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Flow dissipation effects in a nonlinear nematic fiber
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Dissipative effects due to the presence of hydrodynamic flow in a cylindrical fiber whose cladding is an
initially quiescent incompressible nematic liquid crystal are analyzed. An analytic and iterative solution of the
nematodynamic equations coupled to the Maxwell's equations describing the propagation of a narrow wave
packet of transverse magnetic modes is provided. We derive a generalized nonlinead®gemoequation for
the amplitude of this propagating wave packet that takes into account the dissipation in the nematic’s reorien-
tation and the hydrodynamical effects. For the solitonlike solution of this equation we find that the penetration
length and the real part of the nonlinear refraction index increase by a factor of 1.75, with respect to those
values obtained in the absence of hydrodynamical flow. The imaginary part remains unaltered.
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The presence of hydrodynamic flow leads to a dynamical In Ref.[12] we derived the coupled dynamics for the TM
anisotropic response of liquid crystals which manifests |tselfopt|ca| modeH¢(r t), and the onentauonal?(r t), field in
as an effective wave number dependent orientational viscogy cylindrical fiber in a steady state by taking into account
ity [1-3], but its effect on nonlinear optical properties hasexplicitly retarded effects, namely
been less explored. In previous work it has been shown that
light induced hydrodynamical motion of a liquid crystal con- (92H¢, aZH
fined in a planar cell, may also produce significant changes 2 ;24 ‘9_52 a2 (t_ )
¢
in optical properties such as the focal length of the equiva- — = —f t

lent nonlinear lens and the nonlinear phase change across the c® at? e, (r' 't')
cell [4-6]. JH
The lossy and nonlocal effects of the reorientation dynam- f t t")| —sirfd—= ¢
ics of the director when a wave packet of transverse mag- ‘ng €L EH 9
netic modeqTM) propagates through a nematic cylindrical 9 ,
fiber in the absence of hydrodynamic flow have been ana- +SIH0C050; 5XH¢ (t—=t)
lyzed by using the multiple scales methdd-9]. It has been :
shown that the dissipation produced by the reorientation, al- 92 € , [ IH,
ters the self-focussing, dispersion and diffraction of the = Jtax el (t") —S"WCOSH(?—g

wavepacket, leading to a perturbed nonlinear Sdimger

equation(GNLS) for its amplitudg[7]. Since it is known that 19

the GNLS equation admits solitonlike solutio$0], the +C°520; o <M
speed, time, and length scales, and penetration length of the

optical solitons, as well as the nonlinear index of refractionand

of the nematic, could be estimated by using experimental

values of the relevant parametédsl]. Our purpose in this dn, 1 A

paper is to describe how the dissipation due to a hydrody- g — 2 (%Vi ~ i)kt 5 (8 = Nin) k(9w + dvk)
namical flow of the nematic within the fiber affects the pen-

etration length of the wave packet and the nonlinear refrac-
tion index of the nematic.

We consider a cylindrical waveguide of lendthwith an
isotropic core of radius with dielectric constang., and a
quiescent, incompressible nematic liquid crystal cladding of
radiusb, such thatL>a,b. The orientational configuration
satisfies the planar axial, boundary strong-anchoring condi-

tionsn(r=a,zZ)=n(r=b,z)=e,, as depicted in Fig. 1. The
director is given byn(r,t) = cosée +sin 6, and the velocity
v(r t) field readss =v(r,t)e,, wheree, ande, are the unit
cylindrical vectors.

(t—t), 1)

2

FIG. 1. Schematics of a laser beam propagating through a nem-
*Corresponding author. Email address: adrian@fisica.unam.mx atic liquid crystal cylindrical waveguide. The TM modes are shown
TEmail address: zepeda@fisica.unam.mx explicitly.
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Here vy, is the reorientational viscosity and); is the usual

Kronecker deltaje,=¢—€, is the dielectric anisotropy stress
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Hered/dt stands for the material derivative operator and the
tensor is given by II;=dF/d[(d/Ix;)n]

where ¢, €, denote, respectively, the dielectric constants—n:ndF/d[(d/dx;)n;]. As usual, the symmetric gradient
parallel and perpendicular to the long axis of the moleculegelocity tensor isuvj=[(d/dx;)v,+ (d/dx)v;]/2 and h;

and\ = — v,/ vy, is the ratio of two nematic viscosities. If the

reorientation process is isothermél,in Eq. (2) denotes de
Helmholtz free energy that for the present modd]1i3]
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The dimensionless parameig?=¢,E2a?/K is equal to the

=(dim—niny) 6F/ én,,, where §F/8n,,, denotes the varia-

tional derivative ofF. The kinetic coefficientsy,, 7,, 73
are the Harvard viscosities arig} is the amplitude of the
incident field.

We shall now rewrite Eq¥2), (3), and(5) for the weakly
nonlinear TM modes calculated in RdfL2] for which q
<1. Since the torques induced I8 and £¢ are propor-
tional to g and since the magnetic susceptibility is much
smaller than the electric one for a thermotropic, it is reason-
able to expect that if the initial flow is axial it will remain so
as time evolves. Also, the Zocher stresses that could arise
from gradients in the magnetic field are negligible in this
regime. Furthermore, since the fluid is incompressible and
the process is isothermal, the pressprep(p,T) is con-
stant. Therefore, in the absence of external pressure gradients

substitution of the explicit forms fon andv into Egs.(2),
(5), and(3) leads to

ratio between the electric field energy density and the elastic (9_9 _ Ecosz % _ sin 26 dv, + i 5_': (6)
energy density of the nemati&=K,;=K,=Kj is the iso- a a d 4da dz vy, 66’
thermal elastic constant in the equal elastic constants ap-
proximation and the asterik) indicates complex conjuga- dv, 110 \a oF K 4 a0
. - . . . p——=—=——-X—5C0S20—+ -~ —C0S20—
tion. In Eq.(3) — &3(r,t) stands for a dimensionless electric dt 52 x dx 2 66 2a dx X
field defined by the following nonlocal and retarded relation: g
v, — . Uy
+ 7’1(?_x+(7]2_3771)5m60050dx , (7)

cal . _q /t//Ea ” AR I
E(r,t)=—| dt’ [ dt"—(t"=t")nn- VX H(r',t"),
€ € €
4

obtained by substitution of the displacement figi(r,t) in

terms of?rt(F,t), by using the Ampee-Maxwell law without
sourced12]. Here{=z/a, x=r/a, H,=H,/(CeoEy) with

c=1/\J g€, Whereuy andey are the magnetic permeability
and dielectric permittivity of free space. The coupling be-
tween the director and the TM modes is represented by the

term of orderg? in Eq. (3).

In the present paper we generalize these results by con-

with
oF K{l &( (90) sinf cosé

(R Y (I — X_
00 2| x ax\ X X2

2

-q

cosZH(

IH,
X

t 9xH t
sg*f dt’—ax¢+5f‘*f dv—*

t gH t IxXH
5?*J dt/a_;J’Eg*f dt’(?—xq’)H.

sin 20(
+ —X
X2

sidering the full nematodynamics that must include a (8

coupled set of equations forandv. Using the formulation

The usual procedure to solve E@6) and(7) is by using the

in Ref.[14] the equation of motion for a nematic is given by approximations of negligible inertifl] and minimal cou-

dv;  dp Lo L P
PQat —  ax, 2 axj(nij njhi) 2 X el
d 1 &
+Hi|(9_XjnI _Em[(nij+nji)nl_nilnj

J Jd
_Hjlni]+2771(9_XjUij +(773_2771)(9_Xj(ninlvjl

_ d
+njnv;) +(n+ 771_2773)—(9)(, (NN m).-
i

©)

pling [15], where the rapidly varying hydrodynamic velocity
is considered to be a slow variable that follows instanta-
neously the director dynamics. These approximations lead to
an amplitude equation for the orientation with an effective
viscosity [6]. However, in the present model we have an
even faster variable thaw,, namely, the TM mode
H4(£,x,t), which couples to bothd({,x,t) andv,({,X,t),
according to Eqgs(1), (6), and(7). Thus, it will be inconsis-
tent to setdv,/dt=0 and instead, since we are considering
weakly nonlinear TM modes only, we solve E@$) and(6)
iteratively in powers ofy. To this end we assume the follow-
ing expansions fop andH,, in powers ofq:

0(Z,x,1)= 09+ g?|A(E, T)U(X,0) 26D (¢, x,)+---, (9)
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uz(g,x,t)=q2|A(E,T)U(x,w)|2v§1)(§,r,t)+ . tion of the higher order harmonics is smaller than the domi-
(100 nant term that is itself a small amplitude narrow wave
packet.
B 0 _ 21(2) Inserting expressioti9) into Eq. (11) and expanding in
Hy(X,£,0)=qUy| X, 0ot+ig-= |A(E,T)+q U7 +c.c. powers of q it is straightforward to rewrite the latter equa-
tion as[12]
+oe (11)
L(B,w,X)H 4+G?F(H,4) =0, (13)

Here A(E,T) is a slowly varying function of the variables
E=q¢{ andT=qt , which represents the envelope of a nar-

. . where the linear and nonlinear operattrsF are defined,
row wave packet of widtly=(w— wg)/wq with central fre- P s

respectively, by

quencywy. 8™ andv{", with n=0,1, . . . ,denote the suc-
cessive corrections of orden that satisfy the strong- A 1 wo |2
anchoring homeotropic boundary conditio$§x=1)= 6(x L=— —€, +X%€|| €, - a —(Ba)?
=b/a)=0. U 4(x,wy) is the linear solution foH , given by X"€| €
(12,14 9 e
_ 2,
; woa) 2 " +Xe, o"X+X €, &Xz] (14)
U¢,(X,a)o)=Jl €c T —ﬁ a
and
o
X \/ exp(—iBal—ocax), (12 . eJAOUX, 0)|? du
20ax F= a (i)e i ) iﬂa[UH(l)(x)+3x0(1)(x)a
. . L€
with o= \e[B%/ €, —(wo/c)*] and whereJ;(x) is the o
Bessel function of order 1 and is the propagation param- +de‘9 (x) A(2) (15)
eter which takes the values given in Table | in REf2]. dx '

UM n=23, ... in Eq(11), are the contributions due to the

higher order optical harmonics that might be generated by The governing equation for the first order solution
the nonlinearities of Eqg1) and(6). Note that the presence 6 (w,x,?) andvgl)(w,x,g) can be found by inserting Egs.
of higher powers ofy in Eq. (11), implies that the contribu- (9), (10), and(12) into Eq. (6), this leads to

y,a2 961 . 92 . 200 1900 oD ay, dolP  4e.8a

+ = -—+ 2=
K ot 2 T o Tx i T e TR Tdx w2qeu|u(r’t)| 0, (16)
o 119 Na K [ 260 5260 1960 o) 4e,Ba y | K a2 do{M .
==-—x-—5—= + = -—- +— +
Pt T wx | 2w e e Tx kg 7Tzq‘sul (HOF7 [+ o 2 M ax | (17)

whereU(r,t) =[5 (JmA,/\2x)exp(—oxX)é“'dw . It is convenient to rewrite these equations in the form

2 nidp(1) (1)
_natgets +Vz[ei¢9(1)]+%ei¢dv_22%

e'?|u(r,1)?, (18)

K at dx qufu
dé% 1194 ra K . 4e,Ba K g%e'¢o) ol p(H
Y [ raidg) . 877 Lig 204 + z
p dt a? X z?XX 2 g2 vieror] fn'zeleue ur.ol 2a  x? n oX ' (19
To solve these equations we define the following Fourier transform:
“e“)(,z,w):f drdte " ietei g 1), (20)
QTZ(l)(E,w)zf drdte <" ietel ¢y ((F 1), (21)
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to obtain
~y - i, K[1 - 4e,Ba . -
piw+"—21x?)v§l><x,w>=—r—2 S (kE =2 7Ok, 0) = ;*B S(k1,01)S* (K2, 0) |, (22)
a a a TE| €)
|
and To follow the dynamics of the envelopg&(=,T) we sub-
yi18%w stitute Eq.(11) into Eq. (13) and identify the Fourier vari-

i + K?

~ N a ~ -
0V (k,w)—i %Krvgl)(fc,w)

4e,Ba

=~ ——S(K1,01)S* (k2,2), (23
€| €|

where S(k,w) is the Fourier's transform of'?2U(r,t).

Solving Egs.(22) and (23) for #V)(x,w) we find that

4eap -S(Ky,01)S* (K3, w5)
dw dk

Né(l)(g,w): - =
T€, €] G(k,w)

><5(;Z—;:1—i:2)5(w—w1—w2) (24)
with
G(k,w)" L
| <
iwp+ [+ 71]?

i ylazw 2

K

2
r

+ K2

. 771 Kl‘ 2 2
iwp+ —ki |+ —=y1(kf—Nk%)
a? 22277 "

(25

ables iBa=ipja+qdldZ,+q%9ld=, and —iw=—iw,
+qd/JT, in consistency with the definition of a narrow wave
packet, where&g ,.=q" 'E=q"/ with n=1,2,3 ... are the

spatial scales associated with upper harmonics contributions.

Expanding the resulting expression up to third ordeigjn
that is,

A d , 0 3 9
0=L |,80a+q(9:1+q &ﬁ2+q P

3 .
—iwy+ q(}—_l_) Hy(X, £ D +0?F(Hy(x,4,1),  (26)

and grouping together terms of the same ordeg,iwe get
equations for A(E,T) for each of the spatial scales
=2,E,,E,. If the equations for the lower scal&sand = ,are
inserted into the equation f&, we arrive at the NLS equa-
tion [12],

Note that this expression exhibits explicitly the coupling be-
tween the two optical wave vectorél and Ez, and the ori-

entational wave vectok that for some cases, as the onewhere the dimensionless refraction indeyx=Kn,/e,a? is
considered below, can be simplified. given by

— e 6N(x)  doM(x) dU 4(X, )
n2=2—“ <|U¢(X,wo)|2U¢(X,w0)( T ax ) U¢(x,w0)>+3<0(1)(x)|U¢(x,w0)|2%—Xwo,
U¢(X,(1)0)> /<U¢(X,wo),U¢(X,(Do)> (28)

Here the angular brackets denote integration ovérom x=1 to x=Db/a. To calculate this integral we must first obtain
6(x,w), which stems from the inverse Fourier transform of E2f). For the case of the narrow optical wave packet

considered here we have to take into account the two possible couplings, naimeI&Q:Z;i with 01— w,=0 or w,
+w,=0. Thus, Eq/(24) may be approximated as

—_— Y1 2 - 2
la, "+ 1+ —|kr ||S(kj,wq) -
PO( )= — EaP? ( ’ ) 1[S00 . L1+ valIS(xi)|®
2 K7 Y1 M Y1k ’
TELE 4(ia;l+Ki2)(ia£l+Ki2r)+—rﬁ(Kizr—)\Kiz) 4 7]1-1—?—?)\ 24 7;1-1—7)/(5
2 m

(29
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where we have takea(ky,— wg) = €(Kg,wq) by assuming given by Egs.(40) and (21) of Refs.[7,12], respectively,
absorption to be negligible and where;=K/vy;a’w, show that the only difference between them is the factor
and a,= 7, /wepaZ. It is straightforward to show thad, (m1+ y)I[ 91+ v1/2— (y1/2)\)]. For the material parameter
and «, are small by substituting numerical values for avalues given above this factor has the value 1.75. On the
typicaé n;ematif, namely, |3<= 10711N, ) y1=95  other hand, the imaginary pamt of n, remains the same as
x10 *kgs™® m %, 7,=121x10"" kgs m > p=10" it found in Ref[12]. Thus, the values ofl, as given in
kg/m® and an optical frequencyyo=3.8x 10°° rad/s. This Table | of Ref.[12] do not change with the hydrodynamical

ields the val =1.3x10 ° anda,=9.2x10"8, h .
%ﬂz fisrst ?e\r/riugmelq.(ZQ) has aar?egﬁlyi;ible real pe;rt (;rr\]((:jeis effects, while the values of, from the same table have to be
érjcreased by 1.75.

much smaller than the second term. Taking the inverse sp Similarl i1 ab f hvdrod ical effdat

tial Fourier transform of the latter equation we obtain Imilarly, as in absence ot hydrodynamical €t we .
can take into account this lossy contribution as a perturbative
term in the NLS equationi27). Indeed, Eq.(27) can be re-

) \/ wod | 2 ) s written as the GNLS equation
. 2€yBa c
0D (x,w)=ia,
TE,| €| X A PA or a2
(91t 1] _=2+Iﬁ_I|A| A—a|A|°A=0, (32
X exp(—20ax)+ nTh 9=
Y1 M
wrm
with a=n/n}. By considering the last term as a perturba-
, woa 2 ) tion, it was found the soliton-type solutigd0,12|
Baeyd] €c e —pa
X _
me, ex(a’—b?) A=27nsechT—Z(dk/dw)Zy/T,]
x{(a?~b?)e”21 ¥+ (b~ x%a?) X exg ik(wo)ZoZ—i wgToT], (33)
+e7(@ PMa2(1-x?)}, (30

. _ _ where 7 is given by 5(Z)=1/A/1+16aZ/3, and where the
where the real part 0p'")(x,w) is proportional to the one jnitia| condition 7(Z=0)=1 has been imposed. This expres-
obtained in the absence of dissipatidi?] that satisfies the i shows that dissipation due to flow reorientation makes

hard anchoring homeotropic boundary conditions givenyhe soliton amplitude; decrease with the distance; falls

. 1 . B
above. Inserting/™(x,) into Eq. (28) yields half its initial amplitudeA, when the soliton has traveled the
distanceZ,=9/(16«).
_ 1 [ 71+ v1] Let us now estimate the changes in the length and time
2833 nrtn A2 T2 T A2Y 42 2 :
;=7 €apha Y. 71 scales,Zy=2/n}A§, To=(a/nsAf)d*B/dw§, of this pulse
( -+ 5 ?)\) owing to the presence of hydrodynamic flow. For a 500 mW
laser atn=0.5 um with a beam waist of 1Qum, the field

wod| 2 amplitude isASz 1.9x10° V/m. Then, by using the material
\/EC(T) — p?a? constants given above and for the mode with=229.59,
this leads to the following spatial and temporal scales for the
— e 30D ger(a=4b) | pa-o(da=b) _po-30a pulse,Zo=2.4<10"° m andT,=0.12x10"** s.
Finally, because) in « increases by a factor of 1.75, the
characteristic distance over which the soliton loses half its

X ‘]i e ob+20a

mefb(a?—b?)e, (—e 2P +e 279

5i e, a2 , \/ (woa P , 2) initial amplitudenAo, given byzy=2,Z,, leads t(_) a larger
-—F—17J €l — a value given byz;®™=1.92Km due to hydrodynamical effects
€ € C [5]
2 Summarizing, we have derived a generalized nonlinear
e oh— E) e 072 Schraedinger equation for the amplitude of a wave packet of
X , (31) TM modes propagating through a cylindrical nematic wave-
e 2bor_ Eefzfra guide by taking into account dissipation in the nematic’s re-
b orientation and hydrodynamical effects. For the solitonlike

o solution of this equation we found an increase of a factor
which is a complex nonlinear refraction inder,=n) 1.75 in both, the penetration length and the nonlinear refrac-

+ in—'z. It should be noticed, on the one hand, that the direcf'®" index.

comparison of the real part, and the ones obtained for, We acknowledge partial financial support from Grant No.
in the absence of dissipation and hydrodynamical effectsDGAPA UNAM IN105797, Meico.

051701-5



FLOW DISSIPATION EFFECTS INA ... PHYSICAL REVIEW B5 051701

[1] E. Guyon, R. Meyer, and J. SalaMol. Cryst. Lig. Cryst.54, Wesley, New York, 199
261 (1979 [9] R.F. Rodrguez and J.A. Reyes, J. Mol. Lig@1, 115(1997).
[2] Y.W. Hui, M.R. Kuzma, M. San Miguel, and M.M. Labes, J. [10] D.J. Kaup and A.C. Newell, Proc. R. Soc. London, SeB6A,
Chem. Phys83, 288 (1985. 413(1978.
[3] R.F. Rodrguez, M. San Miguel, and F. SagyeMol. Cryst.  [11] Shu-Hsia Chen and Tien-Jung Chen, Appl. Phys. L&
Lig. Cryst. 199 393(199). 1893(1994).
[4] E.F. Carr, Mol. Cryst. Lig. Cryst34, L159 (1977). [12] J.A. Reyes and R.F. Roduez, Physica 0101, 333(2000.
[5] R.F. Rodrguez, P. Ortega, and R. @-Uribe, Physica 230, [13] F.C. Frank, Discuss. Faraday S@&, 19 (1958.
118(1996. [14] L.D. Landau, E.M. Lifshitz, A.M. Kosevich, and L.P. Pitae-
[6] R.F. Rodrguez and P. Ortega, Mol. Cryst. Lig. Cryst. Sci. vskii, Theory of ElasticityPergamon Press, New York, 1981
Technol., Sect. 222, 45 (1992. [15] AJ. Hurd, S. Fraden, F. Lonberg, and R.B. Meyer, J. Phys.
[7] R.F. Rodrguez and J.A. Reyes, Opt. Commut97, 103 (France 46, 905(1985.
(2001). [16] D. Jackson,Classical ElectrodynamicgWiley, New York,
[8] A. C. Moloney and J. V. NewellNonlinear Optics(Addison 19849.

051701-6



