PHYSICAL REVIEW E, VOLUME 65, 051501

Shape of the liquid-vapor coexistence curve for temperature
and density dependent effective interactions
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The asymmetry of the coexistence curve that is observed in several micellar systems is discussed in relation
with the dependence of the effective interaction on temperature and density. Standard results for the diameter
of the coexistence curve in the van der Waals theory are generalized so as to deal with this combined
dependence. The qualitative trends so deduced are assessed by comparison with coexistence curves of Yukawa
fluids computed with integral equation theories. The role of the variables used to plot the coexistence curve and
the nonlinear behavior of its diameter beyond the critical region are discussed in relation with the decrease of
the interaction strength with density. The possibility of using the asymmetry of the coexistence curve as an
indicator of the state dependence of the effective interaction is finally discussed.
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[. INTRODUCTION [12,13 or more generally that of state dependent intermo-
lecular potential§14] have in particular been underlined in
Effective interactions that depend on the thermodynamicsome theoretical studies. The methods used in these
variables are often considered in the physics of liquids. Thistudies—such as the effective Landau-Ginsburg-Wilson
dependence follows either from theoretical considerations of-GW) Hamiltonian—being specially appropriate to the in-
is introduced as a necessity for interpreting experimental obvestigation of the critical behavidri5], the emphasis was
servations. An example is the case of asymmetric solutedaturally put on the critical region. A good understanding of
solvent mixtures described at the McMillan-Mayer lef/). some universal feat.ures, especially the smgulant.y. of the.d|—
A prototype of this situation is the Deryaguin-Landau- ameter of the coexistence curve close to the critical point,

Verwey-OverbeekDLVO) potential in charge stabilized col- h?S bee_fr_l galn(tad in this mannter. I;orda more quﬁnt'tat';]/e study
loidal dispersions in which temperature enters the inversg Specilic Systems, a more standard approach can, Nowever,

Debye lengtH 2]. State dependent interactions are also intro- € preferablg. This is the case |n.the present.work thgt was
.actually motivated by some experimental studies of micellar

duced for interpreting scattering measurements in nonionlgystems. The latter often show transitions similar to the

dispersions such as colloidal s!llca pa_rtlclsee,_ for ex- liquid-vapor one in simple fluidg8]. These transitions were
ample, Refs[3-5]) or reverse micelles in organic solvents o ssed with the help of theoretical coexistence curves
(see, for example, Refg5—9]). For these systems, the effec- 1o |ative to state independent interactions whereas structural
tive |_nteract|on fitted to experiment is found to depend onyata suggest that one is actually dealing with density depen-
density and/or temperature or even on the pres@ee, for  gent ones. A clarification of this point seems thus necessary,
example, Refs[10]). In a different context, one may view egpecially when the dependence on density combines with a
the effective interaction between ions in |IQUId metals as besimu|taneou5 dependence on temperature. The latter has in-
longing to this class since it depends on the electronic dendeed been considered—separately—more ofsee, for ex-
sity. The thermodynamic properties of the system—in parample, Ref[16] for a recent study of a temperature depen-
ticular the liquid vapor coexistence curve, or its equivalent indent double Yukawa potentjalThe study of Reatto and Tau
the effective fluid representation—can be affected by thi§13]in particular dealt with the effect of temperature or den-
dependence up to the qualitative level. To take the examplsity in micellar system but on rather unspecific grounds. A
of temperature, profound changes with respect to simple flumore quantitative study seems thus useful. To this end, the-
ids are evidenced by the lower consolute points shown byretical methods that enable a quantitative determination of
several micellar systems]. The strong asymmetry of the the coexistence curve, including the precise location of the
coexistence curve and the unusually low critical volumecritical point, are required. The LGW Hamiltonian being not
fraction also favor an effective interaction that depends ofparticularly designed for this purpose, we considered the in-
the volume fraction of the dispersed phase. The asymmetnegral equations of the theory of liquid47] in which the
of the liquid vapor coexistence curve of liquid meté&®e, microscopic parameters of the system can be incorporated
for example, Ref[11]) might also indicate such an effect. more explicitly. Phase diagrams for a variety of state inde-
Of course, these well-known features have already beependent interactionésee, for example, Ref18] and refer-
discussed in the literature. The role of many body forcesnces thereinhave been obtained in this way but the situa-
tion is clearly different for state dependent ones.
The main purpose of this work is hence to discuss the
* Author to whom correspondence should be addressed. Email agffect on the coexistence curve of an effective interaction of
dress: amokrane@univ-paris12.fr the forme(p,T) f(r). This specific form followed from our
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previous study19] of the hard core Yukawa fluid as a model expansion ofF with respect tor =(p—p.)/p. and 7=(T

of the effective interaction in water in oil microemulsions. —T.)/T, (the subscript stands for quantities computed at
From this example, we will discuss some aspects of the statie critical poinj. Following Levelt-Sengers’s derivation
dependence that might be relevant in more general situationg20], the first term beyong,= p. is obtained by using in Eq.
In order to gain a qualitative understanding of the role of this(2) the expansion of the pressure as

T-p dependence, we first start with the van der WaaiiV)

theory. Standard results from the literatyrss,20,23, in- P 11
cluding the effect of thep dependence of the slope of the P, & mi nt Pmal 75 ©)
diameter of the coexistence curigee Ref[12]) are gener-
alized to an interaction strength that depends als®. dwext,

a more quantitative discussion is performed with the help o
integral equations methods, especially with that proposed by
Duh and Mier-Y-Teran for Yukawa fluidg22]. As shown in

our previous worK19], it can readily be adapted to study a
temperature and density dependent effective interaction as
that used to analyze micellar systems in organic solMg@jts and a similar expansion of the chemical potentialBy as-

This method is both accurate and simple enough to permit auming that the gas and liquid densities at coexistence have
discussion well beyond the mean field van der Waals theorgthe expansionr;=ay| 7|™+ay|7[?™+--- and ry=b,|7|™

It is indeed much simpler than the more accurate modified+b,|7|°™+ - - - one obtains from the lowest-order terms of
hypernetted chaiiMHNC) integral equatio23], in its ref-  Eq.(2): m=3, a;= —b,, anda,= b,. The reduced diameter
erence versiorlRHNC) [24] that we used for comparison d=py/p. is thus found to be linear in temperatum:= 1

(the difficulty in using the MHNC was, for instance, pointed +a,| 7| , with a slope given by20]

out by Reatto and TalL3] in their study of the coexistence

curve of micellar systemsTo this end, this paper is orga- Po1 3 P1Pao 4 P

nized as follows. In Sec. Il we present the expression of the a,=—- 5 —2+§ —. (4)
diameter of the vdW coexistence curve fbfp dependent P3o P30 P3o

potentials together with a brief summary of the method used i ) _ i

to compute the coexistence curve for e Yukawa fluid.  From Eq.(1) one finds[20] a,= 5. For the forthcoming dis-

In Sec. Ill, we show and discuss some representative resulf&!Ssion, the main point is that E@) follows from the terms

. . 512 ;
and the paper ends with a conclusion. of order 7

¥vhere

in the expansion of Eq42).

We consider now the modifications due to the state depen-
dence of the interaction, starting first with the dependence on
p. In their study of the influence of three-body interactions
on the vdW coexistence curve, Pestakal [12] supple-

A. van der Waals theory mented the vdW free energy by a term quadratic in density:

_ pvdW 2 _ 2
To begin with, we recall here the results relative to the'r:e/ell\ld;F IN+qp*. The pressur®=pi(F/N)/dp] then

coexistence curve and its diameter in the vdW theory. The
starting point is the equation of state,

II. COEXISTENCE CURVE FOR A TEMPERATURE AND
DENSITY DEPENDENT INTERACTION STRENGTH

kgT
p— PKp
(1-pb)

_ 2_ 3
pksT ap”—2qp°, 5

_ _ 2
- (1_pb) ap*, (1)
whereq is the equivalent of for the three-body potential.

wherea= 2 [dr ¢, (r) andb=(27/3)c2 are the usual vdw The influence of the additional term proportionalkfcan be
parameterseg,,(r) being the attractive part of the interac- S€€n by expanding all quantities with respect to the small
tion potential, beyond the hard-core diameterThe densi- Parametex=g/ab, in which case the influence ofcan be
ties pg and p; of the gas and the liquid at equilibrium at a discussed without having to solve E@). This amounts to
temperaturdl are obtained from the equality of the pressure@Ssuming that the strength of the attractive part of the three-

and chemical potential of the coexisting phases: body term is small with respect to the two-body potential
term ¢, (r). The critical density and critical temperature

P(p)=P(pg); m(p)=m(py). (2)  are obtained from the condition

1+ 2
§X

The classical behavior of the diameter of the coexistence JP
curve pg=(pgy+p))/2 is obtained by assuming that the free %
energyF is an analytical function of andp near and at the

critical point[21] (this assumption must of course be recon-

sidered in a more rigorous treatment of the critical regionand

[21]. See also the model of Widom and Rowlind@5%] for

this point and for a general discussion of the diameter

p4(T) nearT,. can then be obtained from a double Taylor

9P
TC_07_/)2

Te

8a
Tczﬁ(l‘FX),
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where the prefactors are the pure vdW resulis=0). A  The reduced interaction strength at the critical temperature
similar expansion of Eq4) gives the new slope of the di- €(T.o)/KgT.0=¢€,+ ¥Tcolis also equal to that for a tempera-
ameter a§12] a,= £+ (22/15). ture independent interaction,

More generally, one can view these modified vdW results
as pertaining to an attractive interaction of the form
Garr(r)=e€(p) f(r) with e(p)=e€,+ €1p. If the linear term
is small with respect to the constant term over a range of
densities of the order op.o=1/3b, that is, e;p.~e€1pc o
<e€,, the smallness criterion remains<1. These results as will be detailed in the next section. The only nontrivial
then show that within the vdW theory, a decrease of thepoint concerns the slope of the diameter. Indeed, Ejy.
strength of the attractive part of the effective potential energynvolves derivatives with respect to the actual temperature
lowers the critical temperature and critical density and in-and isa priori dependent on the linearity of E¢l) with
creases the asymmetry of the coexistence curve. These femspect tol. We examine this point below, together with the
tures common to several micellar systems have also beeffependence op.
discussed by Reatto and Tal3] from a lattice gas model As shown in Sec. 1 of the Appendix, witk,#0, one
within the LGW Hamiltonian approach. obtains at lowest order the critical density and critical tem-

We now consider the generalization of these results for gerature as
strength of¢ 4, (1) that depends also on temperature. To this
end, the following model was considered: 1 2

€ 27b

keT. 8 C

€1
=— |14z —|, (10)
€(p.T)=ksT(eo+ ¥T+ €1p). ®) Pe73b1 "7 3 (ot yTcob
This model is a simplified version of the strengttp,T) of c
the Yukawa interactiofisee Eq(20) below] that we used in Te=Teo— —, (1)
our previous work[19] to analyze structural data and the T oyb

coexistence curve of water in oil reverse micelles:
with T o given by Eq.(9). The influence of the density de-

b(r) = s r<o (77 Pendence is obvious from Eq4.0) and(11), the main point
—e(p,T)exp[—N(rlo—1)}r, r=o, being the lowering op. whene;<0, as withT independent
interactions.
where\ is the inverse rangén reduced unitsof the attrac- A discussion of the diameter prior to the Maxwell con-

tive tail [because of the particular dependencelanvolved  struction requires the new expressionast It is shown in
in the definition(6), a temperature independe#(r) is not  Sec. 2 of the Appendix tha) giving a, in terms of the
recovered by setting=0]. For this model, the vdW equa- coefficients p;; keeps the same form, the latter being of
tion of state reads course modified. By using Eqg10) and(11) in Eq. (4), one
can obtain a smak expansion of, but the resulting expres-
®) sion is too cumbersome to be shown here. A simple result
follows whene;=0 (pure T dependencde

kgT
= 1op BTt a T,

whereag(T)=ckgT(e,+ yT) anda (T)=2ckgTe; with a

mean field constant a 2 1- 56 S0t 7Teo (12
25 20 T
) 1 1
c=em X+ F ' Besides these analytical expressions, one can construct the

full coexistence curve and its diameter by solving E?).

It is useful to consider first the purE dependence, ob- Rather than proceeding by graphical determination of the
tained by settings;=0 in Eq. (6). The usual vdW form is common tangent on the free-energy isotherms, one can rear-
thus recovered but with a temperature dependent attractiv@nge Eq.(2) in the form(see also Ref.26])
termag(T). The only independent variable in an isothermal
construction beings* = €(T)/kgT, the results at the critical

. 1 1 d
point have the usual form p.,=1/30, KkgT.o P(P|)(— - _) = J’pl—Z(P—PkBT)— kﬂln(ﬂ)
=8ay(T.0)/27b and P, o=ay(T0)/270* independently of Pg P Py P P9
the specific form o&(T) (the index O stands fog; =0). The (13

law of corresponding states thus holds, as long(@sT) is
independent op. In these expressions, the critical tempera-that is more suitable for numerical calculations.

ture is given by The predictions from the mean field vdW theory being
limited to the qualitative level, two integral equations meth-
T = E (2_7 E_E ) @) ods that we used for a more quantitative study are briefly

0 yl8c O described below.
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B. Coexistence curve from the RHNC and MSA integral
equations

The first one is the well-known RHNC integral equation
[24] that supplements the Ornstein-Zernike equafbi for
the total and direct correlation functiohgr)=g(r)—1 and

c(r),

h(r)—c(r)=pf dr'h(r’)c(|r—r’]) (14)
by the closure
g(r)=exp — ¢(r)/kgT+h(r)—c(r)—bg(r)], (15

where by(r) is the bridge function of a reference system,
here a system of hard spheres, whose diameter is determined

by the optimization conditiof24]

bo(r)

f dr[g(r) —go(r)] =0. (16)

The RHNC has been applied to a variety of state indepen

dent interactions and has been shown to be very accura

when compared with simulatiofsee, for example, Refs.
[27,18 and references therginin this work, we used the
parametrization obg(r) of Malijevsky and Labik[28] and
used the algorithm of Labikt al.[29] for solving Eqs(14)—
(16). One major difficulty with the RHNC and related meth-
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FIG. 1. Reduced temperature and reduced inverse interaction
strength vs reduced density along the coexistence curve. Data above
the liney=1: density independent interactios;& 0, squaresand
Id][?ensny dependent one{= —0.157, crossgsThe line is the linear

ameter fore;=0 with slope given by Eq(12). Data below the
line y=1: full curves represent coexistence curve and its diameter
for temperature independent interactighe left and righty scales
are equal Symbols: inverse reduced interaction strength along the
coexistence curve and its diameter; squares=Q, left and right
scales are equrlCrosses ;= —0.157, right scale only

ods is the presence of a domain near the critical point where

numerical convergence is impossibleee, however, Ref.

[30] for a possible way to circumvent this problem and Ref.

[31] for improving convergence at high dengityBince the
interaction potentiakp(r) appears explicitly in the closure
(15), this method can be used as it stands to compgqté¢

for state dependent ones. This holds also for the RHNC fre

energy that is obtained from the energy roigee Eqs(8)—
(10) in our previous work[19]]. The construction of the

€ that depends op and T. However, the pressure involves
additional terms related tée* (p,T)/dp. From the explicit
expression oP given in Ref.[19], the coexistence curve is
readily determined by numerical solution of E43). These
éesults are presented and discussed below.

Ill. RESULTS AND DISCUSSION

RHNC coexistence curve being rather lengthy, it has been

used here only for checking the results of a much simpler

method that we detail now.

A. van der Waals coexistence curve foil -p dependent
interaction strength

The second method is specially designed for the hard-core Besides the analytical considerations of the previous sec-
Yukawa interaction{7). It is based on the inverse temperaturetion, the point we wish to discuss here is the relative influ-

expansion of the free enerdyTEF) in the mean spherical
approximation (MSA), that is with the closurec(r> o)
—¢(r)/kgT. The original expansion32] of the excess
free energyAf = (F —F,)/NkgT with respect to that of hard
spheres, as an infinite series of the reduced stresgth
= €elkgT, is

Vn
e

> (17)
1

NIH

This was deduced from the analytical soluti@3] and was
later summed by Duh and Mier-Y-Terd@2] who extended
the expression of the coefficient,. The resulting closed
form of Af involves explicit functions of the packing frac-
tion »=w/6po° (see Ref[22] for the expression of the vari-
ous termg Our previous work19] has shown that this form

ence of the variation oé(p, T) with T and that withp on the
asymmetry of the vdW coexistence curve. Figure 1 shows
typical results obtained from a numerical solution of EkB)

with the following values of the parameterséfyp,T) of Eq.

(6): (e€p,y,€1)=(0.5,0.2,0) and (0.5,0.2,157) [e&
—0.157 is actually 0.3/6]. These values were chosen so
as to keep up with the low expansion discussed above. The
point to be noted is the role of the energy scale used to plot
these curves. When the reduced strengthe* is used for
they axis (part of the plot below the ling=1), the coexist-
ence curve for the modé€b) with €;=0 is the same as the
pure vdW ondwith a puree(T) variation, the law of corre-
sponding states holds as discussed in Sec.].lIMote that
€;/€* equals €,+ yT¢ o)/ (€,+ yT) andT/T., respectively,
whereT is the actual temperature in kelvin. On the contrary,
whenT/T, is used, the pure vdW curve remains the same but

of Af can be used even with an effective interaction strengttdifferent curves lying above the ling=1 are obtained for
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each value of the ratig/ ¢, in the lawe(T). Incidentally, the P 1
variation withT embodied in Eq(6) restores symmetry with (0—1-) :$(P+apz), (18)
respect to the pure vdW curve. Besides the fact that the usual P

behavior is recovered when the “natural” variabdg/e* is

used, the MSA results presented below show that this is ndi"e getssee the Appendixthe slope ofp for T<T_as

the generic behavior whe#(T) increases withl. The main

point here is that the coexistence curves have different as- dp, 1 A " K/ 2akgT] !

pects in the representatiof$T.— p/p. and €x/e* —plp,, ﬁ_a( Co—kg)=—(kg/a) 1~ - (19
but both have the same status. In particular, two conjugate

points correspond to a constanor €*. The slope of the density in the vapor is more directly ob-

The '_situation_ is different whealqﬁ_o, since each value of (5ineq asdpg/dT:(a/sz)mpg. Equation(19) shows that
€1/€, gives a different curve even in the/e* representa- |, is not linear inT. However, it so happens that while the
tion. This last situation involves indeed two independent enmagnitude of the second term in the bracket is comparable to
ergy variables[see Egs.(6)—(8)]. In addition, pg(T) and  ynity, it varies slowly withT. This is in accordance with the
pi(T) determined at fixed' do not correspond to the same known fact that for several substanceés;, is almost con-
value of e;/€* because of the density dependence oOfstant at low enougf. A linear fit of the liquid branch in the
€(p,T). The curvee; /e* — p/p. then loses the meaning of a range 0.4T*<0.44 (T*=kgT/€) gives, for instance,
coexistence curve since it does not correspond to the locus dfp, /dT*=0.304 whereas Eq(19) gives 0.3<dp,/dT*
conjugate points as defined in R¢R5]. The tielines con-  <0.33. Similarly, we find in the vapor branatip,/dT*
necting such points are given by a linear equatéfp) =c =0.073 Wherease(/kTZ)mpg varies between 0.06 and 0.07.
+dp , with different values ofc andd at eachT [see Eq. This shows that folT<T., the slope of the diameter is
(6)]. The vapor and the liquid branches, nevertheless, form gnainly determined bydp,/dT which is roughly constant,
single continuous curve that actually corresponds to th@ecauseAc, behaves so. This result would hold for other
variation of the reduced interaction strengfi/e* (p) along  equations of state showing a behavior similar to Et),
the coexistence curve. One can also draw its variationhat is, those keeping the quadratic and temperature indepen-
esle*(pg) along the diameter d=1/2p;(p4+p)) dent mean field term, but with different hard sphere contri-
=d[e(py(T),T)]. Because of the weak dependence @n butions. Even so, a more physical understanding of this near
whene; = —0.157, the tielines are almost parallel to the ab-linearity of the diameter requires an explanation of the com-
scissa axis and the curwe/e* —pl/p, lies below the line bination of the thermal and elastic coefficients that leads to
y=1. Its maximum is almost indistinguishable from the lo- this near constancy afc, at low enoughr.
cation of the critical point. As shown below, the situation can
be quite different when an accurate equation of state is used B. Coexistence curve in the MSA
in conjunction with a differenk(p,T) law.

Finally, whene, = —0.157, the strength(p, T) decreases Since the vdW treatment is not expected to be quantita-

with density at constarif, the coexistence curvéhat is in tively accurate, we examine now the results obtained from
the T/T, scalé is more asymmetrical than whan=0. In the MSA . We first cpnsidered the variation pr,T) with p
view of this, the increased asymmetry associated with th@"d T separately. Figure 2 shows the coexistence curve for

decrease o&(p,T) with p is not of a distinct nature than that €(P) =€+ €1p. Fore; =0, comparison with simulation data
discussed analytically in Sec. Il A for the puegp) form. IS possible. The agreement in absolute variables is satisfac-

The converse of this trend—the diameter becoming mordory, except near the critical poifie2]: the critical density is
. ) ; . *— o 3 i

vertical whene(p, T) increases withp—is also natural. very good,p;; =pco°=0.316(to be compared with 0.313 by

The more interesting point is the long-known observationSimulation but the critical temperature is too higf¢
that the near linearity of the diameter extends well below the=1.238 while simulatiori27] gives Ty =1.177. Beyond the
critical point (the so-called law of rectilinear diametgrgve  critical point, the MSA is almost as accurate as the RHNC
are not aware of a general explanation of this law, even in thg27] [see also Fig. @ ]. The inaccuracy of the vdW critical
context of the van der Waals equation. In this case, we founstaluesp? = 1/2r=0.16 andT} = 5¢=0.77 is evidentthese
that some insight into this question might be gained by convalues correspond to a Yukawa inverse rangel.8). In
sidering the situatioriT<T.. By neglecting contributions reduced variableg-ig. 2(b)], the overestimation of the criti-
due top, (see below, an explicit expression of the slope of cal temperature by the MSA worsens the agreement with
pa(T)=3p(T) for T<T, can be obtained as follows: a use- simulation but the diameter agrees with simulations better
ful starting point is Clapeyron’s equation relating the tem-than the vdwW one. The MSA diameter far=1.8 is in very
perature coefficient{P/JT), along the coexistence curve to good agreement with the experimental ofgl], but this
the latent heat of evaporatiakh (in Ref.[25], Widom and  seems fortuitous. The slope of the diameter depends indeed
Rowlinson discussed also the behaviopgfandp, at lowT  slightly on\, even in the unitS/T.—p/p. (by plotting the
in their model but from virial expansiopsBy using the re-  simulation data of Lomba and Almarza in reduced variables
lation (9Ah/dT),=Ac, valid at low enoughT [21], the  we also found that the diameter far=3 is clearly distinct
equilibrium equation(13), and the relation specific to the from those forA=4 and\=1.8). It is also to be mentioned
vdW equation(1), that according to Duh and Mier-y-Terd@2], their formula-
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0.95 - b FIG. 2. (a) Coexistence curve in the
temperature-density plane of the Yukawa poten-
tial with A = 1.8. Full lines: coexistence curve and

0.9 : : : : : : : its diameter from the MSAEQ. (17)]. Symbols:

0 0.1 0.2 0.3 0.4 0.5 0.6 a7 08 simulation datd27]. e independent ofl and p.
(@) p* (b) Coexistence curves and diameters in reduced
variables. Full curves and squares: same as in

1.05 Fig. 2(a). Short dashes: MSA for density depen-
dent interaction ;= —0.157). Black circles, ex-
perimental diametef34]. Long dashes: van der
Waals (,=0). Dots: van der Waals e

. L =—0.157). Crossesdiameter for the sticky
hard-sphere modéB8|.

095
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085
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tion of the MSA being based on the energy route, it is ex-decrease 0é(p) of about 25% fromp=0 to p=2.50.. This
pected to yield classical mean-field critical exponents. Sincenoderate variation might thus correspond to real physical
in this work we were not particularly interested in the critical situations. In contrast with the vdw treatment, the MSA gen-

behavior, we did not consider this aspect further. erates in these conditions a diameter that departs signifi-
The main point now is that the MSA curve witle, €,) cantly from the experimental one for ordinary substances.
=(0.5,-0.157) is clearly more asymmetrical than when We now consider the additional variation with tempera-

equals 0. The vdW predictions are correct at the qualitativeéure on the example of the effective interaction in AGb-
level but the change predicted from=0 to e;=—0.157 is  dium bis di-ethylhexyl sulfosuccinateeverse micelles. Fig-
not quantitatively significant. The last value corresponds to aire 3 shows the coexistence curve obtained weitp,T)
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FIG. 4. Theoretical coexistence curves and diameter for reverse
micelles in alternative scales. Curves above the Jirel: sameas
those in Fig. 3. The curve below the lige=1 is another represen-
tation of that for density independertb,=0A=0.73). With the
right scale, it is the transform of the dashed curve above the line
y=1. With the left scale, theamecurve can be viewed as that for
the pure Yukawa potentiale(independent off).

MSA-ITEF formalism, two RHNC coexistence points are
also shown. The most important observation from this figure
is the strong asymmetry of the coexistence curve. This is
better evidenced in reduced variab|€sg. 3b)] by the cur-
vature of the diameter, even close to the critical point. It
should be mentioned here that the packing fraction was taken

FIG. 3. (a) Coexistence curve for reverse micelles in the reducec®S €dual to the actual volume fraction of the micelles. A
temperature-packing fraction plane. Black circles: experimentaflifférent conversion of the latter into packing fractions de-

data for the AOT water in decane systé8j. Full curve: MSA with
€* (7, T) from Eq.(20) and\ = 1.2 (see Ref[19] for the values of

termined form a molecular model modifies the value of the
coefficients in Eq(20) but do not suppress thedependence

the coefficients Crosses: RHNC points, same law. Dashed curvethat generates the asymmetry. The extreme dase0

MSA for A=0.73 ande* (#,T) independent ofy [by=0 in Eq.

(circles in Fig. 3 indeed shows that the experimental points

(20)]. (b) Theoretical coexistence curves and diameter for revers@re not accurately reproduced when the strength is indepen-

micelles in reduced variables. Curves: same as in Hig. $ym-

dent ofp (the structural data are then not at all reproduced—

bols show the diameters: empty circles represent density indepesee Fig. 3 in Ref[19]). This means that this dependence is

dent €(by=0), black circles represent density dependefib,
#0).

computed from

E*(ﬂ,T):a0+ a.lT+ a2T2+ boexq_blﬂ) (20)

and an inverse range parameter 1.2. The other parameters
were determined by fitting experimental data for the low-
angle structure facto(q) by the equation

Sfl(q:o):if )
kBT &p T

The result obtained by ignoring the density dependence i
Eq. (20) (parameters of Chest al. [35] with A=0.73) is

necessary, even though the actual values of the parameters in
Eqg. (20) or that of A\ might be affected by a different defini-
tion of ». This impact of the dependence with(compare

with the caseby=0) is here much more pronounced than
that predicted by the vdW equation. Note that the variable on
they axis in Fig. 3 isT/T.. In view of the previous discus-
sion, we show in Fig. 4 the same curves together with that
with A =0.73 ande independent oT (recall that this is iden-

tical to the curve withe* (T)=ao+a,T+a,T? plotted ver-
susei/e*). Whereas the temperature was found to restore
symmetry within the vdW equation, we observe here that the
curve withby=0 seems also strongly asymmetrical. This is
clearly a consequence of a particular choice of variables. If
celcius temperatures were used instead, as in some experi-
mental studies, the diameter would not show such an
“anomalous” slope. The inverse reduced interaction strength

given for comparison. In order to judge the accuracy of thee’/e* for by#0 is shown againsy/ 7. separately in Fig. 5.
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1 . . . . proximation leads to a much more standard behavior of the
diameter when the energy or the zero separation theorem
routes are used to obtain the coexistence curve. The MSA is
also not thermodynamically self-consistent, especially for
strong and short-range attractiop40]) (large values of\
ande). In the present cas@,=1.2 and the maximum value

of € is lower thankgT. The good agreement with the RHNC
and with simulations whei =1.8 suggests that this incon-
sistency is not, in our case, a severe limitation. In other situ-
ations, this density-related asymmetry could be investigated
i by using other integral equations, preferably thermodynami-
cally self-consistentsee, for instance, the comparison of the
performances of various integral equations for the hard-core
Yukawa fluid with\ 1.8 in Ref.[41]).

IV. CONCLUDING REMARKS

06 ! ! ! ! This paper is concerned with the asymmetry of the liquid-
0 1 2 3 4 5 vapor coexistence curve for a fluid with an effective interac-
nm, tion strength that depends on the temperature and the density.
With a pure temperature dependendd), the representa-
FIG. 5. Inverse reduced interaction strength for reverse micellegions of the coexistence curve in the temperature-density and
a!ong the.coeX|stence curve. Dashed lines and circles: same as jijeraction strength-density planes are equivalent. The latter,
Fig. 4, p-independente(b,=0A=0.73). The curve can also be ,\wever, shows that the strong asymmetry that can arise
viewed as the coexistence curitge tielines, not shown, are paral- ¢ specific forms of the lawe(T) in the temperature-

lel to the x axis). p-dependent: short dashes with dots represent density plane is not an intrinsic property of the coexistence
vapor branch, full curve with dots represents liquid branch. The . . N
critical point is indicated by the arrow. The squares sheilie* curve. With a pure density dependence, the qualitative trends

. 0 , : : gredicted from the van der Waals theory are correct but the

along the diameter. The tielines connecting the coexistence points at . ) L .
. X magnitude of the main effects—change of the critical density
fixed T are given by Eq(20). . . . .
and slope of the diameter—are underestimated in compari-

This curve shows that the effective interaction strength along©n With the results of an accurate integral equation theory.
the coexistence curve*(p) has a more “symmetrical” Whene depends simultaneously Ghandp, the asymmetry
variation than the corresponding temperatdig(p) (the  ©f the coexistence curve in thiep plane due to the density
maximum value of*/e* abovey=1 at about 3, does not dependence reveals through the curvature of the diameter,
c oy . . .
correspond to the critical pointThis purely geometrical €Ve" close to the critical point. The necessity to use a suffi-

ssymmetry” is distinct from that usually considerd@5] in ciently accurate equation of state has also been underlined. A
the theory of the liquid vapor transition. It is also different M0derate decrease of the interactions strength was indeed

from that arising from an appropriate choice of the Orderdetectr:xble in the MSA treatment but not in the van der Waals

parameter on the axis (see, for example, Ref36] for a one. Whether the ensuing asymmetry of th(_a coexistence
study of the coexistence curve of binary mixtyres curve could be used as a signature of the density dependence

To conclude this section. it is useful to stress that a reliof the effective potential requires clarification of the role of

able assessment of the influence of the state dependence Yfi€r sources of asymmetry. Indeed, in this work, only the

the interaction on the coexistence curve requires a suffintéraction strength was allowed to depend on temperature

ciently accurate equation of state. The comparison mag@nd/or density. Similar investigation of the influence of the
above of the vdW and MSA results clearly illustrated this. AsOther characteristics of the interaction potential should be

a further piece of evidence of possible artifacts of approximade before assigning with confidence the asymmetry of the

mate equations of state, we may take the example of Baxter&Perimental curves to a precise dependence of the effective
sticky potential[37] treated in the Percus-YeviolPy) ap-  nteraction on the thermodynamic variables.

proximation. The latter is known to exhibit a strong incon-

sistency between the various routes to the thermodynamic APPENDIX

properties, especially the virial-compressibility inconsis-
tency. In contrast with the virial route that does not predict
phase transition, the compressibility route predicts coexist- When €;#0, there are two independent energy param-
ence, with a strong asymmetry between the vapor and thetersao(T)/kgT anda,(T)/kgT so the standard results for
liquid branch[38] [the crosses in Fig.(B) correspond tdhe  p. and T, must be reconsidered. Since the equations deter-
diametel. This feature has been invoked by Chatmal.[8]  mining the critical point cannot be solved explicitly for arbi-
to explain the asymmetry of the coexistence curve of AOTtrary values of the parameters in E@), we resort to the
reverse micelles. On the other hand, Barboy and T¢R8 small x expansion. We thus require the density dependent
have shown that the same model, still treated in the PY apterm e,p to be smaller than the constant oagt yT. Since

1. van der Waals critical values with €(p,T)

051501-8



SHAPE OF THE LIQUID-VAPOR COEXISTENCE CUR¥ . ..

the critical density withe; =0 is insensitive to the tempera- relatesdP/JT along the coexistence curve to the latent heat

PHYSICAL REVIEW E 65 051501

ture dependence, the smallness criterion becomes of evaporationAh [in Eq. (Al) vy=1lpg, v,=1p]. Per-

—a,(T)b Yap(T)<1 or e;/(e,+ yTo)b<1 (this will hold

forming the differentiation with the help of the equilibrium

also forT>T,, for y>0). One easily verifies that the ex- equation(13) one gets

pansion ofp. can be obtained from the result given in the

text by simply replacing by its new expression
. 1 1 2 €1
Pe=3p| 1T 3 (gt yTob)”
This is fed into the equation

P

% |TC:0

that reads kgTo=(1—bpc)?[2ao(T)pe—3a1(T)p2], to
obtain the newr . as a function ofp.. To lowest order, the
two equations can be solved explicifliggs.(10)—(11) in the
main texi.

2. Slope of the van der Waals diameter withe(p,T)

We examine here the influence of nonlinear term3 in
the expansions oP and w that give Eq.(4) for a, (the

dependence op does not affect the order of the expangion

At lowest order, an additional tergp;,(a;—b;) 7™ ? con-
tributes to the equality of the pressur@ath a similar con-
tribution in the equation fog). Since terms with lower ex-
ponents ofr (those involving the first derivativg;; with

respect tol') were already included in the expansion of Eq.

(2), the result§20] m=3, a,= —b,, a,=b, are unchanged.
The sole modification is thus an extra terey(pi,
— 1) 72 in the final equation determining,. From the
expansion of the free energy and using the relatiéhs
=p2(d(FIN)/dp) and u=F/N+P/p, one findsp;,=2F,
+F,=u1,. Therefore, Eq(4), giving a, in terms of the
coefficientsp;; , keeps the same form.

3. Clapeyron’s equation
Clapeyron’s equation

Ah

aP) B
T “Twg o -

B,
aT) \pg ol Jpgp2 T .

Inserting (aP/aT)p:(l/T)(P+ap2) in the right-hand
side of Eq. (A2) and using Eg. (13), one gets
(L/T)[P{(1lpg) — (Llp))} +a(p;— py)]. EquationgAl) then
give

Ah

mmpg:PJrapmg- (A3)

Well belowT., one may neglegt, in the denominator of
the left-hand sidglhs) of Eq. (A3), and approximate the
pressure by that of the perfect gd3=pykgT, giving Ah
=kgT+ap,. Using the relation {Ah/JT),=Ac, valid at
T<T. one gets

dp| 1
d_T: a(ACp— kB) (A4)
The change in heat capacity at constBatAc,=cp, 4—Cp
is easily obtained from the relationsC,—C,
= —T(aP/dT)3/(aPIaV)r and c:®W=3Kg. Cpy=Cy qtkKs
andeJ:CU'|+kB/[l—(Za/kBT)p|(l—p|b)2] thus give

dp -t

kg/a)| 1 2a 1-pb)? A5
ﬁ—_(sa) _kB_Tp'( —pib) (A5)

The equality of the pressures at equilibritPg=pkgT
=P, shows also that % p,/p=1/(1-pb)—(a/kgT)p,,
which leads to Eq(19) for dp,/dT. In its turn dpy/dT
z(a/sz)p,pg follows by putting P=pgkgT in the Ihs of
Eq. (A2).
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