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Charge fluctuations and counterion condensation
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We predict a condensation phenomenon in an overall neutral system, consisting of a single charged plate and
its oppositely charged counterions. Based on the ‘‘two-fluid’’ model, in which the counterions are divided into
a ‘‘free’’ and a ‘‘condensed’’ fraction, we argue that for high surface charge, fluctuations can lead to a phase
transition in which a large fraction of counterions is condensed. Furthermore, we show that depending on the
valence, the condensation is either a first-order or a smooth transition.
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I. INTRODUCTION

Electrostatic interactions control the structure, phase
havior, and function of macroions in aqueous solutions@1#.
The macroions may be charged membranes, stiff polye
trolytes such as DNA, or charged colloidal particles. T
fundamental description of these charged systems has
the Poisson-Boltzmann~PB! theory. However, it ignores
fluctuations and correlations, which are important for t
cases of low temperatures, highly charged surfaces, or m
tivalent counterions. These fluctuation and correlation
fects, which have been the focus of recent theoretical effo
may drastically alter the mean-field picture of PB theo
@2–5#. For example, one surprising effect@5# is theattraction
between two highly charged macroions, as observed in
periments@6# and in simulations@7#. In this paper, we argue
that correlation effects may lead to condensation of cou
rions onto an oppositely charged plate, whose surface ch
becomes effectively renormalized. In particular, the coun
ion valence plays an interesting role: forZ.Zc;1.62 for
typical system parameters~see below!, we find a first-order
phase transition in which a large fraction of the counterio
is condensed, while for Z,Zc the condensation proceed
smoothly, implying that monovalent and divalent counterio
exhibit qualitatively distinct behavior. This is in contrast wi
more familiar theories of counterion condensation@8#, e.g.,
Manning condensation for charged rods, where the effec
charge is continuously modified by the valence.

Recall that for a single plate of charge densitys(x)
5s0d(z) immersed in an aqueous solution of dielectric co
stante, containing pointlike counterions of charge2Ze on
both sides of the plate, PB theory predicts that the counte
density@1#

c~z!5
1

2pZ2l B~ uzu1l!2 , ~1!

decays to zero algebraically with a characteristic lengthl
[e/(p l BZs0), where l B[e2/ekBT'7 Å is the Bjerrum
length in water at room temperature,kB is the Boltzmann
constant, andT is the temperature. This Gouy-Chapm
~GC! length l defines a sheath near the charged surf
1063-651X/2002/65~5!/051502~7!/$20.00 65 0515
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within which most of the counterions are confined. Typical
it is of the order of few Angstroms fors0;e/100 Å22. Note
that Eq.~1! implies that atzero temperature all of the coun
terions would collapse onto the charged plane. However,
high surface charge~or low temperature! Z2l B@l, fluctua-
tion and correlation corrections can become so large that
solution Eq.~1! to the PB equation is no longer valid@3#.
Therefore, we might expect a quantitative deviation from
conclusion above. Indeed, as pointed out by Netz and Orl
@3#, a perturbative expansion about the PB solution bre
down in this regime, as indicated by an unphysical~negative!
counterion density in the one-loop approximation. Motivat
by these observations, we propose atwo-fluid model in
which the counterions are divided into afree and a conden-
sate fraction. Thefree counterions have the usual thre
dimensional~3D! spatial distribution, while thecondensed
counterions are confined to the two-dimensional char
plane, with a mean~2D! densitync . We treat the fraction of
2D condensed counterionst[Zenc /s0 as a variational pa-
rameter, which is determined self-consistently by minimizi
the total free energy of the system.

It may be useful to illustrate the essential physics first
a simple picture. In the spirit of the two-fluid model, the 2
condensed counterions partially neutralize the charged p
effectively reducing the surface charge density froms0 to
enR5s02Zenc , wherenc is their surface~2D! density. The
free counterions can be modeled as a 3D ideal gas confi
to a slab of thicknesslR[1/(p l BZnR). At the Debye-
Hückel level, the free energy per unit area for the conden
counterionsf 2D(nc) can be written as@9#

b f 2D~nc!5nc$ ln@nc a2#21%1
1

2E d2q

~2p!2

3H lnF11
1

qlD
G2

1

qlD
J , ~2!

whereb215kBT and lD51/(2p l BZ2nc) is the 2D screen-
ing length. The first term in Eq.~2! is the entropy and the
second term arises from the 2D fluctuations. Note that
latter term is logarithmically divergent, which may be reg
©2002 The American Physical Society02-1
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larized by a microscopic cut-offqc;2p/a, yielding
bD f 2D(nc).2(1/8plD

2 )ln(2plD /a). The free energy of the
free counterionsf 3D(nc) consists of the entropy of a con
fined 3D ideal gas and the fluctuation free energy. The la
term may be estimated by using the fluctuation contribut
to the free energy density from the 3D Debye-Hu¨ckel theory
@10# and multiplying it by the thickness of the slablR

b f 3D~nc!'c lR$ ln@c a3#21%2
ks

3

12p
lR , ~3!

wherec5nR /(ZlR) average~3D! concentration of the free
counterions andks

2[4pZ2l Bc is the 3D screening length.
Note that the second term scales as;2 lR

22 . This simple
picture to estimatef 3D(nc) contains all the qualitative phys
ics @11#, which follow from the more precise analysis pr
sented below. The total free energy in the two-fluid mode
f (t)5 f 2D(t)1 f 3D(t). Minimizing f (nc) to find nc , we ob-
tain

11tg lnS p

tugD2 lnF t

~12t!2ugG2
4

3
g~12t!50, ~4!

where the three dimensionless parameters: the order pa
eter t[Zenc /s0, the coupling constantg[Z2l B /l ~where
l is the bare GC length!, and the reduced temperatureu
[a/(Z2l B), completely determine the equilibrium state
the system. It is straightforward to obtain the asymptotic
lutions of Eq.~4! corresponding to the uncondensed,t1!1,
and condensed,t2'1, state of the counterions:t1
.g uexp@124

3 g# and t2.12@pexp(1)#21/2(gu/p)(g21)/2.
For weak couplings,g!1, t1 is the only consistent solution
On the other hand, for large couplingg@1, where fluctua-
tion free energies dominate the system,t1 and t2 are both
consistent solutions for smallu, and a first-order transition
takes place whenf (t1)5 f (t2). Thus, a large fraction o
counterions is condensed ifg exceeds some threshold valu
g.g0. For an estimate, takingu50.02~divalent counterions
at room temperature! we find g0;1.757, corresponding to
surface charge ofs0;e/10 nm22.

We emphasize that although there is a close analogy
tween our approach and the more familiar theory of coun
ion condensation, e.g., Manning condensation@8#, the coun-
terion condensation in our model has a different phys
origin arising from charge fluctuations. In Manning conde
sation, the competition between entropy and electrosta
leads to an electrostatic potential at large distances tha
independent of the charged density of the rod above
Manning threshold@8#. In this sense, for the geometry of
charged plate, counterions are always ‘‘Manning condens
at the PB level@12#. On the other hand, in our model, w
take one step further by showing that when correlation
fects are taken into account, a finite fraction of the count
ons is condensed to form a 2D Coulomb gas onto
charged plate. This paper is organized as follows: In Sec
we present in detail the two-fluid model and construct
total free energy of the system. In Sec. III we present
central results of this paper, followed by an extensive disc
sion.
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II. COUNTERION FREE ENERGY
IN THE ‘‘TWO-FLUID’’ MODEL

To study the condensation more rigorously, we comp
total free energy by mapping the problem into a field theo
Consider an overall neutral system consisting of counteri
and an oppositely charged surface immersed in an aqu
solution. The surface charge density on the plate iss0

5en0. We model the aqueous solution with a uniform diele
tric constante. This simplification allows us to study fluc
tuation and correlation effects analytically. In the spirit of t
‘‘two-fluid’’ model, we divide the counterions into a ‘‘con-
densed’’ and a ‘‘free’’ fraction. The condensed counterio
are allowed to move only on the charged surface, while
free counterions distribute in the space on both sides of
plate. The electrostatic free energy for the whole system m
be written as

bFel5E d2r nc~r !$ ln@nc~r !a2#21%1E d3x r~x!

3$ ln@r~x!a3#21%

1
Z2l B

2 E d3xE d3x8
nc~r !d~z! nc~r 8!d~z8!

ux2x8u

1
Z2l B

2 E d3xE d3x8
r~x!r~x8!

ux2x8u

1ZlBE d3xE d3x8
nc~r !d~z!@Zr~x8!2nf~x8!#

ux2x8u

2ZlBE d3xE d3x8
r~x! nf~x8!

ux2x8u

1
l B

2 E d3xE d3x8
nf~x!nf~x8!

ux2x8u
, ~5!

where a is the molecular size of the counterions,l B

5e2/(ekBT) is the Bjerrum length,Z is the valence of the
counterions,r is the in-plane position vector, andx5(r ,z).
The first two terms in Eq.~5! are the two-dimensional en
tropy for the condensate and three-dimensional entropy
the ‘‘free’’ counterions, respectively, and the other terms re
resent the electrostatic interactions of counterions in the
tem. In Eq. ~5!, the two-dimensional density of the con
densed counterions is denoted bync(r ), the ‘‘free’’
counterions with 3D density byr(x), and the external fixed
charges arising from the surface bynf(x)5n0d(z). Within
the Gaussian fluctuation approximation, we consider the s
tial dependent fluctuations of the 2D density of conden
counterions about a uniform meannc(r )5nc1dnc(r ), and
expand Eq.~5! to second order indnc(r )
2-2
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bFel5nc$ ln@nca
2#21%A 1E d3x r~x!$ ln@r~x!a3#21%

1
Z2l B

2 E d3xE d3x8
r~x!r~x8!

ux2x8u

2ZlBE d3xE d3x8
r~x!nR~x8!

ux2x8u

1
1

2E d2rE d2r 8 F Z2l B

ur2r 8u

1
d~r2r 8!

nc
Gdnc~r !dnc~r 8!

1ZlBE d3xE d3x8
dnc~r !d~z!J~x8!

ux2x8u

1
l B

2 E d3xE d3x8
nR~x!nR~x8!

ux2x8u
1O„dnc~r !…3,

whereA is the area of the plane,J(x)[Zr(x8)2nR(x), and
nR(x)5nf(x)2Zncd(z). Note thatJ(x) is linearly coupled
to dnc(r ) in the above equation. Summing over all the 2
fluctuations of the condensed counterions, i.e.,

e2bHe5E Dd nc~r !e2bFel,

we obtain two terms in the effective free energy:He5F2D
1H3D . The first termF2D is the free energy associated wi
the condensed counterions that can be written as

bF2D5nc$ ln@nc a2#21%A1
1

2
ln detK̂2D2

1

2
ln det@2¹x

2#,

~6!

where

K̂2D~x,y![F2¹x
21

2

lD
d~z!Gd~x2y!

is the 2D Debye-Hu¨ckel operator andlD51/(2pZ2l Bnc) is
the Debye screening length in 2D. The first term in Eq.~6! is
the entropy and the second term arises from the 2D ch
fluctuations. Note that this fluctuation term can be evalua
analytically @9#, with the result quoted in Eq.~2!

b f 2D~nc!5nc$ ln@nc a2#21%1
1

2E d2q

~2p!2

3H lnF11
1

qlD
G2

1

qlD
J .

The second termH3D is the electrostatic free energy fo
the ‘‘free’’ counterions, taking into account of the presence
the fluctuating condensate; to within an additive constan
may be written as
05150
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d
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bH3D5E d3x r~x!$ ln@r~x!a3#21%

1
1

2 E d3xE d3x8 r~x!G2D~x,x8!r~x8!

2E d3x f~x! r~x!, ~7!

where f(x)[*d3x8 Z21 G2D(x,x8) nR(x8) is the ‘‘renor-
malized’’ external field arising from the charged plate. Fro
Eq. ~7!, we can see that the presence of the condensate m
fies the electrostatics of the free counterions in two wa
First, the condensate partially neutralizes the charged
face, effectively reducing the surface charge density fr
en0 to enR5e(n02Znc). Second, their fluctuations reno
malize the electrostatic interaction of the system; thus,
stead of the usual Coulomb potential, the free counteri
and the charged surfaces interact via the interac
G2D(x,x8), which is the inverse~the Green’s function! of the
2D Debye-Hu¨ckel operatorK̂2D @13#,

F2¹x
21

2

lD
d~z!GG2D~x,x8!54p l BZ2d~x2x8!, ~8!

where the second term in the bracket takes the fluctuating
‘‘condensate’’ into account. Hence, in the limitnc→0 or
lD→`,G2D(x,x8) reduces to the usual Coulomb interactio
G0(x,x8)54p l BZ2/ux2x8u.

After a Hubbard-Stratonovich transformation@14#, the
grand canonical partition function for the free counterio
can be mapped onto a functional integral representat
Zm@f#5N0 *Dc e2S[c,f] with the effective Hamiltonian
@15#

S@c,f#5
1

4p l BZ2 E d3x H 1

2
c~x!@2¹2#c~x!

1
1

lD
d~z! @c~x!#22k2 exp@ ic~x!1f~x!#J ,

~9!

wherec(x) is the fluctuating field,k254p l BZ2 em/a3, m is
the chemical potential, andN 0

22[detK̂2D is the normaliza-
tion factor. The minimum of the effective Hamiltonian, give
by @dS/dc(x)#uc5c0

50, defines the saddle-point equatio

for c0(x), which reads

¹2w~x!1k2e2w(x)54p l BZnR d~z!1
2

lD
d~z! w~x!

~10!
2-3
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in terms of the mean-field potentialw(x)52 ic0(x)2f(x).
The solution to Eq.~10! is w(x)52 ln(11kuzu/A2), which
satisfies the boundary conditions:~i! w(0)50 and ~ii !
dw/dzuz5052p l BZnR , with k52p l BZnR /A2. Thus, at the
mean-field level, the distribution of the free counterions

r0~x![k2 e2w(x)/4p l BZ25
1

2p l BZ2~ uzu1lR!2

has exactly the same form as the PB distribution Eq.~1!, but
with a renormalizedGC lengthlR[A2/k51/(p l BZnR). To
obtain the mean-field free energy of the free counteri
F0(nR), we note that it is related to the Gibbs potent
G0@f#[S@c0 ,f# by a Legendre transformation:F0(nR)
5G0@f#1m*d3x r0(x). Solving for the chemical potentia
m from its definition,m5 ln(nRa3/2ZlR) and using the mean
field solutionw(x), we find

bF0~nR!/A5
nR

Z
lnS nR a3

2ZlR
D2

nR

Z
, ~11!

whereA is the area of the charged plane. Note thatF0(nR)
has the form of an ideal gas entropy of a gas with conc
tration nR /(ZlR) confined to a slab of thicknesslR , the
renormalized GC length.

Next, to capture correlation effects, we must also inclu
the fluctuations of the free counterions, thereby treating
‘‘free’’ and ‘‘condensed’’ counterions on the same level. T
this end, we expand the actionS@c,f# about the saddle
point c0(x) to second order inDc(x)5c(x)2c0(x)

S@f,c#5S@f,c0#1
1

2 E d3x E d3y Dc~x!

3K̂3D~x,y! Dc~y!1•••, ~12!

where the differential operator

K̂3D~x,y![F2¹x
2 1

2

lD
d~z! 1

2

~ uzu1lR!2 Gd~x2y!,

~13!
05150
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is the second variation of the actionS@c,f#. Note that the
linear term inDc(x) does not contribute to the expansio
sincec0(x) satisfies the saddle-point equation, Eq.~10!. Per-
forming the Gaussian integrals in the functional integral,
obtain an expression for the change in the free energy du
fluctuations of the free counterions,

bDF3D5
1

2
ln detK̂3D2

1

2
ln detK̂2D , ~14!

where the second term comes from the normalization fa
N0. To evaluatebDF3D explicitly, we first differentiate it
with respect tol B by making use of the identityd ln detX̂
5Tr X̂21 d X̂ to obtain

4p l BZ2
]bDF3D

] l B
52

]lR

] l B
E d3x

2G3D~x,x!

~ uzu1lR!3

2
]lD

] l B
E d3x @G3D~x,x!

2G2D~x,x!#
d~z!

lD
2 , ~15!

whereG2D(x,x) is the diagonal part of the 2D Green’s fun
tion, satisfying

G2D~x,x!5E d2q

~2p!2

2p l BZ2

q

F12
e22quzu

11qlD
G

andG3D(x,x8) is the Green’s function for the 3D free coun
terions. It satisfies

F2¹x
21

2

lD
d~z!1

2

~ uzu1lR!2 GG3D~x,x8!

54p l BZ2d~x2x8!, ~16!

which can be solved to yield,
G3D~x,x!5E d2q

~2p!2

2p l BZ2

q
H 12

1

q2~ uzu1lR!21

e22quzuF11
1

q ~ uzu1lR!G
2

~11qlR!@11qlR1~qlR!2#

2

g ~qlR!3 e22quzuF11
1

q ~ uzu1lR!G
2

@11qlR1~qlR!2# @~11qlR!~11g!1~qlR!2#
J , ~17!
2-4
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where g[lR /lD52 t/(12t). Note that the first term in
G3D(x,x) is just the Coulomb self-energyG0(0)
5*@d2q/(2p)2# (2p l BZ2/q), which must be subtracted. In
sertingG2D(x,x) andG3D(x,x) into Eq. ~15!, we obtain

1

A
]bDF3D

] l B
5

I1~g!

4plR
3

]lR

] l B
1

I2~g!/g

4plD
3

]lD

] l B
1~self-energy!,

~18!

where the functionsI1,2(g) are given by

I1~g!5
1

2
ln~11g!13UA11g

32g
tan21A32g

11g
U,

I2~g!5
g

2
ln

g2

11g
1~22g!UA11g

32g
tan21A32g

11g
U.

BecauseI1,2(g) are independent ofl B , we can integrate Eq
~15! back to obtainbDF3D ; thus, the total free energy pe
unit area for the free counterions is

b f 3D~t!5
nR

Z
lnS nR a3

2ZlR
D2

nR

Z
2

I1~g!

8plR
2

2
I2~g!

8plDlR
.

~19!

Incidentally, in the limit of vanishing density of the con
densed counterions,nc→0 ~or lR→l), I1(0)5p/A3, and
we obtain the fluctuation correction to the mean-field PB f
energy:D f PB52 kBT/(8A3 l2). This result may be under
stood physically as follows. According to PB theory, t
counterions are confined to a slab of thicknessl, and thus
may be considered as an ideal gas with a 3D concentratio
c;n0 /l. This implies that the inverse of the 3D ‘‘screening

FIG. 1. The fraction of condensed counterionst[Zenc /s0 as a
function of g[Z2l B /l for different values ofu[a/(Z2l B). At low
surface chargeg!1, the counterion distribution is well describe
by PB theory sincet!1. However, at high surface charge, corre
tion effects lead to a large fraction of counterion condensed.
condensation is first order foru,uc and smooth foru.uc , where
uc'0.0378. The solid lineu50.02 corresponds to divalent count
rions where a finite jump occurs atg0;1.7 ors0;0.1e nm22.
05150
e

of

length isks;Ac lB;1/l. Using the 3D Debye-Hu¨ckel free
energy~per unit volume! bD f ;2 ks

3 , the correction to the
mean-field PB free energy~per unit area! scales likebD f PB
;2 l3l23;2 l22, in agreement with Eq.~3!. Therefore,
the precise calculation leading to Eq.~19! justifies the use of
the simple picture to illustrate the physics behind the co
terion condensation presented in the Introduction. We n
finally that Eq. ~19! also contains additional coupling
among the fluctuations of the ‘‘condensed’’ and ‘‘free’’ cou
terions.

III. RESULTS AND DISCUSSION

The central results of this paper follow from the minim
zation of the total free energyf (t)5 f 2D(t)1 f 3D(t), ob-
tained, respectively, in Eqs.~2! and~19!, with respect to the
order parametert. Figure 1 summarizes the behavior oft as
a function of the coupling constant related to the surfa
charge densityg5Z2l B /l and the reduced temperatureu
[a/(Z2l B). For weak couplingg!1, where fluctuation cor-
rections are negligibly small, the counterions prefer to
free to gain entropy; there are almost no condensed cou
rions so thatt'0. This is not surprising since PB theory is
weak-coupling theory that becomes exact asg→0. However,
for higher surface charge density, where correlation effe
become more important, the behavior oft depends crucially
on u. In particular, foru,uc'0.0378, t displays a finite
jump atg0(u), e.g.,g051.695 atu50.02.@This corresponds
to divalent counterions at room temperature withs0;0.1e
nm22.# Thus, the system exhibits a first-order phase tran
tion, in which a large fraction of counterions is condens
~about 80 %). The physical mechanism leading to this co
terion condensation is the additional binding arising from
charge fluctuations, which dominates the system at lo
temperatures. However, foru.uc the behavior oft is com-
pletely different; in this regime, there isno phase transition
and the condensation occurs smoothly. Thus, the conde
tion transition is similar to the liquid-gas transition, whic
has a line of first-order transitions terminating at the critic
point where asecond-ordertransition occurs. In our case, th
critical point is found to betc.0.4, gc.1.605, anduc
.0.0378. Furthermore, if one takesl B;10 Å, i.e., room
temperature, anda;1 Å, it follows from the definition ofu
that there is a critical value of counterion valenceZc

5Aa/( l Buc).1.62, below which no first-order condensatio
transition is possible. Therefore, divalent counterions beh
qualitatively differently from monovalent counterions. I
fact, significant differences between monovalent and diva
ions are observed in various biophysical processes.

We stress that fluctuation effects are crucial for this co
terion condensation transition to occur. In fact, it may
viewed as a surface analog of the bulk transition discus
by Fisher and Levin@16#. These authors predicted a pha
separation, where a strongly correlated, dense phase coe
with a weakly correlated dilute phase in an ionic syste
dominated by Coulomb interactions and charge fluctuatio
In our case, the surface breaks the translational symm
and similar phase separation occurs in its vicinity. Inde
using Eq.~19! in the limit of t→0, i.e., without assuming

e

2-5
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the existence of 2D condensate, the system shows a the
dynamic instability atg;4.4. The inclusion of an additiona
degree of freedom, i.e., allowing the counterions to c
dense, can only lower the total free energy, suggestin
phase transition in which the condensate~‘‘liquid’’ ! near the
surface coexists with the more dilute, delocalized counter
~‘‘gas’’ ! distribution. Indeed, a recent simulation@17# clearly
shows that at low temperature, most of the counterions re
on the surface, consistent with our two-fluid picture. Ho
ever, our calculation based on the Gaussian fluctua
theory may break down for very largeg.10. In this regime,
a complementary treatment is considered by Shklovski
Ref. @4#, in which the condensed counterions are assume
form a 2D strongly correlated liquid. That theory also pr
dicts a strongly reduced surface charge and an exponen
large renormalized Gouy-Chapmann length, qualitativ
similar to our results. In contrast, by treating the fluctuatio
of the condensed and free counterions on an equal foo
we are able to capture the onset of the condensation~at g
;2), which bridges between the regime where PB theor
appropriate,g→0, and the very strong coupling regime,g
→` @4,17#.

In summary, we have presented a mechanism by wh
the counterions become condensed so as to neutralize
surface charge of a macroion. It has been known experim
tally that an effective surface charge, which is always low
than the actual charge, must be introduced in order to
experimental data to the PB theory@18#. Thus, our theory
offers a possible scenario to account for this experime
fact. In addition, for the case of two highly charged surfac
the PB repulsions between them are greatly reduced du
strong condensation, and the dominant interaction will be
charge fluctuation attractions. Thus, this condensation pic
may also be crucial to understanding the like-charged att
tion @19#. Furthermore, there are some recent experime
@20# and simulation@21# indications that are consistent wit
the predicted condensation effect. The experiments@20# were
performed with a monolayer of cationic surfactant where s
n
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face density of the surfactant and the counterion/salt den
are controlled with high accuracy. The experiments measu
a rapid neutralization~about 90%) of the charged surfacta
monolayer by increasing its surface density~by about 10%).
In some cases, a discontinuous neutralization process is
served@20#. Also, recent extensive simulation studies of un
formly charged surfaces performed in Ref.@21# report two
interesting observations: First, wheng@1 there appears a
coexistence between two distinct counterion density distri
tions: an exponentially decaying distribution near the imm
diate vicinity of the charged surface and an algebraic dec
ing distribution far away from the the surface. Note that t
exponentially decaying distribution might be associated w
our condensed counterions, which we have assumed to
d-function distribution. Second, the specific heat of the sim
lated system shows a pronounced hump in the region
,g,100, though no rigorous proof of the condensati
transition from simulations~and experiments! has been ob-
tained so far. Indeed, there remains some fundamental is
to be addressed in the future, for example, the role of
cluded volumes, the discreteness of the surface charge an
mobility, and higher order~beyond Gaussian! corrections. A
recent calculation and simulation shows that charge discr
ness also induces charge localization@22#. Therefore, it is
possible that these neglected effects may smooth out
first-order transition. However, we believe that a rapid var
tion of the condensation with the surface charge, reflect
the predicted effect, should remain.
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