this correction
stateq 24]. The distribution of contacts is given by implies a better description of the excluded volume interac-
g 4 tions. Whereas in the Flory approximation the excluded vol-
(D P (z+d) exp( _Uap ume of a chain of lengtN is justN times that of a monomer,
GY(2)G4 (z+d) kT

b44(2) ) (19

the present approach implicitly accounts for connectivity.
The level at which excluded volume interactions are taken
whereGg(z) is a face weighting factor that accounts for theinto account is equivalent to Guggenheim’s approach
saturation of faces of type at layerz having directiond. It ~ [28,29. For athermal chains with a fixed length this is
is a consequence of constraid). For the equilibrium dis- equivalent to Huggins’ treatmef80,31. This approxima-
tribution of molecules over the different states we fjad] tion is superior to the Flory approximation. As borne out by
” " simulations by Dickman and H4lB2] it does a far better job

Pa(2)=AAGR(2) (20 in describing the equation of state. The results of the Bethe-
Guggenheim approactand other mean-field theorjesor
Ipé)lymer solutions are nearly correct fér conditions at all
8oncentrations, and for concentrated solutions at all solvency
conditions.

Furthermore, for the present system of bifunctional asso-
ciating monomers the influence of the possible occurrence of
polymeric rings of monomers on the contact probabilities
z,biﬁ is not accounted for in the Bethe-Guggenheim approxi-
o mation. It is not so obvious how serious this approximation
Gi(2)=C[ ] Gl(2)%e, (21)  is. We expect that it is correct fo conditions and for

ad concentrated solutions.

In Sec. Il B, where the chain length distributions are cal-
culated from the bond probabilitie,sgz, rings are neglected
altogether. It is knowr[33—-35 that rings may contribute
significantly at low concentrations for monomers that are of
a similar size to the Kuhn length. If the associating monomer
is significantly larger or smaller than the Kuhn length, ring
closure becomes rare for statistical reasons. For these cases
ring closure can be neglected. For monomers that are of
similar size to the Kuhn length, the chain length distribution
may be different from the one calculated by our model, due
to the formation of rings. Still we expect that this will not
considerably influence the trends in the concentration pro-
(22) files and the depletion layer thickness.

where A ,=exp(us/KT) is a normalization constan(lt has
the same value for the heterogeneous system containing t
surface as for the homogeneous bulk system with which th
heterogeneous system is in equilibrignThe monomer
weighting factorG;(z) measures the probability of finding a
molecule of typeA having states in layer z It can be fac-
torized as

Wherqug equals 1 if the face pointing in directicsh of a
moleculeA having stater is of type «, and zero otherwise.
Each face of moleculéA contributes a factorGi(z) to
Ga(2). The factorC is a consequence of constra{Bi. It can
be shown tha€=1 in homogeneous systerf4]. From this
condition the value ofC in any system can be found, since
A, is identical for systems that are in equilibrium.

The distribution of molecules is normalized by the factor
A . Summation over all states and layersz in Eq. (20)
yields the following expression fok 4 :

Oa

AA:—,
;Z G(2)

IlI. RESULTS AND DISCUSSION

where, is the amount of molecules of typeexpressed in A. Equilibrium polymers in an isotropic homogeneous system

equivalent lattice layergiy=2>,¢4(z). Equation(22) makes In an isotropic homogeneous solution, the chain length
it possible to normalize any componehby either fixingA 5  distribution is exponential, in agreement with mean-field pre-
(an open systepor ¢, (a closed systeinIf the normaliza-  dictions[Eq. (1)]. The average chain length is a function of
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the scission energi and the total volume fractiop, of
monomers. In the well known Flory approximation it is
given by Eq.(2). It is interesting to see whether the Bethe-
Guggenheim approach yields the same expression.

In an isotropic homogeneous system all site fractions are

the same for all layerg and directionsd. The site fractions
of faces are given by

Po=1—bw,

(Q—2)du
—q

Pi= (23)

2¢
H=g

The average number of monomers per chain for this cas

follows from Egs.(11) and(12) as

d
N d(l’zzd ,
(P20t $21)
(24

_ bu )
1a(d9t #3)  (d3+ ¢3)

(N)

where we have used E@23) and constrain(4): ¢3=¢%
+ ¢4+ ¢3,. Here ¢, is the site fraction of bonds between
monomers in directiod, and $3,+ $3, is the site fraction of
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FIG. 2. Monomer volume fraction versus the distance to the
surface expressed in lattice layers for three bulk monomer concen-
trations. The volume fractions have been divided by the bulk vol-
yme fraction¢ﬁ,| . The scission energy is k3.

¢M 1/2 E
Fowl el

2
For (N)>1 and ¢y<2q the Flory result(N)~ ¢? is
found. For largekp,, , however, a correction to this scaling is
found: the average length increases more strongly with in-
creasing concentration than the mean-field power law. This
correction originates from the connectivity dependence of

(Ny=1+ (26)

end segments of the equilibrium polymer chains in directiorthe excluded volume interactiorisee the discussion at the

d [so that3q(¢9.+ #3,) is the number of chains per unit
volumel.

end of Sec. Il . The dependence of the average chain
length on the scission energy is the same as in Flory's ex-

The distribution of the various contacts between faces i®ression.

given by Eq.(19), with constraint(4). For E>0 we may

B. Depletion at a single surface

assume that the number of unfavorable 2-0 and 2-1 contacts

is very small. Hence, constrairit) gives 3~ 3o+ &3,
3~ 3+ ¢S;, and ¢~ ¢3,. After substitution of Eq(19)
applied to the various contact types we find

w%ww+%ﬁ
° (G)? Giel

0 P15 (4D’

, 25
P Gl (6l (29
o (897 %E)
2~ (Ga2 kT

where we have used®=¢_% andG%=G_ . The solution
of these equations isGi=Gi=(¢3+¢%)Y? and G

= ($3)Y%expE/2kT). Substitution of these results in Eq.
(19) gives the distribution of all contacts. Substitution in Eq.
(24) finally yields, with Eq.(23), a relation between the av-
erage chain length, the volume fraction of monoméss,
and the scission enerdy.

The volume fraction of monomers as a function of the
distance to a nonadsorbing surface is plotted in Fig. 2 at
several bulk concentrations for monomers with a scission
energy of 1XT. The monomer volume fractions have been
divided by the bulk volume fraction/)f\’,, in order to show
more detail. At large distance from the surface, the volume
fraction of monomers equal$f\’,I . Near the surface the vol-
ume fraction is lower, because of conformational restrictions,
just as for ordinary polymergl,15,16. Note that the thick-
ness of the depletion layer is not a monotonic function of the
monomer concentration. This will be discussed shortly.

The profiles in Fig. 2 are characterized by the thickness of
the depletion layer. Various definitions of the depletion layer
thicknessA may be used3]. For example, we may replace
the continuous profiles by a step function with the same
value of 6y. The width of the step function then gives a
measure for the depletion layer thickness:

ex
Om

Ay=——.
b

(27)

An alternative approach for finding the depletion layer thick-
ness is based on the shape of the volume fraction profile. In
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FIG. 4. The volume fraction at whicA has a maximum as a
FIG. 3. The depletion layer thickness as a function of the bulkfunction of the scission enerdy. The diamonds denote the maxi-
concentration of monomers for three different scission energiesmum inA;, the squares it .
The dashed curves correspondAg, the full curves toA,.
e _(4bN—1/2
the asymptotic regiméat largez), the volume fraction ap- Am~ém~(dm) 5 (30)
proaches the bulk value exponentially:
where &, is the correlation length in the marginal regime
lim [ ¢y — du(z)]~e 7. (28)  (see the Introduction Because the chain length is irrelevant
o above the overlap concentration, the polydispersity is also
unimportant, and the correlation length is the same as for a
monodisperse polymer solution. Fip, the marginal regime
scaling is clearly visible in Fig. 3, especially at high scission
are plotted in Fig. 3 as a function of the bulk volume fraction ﬁnﬁ]ri%fts 'bioﬁqlotrge g:grr]%lﬂg L (r;jglgg eh|izrr]n Echr\(/aaclil:félg L(Jllé:]% :f} ©
of monomers for various values & The two definitions O.f chaing. At high volume fractions the depletion layer thick-
A yield more or less the same trends. At low concentrations, << decreases more steeply than predicted by@By.This

the depletion Igyer thipknesg increases with @ncreasing N3 due to a crossover to the concentrated regime where higher
centration and increasing scission energy. This concentratiofl jo, interactions become important. Obviously, if the vol-

dependence is different from the behavior observed for ordiy e fraction goes to unity, the depletion layer thickness goes
nary polymers, for which\ is independent of the concentra- 0 zero

tion in the d'!Ute regime. The reason 'for this d|ff§erence 'S At intermediate concentration the depletion layer thick-

obvious. In dilute solutions, the depletion layer thickness is,oqs exhibits a maximum. The position of the maximum cor-
determined by th¢averagg radius of gyration of the poly- responds to the crossover concentratigf from the dilute

mer moleculeq3]. For ordinary polymers, the size of the . . . !
molecules(and thus the radius of gyratipis fixed, but for LO H;?ir:n ngl[r:zal r(ez%)r]nz.m'jl'gls ([:I(E)nc(esnot)r]a tll(')r?i scairéltc)iz found by
equilibrium polymers this size increases with increasing con- q 934 LEG- m LEQ- ' y

centration[Eq. (2) or (26)]. Therefore the depletion layer

The decay length\, gives an alternative definition of the
depletion layer thickness.
Both values of the depletion layer thicknegs, (andA,)

thickness also increases. Hence, we expect the following N E
scaling for the depletion layer thickness in the dilute regime: Pm~exp — 3KT (3D
12 b \1/4 E . .
Ag~(Rg)~(N) "~ () ""ex ek (29) and ¢y, ~(N*)~ 1, with (N*) the average chain length at the

crossover concentration. The relation betweghand(N*)

Here the second proportionality holds for ideal dilute solu-is the same as for homopolymédgsee the Introduction The
tions in a mean-field approximation. Fadr, this scaling is position of the maximum is plotted as a function of the sciss-
found for all values of the scission energy. Foy this scal-  ion energyE in Fig. 4, for both definitions of the depletion
ing is only found for large values d, and thus for long layer thickness. It can be seen that the position of the maxi-
chains. At the moment, we do not have an explanation fomum is well described by Ed31) for both cases.
this. We may compare our results to the results of Schmitt

Once the chains start to overlap, the depletion layer thicket al. [21]. They considered ideal solutions of equilibrium
ness starts to decrease with increasing concentration anddblymers and derived an analytical expression for the aver-
becomes independent of the scission endemd thus inde- age volume fraction of monomers in a gap between repulsive
pendent of the length of the individual chainghe depletion  walls. In the limit of infinite gap width their results give for
layer thickness is now determined by the bulk correlationthe surface excess at a single surf@§/§¢bM~(Rg>, which
length. In a mean-field approximation, we expect the follow-is in agreement with our results for the dilute regifts.
ing scaling for the depletion layer thickness in this regime: (29)].
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510° T T T T A1(N) [Eq. (27)]. For long enough chains(N) is propor-
0% ) g, =1 (1277) tional to the radius of gyratioRy(N)~+/N of chains of
010° lengthN. Hence, in the dilute regime we find
o%(N)
0.001 (34) - -
510%} . TR WN. (32
0.01 (105)
110%F 1 Because®(N) has a maximum aN=(N), the excess
0.1 (337) amounté®(N) [Fig. 5(a)] has a minimum. It is easily shown
ni | that substitution of Eq(1) in Eq. (32) yields a minimum in
20 L . 6%(N) at N=2(N), which is also seen in Fig.(8).
@) 0 N/3N> 8 In more concentrated solutions relati@82) no longer
holds. The chains overlap and interactions between the
0™ (N) 1 '¢Mb='1 T T T chains become dominant. This is most clearly seen in the
0 melt, where the total volume fraction of monomers is unity,
%N A 0.001 | and hence the total surface excess of monomgfss zero.
; : The larger entropic penalty near the surface causes a deple-
2r . tion of long chains. This depletion must be compensated by a
| 0.01 | net adsorption of short chains. The surface segregation in
3 polydisperse polymer melts has been investigated before
4f 1 [18,20. It was shown that the following relation holds for
s 04 | polydisperse polymer melts, irrespective of the chain length
' distribution[20]:
) 1 2 3 4 AN) N
(b) N/<N> W1 W) 33
FIG. 5. (@) The excess amoum®{(N) as a function of chain $°(N) w

length for several values 0;6*,3,, andE=15kT. Average lengths are

indicated in parentheset) 6°(N)/$°(N) versus the chain length Where<N>w is the v_veight. averaged Chainllength, and Where
for the same parameters. A~0.195 in a cubic lattice. The results in Figbb are in

agreement with these results. In an exponential chain length
distribution,(N),,=2(N). Hence, the intercept with the hori-
zontal axis is alN=2(N).

The total excess amount of monomers near the sufifce  with increasing monomer concentration there is a transi-
is the sum of the contribution@”(N) of all chain lengths in  tion from the dilute regimdEq. (32)] to the concentrated
the solution. The excess amount of each component as ragime[Eq. (33)]. Just like the total depletion layer thickness
function of its chain length is plotted in Fig(& for several  (Fig. 3), the depletion layer thickness(N) of every compo-
monomer concentrationgy, and a scission energy of &5.  nent exhibits a maximum around the overlap concentration.
The chain length has been divided by the average chain
length in order to show more detail. Fig.(h shows
6°(N)/ ¢°(N) as a function of the chain length for the same
data. It is obvious that the distribution of chain lengths near In this paper we applied a model for molecules with ori-
the surface differs from the bulk composition. The effect ofentation dependent interactions, based on a Bethe-
the surface is different for chains of different length. FromGuggenheim approximation, to a system of equilibrium
Fig. 5(b) it can be seen that the region close to the surface ipolymers. The model can be used in both homogeneous and
preferably occupied by the shorter chains, in agreement witinhomogeneous systems. The chain length distribution in a
previous finding$18,19. This is because the conformational homogeneous system is in agreement with Flory’s mean-field
restrictions near the surface are smaller for short chains thgpredictions, with small corrections at high monomer concen-
for long ones. The relation betwe#f(N) andN is different  trations.
below and above the overlap concentration. In the dilute re- For equilibrium polymers at a nonadsorbing surface we
gime, all 8*(N) are negative, i.e., all chains are depletedfound that the depletion layer thickness has a maximum at
from the surface. There are no interactions between chains e crossover concentration from the dilute to the marginal
this regime, so that the concentration profile of every comsegime. In the dilute regime the depletion layer thickness is
ponent in the solution is the same as for a monodispersproportional to the average radius of gyration, and in the
solution of chains of the same chain length and bulk concenmarginal regime it corresponds to the bulk correlation length
tration. Hence, every component has a depletion layer with &,,. In this paper, intra- and intermolecular segment-segment
characteristic depletion layer thickneA¢N), which is not interactions are accounted for on a mean-field level. Such a
influenced by the other components in solution. AgaiiN) mean-field treatment does not account for the swelling of the
may be defined in different ways, but here we only usepolymer coils in a good solvent. The excluded volume inter-

C. Chain length distribution at a surface

IV. CONCLUDING REMARKS
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actions result in an expansion of the chdibg?]: the radius maximum in the depletion layer thickness has not been found
of gyrationR, in a good solvent is proportional to°°rather  yet experimentally.

than N¥2. Hence, the exponents in E€9) are not correct In Sec. lll C we studied the surface segregation of chains
for a good solvent. Furthermore, the mean-field approach i§f different lengths. Small chains reside preferably in the
not able to describe the semidilute regime, where the corresurface region. In the dilute regime every component in the
lation length scales dd,19] £~ ¢~ 3% We expect that the Mixture is depleted from the surface to a distance compa-
thickness of the depletion layer still has a maximum forrable to its radius of gyration. With increasing concentration,
swollen chains in a good solvent. The position of this maxi-2 Net adsorption is observed of short chains. In the melt,
mum may depend in a different way &hand T than pre- trﬁre is a linear r_elatlon betweet¥(N)/$°(N) andN, and
dicted by Eq.(31), however. For many practical systems the ¢ (N) changes sign &=(N),. _ _
crossover from the semidilute to the marginal regime occurs The model described in this paper is very versatile. It can
at relatively low volume fraction§3]. In the marginal re- D€ used to calculate the effect of an equilibrium polymer
gime, the mean-field approach is justified. Also, in mostSolution on the interactions between two surfaces, for both
cases the solvent is not athermal, so that excluded volum@dSOrbing and nonadsorbing polymers. Furthermore, semi-
interactions are screened to some extent®lisolvents the flexible or rodiike equilibrium polymers can be modeled by

mean-field treatment is effectively exact. Therefore, we ex2SSIgning a positive energy to bent monomer states. We can

pect that our model becomes more accurate if we introduce &S0 Study associating molecules that occupy more than one

- : lattice site. In this way we can model associating monomers
net attraction between polymer segmenig;(u,,<0). This
extension is straightforward. that are larger or smaller than the Kuhn length. We expect,

The experimental evidence for depletion of equilibrium hOW?Ver- Fhat _the trends for these cases will _bg_t_he Same as
polymers is scarce. Kicheff et al. [36] measured the deple- predicted in this paper. Other interesting possibilities include
tion interaction between two mica surfaces in a solution oilhe study of end-grafted .e.qu_|I|br|um polymefequilibrium
wormlike micelles of CTAB above the overlap concentra-brushesi)' branched equnlbrlur_n polymers, and t_he effect of
tion. The range of the depletion attraction was found to de-ChaIn stoppers”(monomers with only one bonding group

crease with increasing surfactant concentration, in agreement'©S€ aspects will be the subject of future publications.
with our results for concentrations above the overlap concen-
tration. The exponen& for the correlation lengthié~ ¢~

was approximately 0.65, which falls between marginal and The research of N. A. M. Besseling was made possible
semidilute scaling. No measurements for dilute solutions oby support from the Royal Dutch Academy of Arts and
equilibrium polymers are reported yet, and hence also th&ciences.
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