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Experimental study of coarsening dynamics of the zigzag wall in a nematic liquid crystal
with negative dielectric anisotropy
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When a homeotropically aligned nematic liquid crystal cell is placed above two permanent magnets forming
a magnetic quadrupole, a straight splay-bend wall, or a so-called Ising wall, is formed. With a material of
positive dielectric anisotropy, it has been shown that the application of an electric field perpendicular to the
plates leads to a zigzag instability of the wall, exclusively related to the elastic anisotropy of the liquid crystal.
In this case, the coarsening process of the zigzag is very slow, which in turn leads to experimental difficulties
concerning its quantitative investigation. If a material of negative dielectric anisotropy is used under an electric
field with low voltage and low frequency, two convective rolls appear along the Ising wall due to the charge
focusing effect, which is also responsible, at a higher voltage in the homogenous tilted regions, for the
appearance of Williams domains electrohydrodynamic instability. If the voltage is higher than a threshold
value, the straight Ising wall spontaneously breaks into a zigzag shape and a fast coarsening of the zigzag
proceeds, associated with the annihilation of two neighboring vertices. In the present paper, the coarsening
dynamics of this system, which can be considered as a one-dimensional Ising situation, are investigated
experimentally. At late times, the average width of the zigzag increases logarithmically with time. This finding
is consistent with the theory and also with the numerical simulation of a one-dimensional Cahn-Hilliard
situation having a conserved order parameter. The scaling analysis of size distribution of the Ising domain, the
shape of the power spectrum, and of the correlation function of the Ising order parameter, as well as the
number density correlation functions of kinks also confirms that the dynamical scaling law predicted for
one-dimensional conservative systems holds for the coarsening process. As supposed from symmetry argu-
ments, it is confirmed that this experiment constitutes a one-dimensional analog of spinodal decomposition.
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[. INTRODUCTION the corresponding system derived theoretically by Ohta, Jas-
now, and Kawasakj4]. Following this pioneering work by
For a considerable period in the field of metallurgy, theOrihara and IshibashB], a number of experimental studies
study of phase ordering dynamics has been conducted i5—12 that utilize the properties of nematic liquid crystal
order to understand the experimental characteristics of spitave been undertaken in various universality classes. This
odal decomposition and the nucleation-growth phenomena iresearch has stimulated new theoretical studies. It is now
binary alloys[1]. In the last two decades, the phase orderingwell known that liquid crystals are very useful, especially in
dynamics has been intensively investigated in the field oftudies of coarsening dynamics in vector order parameter
statistical physic$1,2]. It is well known that the phase or- systemg6-8,10-12, i.e.,n>1. However, probably due to
dering dynamics would be classified into several universalityexperimental difficulties, there have not been any detailed
classes depending on the spatial dimensiond|ithe dimen-  experimental studies concerning the one-dimensional system
sionality of order parameter, and the eventual presence of a with conserved Ising order parameter.
conservation law. Until the mid-1980s, long term experi- Recently, Chevallarcet al. [13] have developed a new
ments had only focused on a restricted class, where the scalexperimental system for studying an Ising order parameter
order parameten=1, in a three-dimensional spacg+=3.  system in one-dimensional space. According to their study, a
Orihara and IshibasliB], in 1986, were the first to use liquid straight splay-bend wall, or the so-called “Ising wall,”
crystals to investigate the phase ordering dynamics. Theformed in 4-cyano-4-pentyl biphenyl(5CB) under a mag-
constructed an ideal two-dimensional system with a nonconretic field, is spontaneously transformed into a zigzagging
served Ising order parameter, i.@l=2 andn=1, in a wall. This spontaneous transformation is brought about by
twisted nematic cell and verified the correlation function inapplication of a suitable electric field where no electrohydro-
dynamic convection is induced because the dielectric anisot-
ropy of 5CB is positive. Though the zigzag deformation in-
*Present address: Department of Electric and Electronic Engineesreases the length of the wall and consequently tends to
ing, Faculty of Engineering, Okayama University, 3-1-1 Tsushi-increase free energy, the twist deformation beside the wall,
manaka Okayama 700-8530, Japan. Electronic addressvhich was not present before the zigzag transition and re-
t_nagaya@cc.okayama-u.ac.jp places the initial exclusive slay-bend deformation, compen-
"Electronic address: gilli@inln.cnrs.fr sates for the increase of wall energy and reduces the total
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deformation energy of the system. This occurs as the twist
deformation is more favorable than the other elastic defor- Lens
mations[14]. The neighboring zigzag vertices attract each

other and disappear by coalescence. As a result, the number

of zigzags decreases and the average width of the zigzag Cell AC
increases with time. Based only on a consideration of nem- //{% .C.
atic elasticity, Chevallaret al. derived the equation of mo-

tion for the zigzag wall[13], which is the same as the Sy N
Cahn-Hillard equatior{15]. Since the zigzag wall can be Polarizer Magnet
idealized as kink-antikink in one-dimensional space, the y

o I

coarsening process of the zigzag wall can be regarded as a
spinodal decomposition in a one-dimensional system. How-
ever, they did not analyze the quantitative features of the
coarsening of the zigzag wall owing to experimental difficul-
ties: in particular, the coarsening itself is generally in com-

petition with a global reorientation of the wall that possesses. ) S )
a finite length associated with the limited extension of ion, the experimental setup is briefly described. In Sec. I,

the sample. Following this study, the present authoréhe experimental results are shown, and then analyzed based

have reported that a similar zigzag instability and a similar®" the scaling concept. The last section is devoted to sum-

time evolution of zigzag pattern also takes place inmarzing the present work.
p-methoxybenzilideng’ -n-butylaniline (MBBA) under a
magnetic field by application of a low-frequency electric Il. EXPERIMENT
field, in which a electrohydrodynamic convection is induced A. Setup
by the electric field due to the negative dielectric anisotropy '
of MBBA [16]. The experimental setup is similar to those described in
Unlike the case for 5CB, it is very difficult to derive the Ref.[17]. The liquid crystal used is MBBA at room tempera-
equation of motion for the zigzag wall in MBBA because notture. This possesses a sufficiently high magnetic susceptibil-
only the anisotropy of the elastic constants, but also the hyity and a negative anisotropy for dielectric constants. The
drodynamic convection play an important role in the zigzagelastic constants of MBBA are anisotrop[d8]: K;=6
instability. The hydrodynamics can probably be considered<10 7 dyn, K,=4Xx10"' dyn, K;=7.5x10"’ dyn at
here as a simple amplifier of the elastic anisotropy effectapproximately 25°C. To induce electrohydrodynamic
which strongly accelerates the coarsening process. From gonvection, a conductive impurity, tetra-n-butylammonium
symmetry point of view, the explanation for the presence oforomide, was added to the liquid crystal at a concentration of
a conserved quantity in the coarsening process remains tfe05 wt. %. The liquid crystal was sandwiched between two
same in both the experiments. It is derived from the geoparallel glass plates coated with transparent electrode. The
metrical constraints of the problem: the zigzag process is ndhickness and the cell size weréy,;~50 um and 2
associated with a global translation perpendicular to the inixx2 cn?, respectively. To obtain homeotropic alignment, a
tial straight wall, and, as explained in detail in the following surfactantNissan Chemical Industries, SUNEVERSE-1p11
comments on Fig. 8, it comes from the trivial conservation ofwas coated on the glass plates.
the zig and zag projection length, along the initial straight As illustrated in Fig. 1, the sandwiched cell was placed
wall. It is consequently very clear from the continuity of the above two permanent Nd-Fe-B magnets, which produce a
wall and the restriction of the zigzag angle that the timeslightly inhomogeneous magnetic field inside the cell. The
evolution of the zigzag wall can also be considered as onedimension of the magnet was 851x 12 mn?. Here, only
dimensional spinodal decomposition. It is demonstratedne polarizer was inserted under the magnets. Although the
therefore that the equation of motion for the zigzag wall instrength of the magnetic field was controlled by varying the
MBBA is also described by the Cahn-Hilliard equation. Al- distance between the cell and the magnets, the distance was
though the mechanisms of the zigzag instabilities in botHixed at 6 mm for the present experiment. The value of the
systems are not exactly the same, they both give the sanf@rizontal component of the magnetic field at the position of
opportunity to investigate experimentally the spinodal de-the Ising wall was approximately 315 mT. Due to the inho-
composition with conserved order parameter in the onemogeneity of the magnetic field, there was an equilibrium
dimensional space situation. Strictly speaking, it is possiblgoosition for the straight Ising wall within the microscope
that there is a small discrepancy in the initial distribution of observation field. If the wall was removed from its equilib-
the zigzag wall in both systems because of different zigzagium position, the magnetic field exerted a restoring force on
instabilities in both systems. In the present paper, due to ththe wall. Without the electric field, it took approximately 1 h
experimental accessibility of the zigzag wall in MBBA, the for the wall to return to the equilibrium position if the wall
authors chose to first investigate the coarsening process deviated from its equilibrium position by 5@&m. Since the
the zigzag wall in the case of MBBA from the viewpoint of vertices of the zigzag deviate from their initial equilibrium
spinodal decomposition. The experimental data for 5CB willpositions by a maximum of approximately 50m at the end
be reported elsewhere. of observations under the electric field, i.e52048 s, the

FIG. 1. Experimental setup.

This paper is organized as follows. In the following sec-
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FIG. 2. Schematic illustration of molecular orientations around
the Ising wall. The thickness wall is estimatedé&) = Vk/x/H. FIG. 3. Schematic illustration of the stream of two convective

rolls around the Ising wall.

influence of the restoring force on the dynamics of the wall is . —
considered to be small during the observation time. For sim\—’vaII formed before a}pplylng the electric field. However, they

plicity therefore, the restoring force and the inhomogeneit))"’ere unable to confirm experlmer)tally vyhether the th_reshold

of magnetic field are ignored in the present paper. voltage_ that induced the convection exists or not, since the
The applied ac electric field was supplied by a synthesizeYery faint flow under _the weak electric field would not be

able to drag dust particles.

(NF Electric Instruments, WF 1944nd an amplifiedNF SO
Electric, Instruments HSA 4011To obtain the gigzag re- When the voltage is higher than the threshold voltage for
' Figzag formation,Vy=6.9 V, a sinusoidal undulation ap-

gime, the applied voltage was fixed as 8 V for the presen . ) : . !
experiment. The frequency of the ac field was also fixed abears in the wall and it devel_ops Into the zl9zag undulation
20 Hz. A charge-coupled device camefSONY XC- as time progresses. The typ|cal.t|me eyolutlon o_f thg wall
8500CH of CCIR standard mounted on a microscopeaﬂer the application of an 'electrlc field is shown in F.Ig.. 4,
(Olympus, BX-60 sent the image signal to a video CallotureAfter t~16 s, t.he und_ulatlon of the_wall becomes visible
board(Scion Corporation, LG-8 A sequence of images con- and tran_sforms Into a zigzag. In late times, atte|§4 s, the .
sisting of 12 snapshots with an exponential time step basegarsening of the zlgzag yvaII proceeds. In this coarsening
on 2 s were stored in a personal compuiawple, PowerMa- process, two adjacent vertices attract ea(_:h o_ther and the mu-
cintosh 9600, where the images were digitized into 256 grayf[ual distance between them decreases W't.h time, demonstrat-
levels and 768512 pixels. Image analyses described in and there_fore, t_he presence 9f an attractive Interaction be-
following subsection were undertaken using NIH-ImagetWeen ne_|ghb.or|ng vertices. .Fmally, the two adjacent vertices
(National Institute of Health in USA NIH-Imagevith origi- of opposite d|r(.act|0n§.an'n|hllate each other.

nally developed subprograms. The statistical quantities dis- The zigzag instability in the present system does not oc-

cussed in the present paper are evaluated from ten runs of tfE" under the hlgh-freq_uency ele_ctrlc field for Wh.'Ch there is
same experiment. no electrohydrodynamic convection. Moreover, if very pure

MBBA is used, both the electrohydrodynamic convection
and the zigzag instability cannot be observed. It is therefore
expected that the zigzag instability displayed in this experi-
A. Zigzag instability ment, using a negative dielectric anisotropy nematic liquid

Ill. RESULTS AND DISCUSSIONS

As illustrated in Fig. 2, the splay-bend wall, i.e., the Ising

wall, is formed under an inhomogeneous magnetic field - =
where the Ising wall is straight along tlyeaxis and perpen- e ————
dicular to the magnetic flux. The half width of the Ising wall 7o

is estimated ag(x) = Vk/x/H, wherek, y, andH are the e ——————— |

averages of elastic constants for splay and bend deforma- s————————————

tions, the magnetic susceptibility, and the magnetic field, re- o — — ———————

spectively[14]. When a low voltage is applied to the cell,
two wide convective rolls are induced along the Ising wall.

The axes of rolls are parallel to the Ising wall. By 0DServing s e A A A A AR

trajectories of dust particles in the cell, it is found that there %MMWM
is a downstream only on the Ising wall as illustrated in Fig. —==

3. It should be recalled that under a homogeneous magneticwmw
field there is a threshold voltage for electrohydrodynamiC ANAAANAAANAAAAAAAAA W N
instability. The existence of the threshold voltage suggests WWM

that it takes a certain amount of energy to break the mirror

symmetry at the center plae=d,J2 of the cell by induc- P NAAAAAAAAAAAAAAA,
ing the convection. In the present system, hOWEVET, the CON- AANANAAAAAANAA '

vection appears under voltage as low as 0.7 V. From the
viewpoint of symmetry, the authors consider that the convec- FIG. 4. Time evolution of the wall. The horizontal and vertical
tion may exist under an infinitesimal electric field becausedirections in the photographs correspond to yhand x axes, re-

the mirror symmetry is initially broken inside the splay-bend spectively. The magnetic field is parallel to the vertical direction.
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FIG. 5. Observation of zigzag wall under the crossed polarizers. n |_| >y
There is a twist deformation component in the bright area indicated -1 J |_| |_
by the arrow. T

crystal, is strongly related to the electrohydrodynamic con- ®)

vection. It is known that in a nematic liquid crystal with FIG. 7. Relation betweefn) the zigzaging pattern ang) the
positive dielectric anisotropy, the zigzag instability is driven order parameteA (y,t).

by the elastic anisotropy of splay, twist, and bend deforma-

tions[13]. It is natural to assume that the anisotropy of elas- 1 if w(y,t)>0,

tic constants also plays an important role in the zigzag insta- Aly.t)= —1 if W(y,t)<0, @)

bility in the present system. This conjecture is confirmed by

an observation under the crossed polarizers. It is clearlys introduced. As illustrated in Figs(& and 7b), the order
shown in Fig. 5 that there are bright regions next to the walparameter vanishes only on the vertices considered as kinks.
vertices in which the twist deformation exiger example, Hereafter a kink that corresponds to the upward vertex is
see the arrow in Fig.)5 The slope and width of the zigzag defined as a positive kink and a kink that corresponds to the
depend on the voltage, the frequency of the applied electrifownward vertex is defined as a negative kink.

field, and the magnetic field. In the present paper, however, Here let us focus on the annihilation process of neighbor-
such applied field dependencies and the mechanism of zig?d Vertices that are located very closely together, as shown

zag instability are not dealt with. These will be reported elsel" Figs. 8 and 8b), and the conservation law of the order
where. parameter. Suppose that the lengths of the positive and the

negative slopes are denoted @asand b;, respectively, as
shown in Fig. 8b). Since the vertices indicated by the arrows
in Fig. 8@ hardly move during the annihilation process,

A smoothing operation is initially undertaken to removea,, a,, and b; do not change. On the other hand,
any short wavelength noise from the image and a binarg,, as, b,, andbs change. It can be easily understood that
image, i.e., a black and white image, is created by setting hoth sumsa,+a; andb,+ b, are conserved in this annihi-
suitable intensity threshold. Next, the center of zigzaggindation process since the zigzag line cannot move freely due
line is extracted. A least square fitting for each straight parto the strong restriction of the slopes. In the coarsening pro-
of the zigzagging line is then applied and a position and &ess of the zigzag wall therefore, the total lengths of the
local slope,¥(y,t), of zigzag are estimated. positive and negative slopes do not change, &g;(t)

The time evolution of the mean value p¥(y,t)| is in-  =const. and;b;(t)=const. It is obvious that their projec-
dicated in Fig. 6. It should be noted that the slope of thetion lengths on the axis are also conserved. Consequently,
zigzag saturates to a fixed value &t 64 and does not the conservation law that characterizes the dynamics is ex-
change at subsequent times. In order to discuss the spinodefiessed as
decomposition in a one-dimensional Ising system, an Ising

B. Analysis

order parameteA (y,t) defined as M :j Ay, t)dy )
. 160s 160s@1 a2 az as
06 bE iR i NN \W\i\
6 : §
A { : b1 b b*3 by
5 04
0.2 — e
0'0_| T 1 IIIIIII L IIIIII| T T IIIIIII (a) (b)
1 3 4
10 10° t [s] 10 10 FIG. 8. Snapshots of the annihilation of verticé®. Upper and
lower parts correspond to 160 s and 200 s after application of the
FIG. 6. Time evolution of the average slope of zigzag. electric field respectivelyb) The center of zigzag traced frofa).
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FIG. 9. Time evolution of the average width of zigzag.

] ) ) ] FIG. 11. Power spectrum of the order parametéy,t).
whereM is a time independent constant close to zero in the

present experimenf13]. Strictly speaking, however, this \yhich is almost the same a(t)/2. In the late stage after
conservation law does not hold for the |Ong time limit. At t~64 S, the Shapes gK| ,t) at diﬁering times are very simi-
this point there are only a few zigzags and the ends of thgyr. The cutoff lengtH(t), which exists in the nonconserved
zigzag at the boundaries of cell can move if the magnetigder parameter systefi21,27, also exists in the present
field is homogeneous in the cell. However, the present SYSsystem, below whichy(l,t) is very small and above which
tem can be adequately regardeq as a conserved ordgr paragt t) shows rapid increase, ahg(t) moves to larget with
eter system during the observation as the width of zigzag ghcreasing. This means that domains with sizes smaller than
t=2048 s is less than one hundredth of the cell size. | (t) have been annihilated while domain sizes larger than
The coarsening dynamics of the zigzag wall at late timeg (t) still survive. The shape aj(l,t) is asymmetric, i.e., it
wheret>64 s will now be considered. The time dependences sharp on the lower side of the peak and slightly broad on
of the width of the zigzag\(t), is defined by the average the upper size. It can be assumed that the short-range inter-
distance between the upward or downward vertices, and igction between the neighboring vertices is very strong like an
shown in Fig. 9. It should be noted that the average width otgxponemim attractive force, as supposed in the thEpay
the zigzag increases logarithmically with tim&(t)~In(t).  and the simulatior{20]. It should be mentioned that the
This is a characteristic feature of the coarsening dynamics afhapes ofy(I,t) obtained in the present experiment are not
kinks in a one-dimensional system with the conserved ordegimilar to those in the numerical simulation and the theoret-
parameter predicted by the theof¥9] and the numerical ica) prediction for the nonconserved order parameter system

simulation[20]. In order to analyze the structure of kinks, a by Kawasakiet al.[21,22 where the distribution of domain

fined by system, as shown in Fig. 4, the zigzag is relatively regular in
N(E) late times, namely, the domains are distributed narrowly,
|t)= Sy (D) —y: (1) —1), 3 which seems to be a characteristic feature of a conserved

gty N(t) ;1 Wi ®=yi®=D ® order parameter system.

Other important physical quantities allowing for compari-
whereN(t) andy;(t) denote the total number of kinks in the son between experiment and theory in additiomtht) are
observed area and the positionid kink at timet, respec-  the power spectrurR(ky ,t), i.e., structure function, and the
tively [21]. The probability that a domain can take a sizespatial correlation functiol©(y,t) defined by the following
comprising the interval I(l+dl) becomesg(l,t)dl. As  equations:
shown in Fig. 10, there is a peak for a length valyé),

—- 1=64s

0.4 — 104 —— r=128s
— 1=256s
—O- 1=064s —— 1=5128
03 —— 1=128s 05— %
: - 1=256s =
—— 1=512s D
< —— 1=1024s © 00
= 0.2 —0— 1=2048s
So
0.5 -
0.1
A -1.0 T T T T T |
0.0 o= e 0 0 50 100 150 200 250 300
0 50 100 150 200 y [Wm]
[ [um] _ _
FIG. 12. Autocorrelation function of the order parameter
FIG. 10. Distribution function for domain size. A(y,t1).
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FIG. 13. Number density correlation function of kinks with

same sign.
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10" 3
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3 - A =128s
< 7 v 1=256s
102 - 1=512s
s 3 o =1024s
X ] ° o 1=2048s
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<107 R
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FIG. 16. Scaled power spectrum of the order param&fgrt).
PS(ky7t):|A(ky1t)|27 (4)

C(y,t)=(A(y,H) A(0)), ©)

where A (ky ,t) is a Fourier coefficient ofA(y,t) and(-)
denotes spatial average along thexis. In these calcula-
tions, a periodic boundary condition is assumed. The power
spectrum and the spatial correlation function are presented in
Figs. 11 and 12, respectively. The power spectrum has a
characteristic peak a,=2w/W(t), which corresponds to
the wavelength of periodic oscillation @(y,t). It should be
noted from Figs. 11 and 12 that in the late stage both the
power spectrum and the correlation function at different
times have the same functional form, except for the abscissa
scales.

The distribution of positive and negative domains of
A(y,t) in relation to the distribution of the positive and
negative kinks is considered next. In the study of phase or-
dering dynamics, the number density correlation functions

FIG. 14. Number density correlation function of kinks with op- for kinks of the same and the opposite signs are also re-

posite sign.

04 —

0.3 o

0.2 H

gUw(, v

a
Ao

%a -
< °v v

L4 OD
% oA e
¢ 4 4
0gn ©

t=64s
=128s
=256s
t=512s
=1024s
=2048s

00 02 04 06 08

W)

1.0 12 14

FIG. 15. Scaled size distribution function.

garded as important physical quantiti¢,23]. Suppose
p(y,t) andn(y,t) are number densities of positive and nega-
tive kinks, denoted by following equations, respectively,

|o(y.t>=2i Sy—yP(v)), (6)

1.0 —
08— %
06— %
0.4 -
02 -
0.0
0.2
0.4 —
0.6 —

CoOW®, »

0.0 0.5 1.0 1.5 20 25 3.0
yIW(2)
FIG. 17. Scaled autocorrelation function of the order parameter

A(y,t1).
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YW@
_FIG. 18. Scaled number density correlation function of kinks  FIG. 19. Scaled number density correlation function of kinks
with same sign. with opposite sign.
n(y,t)=z 5(y—yi(“)(t)), 7) cillation is also equal taV(t). In addition, it should be men-
I

tioned that the functional forms of the number density corre-
lation functions do not change along the entire coarsening
wherey(P)(t) andy{"(t) are the position ofth positive kink  process.
and that ofith negative kink, respectively. Then the correla-
tion function of the number density of kinks of the equal sign

is defined a$23] C. Dynamical scaling
Finally, a rescaling of thgy and k, axes byW(t) is at-
(p(y,t)p(01)+n(y,t)n(0;t)) tempted. The scaleg(l,t), Ps(ky,t), C(y,t), Cppnn(y.1),
Cppnry, )= 5 - (8 andCynny,t) are shown in Figs. 15, 16, 17, 18, and 19,
(P(00))*+(n(0)) respectively. In each figure, the curves at different times fall

on a universal curve. It is clearly shown experimentally that
the dynamical scaling law holds in this coarsening process,
as it is generally does for other space dimension systems

[1-3,6.

Similarly, that of the opposite sign is defined as

(p(y,)n(0) +n(y,)p(0}))
Cpnnp(yvt): 2(p(0;)){n(0})) ) ©) IV. SUMMARY

If there is no correlation between the kinks, neither number SPinodal decomposition in a one-dimensional system with

density correlation function depends grbut instead takes & conserved Ising order parameter was investigated experi-
unity value. On the other hand, the correlation between thanentally utilizing the zigzag instability of walls in a nematic

kinks decreases with an increase in their mutual distance arjifiuid crystal cell under magnetic and electric fields. It was
the number density correlation function approaches unitJO,U”d_ that the characteristic length increases logarithmically
value only at the long distance limit. with time as had been expected from the thdd§] and the

The number density correlation function for the kinks Numerical simulation20]. By the scaling analysis, it has

having the same sign is shown in Fig. 13. Since there is been clarified that the dynamical scaling law holds in this

kink of opposite sign between the neighboring kinks havingt@@rsening process of a zigzag wall. The next stage of this
research will be to undertake a comparison of the size distri-

the same signC,,,{(y;t) vanishes in a distance regime ) ) X ) ;
shorter than the average domain sié(t)/2. Above y bution function of kinks among the experiments, theories,
and numerical simulations. Until recently, no theoretical and

~W(t)/2, Cppnr(y,t) increases and reaches a maximum . _ ; .

value aty~W(t). Above the peakC,..(y.t) shows oscil- numerical work had been undertaken to investigate the size
. ppnrYs S . . . ! .

latory convergence to unity where the period of oscillation isq|str|.but|on functlon of ktl)nks. A dthalledhnumerlcaI. S|mulfa—

equal toW(t). The number density correlation function for tion is now in progress by ToyoK24]. The comparison o

the kinks of opposite signs is shown in Fig. 14. It is remark_size distribution functions between the present experiment

able thatC,,,(y,t) practically vanishes in the short length and the simulation will be reported shorflg4].
regime close to the origin. This is for just the same reason
that the domain size distribution practically vanishes in the
same regiony<I.(t). Above the short length regime,
CpnnY,t) increases rapidly and reaches a maximum value We gratefully acknowledge Professor T. Kawakatsu, Pro-
aty~W(t)/2. Above the peakC,,,(Y,t) decreases rapidly fessor H. Toyoki, and Professor H. Orihara for their con-
and reaches a local minimum wat-W(t). C,,n(y,t) also  structive suggestions. This work was partly financed by the
shows oscillatory convergence to unity whose period of osCentre National de la Recherche Scientifique of France.
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