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Experimental study of coarsening dynamics of the zigzag wall in a nematic liquid crystal
with negative dielectric anisotropy
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Jean-Marc Gilli†
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~Received 20 September 2001; published 13 May 2002!

When a homeotropically aligned nematic liquid crystal cell is placed above two permanent magnets forming
a magnetic quadrupole, a straight splay-bend wall, or a so-called Ising wall, is formed. With a material of
positive dielectric anisotropy, it has been shown that the application of an electric field perpendicular to the
plates leads to a zigzag instability of the wall, exclusively related to the elastic anisotropy of the liquid crystal.
In this case, the coarsening process of the zigzag is very slow, which in turn leads to experimental difficulties
concerning its quantitative investigation. If a material of negative dielectric anisotropy is used under an electric
field with low voltage and low frequency, two convective rolls appear along the Ising wall due to the charge
focusing effect, which is also responsible, at a higher voltage in the homogenous tilted regions, for the
appearance of Williams domains electrohydrodynamic instability. If the voltage is higher than a threshold
value, the straight Ising wall spontaneously breaks into a zigzag shape and a fast coarsening of the zigzag
proceeds, associated with the annihilation of two neighboring vertices. In the present paper, the coarsening
dynamics of this system, which can be considered as a one-dimensional Ising situation, are investigated
experimentally. At late times, the average width of the zigzag increases logarithmically with time. This finding
is consistent with the theory and also with the numerical simulation of a one-dimensional Cahn-Hilliard
situation having a conserved order parameter. The scaling analysis of size distribution of the Ising domain, the
shape of the power spectrum, and of the correlation function of the Ising order parameter, as well as the
number density correlation functions of kinks also confirms that the dynamical scaling law predicted for
one-dimensional conservative systems holds for the coarsening process. As supposed from symmetry argu-
ments, it is confirmed that this experiment constitutes a one-dimensional analog of spinodal decomposition.

DOI: 10.1103/PhysRevE.65.051708 PACS number~s!: 61.30.Gd, 64.60.Cn, 61.30.Jf
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I. INTRODUCTION

For a considerable period in the field of metallurgy, t
study of phase ordering dynamics has been conducte
order to understand the experimental characteristics of s
odal decomposition and the nucleation-growth phenomen
binary alloys@1#. In the last two decades, the phase order
dynamics has been intensively investigated in the field
statistical physics@1,2#. It is well known that the phase or
dering dynamics would be classified into several universa
classes depending on the spatial dimensionalityd, the dimen-
sionality of order parametern, and the eventual presence of
conservation law. Until the mid-1980s, long term expe
ments had only focused on a restricted class, where the s
order parametern51, in a three-dimensional space,d53.
Orihara and Ishibashi@3#, in 1986, were the first to use liqui
crystals to investigate the phase ordering dynamics. T
constructed an ideal two-dimensional system with a nonc
served Ising order parameter, i.e.,d52 and n51, in a
twisted nematic cell and verified the correlation function
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the corresponding system derived theoretically by Ohta, J
now, and Kawasaki@4#. Following this pioneering work by
Orihara and Ishibashi@3#, a number of experimental studie
@5–12# that utilize the properties of nematic liquid cryst
have been undertaken in various universality classes. T
research has stimulated new theoretical studies. It is n
well known that liquid crystals are very useful, especially
studies of coarsening dynamics in vector order param
systems@6–8,10–12#, i.e., n.1. However, probably due to
experimental difficulties, there have not been any deta
experimental studies concerning the one-dimensional sys
with conserved Ising order parameter.

Recently, Chevallardet al. @13# have developed a new
experimental system for studying an Ising order parame
system in one-dimensional space. According to their stud
straight splay-bend wall, or the so-called ‘‘Ising wall,
formed in 4-cyano-48-pentyl biphenyl~5CB! under a mag-
netic field, is spontaneously transformed into a zigzagg
wall. This spontaneous transformation is brought about
application of a suitable electric field where no electrohyd
dynamic convection is induced because the dielectric ani
ropy of 5CB is positive. Though the zigzag deformation i
creases the length of the wall and consequently tend
increase free energy, the twist deformation beside the w
which was not present before the zigzag transition and
places the initial exclusive slay-bend deformation, comp
sates for the increase of wall energy and reduces the

r-
-
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TOMOYUKI NAGAYA AND JEAN-MARC GILLI PHYSICAL REVIEW E 65 051708
deformation energy of the system. This occurs as the tw
deformation is more favorable than the other elastic de
mations @14#. The neighboring zigzag vertices attract ea
other and disappear by coalescence. As a result, the nu
of zigzags decreases and the average width of the zig
increases with time. Based only on a consideration of ne
atic elasticity, Chevallardet al. derived the equation of mo
tion for the zigzag wall@13#, which is the same as th
Cahn-Hillard equation@15#. Since the zigzag wall can b
idealized as kink-antikink in one-dimensional space,
coarsening process of the zigzag wall can be regarded
spinodal decomposition in a one-dimensional system. H
ever, they did not analyze the quantitative features of
coarsening of the zigzag wall owing to experimental diffic
ties: in particular, the coarsening itself is generally in co
petition with a global reorientation of the wall that posses
a finite length associated with the limited extension
the sample. Following this study, the present auth
have reported that a similar zigzag instability and a sim
time evolution of zigzag pattern also takes place
p-methoxybenzilidene-p8-n-butylaniline ~MBBA ! under a
magnetic field by application of a low-frequency elect
field, in which a electrohydrodynamic convection is induc
by the electric field due to the negative dielectric anisotro
of MBBA @16#.

Unlike the case for 5CB, it is very difficult to derive th
equation of motion for the zigzag wall in MBBA because n
only the anisotropy of the elastic constants, but also the
drodynamic convection play an important role in the zigz
instability. The hydrodynamics can probably be conside
here as a simple amplifier of the elastic anisotropy effe
which strongly accelerates the coarsening process. Fro
symmetry point of view, the explanation for the presence
a conserved quantity in the coarsening process remains
same in both the experiments. It is derived from the g
metrical constraints of the problem: the zigzag process is
associated with a global translation perpendicular to the
tial straight wall, and, as explained in detail in the followin
comments on Fig. 8, it comes from the trivial conservation
the zig and zag projection length, along the initial straig
wall. It is consequently very clear from the continuity of th
wall and the restriction of the zigzag angle that the tim
evolution of the zigzag wall can also be considered as o
dimensional spinodal decomposition. It is demonstra
therefore that the equation of motion for the zigzag wall
MBBA is also described by the Cahn-Hilliard equation. A
though the mechanisms of the zigzag instabilities in b
systems are not exactly the same, they both give the s
opportunity to investigate experimentally the spinodal d
composition with conserved order parameter in the o
dimensional space situation. Strictly speaking, it is poss
that there is a small discrepancy in the initial distribution
the zigzag wall in both systems because of different zig
instabilities in both systems. In the present paper, due to
experimental accessibility of the zigzag wall in MBBA, th
authors chose to first investigate the coarsening proces
the zigzag wall in the case of MBBA from the viewpoint o
spinodal decomposition. The experimental data for 5CB w
be reported elsewhere.
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This paper is organized as follows. In the following se
tion, the experimental setup is briefly described. In Sec.
the experimental results are shown, and then analyzed b
on the scaling concept. The last section is devoted to s
marizing the present work.

II. EXPERIMENT

A. Setup

The experimental setup is similar to those described
Ref. @17#. The liquid crystal used is MBBA at room tempera
ture. This possesses a sufficiently high magnetic suscept
ity and a negative anisotropy for dielectric constants. T
elastic constants of MBBA are anisotropic@18#: K156
31027 dyn, K25431027 dyn, K357.531027 dyn at
approximately 25 °C. To induce electrohydrodynam
convection, a conductive impurity, tetra-n-butylammoniu
bromide, was added to the liquid crystal at a concentration
0.05 wt. %. The liquid crystal was sandwiched between t
parallel glass plates coated with transparent electrode.
thickness and the cell size weredgap550 mm and 2
32 cm2, respectively. To obtain homeotropic alignment,
surfactant~Nissan Chemical Industries, SUNEVERSE-121!
was coated on the glass plates.

As illustrated in Fig. 1, the sandwiched cell was plac
above two permanent Nd-Fe-B magnets, which produc
slightly inhomogeneous magnetic field inside the cell. T
dimension of the magnet was 51351312 mm3. Here, only
one polarizer was inserted under the magnets. Although
strength of the magnetic field was controlled by varying t
distance between the cell and the magnets, the distance
fixed at 6 mm for the present experiment. The value of
horizontal component of the magnetic field at the position
the Ising wall was approximately 315 mT. Due to the inh
mogeneity of the magnetic field, there was an equilibriu
position for the straight Ising wall within the microscop
observation field. If the wall was removed from its equili
rium position, the magnetic field exerted a restoring force
the wall. Without the electric field, it took approximately 1
for the wall to return to the equilibrium position if the wa
deviated from its equilibrium position by 50mm. Since the
vertices of the zigzag deviate from their initial equilibriu
positions by a maximum of approximately 50mm at the end
of observations under the electric field, i.e.,t52048 s, the

FIG. 1. Experimental setup.
8-2
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EXPERIMENTAL STUDY OF COARSENING DYNAMICS . . . PHYSICAL REVIEW E 65 051708
influence of the restoring force on the dynamics of the wal
considered to be small during the observation time. For s
plicity therefore, the restoring force and the inhomogene
of magnetic field are ignored in the present paper.

The applied ac electric field was supplied by a synthes
~NF Electric Instruments, WF 1944! and an amplifier~NF
Electric, Instruments HSA 4011!. To obtain the zigzag re
gime, the applied voltage was fixed as 8 V for the pres
experiment. The frequency of the ac field was also fixed
20 Hz. A charge-coupled device camera~SONY XC-
8500CE! of CCIR standard mounted on a microsco
~Olympus, BX-60! sent the image signal to a video captu
board~Scion Corporation, LG-3!. A sequence of images con
sisting of 12 snapshots with an exponential time step ba
on 2 s were stored in a personal computer~Apple, PowerMa-
cintosh 9600!, where the images were digitized into 256 gr
levels and 7603512 pixels. Image analyses described in
following subsection were undertaken using NIH-Ima
~National Institute of Health in USA NIH-Image! with origi-
nally developed subprograms. The statistical quantities
cussed in the present paper are evaluated from ten runs o
same experiment.

III. RESULTS AND DISCUSSIONS

A. Zigzag instability

As illustrated in Fig. 2, the splay-bend wall, i.e., the Isi
wall, is formed under an inhomogeneous magnetic fi
where the Ising wall is straight along they axis and perpen-
dicular to the magnetic flux. The half width of the Ising wa
is estimated asj(x)5Ak/x/H, wherek, x, and H are the
averages of elastic constants for splay and bend defor
tions, the magnetic susceptibility, and the magnetic field,
spectively@14#. When a low voltage is applied to the ce
two wide convective rolls are induced along the Ising wa
The axes of rolls are parallel to the Ising wall. By observi
trajectories of dust particles in the cell, it is found that the
is a downstream only on the Ising wall as illustrated in F
3. It should be recalled that under a homogeneous magn
field there is a threshold voltage for electrohydrodynam
instability. The existence of the threshold voltage sugge
that it takes a certain amount of energy to break the mi
symmetry at the center planez5dgap/2 of the cell by induc-
ing the convection. In the present system, however, the c
vection appears under voltage as low as 0.7 V. From
viewpoint of symmetry, the authors consider that the conv
tion may exist under an infinitesimal electric field becau
the mirror symmetry is initially broken inside the splay-be

FIG. 2. Schematic illustration of molecular orientations arou
the Ising wall. The thickness wall is estimated asj(x)5Ak/x/H.
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wall formed before applying the electric field. However, th
were unable to confirm experimentally whether the thresh
voltage that induced the convection exists or not, since
very faint flow under the weak electric field would not b
able to drag dust particles.

When the voltage is higher than the threshold voltage
zigzag formation,Vth56.9 V, a sinusoidal undulation ap
pears in the wall and it develops into the zigzag undulat
as time progresses. The typical time evolution of the w
after the application of an electric field is shown in Fig.
After t;16 s, the undulation of the wall becomes visib
and transforms into a zigzag. In late times, aftert;64 s, the
coarsening of the zigzag wall proceeds. In this coarsen
process, two adjacent vertices attract each other and the
tual distance between them decreases with time, demons
ing therefore, the presence of an attractive interaction
tween neighboring vertices. Finally, the two adjacent verti
of opposite directions annihilate each other.

The zigzag instability in the present system does not
cur under the high-frequency electric field for which there
no electrohydrodynamic convection. Moreover, if very pu
MBBA is used, both the electrohydrodynamic convecti
and the zigzag instability cannot be observed. It is theref
expected that the zigzag instability displayed in this expe
ment, using a negative dielectric anisotropy nematic liq

FIG. 3. Schematic illustration of the stream of two convecti
rolls around the Ising wall.

FIG. 4. Time evolution of the wall. The horizontal and vertic
directions in the photographs correspond to they and x axes, re-
spectively. The magnetic field is parallel to the vertical direction
8-3
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TOMOYUKI NAGAYA AND JEAN-MARC GILLI PHYSICAL REVIEW E 65 051708
crystal, is strongly related to the electrohydrodynamic c
vection. It is known that in a nematic liquid crystal wit
positive dielectric anisotropy, the zigzag instability is driv
by the elastic anisotropy of splay, twist, and bend deform
tions @13#. It is natural to assume that the anisotropy of el
tic constants also plays an important role in the zigzag in
bility in the present system. This conjecture is confirmed
an observation under the crossed polarizers. It is cle
shown in Fig. 5 that there are bright regions next to the w
vertices in which the twist deformation exists~for example,
see the arrow in Fig. 5!. The slope and width of the zigza
depend on the voltage, the frequency of the applied elec
field, and the magnetic field. In the present paper, howe
such applied field dependencies and the mechanism of
zag instability are not dealt with. These will be reported el
where.

B. Analysis

A smoothing operation is initially undertaken to remo
any short wavelength noise from the image and a bin
image, i.e., a black and white image, is created by settin
suitable intensity threshold. Next, the center of zigzagg
line is extracted. A least square fitting for each straight p
of the zigzagging line is then applied and a position an
local slope,C(y,t), of zigzag are estimated.

The time evolution of the mean value ofuC(y,t)u is in-
dicated in Fig. 6. It should be noted that the slope of
zigzag saturates to a fixed value att;64 and does no
change at subsequent times. In order to discuss the spin
decomposition in a one-dimensional Ising system, an Is
order parameterL(y,t) defined as

FIG. 5. Observation of zigzag wall under the crossed polariz
There is a twist deformation component in the bright area indica
by the arrow.

FIG. 6. Time evolution of the average slope of zigzag.
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L~y,t !5H 1 if C~y,t !.0,

21 if C~y,t !,0,
~1!

is introduced. As illustrated in Figs. 7~a! and 7~b!, the order
parameter vanishes only on the vertices considered as k
Hereafter a kink that corresponds to the upward vertex
defined as a positive kink and a kink that corresponds to
downward vertex is defined as a negative kink.

Here let us focus on the annihilation process of neighb
ing vertices that are located very closely together, as sho
in Figs. 8~a! and 8~b!, and the conservation law of the orde
parameter. Suppose that the lengths of the positive and
negative slopes are denoted asai and bi , respectively, as
shown in Fig. 8~b!. Since the vertices indicated by the arrow
in Fig. 8~a! hardly move during the annihilation proces
a1 , a4, and b1 do not change. On the other han
a2 , a3 , b2, andb3 change. It can be easily understood th
both sumsa21a3 andb21b3 are conserved in this annihi
lation process since the zigzag line cannot move freely
to the strong restriction of the slopes. In the coarsening p
cess of the zigzag wall therefore, the total lengths of
positive and negative slopes do not change, i.e.,( iai(t)
5const. and( ibi(t)5const. It is obvious that their projec
tion lengths on they axis are also conserved. Consequen
the conservation law that characterizes the dynamics is
pressed as

M5E L~y,t !dy, ~2!

s.
d

FIG. 7. Relation between~a! the zigzaging pattern and~b! the
order parameterL(y,t).

FIG. 8. Snapshots of the annihilation of vertices.~a! Upper and
lower parts correspond to 160 s and 200 s after application of
electric field respectively.~b! The center of zigzag traced from~a!.
8-4
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EXPERIMENTAL STUDY OF COARSENING DYNAMICS . . . PHYSICAL REVIEW E 65 051708
whereM is a time independent constant close to zero in
present experiment@13#. Strictly speaking, however, thi
conservation law does not hold for the long time limit. A
this point there are only a few zigzags and the ends of
zigzag at the boundaries of cell can move if the magn
field is homogeneous in the cell. However, the present s
tem can be adequately regarded as a conserved order pa
eter system during the observation as the width of zigza
t52048 s is less than one hundredth of the cell size.

The coarsening dynamics of the zigzag wall at late tim
wheret.64 s will now be considered. The time dependen
of the width of the zigzagW(t), is defined by the averag
distance between the upward or downward vertices, an
shown in Fig. 9. It should be noted that the average width
the zigzag increases logarithmically with time,W(t); ln(t).
This is a characteristic feature of the coarsening dynamic
kinks in a one-dimensional system with the conserved or
parameter predicted by the theory@19# and the numerica
simulation@20#. In order to analyze the structure of kinks,
distribution function of the domain size is introduced, d
fined by

g~ l ,t !5
1

N~ t ! (
i 51

N(t)

d„yi 11~ t !2yi~ t !2 l …, ~3!

whereN(t) andyi(t) denote the total number of kinks in th
observed area and the position ofi th kink at timet, respec-
tively @21#. The probability that a domain can take a si
comprising the interval (l ,l 1dl) becomesg( l ,t)dl. As
shown in Fig. 10, there is a peak for a length valuel p(t),

FIG. 9. Time evolution of the average width of zigzag.

FIG. 10. Distribution function for domain size.
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which is almost the same asW(t)/2. In the late stage afte
t;64 s, the shapes ofg( l ,t) at differing times are very simi-
lar. The cutoff lengthl c(t), which exists in the nonconserve
order parameter system@21,22#, also exists in the presen
system, below whichg( l ,t) is very small and above which
g( l ,t) shows rapid increase, andl c(t) moves to largerl with
increasingt. This means that domains with sizes smaller th
l c(t) have been annihilated while domain sizes larger th
l c(t) still survive. The shape ofg( l ,t) is asymmetric, i.e., it
is sharp on the lower side of the peak and slightly broad
the upper size. It can be assumed that the short-range i
action between the neighboring vertices is very strong like
exponential attractive force, as supposed in the theory@22#
and the simulation@20#. It should be mentioned that th
shapes ofg( l ,t) obtained in the present experiment are n
similar to those in the numerical simulation and the theor
ical prediction for the nonconserved order parameter sys
by Kawasakiet al. @21,22# where the distribution of domain
size has very long tail in the sizel @ l p(t). In the present
system, as shown in Fig. 4, the zigzag is relatively regula
late times, namely, the domains are distributed narrow
which seems to be a characteristic feature of a conse
order parameter system.

Other important physical quantities allowing for compa
son between experiment and theory in addition tog( l ,t) are
the power spectrumPs(ky ,t), i.e., structure function, and th
spatial correlation functionC(y,t) defined by the following
equations:

FIG. 11. Power spectrum of the order parameterL(y,t).

FIG. 12. Autocorrelation function of the order paramet
L(y,t).
8-5
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TOMOYUKI NAGAYA AND JEAN-MARC GILLI PHYSICAL REVIEW E 65 051708
FIG. 13. Number density correlation function of kinks wi
same sign.

FIG. 14. Number density correlation function of kinks with o
posite sign.

FIG. 15. Scaled size distribution function.
05170
Ps~ky ,t !5uL~ky ,t !u2, ~4!

C~y,t !5^L~y,t !L~0,t !&, ~5!

where L(ky ,t) is a Fourier coefficient ofL(y,t) and ^•&
denotes spatial average along they axis. In these calcula-
tions, a periodic boundary condition is assumed. The po
spectrum and the spatial correlation function are presente
Figs. 11 and 12, respectively. The power spectrum ha
characteristic peak atky52p/W(t), which corresponds to
the wavelength of periodic oscillation inC(y,t). It should be
noted from Figs. 11 and 12 that in the late stage both
power spectrum and the correlation function at differe
times have the same functional form, except for the absc
scales.

The distribution of positive and negative domains
L(y,t) in relation to the distribution of the positive an
negative kinks is considered next. In the study of phase
dering dynamics, the number density correlation functio
for kinks of the same and the opposite signs are also
garded as important physical quantities@6,23#. Suppose
p(y,t) andn(y,t) are number densities of positive and neg
tive kinks, denoted by following equations, respectively,

p~y,t !5(
i

d„y2yi
(p)~ t !…, ~6!

FIG. 16. Scaled power spectrum of the order parameterL(y,t).

FIG. 17. Scaled autocorrelation function of the order parame
L(y,t).
8-6
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EXPERIMENTAL STUDY OF COARSENING DYNAMICS . . . PHYSICAL REVIEW E 65 051708
n~y,t !5(
i

d„y2yi
(n)~ t !…, ~7!

whereyi
(p)(t) andyi

(n)(t) are the position ofi th positive kink
and that ofi th negative kink, respectively. Then the corre
tion function of the number density of kinks of the equal si
is defined as@23#

Cppnn~y,t !5
^p~y,t !p~0,t !1n~y,t !n~0,t !&

^p~0,t !&21^n~0,t !&2
. ~8!

Similarly, that of the opposite sign is defined as

Cpnnp~y,t !5
^p~y,t !n~0,t !1n~y,t !p~0,t !&

2^p~0,t !&^n~0,t !&
. ~9!

If there is no correlation between the kinks, neither num
density correlation function depends ony but instead takes
unity value. On the other hand, the correlation between
kinks decreases with an increase in their mutual distance
the number density correlation function approaches u
value only at the long distance limit.

The number density correlation function for the kin
having the same sign is shown in Fig. 13. Since there
kink of opposite sign between the neighboring kinks hav
the same sign,Cppnn(y,t) vanishes in a distance regim
shorter than the average domain sizeW(t)/2. Above y
;W(t)/2, Cppnn(y,t) increases and reaches a maximu
value aty;W(t). Above the peak,Cppnn(y,t) shows oscil-
latory convergence to unity where the period of oscillation
equal toW(t). The number density correlation function fo
the kinks of opposite signs is shown in Fig. 14. It is rema
able thatCpnnp(y,t) practically vanishes in the short leng
regime close to the origin. This is for just the same rea
that the domain size distribution practically vanishes in
same regiony, l c(t). Above the short length regime
Cpnnp(y,t) increases rapidly and reaches a maximum va
at y;W(t)/2. Above the peak,Cpnnp(y,t) decreases rapidly
and reaches a local minimum aty;W(t). Cpnnp(y,t) also
shows oscillatory convergence to unity whose period of

FIG. 18. Scaled number density correlation function of kin
with same sign.
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cillation is also equal toW(t). In addition, it should be men
tioned that the functional forms of the number density cor
lation functions do not change along the entire coarsen
process.

C. Dynamical scaling

Finally, a rescaling of they and ky axes byW(t) is at-
tempted. The scaledg( l ,t), Ps(ky ,t), C(y,t), Cppnn(y,t),
and Cpnnp(y,t) are shown in Figs. 15, 16, 17, 18, and 1
respectively. In each figure, the curves at different times
on a universal curve. It is clearly shown experimentally th
the dynamical scaling law holds in this coarsening proce
as it is generally does for other space dimension syst
@1–3,6#.

IV. SUMMARY

Spinodal decomposition in a one-dimensional system w
a conserved Ising order parameter was investigated exp
mentally utilizing the zigzag instability of walls in a nemat
liquid crystal cell under magnetic and electric fields. It w
found that the characteristic length increases logarithmic
with time as had been expected from the theory@19# and the
numerical simulation@20#. By the scaling analysis, it ha
been clarified that the dynamical scaling law holds in t
coarsening process of a zigzag wall. The next stage of
research will be to undertake a comparison of the size dis
bution function of kinks among the experiments, theori
and numerical simulations. Until recently, no theoretical a
numerical work had been undertaken to investigate the
distribution function of kinks. A detailed numerical simula
tion is now in progress by Toyoki@24#. The comparison of
size distribution functions between the present experim
and the simulation will be reported shortly@24#.
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FIG. 19. Scaled number density correlation function of kin
with opposite sign.
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