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Buoyancy-driven instability of an autocatalytic reaction front in a Hele-Shaw cell
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An autocatalytic reaction-diffusion front between two reacting species may propagate as a solitary wave,
namely, at constant velocity and with a stationary concentration profile. Recent experiments on such reactions
have been reported to be buoyancy unstable, under certain conditions. We calculate the linear dispersion
relation of the resulting instability, by applying our recent analysis of the Rayleigh-Taylor instability of two
miscible fluids in a Hele-Shaw cell. The computed dispersion relation as well as our three-dimensional lattice
Bhatnagar-Gross-KroolBGK) simulations fit reasonably well experimental growth rates reported previously.
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I. INTRODUCTION eral two-dimensional linear analyses have been proposed to
model this instability of the ascending IAA reaction front in
Chemical reactions with autocatalytic kinetics show fas-a HS geometry. The majority are based on the eikonal equa-
cinating phenomena such as temporal oscillations and chadépn [11-15. However, this does not take into account the
spatial stationary Turing patterns, or propagation of singleextension of the density profile and has been shown to be
fronts or wave traing1]. Among other reactions, the oxida- questionablg16]. A few analyses use the full convection-
tion of arsenous acid by iodate, the so-called IAA reactiondiffusion-reaction(CDR) equation for the chemical wave
has been studied as a paradigm for the simple, monostab#&d Darcy's law for the hydrodynamid46,17 (to be de-
case. In this reaction, a planar front develops between thaoted below as the Darcy-CDR mogeComparison of these
reacted and unreacted regions, and propagates as a solit@galyses with recent measuremefisis not fully satisfac-
wave with a constant front velocity and a stationary concentory, however. This is particularly the case for the larger
tration profile[2]. This is a result of the balance between thickness HS cellge.g.,h=900 um), which might be at-
diffusion and chemical reaction. As the reaction product istributed to the failure of Darcy’s law under such conditions.
slightly lighter than the initial reactant solutidi3—5], as- The NSD equation has also been used together with the ei-
cending reaction fronts may be buoyancy unstable, leading tkonal equation[12,14 (the NSD-eikonal modgl but with
a Rayleigh-Taylo(RT) instability [6—8]. This instability has  limited success.

been investigated experimentally in tubdgd and in Hele- The objective of the present work is to apply a more com-
Shaw (HS) cells [4,5] (which consist of two parallel plates prehensive approach, based on our recent analysis of the RT
separated by a gap of a small thickné3s instability of miscible fluids in a Hele-Shaw cé8], by com-

The configuration corresponds to an unstable density prd;)ining the convection-diffusion-reaction of the chemical pro-
file between two miscible fluidgi.e., without any surface cess and the NSD equatigthe NSD-CDR modg! In gen-
tension, of a finite extent. It has been recently studied for theeral, the problem involves three characteristic length scales:
HS geometry in the absence of a reacti@rl0]. It was first ~ the thickness of the celi, the MRT lengthL, and the chemi-
found that the transversely averaged flow in the plane of th€al front widthl, . The latter two are defined respectively as
cell can be described by a two-dimensional Navier-Stokesfollows:

Darcy equation(the NSD equation, which is similar to

Brinkman'’s equatiop which reduces to Darcy’s law at small _[2povD\*? _[2D
gap thickness. It was also shown that, for a given density ~| TApg and l=~\/—-
difference, the strength of the instability is mitigated by mo-

lecular diffusion processes, by the viscous friction in the gapwhere the various symbols are introduced below. The valid-
of the cell, and by the spatial extension of the density profileity of the different models, which depends on the relative
The last two stabilizing processes enter into play when th&alues of these lengths, will be addressed below. In addition,
gap widthh is smaller and the extension of the frdptarger,  we will compare the various dispersion relations with three-
respectively, than the characteristic miscible Rayleigh-Taylodimensional (3D) lattice Bhatnagar-Gross-KrooKBGK)
(MRT) lengthL defined below(and which involves the den- simulations to be conducted for this geomef#8,19, as
sity contrast and the viscous and molecular diffusion coeffiwell as with reported experimental dg&.

cients[9]).

In the presence of an IAA reaction, however, the situation
is different, due to the coupling between hydrodynamic in-
stability and chemical reaction. During the last decade, sev- For arsenous acid in stochiometric excess and a low pH

value[20], the IAA reaction is autocatalytic in iodide, and its
kinetics can be modeled by the cubic rate ldw o«C(C
*Electronic address: martin@fast.p-sud.fr +Cg)(1—-C), wherea andCg>0 include the reaction rate
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constants, and is the concentration of iodide, normalized J J

7ARR > >
by the initial concentration of iodate. In the absence of bulk Po= —PoVr; —NA— —|v=—VP+pg
. Lo S ot 9z K
flow, the evolution of a solution initially free of iodide((
=0) toward the final reacted stateC£1) obeys the and V-uv=0 (5

diffusion-reaction equation
and wherex=h?/12 is the permeability of the cell. The mass
conservation of the chemical species under a dilute solution

- ~DAC+(C) (2)  assumption is described by the convection-diffusion-reaction
equation
where D is the molecular diffusion coefficient of iodide. 9 J . .
When the reaction is initiated in a horizontal plane of a ver- (E—erJrv-V) C=DAC+f(C) (6)

tical HS cell (either by introducing some reactant or thanks

to an electrod¢5]), there exists a 1D traveling wave solution \yhereC is gap averaged. The NSD equation was shown to
of Eq. (2) traveling at constant velocity along the axis  gescribe quite accurately the full 3D problem of the

(from theC=1 to C=0 regions and given by Rayleigh-Taylor instability between miscible fluids in a
Hele-Shaw cel[9] (corresponding t@,=0 andf=0 in the
1 above two equations
C(z*,1) (€©)) Consider, next, the linearized forms of EqS) and (6),

- 1+expz"—v,t)/l - -
Az" vt using the relatiorp=—ApC. Then we obtain

where the velocity, is

a ALt P .
Po E Ur(;,z VA+ — vy &: (7)
V2 (14+209=2(142¢9) @
U=\ 5 =7 . =
' 2 S S d AR I o
o _ _ _ _ | Po| 7y TUrg, ~ VAT —|v.= = ———pg, ®
This is a solitary wave, with the stationary profile resulting

from a balance between diffusion and reacti@n5,14. As vy v,

the reaction produces a lighter reacted solution, however, an X EZO’ 9)

upward propagating fronteq. (3) with an upwards* axis|
is buoyancy unstable. The concentration profile will generate ~
. e . X " Kl J - dp ~[df

an RT instability, inducing nonhomogeneous fluid velocities (__U Z_ A>p: —v _+p(_> _ (10)
which will interfere with the evolution o€ due to advection. gt "'oz ‘oz dC/.
In the following, we will study the stability of this ascending
wave front and discuss the interplay between the chemicefor a cell width sufficiently large compared to a wavelength,
reaction and the instability-induced fluid velocity field. the Fourier components of the disturbance with respect to the
horizontal coordinate are independent. Therefore, for a nor-
mal mode with wave vectdt in the horizontal direction and
a corresponding growth ratg(k), the vertical velocity in the

The above-derived 1D base state consists of a mixture gierturbed state is,(x,z,t) =w(z)e’* "% and likewise for
two miscible fluids of a concentration profi@(z*,t) vary-  the density, pressure, and horizontal velocity. After some cal-
ing along the upward vertical coordinaté [Eq. (3)], thus  culations, one finds that the vertical disturbamgg) obeys
leading to a corresponding density profilg,(z*,t)=py  the following equation:
—Ap[C(z*,t)—0.5]. Here,Ap andp, denote the difference
and the average of the densities of the reactée- 1) and
unreacted €C=0) fluids. Throughout, we assume that the
kinematic viscosityr and the molecular diffusivityD are
constant in the mixture. The analysis is facilitated by consid- o v, d  d? 1 d?
ering a moving coordinate systern=z*—uv,t. Denote by X kz—g w
p=pp+p, C=C,+C, andP=P,+P the density, concen-
tration, and pressure in the perturbed state. The hydrodynam- gk?® dp,
ics are described by the Navier-Stokes equations, under the
Boussinesq approximation, averaged across the gap. Under
the assumption of a parabolic velocity profile in the gapGiven a concentration profil€(z), the dispersion relation
(valid for large aspect ratio HS cell41]) and negligible (k) of the above equation can be obtained by various meth-
nonlinear terms, this leads to the following 2D incompress—ds, including matched asymptotic expansions for the vari-
ible Navier-Stokes-Darcy equatid, 12,21, where the pla-  ous wave-number regimes. For convenience, we convert Eq.
nar velocityv in the laboratory frame of reference satisfies: (11) to dimensionless notation, by choosing the MRT length

IIl. LINEAR STABILITY ANALYSIS OF THE FRONT

o v, d d?> 1 df

T P R

D vpo EW (1)
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L=(2povD/Apg)® and the characteristic timeT  according to Eq(3), we follow the time evolution of a sine
=L2/\yD. This selection emphasizes the symmetric roleperturbation of wavelength. In the simulations, the MRT
played by viscous and molecular diffusions in the absence déngth L is chosen such that, for a given gap cell, the nor-
chemical reactio9]. This leads to the dimensionless wave malized permeability is that of the experiment. 2-D lattice
vectorg=kL and dimensionless growth rate=¢T, based BGK simulations(model 2DQ9 with nine directiongsof the

on which Eq.(11) becomes NSD and CDR equations were also performed, and led to
results analogous to the 3D simulations. For the sake of com-

, (1+2Cy d d? parison, 2D and 3D simulations of the growth of fronts per-
DT R dzZ 472 turbed by random noise are analyzed as in the experiments.

To compare our results with the experimental d&tawe
need the three characteristic lengths of the problem. In the
IAA reaction experiments, the iodate has an initial concen-

" RSc dZ 472 dz? tration Co=[10; ] with the initial concentration of the reac-
202 tion product(iodide I7) being zero. The value of the positive
= ?cb(l—cb)w. (12)  constant isCs=0.0027. As the reaction proceeds, ] in-

creases from 0 t&€, in an autocatalytic way. Thus, in our
notation,C=[1"]/C, varies from 0 to 1. Since the reaction
occurs in a dilute aqueous solution, the viscosity, molecular
diffusion and densities are close to those of pure water:

Here, we define@=2z/L, W=wT/L, K= «/L?, the Schmidt
number Sev/D, the normalized front widtR,

| 0 D =(0.99+0.05)x10 % m?/s, D=2.04x10"° m?/s, andp,
R=-'=~/——=—(1+2Cq (13 ~ =1001.98-0.01 kg/ni. Also, as the thermal diffusivity is
L al? Lv larger than the mass diffusivity, the effect of temperature on
o density can be neglectéi3]. Using as density difference the
and the combinations value Ap=(135+15)x 10 ¢ kg/m®, we get the MRT char-
5 5 acteristic lengtlL=145+5 um. The three cell thicknesses
=9 +nySc investigated weré =500, 600, and 90Qum, corresponding
> to dimensionless permeabilitiés=0.99, 1.43, and 3.21, re-
— —[Cp(2—3C,)+C(2C,—1)], spectively. The reaction rate must be deduced from the
R? velocity measured on traveling fronts,=23.6:0.1 um/s,
from which we can get the reaction width,=D(1
2 92+ _+ 1 (14) +2Cg)/v,=86 ,um further yieldingR=1I,/L=0.60 anda
JSc K =2D/1?=0.55 s
It is nqtable that the_ _HeIe-Sh_aw Qﬁect enters through the V. RESULTS AND DISCUSSION
normalized permeabilityK, which is proportional to the
square of the ratio of the two length scalesndL. For a As a benchmark test, the different 2D linear analyses were

given fluid (D, Sc, andpy) and a given reactionl( and compared to 3D simulations, carried out with the parameter
Aplpe) in a Hele-Shaw cell of thickness the three lengths values given above, and with a thickness corresponding to
that govern the instability ark, h, andl, (thus defining the the normalized permeabilit)K=3.21. In the simulations,
parameterK andR). each growth rate is measured during the early exponential
It is of some interest to delineate the range of physicadevelopment of a one-mode sine perturbation. Therefore, the
parameters for which the Darcy, porous media flow regime3D simulations reproduce the exact physical situation ad-
holds in the range of unstable wavelengths. This is the redressed by the 2D linear analyses. The growth rates so ob-
gime of the long-wave approximatiom{K<1), which re- tained are displayed in Fig. [circles, together with the
quiresK <1, sinceq is of order 1. The reported experiments Normalized dispersion curves=oT vs =KL, correspond-

correspond tcK =0.99,1.43,3.21, values which rule out the ing to the various models, namely, the Darcy-Ch&ot-
use of the Darcy approximation_ dashed ling the NSD-eikonaldashed ling and the NSD-

CDR (solid line) models. Both the Darcy-CDR and the NSD-
eikonal models overpredict the values for the maximum
growth rate, the corresponding wave vector, and the cutoff
To ascertain the usefulness and relevance of the above 2Wave vector. In particular, Fig. 1 clearly shows that the
averaging, the stability analysis results will be compared tdarcy description is not valid in this range of normalized
3D lattice BGK simulationdmodel 3 Q19 with 19 direc- permeabilities\whereK>1). On the other hand, the NSD-
tions [9,18,19), with periodic boundary conditions in the CDR dispersion curve falls very closely on the 3D simula-
plane of the cell X direction. The equations simulated are tion points, demonstrating that the overall physics are cor-
the 3D CDR[Eqg. (6)] in a velocity field given by the Navier- rectly captured by the gap-averaged 2D model.
Stokes equations. A body force proportional@ds applied Figure 2 shows that the NSD-CDR curve also compares
to model the gravity force under the Boussinesq approximabetter with the experimental measuremeitessesthan the
tion. Using as initial condition a base state wh&earies NSD-eikonal model. However, it still overestimates the ex-

IV. SIMULATIONS AND EXPERIMENTAL PARAMETERS

051605-3



J. MARTIN, N. RAKOTOMALALA, D. SALIN, AND M. BO CKMANN PHYSICAL REVIEW E 65 051605

rrrTT T T ',L_l LN L AL LA DL AL AL | 0.006 T T T T T T T T T T T
B // < \'\' b | . /’_; s, J
0.03[- / AN = e ™
L \ i r 74 N\, <
/ \ / AA\Y
// AN il i 7 N 7
/ \ ] n / A\ -
[ / \\ ] 0.004 ///' \\\_\
ooz} / \ - CT g T\ ]
: [N \ L | %% SRR ]
7 - I s \\ Y T n % \ \
|/ N \ ] I i A ]
I_/I/ \\ \ 4 \\ \\
- {-/ \ ‘\_\ ] o002 [y ¥4 X \ —
B \ 1 \
\ \ - o0 \ j
0.011 \ v N
i \ \ - oy
i \\\ '\_\ 1 L * ¢ ‘\‘ '\_\ J
\ L T N
\ \ 0 T
A .
: \ R 15 N
oo o 1 v 0 1 NNy 1y B 0 0.2 0.4 0.6
0 02 0.4 0.6 0.8 1 1.2 q
q

FIG. 3. Comparison of the normalized dispersion relationss
g (lines), with the experimental dat@rosseyobtained in a cell of
thicknessh=500 um and of dimensionless permeability=0.99.
The lines correspond to Darcy’s law with CDR equati@dot-
dasheg, the NSD-eikonal equation@ashed, and the NSD-CDR
equations(solid). The circles are the results of 2D simulations of
the growth of perturbed fronts.

FIG. 1. Normalized dispersion relations=oT vs q=KL, for
the Rayleigh-Taylor instability of an autocatalytic front with the
same parameters as [iB]: the miscible Rayleigh-Taylor length
=(2povD/Apg)P=145 um, the characteristic tim&=L2/y»D,
and the dimensionless permeability=h?/12L.2= 3.21, correspond-
ing to a cell thicknese =900 um. The curves show the numerical
solutions of the eigenvalue problem, using Darcy’s law with the
convection-diffusion-reaction equatior(dot-dashed ling the  perimental values of the maximum. As this slight discrep-
Navier-Stokes-Darcy approximation with the eikonal equationancy could be due to the interplay between different modes
(dashed ling and the NSD with the CDR equatidsolid line). The  in the experiment, 3D simulations of the evolution of inter-
circles are the results of 3D lattice BGK simulations of the growthfaces perturbed by random noise and 2D simulations based
of sine perturbations. on the NSD equation with identical initial conditions were
performed. To determine the growth rates, the fronts so ob-
tained were subject to the same data processing as in the
experiments. The 3Mopen circleg and 2D (full circles) re-
sults are displayed in Fig. 2. The two sets of data compare
fairly well with each other and with the NSD-CDR curve,
thus confirming the ability of the NSD equation to accurately
model in two dimensions the 3D instability phenomenon,
and suggesting that the model still applies when different
modes act together at the interface.

Figure 3 displays the result obtained for the smallest cell
gap,K=0.99. The 2D simulation pointull circles) again
fall on the NSD-CDR model dispersion curve. Surprisingly
enough, the Darcy-CDR and NSD-eikonal models predict
almost the same dispersion curves which, however, are
above both experimental and simulation points, indicating
that Darcy’s equation should not be used for this normalized
permeability, which is still not small enough. We note that,
for this cell thickness, the NSD-CDR predictions are slightly
0 \ above the experimental points. The same trend can be no-

N S VY ticed in Fig. 4, which displays the dispersion curves obtained
0 02 04 06 for the casek = 1.43. Although the NSD-CDR model is clos-
¢ est to the experimental values, it still overestimates the maxi-

FIG. 2. Comparison of the normalized dispersion relationss ~ Mum growth rates. _
q (lines), with the experimental dat&rossesobtained in a cell of We remark that, if this discrepancy were to be relevant, it
thicknessh=900 um and of dimensionless permeabiliy=3.21.  could be attributed to nonlinearity effects, for example,
Dashed and solid lines correspond to the NSD-eikonal equationéaused by the finite amplitude of the experimental unstable
and the NSD-CDR equations, respectively. Open and full circles arénodes. It is also worth noticing that in both the model and
the results of 3D and 2D lattice BGK simulations, respectively, ofthe simulations the interface is assumed to be symmetric
the growth of perturbed fronts. with respect to the midplane of the cell. Lack of validity of

0.2 —————T———— 77—
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0.01 -— X

0.005
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L B LA LA L adding a chemical reaction term to the convection-diffusion

0.01| p— ; . ) .
- - N equation. The stability of the resulting chemical front, propa-
/ N\, . . .
[ S N gating in a vertical Hele-Shaw cell, was analyzed. We used
0.008 i N\ the Navier-Stokes-Darcy equation to describe the gap-
- / N '\\ averaged 2D flow and the full convection-diffusion-reaction
# \

equation to describe the evolution of the concentration. Ap-

0.0061 plied to the case of the IAA reaction, this analysis is found to

/ . ‘\ give a better fit of both the experimental d§sd and the data
i % \ \ obtained by lattice BGK numerical simulations, compared to
0.004- IE %% % \ \-\ previous analyses, such as NSD-eikonal and Darcy-CDR
i % x¥ % k \ models. Moreover, within the framework of the present
| [ % ‘\ \\ analysis, different regimes of instability can be identified,
0.002H¥xX \ \ depending on the relative values of the three lengths of the

problem, namely, the MRT length=(2p,vD/Apg)*?, the
_ chemical front widthl,, and the cell thicknesi. As the
. Y S Y reported experiments correspond to the dimensionless per-
q meabilities, K=h?%/1212=0.99,1.43,3.21, andR=I,/L
=0.60, the Darcy-CDR model, valid foK<1, does not
FIG. 4. Comparison of the normalized dispersion relationss. |, This was convincingly demonstrated in the case of the
q (lines), with the experimental dat@rossesobtained in the cell of i kar cell. The deviation of the experimental data from the

thickness h=600 um and of dimensionless permeabilit)k ) . . . .
=1.43. The lines correspond to Darcy’s law with CDR equationsNSD CDR dispersion curves is about two times smaller than

(dot-dashey the NSD-eikonal equation&lasheg and the NSD- that with the NSD-eikonal model. However, the predictions
CDR equationgsolid). of the latter model are surprisingly good for a model that
does not account for the reaction rate and the front width and

this hypothesis could also provide an explanation for thevelocity. But there is little chance for these fortuitous predic-
overestimation of the observed maximum growth rate. Orfions to hold for other chemical reaction parameters. On the
the other hand, the discrepancy at the maximum may not beontrary, the NSD-CDR model should be robust concerning
significant, as the bars on the experimental points represeghanges of parameters either in geomethy, (chemistry

the rms of the measurements performed on several expei},), or fluid (L). Moreover, the 2D model could be useful in
ments, rather than the actual error bars, the estimation afddressing the nonlinear development regime of unstable
which is nearly impossible for this type of data processingfingers.

Moreover, the noisy nature of the experimental dispersion

curves (especially in Fig. 4K=1.43) indicates that they

should not be fU”y trusted, without question. ACKNOWLEDGMENTS
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