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Charge fluctuations and counterion condensation
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We predict a condensation phenomenon in an overall neutral system, consisting of a single charged plate and
its oppositely charged counterions. Based on the “two-fluid” model, in which the counterions are divided into
a “free” and a “condensed” fraction, we argue that for high surface charge, fluctuations can lead to a phase
transition in which a large fraction of counterions is condensed. Furthermore, we show that depending on the
valence, the condensation is either a first-order or a smooth transition.

DOI: 10.1103/PhysReVvE.65.051502 PACS nunier61.20.Qg, 61.25.Hq, 87.15.Nn

[. INTRODUCTION within which most of the counterions are confined. Typically,
it is of the order of few Angstroms far,~e/100 A~ 2. Note

Electrostatic interactions control the structure, phase bethat Eq.(1) implies that azerotemperature all of the coun-
havior, and function of macroions in aqueous solutiphls  terions would collapse onto the charged plane. However, for
The macroions may be charged membranes, stiff polyelediigh surface chargéor low temperaturez?l >\, fluctua-
trolytes such as DNA, or charged colloidal particles. Thetion and correlation corrections can become so large that the
fundamental description of these charged systems has besnlution Eqg.(1) to the PB equation is no longer val[@].
the Poisson-BoltzmanriPB) theory. However, it ignores Therefore, we might expect a quantitative deviation from the
fluctuations and correlations, which are important for theconclusion above. Indeed, as pointed out by Netz and Orland
cases of low temperatures, highly charged surfaces, or mu[3], a perturbative expansion about the PB solution breaks
tivalent counterions. These fluctuation and correlation efdown in this regime, as indicated by an unphysic&lgative
fects, which have been the focus of recent theoretical effort;ounterion density in the one-loop approximation. Motivated
may drastically alter the mean-field picture of PB theoryby these observations, we proposetveo-fluid model in
[2-5]. For example, one surprising effd&f is theattraction  which the counterions are divided intofr@e and a conden-
between two highly charged macroions, as observed in exsate fraction. Thefree counterions have the usual three-
perimentg 6] and in simulationg7]. In this paper, we argue dimensional(3D) spatial distribution, while theondensed
that correlation effects may lead to condensation of countecounterions are confined to the two-dimensional charged
rions onto an oppositely charged plate, whose surface charggane, with a mea2D) densityn,. We treat the fraction of
becomes effectively renormalized. In particular, the counter2D condensed counterions=Zen./o as a variational pa-
ion valence plays an interesting role: fdr-Z.~1.62 for  rameter, which is determined self-consistently by minimizing
typical system parametefsee below, we find a first-order the total free energy of the system.
phase transition in which a large fraction of the counterions It may be useful to illustrate the essential physics first by
is condensedwhile for Z<Z. the condensation proceeds a simple picture. In the spirit of the two-fluid model, the 2D
smoothly, implying that monovalent and divalent counterionscondensed counterions partially neutralize the charged plate,
exhibit qualitatively distinct behavior. This is in contrast with effectively reducing the surface charge density frogto
more familiar theories of counterion condensati8f, e.g., eng=oy,—Zen., wheren, is their surface€2D) density. The
Manning condensation for charged rods, where the effectivéree counterions can be modeled as a 3D ideal gas confined
charge is continuously modified by the valence. to a slab of thickness\g=1/(wlgZng). At the Debye-

Recall that for a single plate of charge densityx) Huckel level, the free energy per unit area for the condensed
= 0y8(z) immersed in an aqueous solution of dielectric con-counterionsf,5(Nn;) can be written a$9]
stante, containing pointlike counterions of chargeZe on
both sides of the plate, PB theory predicts that the counterion

. d2
D=z @ X1 In 1+q% ——qi ] 2
D D

decays to zero algebraically with a characteristic length

=el(wlgZoy), Wherelg=e?/ekgT~7 A is the Bjerrum whereB '=kgT and\p=1/(27l5Z%n,) is the 2D screen-
length in water at room temperature; is the Boltzmann ing length. The first term in Eq2) is the entropy and the
constant, andT is the temperature. This Gouy-Chapmansecond term arises from the 2D fluctuations. Note that the
(GO) length A defines a sheath near the charged surfacéatter term is logarithmically divergent, which may be regu-

1063-651X/2002/66)/0515027)/$20.00 65 051502-1 ©2002 The American Physical Society



LAU, LUKATSKY, PINCUS, AND SAFRAN PHYSICAL REVIEW E65 051502

larized by a microscopic cut-offq.~2w/a, yielding ll. COUNTERION FREE ENERGY
BATp(Ng)=— (1/87r)\%)ln(277)\D/a). The free energy of the IN THE “TWO-FLUID” MODEL

free counterionsfap(ne) consists of the entropy of a con- To study the condensation more rigorously, we compute
fined 3D ideal gas and the fluctuation free energy. The Iatte{otal free energqy by maooing the problem into :':n‘ield theor
term may be estimated by using the fluctuation contribution 9y by mapping P Y.

to the free energy density from the 3D Debyéekel theory Consider an overall neutral system consisting of counterions
[10] and multiplying it by the thickness of the slat and an oppositely charged surface immersed in an aqueous
solution. The surface charge density on the platesijs

Kg‘ =eny. We model the aqueous solution with a uniform dielec-
Bfap(nc)=cAg{in[c a’]—1} - o7 MR- (3 tric constante. This simplification allows us to study fluc-
tuation and correlation effects analytically. In the spirit of the
wherec=ng/(Z\g) average(3D) concentration of the free “two-fluid” model, we divide the counterions into a “con-
counterions andc?=47Z%lgc is the D screening length. densed” and a “free” fraction. The condensed counterions
Note that the second term scales-as- )\;{2_ This simple  are allowed to move only on the charged surface, while the
picture to estimatdn(n.) contains all the qualitative phys- free counterions distribute in the space on both sides of the
ics [11], which follow from the more precise analysis pre- plate. The electrostatic free energy for the whole system may
sented below. The total free energy in the two-fluid model isbe written as
f(7)="f,p(7)+f3p(7). Minimizing f(n,) to findn., we ob-
tain

—%g(l—r)zo, (4) BFe|=fd2r nc(r){ln[nc(r)az]—1}+fd3xp(x)

1+ 7rgin| ——| -} T
79N Tog) M (1= )26g

3

where the three dimensionless parametersz: the order param- X{In[p(x)a”] -1}
eter r==Zen./ oy, the coupling constarg=Z<lg/\ (where 2 / /
\ is the bare GC length, and the reduced temperatuée +Z—|BJ d3xf d3x’ Ne(r) 5(2) ne(r’) 3(2')
=al(Z%g), completely determine the equilibrium state of 2 [x—x'|
the system. It is straightforward to obtain the asymptotic so- ) )
lutions of Eq.(4) corresponding to the uncondensegk<1, N Z_'Bf d3xj 4’ pP(X)p(X’)
and condensed,m,~1, state of the counterionsr, 2 Ix—x'|
=g 0exdl—2g] and r,=1—[mexp(l)] Y¥g6/ =)@ V72
For weak couplingsg<<1, 74 is the only consistent solution. 3 3., Ne(r)8(Z)[Zp(X") —ng(x")]
On the other hand, for large coupling>1, where fluctua- +Z|Bf d Xf d>x
tion free energies dominate the systerp,and =, are both
consistent solutions for sma#l, and a first-order transition
takes place wherf(r;)=f(7,). Thus, a large fraction of —ZIBJ d3xf d3x’
counterions is condensedgfexceeds some threshold value
g>go. For an estimate, taking= 0.02 (divalent counterions ,
at room temperatujenve find g~ 1.757, corresponding to a n I_BJ d3xJ a3y’ ni(x)n¢(x’) )
surface charge ofy~€/10 nm 2. 2 Ix—X'|

We emphasize that although there is a close analogy be-
tween our approach and the more familiar theory of counter-
ion condensation, e.g., Manning condensafi®l the coun-
terion condensation in our model has a different physicalyhere a is the molecular size of the counterionks
origin arising from charge fluctuations. In Manning Co”den'=e2/(ekBT) is the Bjerrum lengthZ is the valence of the
sation, the competition between entropy and eIeCtrOStaticéounterions,r is the in-plane position vector, and= (r,2).
leads to an electrostatic potential at large distances that is, . 4.t wwo terms in Eq(5) are the two—dir,nensionr;l en-

independent of the charged density of the rod above thfte . :
. ; fopy for the condensate and three-dimensional entropy for
Manning threshold8]. In this sense, for the geometry of a the “free” counterions, respectively, and the other terms rep-

charged plate, counterions are always “Manning condensed T . . :
ged p y 9 resent the electrostatic interactions of counterions in the sys-

at the PB leve[12]. On the other hand, in our model, we In E h di ional densi £ th
take one step further by showing that when correlation efi€m- N EQ.(5), the two-dimensional density of the con-

fects are taken into account, a finite fraction of the counteridensed counterions is denoted by(r), the *free”

ons is condensed to form a 2D Coulomb gas onto th&ounterions with 3D density by(x), and the external fixed
charged plate. This paper is organized as follows: In Sec. lIharges arising from the surface by(x) =ny5(z). Within

we present in detail the two-fluid model and construct thethe Gaussian fluctuation approximation, we consider the spa-
total free energy of the system. In Sec. Ill we present thdial dependent fluctuations of the 2D density of condensed
central results of this paper, followed by an extensive discuseounterions about a uniform mean(r)=n.+ dn.(r), and
sion. expand Eq(5) to second order idn¢(r)

[x=x'|

p(X) N¢(X')

X=X’
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BFe|=nc{|n[nca2]—1}A+J d*x p(){In[p(x)a%] - 1} BH39=J d*x p(){In[p(x)a%] - 1}
Zle f d3 f d3 ,p|(X)p(X| ) +%f d3xf d3X/ p(X)GZD(X,X')p(X’)
X—X
7| f & f gy POINRK) - f d* 4(x) p(x), )
’ x|
1 d2r | a2 2% where ¢(x)=[d3x’ Z"1G,p(x,x") nr(x') is the “renor-
"2 ' ' [r—r’| malized” external field arising from the charged plate. From

Eq. (7), we can see that the presence of the condensate modi-
fies the electrostatics of the free counterions in two ways.
ong(r)onc(r’) First, the condensate partially neutralizes the charged sur-
face, effectively reducing the surface charge density from
eny to eng=e(ny—2Zn.). Second, their fluctuations renor-

5(r—r’)

o S . C/ X .
+Z|Bf d3x fd?’ SR Ne(r) 8(2)(x) malize the electrostatic interaction of the system; thus, in-
[x—x'| stead of the usual Coulomb potential, the free counterions
) and the charged surfaces interact via the interaction
N I_Bf dgxf e NR(X)NR(X") L On(H)? G,p(%,X'), which is the inverséthe Green’s functionof the
Ix—x'| o 2D Debye-Higkel operatoiK ,p [13],

where A is the area of the pland(x)=Zp(x") —ng(x), and

NRr(X) =n¢(X) —Zn.6(z). Note thatJ(x) is linearly coupled 5

to éng(r) in the above equation. Summing over all the 2D {—Vﬁ 3= 92
fluctuations of the condensed counterions, i.e., b

Gop(X,X')=4mlgZ?8(x—x"), (8

e BHe— f DSng(r)e Frel, where the second term in the bracket takes the fluctuating 2D
“condensate” into account. Hence, in the limit,—0 or
Ap—2,G,p(X,X") reduces to the usual Coulomb interaction
Go(x,x")=4mlgZ%/|x—x'].
After a Hubbard-Stratonovich transformatiqa4], the
grand canonical partition function for the free counterions
1 - 1 can be mapped onto a functional integral representation:
BFZDan{In[ncaz]—l}Aszln detKZD—EInde(—Vi], Z,[¢p1=No [Dye "9 with the effective Hamiltonian

we obtain two terms in the effective free ener@y.=Fp
+Hzp - The first termF,p is the free energy associated with
the condensed counterions that can be written as

6) [15]
where
1 2|1 5
. , 2 5[¢,¢]=m2f a1 5 ¢ = V]g(x)
Kap(X,y)= _VX+E5(Z) S(X—y) ;!
1 .
is the 2D Debye-Hokel operator and.p=1/(27Z%gn.) is g 0 [#(0)]%= k? exeli () + $(x)] .
the Debye screening length in 2D. The first term in E).is
the entropy and the second term arises from the 2D charge ©)

fluctuations. Note that this fluctuation term can be evaluated

analytically[9], with the result quoted in Eq2) wherey(x) is the fluctuating fieldx?=4mlgZ2 e#/a3, u is

1 d2q the chemical potential, anﬁlfgzzdetRZD is the normaliza-
Bfop(ng)=n{In[n,a?]—1}+ = f 5 tion factor. The minimum of the effective Hamiltonian, given
(27) by [58/51//(x)]|¢:¢0=0, defines the saddle-point equation
| 1 1 ] for y(x), which reads
ni+—m>:-——
gAp] OAp

The second terntsp is the electrostatic free energy for
the “free” counterions, taking into account of the presence of
the fluctuating condensate; to within an additive constant, it
may be written as (10

2
V2p(x)+ k?e ¢N=47l5Zng 8(2) +3—0(2) ¢(x)
D
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in terms of the mean-field potential(x) = —i ¢g(X) — ¢(X). is the second variation of the actid¥ ¢, ¢]. Note that the
The solution to Eq.(10) is ¢(x)=2 In(1+«|Z/\/2), which  linear term inA(x) does not contribute to the expansion
satisfies the boundary conditiongi) ¢(0)=0 and (i)  sinceyy(x) satisfies the saddle-point equation, ELf). Per-
de/dZ,_o=2mlgZng, with k=2mlgZng/y2. Thus, at the forming the Gaussian integrals in the functional integral, we

mean-field level, the distribution of the free counterions  obtain an expression for the change in the free energy due to
fluctuations of the free counterions,

1
27lgZ%(|z] + \g)?

1 n 1 A
po(X)=k2 e ¢M/4x 7%= ,BAF3D=§In detKgD—EIn detK,p, (14

where the second term comes from the normalization factor
has exactly the same form as the PB distribution @g.but ~ No. To evaluateBAF;p explicitly, we first differentiate it
with arenormalizedGC lengthag=\2/k=1/(wlgZng). To  with respect tog by making use of the identity In detX
obtain the mean-field free energy of the free counterions=TrX ! X to obtain

Fo(ng), we note that it is related to the Gibbs potential
ol d1=8g,¢] by a Legendre transformatiorfo(ng)

=Tl ¢]+ S d3X po(X). Solving for the chemical potential ,IBAF3p INR [ 5 2G3p(X,X)
w from its definition,u=In(nga/2Z\g) and using the mean- 4mlgZ T TJ XW
field solutiong(x), we find B B (1| +\p)
Fo(n )/A—%In nga’ _ Ik (12) _(Z\_DJ d3X[G3p(X,X)
AFo(nR)A=7 2Z\g) Z° B
8(z)
_GZD(X:X)]_T)\ , (15)
D

where A is the area of the charged plane. Note thg{ng)
has the form of an ideal gas entropy of a gas with concen
tration ng/(ZAg) confined to a slab of thicknessg, the
renormalized GC length.

Next, to capture correlation effects, we must also include

whereG,p(X,X) is the diagonal part of the 2D Green'’s func-
tion, satisfying

the fluctuations of the free counterions, thereby treating the d2q 2mlgZz2

“free” and “condensed” counterions on the same level. To Gop(X,X)= 2m)? q

this end, we expand the actiaf{ ¢,¢] about the saddle

point o(x) to second order im ¢ (X) = (X) — o(X) e 2dlZ
=17 d\p

1
o 1=S bl + 5 [ & [ @y auo

andGs3p(x,x") is the Green'’s function for the 3D free coun-
terions. It satisfies

XKap(X,y) Ag(y)+ - -, (12)
here the differential t { V24 2 5(z)+ Gap(X,X")
ere the erential operator - _— T s
v Hereniat op ST (PR W
) ) =471gZ%5(x—x"), (16)
R XY= —V2+ —(2) + ————= | d(x— s
3D( y) |: X )\D ( ) (|Z|+)\R)2 ( y)

(13)  which can be solved to yield,

2

—2q|7| - -

d’q 2wlgZ? 1 € 1+q(|z|+)\R)
GsD(X,X):f > 1-—> 2t 2
(2m? g a°(12l+XR)* (14 grR)[1+ A+ (gAR)?]

2
PN R [ A —
7(ahe) Y

_ , 17)
[1+aNg+ (ANR)?I[(1+0NR)(1+ ¥)+(qNR)%] (
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T e T ] length is ks~ \c Ig~1/\. Using the 3D Debye-Ftkel free
'/ ] energy(per unit volumg BAf~ — Kg, the correction to the
/ \ 4 mean-field PB free energyper unit areascales likeBAfpg
i 0=0.06 ] ~—AXN"3~=\"2 in agreement with Eq3). Therefore,
. ) ] the precise calculation leading to E49) justifies the use of
T i | ] the simple picture to illustrate the physics behind the coun-
! ] terion condensation presented in the Introduction. We note
,’ ~— 0=0.02 ] finally that Eqg. (19) also contains additional couplings
| ] among the fluctuations of the “condensed” and “free” coun-
! ] terions.

0.8 -

04

T
S
D
Q
Il
o
O
(O]
3
(0 o]
1

/ ] IlI. RESULTS AND DISCUSSION

e The central results of this paper follow from the minimi-
0 ! 2 2 4 > & zation of the total free energf(7)="f,p(7)+f3p(7), Ob-
tained, respectively, in Eq$2) and(19), with respect to the
FIG. 1. The fraction of condensed counteriarsZen./o,asa  Order parameter. Figure 1 summarizes the behavioroés
function of g=Z72lg/\ for different values ofd=a/(Z2l ). At low a function of the coupling constant related to the surface
surface chargg<1, the counterion distribution is well described charge densityg=Z?lz/\ and the reduced temperatuse
by PB theory sincer<1. However, at high surface charge, correla- =a/(Z?lg). For weak couplingy<1, where fluctuation cor-
tion effects lead to a large fraction of counterion condensed. Theections are negligibly small, the counterions prefer to be
condensation is first order fa@r< 6. and smooth fow> 6., where  free to gain entropy; there are almost no condensed counte-
6.~0.0378. The solid lingg=0.02 corresponds to divalent counte- rions so thatr~0. This is not surprising since PB theory is a
rions where a finite jump occurs g5~ 1.7 or op~0.1enm 2. weak-coupling theory that becomes exactjas0. However,
for higher surface charge density, where correlation effects
where y=Ar/\p=217/(1—17). Note that the first term in  pecome more important, the behavioroflepends crucially
Gap(x,X) is_just the Coulomb self-energyGo(0)  on 6. In particular, for §<6,~0.0378, r displays a finite
= [[d*q/(2m)?] (271 gZ?%/q), which must be subtracted. In- jump atg,(4), e.g.,go=1.695 atd=0.02.[This corresponds
sertingG,p(x,x) andG3p(x,X) into Eg. (15), we obtain to divalent counterions at room temperature witg~0.1e
nm~2.] Thus, the system exhibits a first-order phase transi-
tion, in which a large fraction of counterions is condensed
(about 80 %). The physical mechanism leading to this coun-
(18) terion condensation is the additional binding arising from 2D
charge fluctuations, which dominates the system at lower

1 3,3AF30211(7) AR L]y [”\—D+(self-energy
A dlg am\d g am\d dlg '

where the functiong; (y) are given by temperatures. However, f@> 6. the behavior ofr is com-
pletely different; in this regime, there i® phase transition
1 1+y . [B=v and the condensation occurs smoothly. Thus, the condensa-
L(=znd+y+3 Nz @\ | tion transition is similar to the liquid-gas transition, which

has a line of first-order transitions terminating at the critical
point where asecond-ordetransition occurs. In our case, the

2 [1+ 3- " -
12(7)2%"117 +(2—7) 3—ytan*1 1—7 . critical point is found to ber.=0.4, g.=~1.605, andé,
ty - ty =0.0378. Furthermore, if one takég~10 A, i.e., room

temperature, and~1 A, it follows from the definition ofd

that there is a critical value of counterion valenZe
=\al(lgh;)=1.62, below which no first-order condensation
transition is possible. Therefore, divalent counterions behave
qualitatively differently from monovalent counterions. In

BecauseZ, (y) are independent d§, we can integrate Eq.
(15 back to obtainBAF;p ; thus, the total free energy per
unit area for the free counterions is

3

Bfap( T):Em Nea®) Ne_Tu(y)  To() _ fact, significant differences between monovalent and divalent
Z \2Z\g] Z gmA3 8TApAg ions are observed in various biophysical processes.

(19 We stress that fluctuation effects are crucial for this coun-

terion condensation transition to occur. In fact, it may be
Incidentally, in the limit of vanishing density of the con- viewed as a surface analog of the bulk transition discussed
densed counteriongy,—0 (or )\R—>)\),Il(0)=7-r/\/§, and by Fisher and Levir{16]. These authors predicted a phase
we obtain the fluctuation correction to the mean-field PB freeseparation, where a strongly correlated, dense phase coexists
energy:Afpg=— kgT/(8y3\?). This result may be under- with a weakly correlated dilute phase in an ionic system
stood physically as follows. According to PB theory, the dominated by Coulomb interactions and charge fluctuations.
counterions are confined to a slab of thicknassand thus In our case, the surface breaks the translational symmetry
may be considered as an ideal gas with a 3D concentration @nd similar phase separation occurs in its vicinity. Indeed,
c~ng/\. This implies that the inverse of the 3D “screening” using Eq.(19) in the limit of 7—0, i.e., without assuming
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the existence of 2D condensate, the system shows a thermface density of the surfactant and the counterion/salt density
dynamic instability ag~4.4. The inclusion of an additional are controlled with high accuracy. The experiments measured
degree of freedom, i.e., allowing the counterions to con-a rapid neutralizatiotiabout 90%) of the charged surfactant
dense, can only lower the total free energy, suggesting Enonolayer by increasing its surface densly about 10%).
phase transition in which the condenséi@uid” ) near the In some cases, a discontinuous neutralization process is ob-
surface coexists with the more dilute, delocalized counterioperved 20]. Also, recent extensive simulation studies of uni-
(“gas”) distribution. Indeed, a recent simulatipti7] clearly ~ formly charged surfaces performed in RE21] report two

shows that at low temperature, most of the counterions resid8teresting observations: First, whe1 there appears a
on the surface, consistent with our two-fluid picture. How- coexistence between two distinct counterion density distribu-

ons: an exponentially decaying distribution near the imme-
iate vicinity of the charged surface and an algebraic decay-
r1’ng distribution far away from the the surface. Note that the
8xponentially decaying distribution might be associated with

Ref.[4], in which the condensed counterions are assumed t d q tori hich h dtob
form a 2D strongly correlated liquid. That theory also pre-Our condensed counterions, which we have assumed 1o be a
-function distribution. Second, the specific heat of the simu-

dicts a strongly reduced surface charge and an exponential d h d h i th .
large renormalized Gouy-Chapmann length, qualitatively@t€d System shows a pronounced hump in the region 10

similar to our results. In contrast, by treating the fluctuations=~9 <100, though no rigorous proof of the condensation

of the condensed and free counterions on an equal footing%ralnSition from simulationsand experimenishas been ob-

we are able to capture the onset of the condensatiby ained so far. Indeed, there remains some fundamental issues
~2), which bridges between the regime where PB theory i

Jo be addressed in the future, for example, the role of ex-
appropriateg—0, and the very strong coupling regime, cluded volumes, the discreteness of the surface charge and its
—o0 [4,17].

mobility, and higher ordetbeyond Gaussiarcorrections. A
In summary, we have presented a mechanism by whic

fecent calculation and simulation shows that charge discrete-
the counterions become condensed so as to neutralize the

ever, our calculation based on the Gaussian quctuatioﬂ
theory may break down for very large>10. In this regime,
a complementary treatment is considered by Shklovskii i

ss also induces charge localizati@®]. Therefore, it is

surface charge of a macroion. It has been known experime ossible that these neglected effects may smooth out the

tally that an effective surface charge, which is always lowe @rst-order transition. I—!oweyer, we believe that a rapid var!a-
than the actual charge, must be introduced in order to ﬁFon of the condensation with thg surface charge, reflecting
experimental data to the PB theof¥8]. Thus, our theory he predicted effect, should remain.

offers a pos;ible scenario to accour)t for this experimental ACKNOWLEDGMENTS
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